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Pointer tainting is a form of Dynamic Information Flow Tracking
used primarily to prevent software security attacks such as buffer
overflows. Researchers have also applied pointer tainting to mal-
ware and virus analysis.

A recent paper by Slowinska and Bos has criticized pointer taint-
ing as a security mechanism, arguing that it is has serious, inherent
false positive and false negative defects. We present a rebuttal that
addresses the confusion due to the two uses of pointer tainting in
security literature. We clarify that many of the arguments against
pointer tainting apply only to its use as a malware and virus analysis
platform, but do not apply to the application of pointer tainting to
memory corruption protection. Hence, we argue that pointer taint-
ing remains a useful and promising technique for robust protection
against memory corruption attacks.

Categories and Subject Descriptors: C.0 [General]: Hardware-
Software Interfaces; D.4.6 [Operating Systems:] Security & Pro-
tection – Information Flow Controls

General Terms: Security, Design, Experimentation, Performance

Keywords: Software security, pointer tainting, dynamic informa-
tion flow tracking, buffer overflow, memory corruption, malware
detection, virus detection

1. INTRODUCTION
Dynamic Information Flow Tracking (DIFT) has been used to

prevent a wide range of security attacks [5, 9, 24, 18]. DIFT tracks
the flow of untrusted information within a program’s runtime by ex-
tending memory and registers with one or more tag bits. A tag bit is
typically set if the register or memory word contains untrusted in-
formation received over the network or some other source. Tags are
propagated at runtime according to a set of tag propagation rules.
For instance, if the tag bit for one or more of the input operands
of an arithmetic operation is set, the tag bit for the output operand
is set as well to indicate that it was derived from untrusted data.
Tags are systematically checked to detect security attacks. For ex-
ample, a code injection attack can be prevented by checking if the
tag bit of an instruction is set before the instruction is executed.
By properly selecting the rules for propagation and checking of tag

.

bits, DIFT can be used to prevent a wide range of attacks includ-
ing high-level threats such as as web authentication and authoriza-
tion bypass [12], SQL injection [23], command injection, directory
traversal, and cross-site scripting [21].

DIFT can also prevent memory corruption attacks such as buffer
overflows. During a buffer overflow attack, untrusted input typi-
cally overwrites pointer values, resulting in arbitrary code execu-
tion. Several DIFT analyses have been proposed to stop memory
corruption attacks [5, 10, 14, 18, 24] using policies that rely ei-
ther on bounds check recognition (BCR) or on preventing pointer
injection (PI). BCR-based policies [5, 9, 18, 24] prevent memory
corruption by forbidding untrusted data from being dereferenced
without first applying a bounds check operation. Due to false posi-
tives and negatives encountered when applying BCR-based policies
in the real world, researchers have recently proposed PI-based poli-
cies for DIFT analysis [14, 10]. PI uses two tag bits: a pointer tag
bit to track the flow of legitimate application pointers, and a taint
bit to track the flow of untrusted data. PI forbids code from deref-
erencing tainted values that do not have the pointer tag bit set as
well.

DIFT has also been applied for malware analysis [29, 30]. Mal-
ware systems typically perform fine-grained taint tracking to track
the flow of sensitive information, such as user keystrokes or pass-
words. Malware is identified by observing when a software module
attempts to leak sensitive input to an untrusted source, such as a re-
mote network server. This is a separate and distinct problem from
memory corruption attacks. Policies for buffer overflow protection
such as BCR or PI protect non-malicious, but buggy or vulnerable
software from untrusted input. DIFT policies for malware analysis
analyze malicious, untrusted code and benign, sensitive user input.
The threat model used in malware analysis is completely different
from the threat model required for robust buffer overflow protec-
tion.

A recent paper by Slowinska and Bos in the 2009 Eurosys con-
ference [22] has criticized DIFT’s potential as a security mecha-
nism. They state that DIFT policies for buffer overflow prevention
and malware analysis are rife with false positives and negatives de-
fects. Research papers pointing out flaws in existing work are an
important contribution to academia, as they often serve as motiva-
tion for future research efforts. The authors of [22] make a number
of excellent points, but in their criticisms they conflate DIFT poli-
cies for memory corruption with the entirely separate use of DIFT
for malware and virus analysis.

In this paper, we address the criticisms raised in [22] that relate to
preventing memory corruption using DIFT. In Section 2, we rebut
arguments that conflate DIFT policies for memory corruption with
those for malware analysis. Section 3 discusses the criticisms that
apply only to BCR-based techniques, and not to the recent research
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based on pointer injection [14, 11]. While BCR-based policies have
been shown to have a number of real-world false positives and neg-
atives [8, 10], PI-based analyses do not share these flaws. Finally,
Section 4 discusses the criticism that the PI-based policy from [11]
is not easily applicable to the Intel x86 architecture and Windows
systems. We present related work and potential techniques that ad-
dress these concerns. Overall, we argue that DIFT has a bright
future as a memory corruption prevention mechanism, providing
robust, low-overhead protection from malicious attacks on unmod-
ified binaries.

2. CONFLATING MEMORY CORRUPTION
& MALWARE ANALYSIS

Summary of criticism: The pointer tainting criticisms raised
in [22] often conflate different uses of dynamic information flow
tracking: preventing memory corruption attacks on unmodified,
vulnerable, non-malicious software applications and, more recently,
providing a platform for malware analysis platform in order to de-
tect untrusted, malicious programs. The threat models for these two
use cases are entirely different, and thus conclusions for these two
areas cannot be directly compared.

The authors of [22] justly and correctly criticize the use of pointer
tainting for malware analysis. Any attacker can evade the DIFT
policies used in [30, 29] by laundering sensitive information infor-
mation via control flow. For example, a byte-by-byte copy might
be accomplished using 255 if statements such as "if x = 0 then y
= 0", effectively copying x to y using branch conditions. This ap-
proach evades the tag propagation policy, allowing malware to copy
sensitive information from x to y without causing y’s tag bit to be
set. The malware can then leak y to remote network hosts, evading
malware detection algorithms.

This presents a serious challenge for researchers because infor-
mation flow due to branch conditions may be caused due to code
on paths that are not executed [27]. For example, the not-taken path
of a condition may set a variable x to a new value. If x is observed
to have its old value, then the branch condition was false, which
leaks information about the variables used in the branch condition.
Preventing this form of information flow requires static analyses
to examine the full control flow graph of the program being ana-
lyzed. On the common Intel x86 platform, static disassembly is
undecidable [16] as the x86 is a variable-length ISA which has no
requirements for instruction alignment. Even with perfect data and
control flow tracking, malicious software can still employ covert
timing channels to completely bypass all existing DIFT malware
analyses [4].

One possible solution may be the approach taken in [17], where
symbolic execution is used to determine the number of bits the at-
tacker can determine when computing the result of a particular op-
eration. This approach could be used to detect when an attacker is
using branch condition or load/store address to propagate untrusted
information. Another solution is to perform DIFT at a higher level
of abstraction that fully encapsulates control flow, such as by track-
ing information flow at the object or process granularity [15, 31].
However, none of these solutions address covert timing channels,
which can only be prevented by a DIFT solution at the hardware
gate level [25]. Such a low-level approach is required to prevent
information leaks due to inherent covert timing channels in mod-
ern hardware designs, such as cache or TLB misses. This solution
requires significant hardware modifications and all protected appli-
cations must be modified or rewritten to support the new gate-level
DIFT ISA instructions.

Rebuttal: None of these criticisms directed towards DIFT poli-
cies for malware detection apply directly to DIFT policies for mem-
ory corruption attacks. DIFT policies for memory corruption at-
tacks have an entirely different threat model than malware preven-
tion. When preventing buffer overflow attacks, the target applica-
tion is benign, but may contain security vulnerabilities triggered by
malicious input. In malware analysis, the potentially infected pro-
gram is untrusted, but the input is sensitive, benign user keystrokes
or files. The malware analysis must detect when the malicious code
attempts to leak sensitive information, which can be done in many
ways, including covert storage and timing channels.

DIFT policies for memory corruption prevention need only track
common flows of information such as data movement. Since the
underlying application is trusted, we can safely assume that it will
not attempt to launder information via control flow or covert chan-
nels. No known memory corruption attacks in the real world rely
on implicit information flow. Moreover, DIFT policies for memory
corruption ensure that malicious input is never executed as code by
forbidding the execution of tainted instructions. Thus, this use of
DIFT is not mired in the false positive/false negative quagmire of
tracking implicit information flow in untrusted code via branching
and other control flow operations. The experimental results in [22]
do not demonstrate any new false negatives or positives for state of
the art memory corruption policies.

3. POLICIES FOR MEMORY CORRUPTION
PREVENTION

Summary of criticism: We now focus on criticism correctly
targeted towards DIFT policies for memory corruption. In Section
3.2, the authors of [22] state that memory corruption protection
cannot be provided in the general case because of false positives
due to bounds check recognition errors. The claim is partially eval-
uated in Section 5.1, which tests various policies for recognizing
validation operations. The results show that, under standard bounds
check recognition policies, false positives are extremely likely in
real-world applications.

The difficulty of bounds check recognition with BCR-based poli-
cies is a well-known issue that has been discussed in prior DIFT
work [8, 11, 14]. BCR-based policies untaint data when a bounds
check occurs [5, 18, 24]. Most policies simply assume that all
bounds check operations are comparisons. Unfortunately, this as-
sumption leads to significant false negatives [9, 14]. Not all com-
parisons are bounds checks. For example, the glibc strtok() func-
tion compares each input character against a class of allowed char-
acters, and stores matches in an output buffer. If the DIFT policy
interprets these comparisons as bounds checks, the output buffer is
always untainted, even if the input to strtok() is tainted. This can
lead to false negatives such as failure to detect a malicious return
address overwrite in the atphttpd stack overflow exploit [1].

However, the most critical flaw of BCR-based policies is an un-
acceptable number of false positives with commonly used software.
Any scheme for input validation on binaries, including bounds check
recognition, has an inherent false positive risk. While BCR-based
policies untainted the variable that is bounds checked, none of the
aliases for that variable in memory or other registers will be au-
tomatically validated. The use of aliases can lead to false posi-
tives. Moreover, even trivial programs can cause false positives
because not all untrusted pointer dereferences need to be bounds
checked [9]. Many common glibc functions, such as tolower(),
toupper(), and various character classification functions (isalpha(),
isalnum(), etc.) index an untrusted byte into a 256 entry table.
This is completely safe, and requires no bounds check. However,
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BCR policies fail to recognize this input validation case because the
bounds of the table are not known in a stripped binary. Hence, false
positives occur during common system operations such as compil-
ing files with gcc and compressing data with gzip.

In practice, false positives in BCR-based policies occur only for
data pointer protection. No false positive has been reported on x86
Linux systems so long as only control pointers are protected [7].
Unfortunately, control pointer protection alone has been shown to
be insufficient as a security mechanism that prevents memory cor-
ruption attacks [6].

Rebuttal: While real-world false positives and negatives are a
major issue with BCR-based policies, this not the case for the re-
cently proposed PI-based policies that do not attempt to recognize
bounds checks or any other validation operators. In fact, the papers
on PI policies [11, 14] list as motivation code fragments that lead
to the false positive and negative scenarios listed in Section 6.2 of
[22].

Pointer-injection policies use two tag bits: a pointer tag bit to
track the flow of legitimate application pointers and a taint bit to
track the flow of untrusted information. The pointer bit is set for
all instructions and data that refer to statically allocated memory
at startup. Furthermore, the return values of any dynamic memory
allocation system calls have the pointer bit set. Both pointer and
taint bits are propagated at runtime during program execution. A
security attack is reported if a tainted pointer is dereferenced and
the pointer bit is clear. This occurs when untrusted input overwrites
application memory containing pointers during a buffer overflow
attack.

Pointer injection policies never clear taint bits due to possible
validation instructions such as bounds checks. The only way to
clear a tainted variable is to overwrite its storage location with
trusted, untainted information. Hence, PI-based policies do not ex-
hibit the false positive issues associated with input validation recog-
nition in BCR-based policies.

PI-based policies are also robust against false negatives. Exist-
ing buffer overflow attacks rely on overwriting pointers rather than
non-pointer data. PI identifies legitimate pointers in the application
and tracks their flow at runtime. Attacker input has the taint bit set
and the pointer bit clear. If during a buffer overflow, the attacker
input overwrites a valid pointer, DIFT checks will prevent the ap-
plication from dereferencing this pointer as its taint bit will be set
but the pointer will be clear. The PI policy is sufficient to stop
existing attacks such as all control or function pointer overwrites,
data pointer overwrites(such as most heap exploits), all GOT over-
writes, and all standard stack smashing attacks. PI protection can
also be complemented with protections for non-pointer data. Exist-
ing work using information flow or tags to protect non-pointer data
includes red-zone bounds checking for heap objects [10] and static
analyses to determine non-pointer data regions that should never
become tainted [3].

The robustness of PI-based policies has been demonstrated ex-
perimentally for both userspace and kernelspace code using the
Raksha system [11]. DIFT propagation and checks were enabled
for all programs and common workload scenarios, including boot-
ing Gentoo Linux, sending e-mail via Sendmail, and serving web
pages via Apache. Even the Linux kernel, including optimized
handwritten assembly code for memory copies and context switch-
ing, was protected with a PI-based policy without false positives.
The policy was sufficient to correctly detect a wide range of secu-
rity attacks, from traditional stack and heap userspace buffer over-
flows to kernelspace buffer overflows and even user/kernel pointer
dereferences.

4. PRACTICALITY OF IMPLEMENTATION
Summary of criticism: The final set of criticisms in [22] dis-

cusses the practicality of implementing the PI-based policy described
in [11]. In particular, Slowinska and Bos suggest that the policy
successfully used by Raksha on the SPARC architecture and the
Linux operating system cannot be easily ported to the x86 architec-
ture and closed source operating systems such as Windows. This is
because the PI-based policy in [11] requires reliable identification
of pointers.

Pointers in applications can come from dynamic memory alloca-
tion system calls such as mmap and brk, or references to statically
allocated memory embedded in the code and data of the executable.
The policy in [11] relies on system call interposition to identify
pointers from dynamic memory allocation system calls. This may
cause compatibility problems if the system call ABI changes, or if
system calls are undocumented as is often the case in proprietary
OSes. Additionally, the method used for detecting static pointers in
the code and data of executable requires scanning and disassembly
of the object code of libraries and executables at startup. The im-
plementation used in [11] was a SPARC V8 platform, and allowed
for reliable disassembly due to the fixed-length instructions in the
SPARC ISA. However, the x86 has variable-length instructions,
and precise disassembly of x86 instructions is undecidable [16].

Rebuttal: While the exact PI-based policy in [11] has not been
ported to the Intel x86 yet, we do not believe that this is due to
any fundamental difficulty. In fact, the original paper introducing
pointer-injection DIFT was implemented entirely on the Intel x86
using the popular Bochs full-system emulator [14]. This paper dif-
fers from the approach taken in [11] as it performs page table scans
at runtime to determine dynamically if a pointer may refer to stati-
cally allocated memory. Since this scan can be prohibitive in terms
of performance, the policy in [11] examines the code and data of an
executable once at startup to identify pointers to statically allocated
memory, and does not require page table walks at runtime.

To identify pointers to statically allocated memory (such as a
global variable), the policy in [11] analyzes ELF executables at
startup. Specifically, it scans the code section for a particular SPARC
instruction (sethi) that is required by the ELF object file format
when initializing a pointer value [19]. To port this technique to the
x86, two problems must be solved. First, reliable static disassem-
bly on the x86 is undecidable [16] because the x86 uses variable-
length, unaligned instructions. Second, the ELF object file format
does not restrict pointer initialization to a single instruction on the
x86 [20].

However, [11] presents possible solutions to both problems. The
x86 ELF object file format restricts references to statically allocated
memory to the few x86 instructions that allow a 32-bit constant
operand, such as mov [20]. To conservatively identify instructions
used to initialize pointers, the DIFT system can scan the executable
code at startup for valid pointer values at any offset (as x86 in-
structions are unaligned), and then scan backwards to see if any
of the preceding bytes can form an instruction with a 32-bit con-
stant operand. As x86 instruction size is limited to 17 bytes, this
backwards scan is bounded to a constant length.

The other concern presented in [22] is that the techniques in
[11] cannot be used on closed-source OSes such as Windows. Sys-
tem call interposition can be performed without valid source code
by hooking the interrupt descriptor table [13], using dynamic bi-
nary translation tools in software [2, 28], or employing hardware
support, such as the recent hardware support for virtual machines
added by Intel and AMD [26]. A DIFT implementation on Win-
dows may still perform any kernel-related instrumentation by cre-
ating a kernel module and interposing on system calls directly for
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tasks such as initializing tags after a memory allocation system call.
Furthermore, if kernel heap regions cannot be identified, any value
that points into the virtual address range of the OS kernel can be
conservatively treated as a valid pointer.

Overall, the work presented in [11] has promising solutions for
the challenge of implementing PI-based DIFT policies for x86/Windows
platforms. Such an implementation is quite possible, and should
not be dismissed out of hand as is done in [22]. The Intel/Windows
platform was once also considered to be non-virtualizable in real-
world systems, until VMWare used dynamic binary translation tech-
niques to accomplish what was formerly considered the impossible.
Even if researchers only succeed in protecting Intel/Unix platforms,
DIFT will have significantly improved the security of the majority
of critical, high-impact servers.

5. CONCLUSIONS
We have argued that DIFT is a powerful and flexible platform

for preventing software security vulnerabilities, from SQL injec-
tion [23] to buffer overflows [10]. We have demonstrated that many
of the criticisms by Slowinska and Bos [22] apply only to the appli-
cation of DIFT to malware analysis, which has an entirely different
threat model than preventing buffer overflows. DIFT can be applied
to many different attacks, and limitations or drawbacks for a partic-
ular form of attack cannot be directly applied to another attack with
a different threat model. We have also shown that real-world false
positive and negatives are observed only in older, bounds check
recognition-based policies. The latest DIFT buffer overflow poli-
cies are based on pointer injection [10, 14] and have no observed
real-world false positives, even when protecting the Linux kernel.
Finally, we argue that the latest pointer injection policies can be
ported to the Intel x86, and should not be dismissed out of hand as
SPARC or Linux-specific.

Although we agree with Slowinska and Bos that DIFT is not per-
fectly suited for malware analysis, we strongly disagree that these
limitations affect in any way the unprecedented success researchers
have encountered when using DIFT to prevent input validation at-
tacks. Never before has a single security technique been so flexible
(preventing attacks from high-level cross-site scripting to low-level
format strings and buffer overflows), so compatible (works on un-
modified binaries without debugging information), so performant
(no overhead with hardware support), or so secure (comprehen-
sively prevents most attacks). Tainting is not pointless.
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