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Indução Evolutiva de Árvores-Modelo

Árvores-modelo são um caso particular de árvores de decisão aplicadas na solução de proble-
mas de regressão, onde a variável a ser predita é contínua. Possuem a vantagem de apresentar uma
saída interpretável, auxiliando o usuário do sistema a ter mais confiança na predição e proporcio-
nando a base para o usuário ter novos insights sobre os dados, confirmando ou rejeitando hipóteses
previamente formadas. Além disso, árvores-modelo apresentam um nível aceitável de desempenho
preditivo quando comparadas à maioria das técnicas utilizadas na solução de problemas de regressão.
Uma vez que gerar a árvore-modelo ótima é um problema NP-Completo, algoritmos tradicionais de
indução de árvores-modelo fazem uso da estratégia gulosa, top-down e de divisão e conquista, que
pode não convergir à solução ótima-global. Neste trabalho é proposta a utilização do paradigma de
algoritmos evolutivos como uma heurística alternativa para geração de árvores-modelo. Esta nova
abordagem é testada por meio de bases de dados de regressão públicas da UCI, e os resultados são
comparados àqueles gerados por algoritmos gulosos tradicionais de indução de árvores-modelo. Os
resultados mostram que esta nova abordagem apresenta uma boa relação custo-benefício entre desem-
penho preditivo e geração de modelos de fácil interpretação, proporcionando um diferencial muitas
vezes crucial em diversas aplicações de mineração de dados.

Palavras-chave: Árvores-modelo; Mineração de Dados; Algoritmos Evolutivos.





Evolutionary Model Tree Induction

Model trees are a particular case of decision trees employed to solve regression problems, where
the variable to be predicted is continuous. They have the advantage of presenting an interpretable
output, helping the end-user to get more confidence in the prediction and providing the basis for the
end-user to have new insight about the data, confirming or rejecting hypotheses previously formed.
Moreover, model trees present an acceptable level of predictive performance in comparison to most
techniques used for solving regression problems. Since generating the optimal model tree is a NP-
Complete problem, traditional model tree induction algorithms make use of a greedy top-down divide-
and-conquer strategy, which may not converge to the global optimal solution. In this work, we propose
the use of the evolutionary algorithms paradigm as an alternate heuristic to generate model trees in
order to improve the convergence to global optimal solutions. We test the predictive performance of
this new approach using public UCI data sets, and we compare the results with traditional greedy
regression/model trees induction algorithms. Results show that our approach presents a good trade-
off between predictive performance and model comprehensibility, which may be crucial in many data
mining applications.

Keywords: Model Trees; Data Mining; Evolutionary Algorithmms.
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1

Introduction

Within the data mining regression task, model trees are a popular alternative to classical regression
methods, presenting good predictive performance and an intuitive interpretable output. Similarly to
decision/regression trees, they are structured trees that represent graphically if-then-else rules, which
seek to extract implicit knowledge from data sets. While decision trees are used to solve classifica-
tion problems1 (i.e., the output is a nominal value), both model and regression trees are used to solve
regression problems (i.e., the output is a continuous value). The main difference between these ap-
proaches is that while regression trees have a single value as the output in their leaves (corresponding
to the average of values that reach the leaf), model trees hold equations used for calculating the final
output.

A model tree is composed by non-terminal nodes, each one representing a test over a data set
attribute, and linking edges that partition the data according to the test result. In the bottom of the
tree, the terminal nodes hold linear regression models built according to the data that reached each
given node. Thus, for predicting the target-attribute value for a given data set instance, we follow
down the tree from the root node to the bottom, until a terminal node is reached, and then we apply
the corresponding linear model.

Model trees result in a clear knowledge representation, providing the user information on how
the output was reached (i.e., the if-then-else rule that is provided by the tree once we follow the path
until a terminal node). In contrast, approaches such as neural networks and support vector machines,
while more efficient than model trees in terms of predictive performance in many problems, lack on
transparency, because they do not provide the user information on how outputs are produced [RM05].

Model trees are traditionally induced by divide-and-conquer greedy algorithms which are sequen-
tial in nature and locally optimal at each node split [FG05]. Since inducing the best tree is a NP-
Complete problem [TSK06], a greedy heuristic may not derive the best tree overall. In addition,
recursive partitioning iteratively degrades the quality of the data set for the purpose of statistical in-
ference, because the larger the number of times the data is partitioned, the smaller becomes the data

1It is not consensual in the data mining literature if decision trees are used only for classification or if regression/model
trees are a particular case of decision trees. In this dissertation we adopt the first choice, i.e., data mining trees are divided
in decision trees (classification task), regression trees (regression task) and model trees (regression task).
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sample that fits the specific split, leading to results without statistical significance and creating a model
that overfits the training data [BBC+09a].

In order to avoid the drawbacks of the greedy tree-induction algorithms, recent works have focused
on powerful ensemble methods (e.g., bagging [Bre96], boosting [FS97], random forests [Bre01], etc.),
which attempt to take advantage of the unstable induction of models by growing a forest of trees from
the data and later averaging their predictions. While presenting very good predictive performance,
ensemble methods fail to produce a single-tree solution, operating also in a black-box fashion.

We highlight the importance of validation and interpretation of discovered knowledge in many
data mining applications, because comprehensible models can lead to new insights and hypotheses
upon the data [FWA08]. Hence, we believe there should be a trade-off between predictive perfor-
mance and model comprehensibility, so a predictive system can be useful and helpful in real-world
applications. For instance, Barros et al. [BBTR08] make use of a model tree induction algorithm
in a study case conducted within a large software operation with the goal of providing better effort
estimates. An interpretable output was desired so the project managers could analyze the results
presented by the algorithm and make decisions accordingly.

Evolutionary algorithms are a solid heuristic able to deal with a variety of optimization problems.
An evolutionary approach for producing trees could enhance the chances of converging to global op-
tima, avoiding solutions that get trapped in local-optima and that are too sensitive to small changes
in the data. Evolutionary induction of decision trees is well-explored in the research community.
Basgalupp et al. [BBC+09b] proposed an evolutionary algorithm for the induction of decision trees
named LEGAL-Tree, which looks for a good trade-off between accuracy and model comprehensi-
bility. Very few works however propose evolving regression/model trees as an alternative to greedy
approaches.

Hence, we propose a new algorithm based on the evolutionary algorithms paradigm and also on
the core idea presented in LEGAL-Tree [BBC+09b] to deal with any kind of regression problems. By
evolving model trees with an evolutionary algorithm, we seek to avoid local-optima convergence by
performing a robust global search in the space of candidate solutions. Moreover, our approach has to
deal with multi-objective optimization, since our intention is to produce model trees that have both
high predictive performance and comprehensibility2.

We test the predictive performance and comprehensibility of this new algorithm using UCI regres-
sion data sets [AN07], and we compare the results to those produced by well-known algorithms, such
as M5 [Qui92] and REPTree [WF05].

The remaining of this work is organized as follows. We briefly review the literature in data mining
and evolutionary algorithms in Chapters 2 and 3, presenting general concepts and ideas that support
the decisions made during the design of the proposed algorithm. Chapter 4 presents works that relate
evolutionary algorithms and trees used in regression problems. Chapter 5 describes our new approach

2Comprehensibility, in this dissertation, is measured by counting the number of nodes in each tree. We assume that
smaller trees are more legible, easier to interpret than those with a large number of nodes.
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for inducing model trees, whereas the tests and comparisons to other algorithms are executed in
Chapter 6. We conclude this work with some remarks and future work on Chapter 7.
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2

Data Mining

This chapter presents general concepts on data mining and focuses on a specific technique that is
broadly used for different mining tasks: data mining trees. It describes briefly the main algorithms
for each kind of tree and it does some considerations regarding the strategy for building these trees.

2.1 Introduction

Data mining is the process of extraction of useful information from large amounts of data [HK06].
It is an integral part of knowledge discovery in databases (KDD), process in which raw data is con-
verted into useful information (Figure 2.1). In general terms, all steps that precede the data mining
process are within the data preprocessing stage, where raw data are properly transformed to suit dif-
ferent mining algorithms. Similarly, the steps that proceed the mining process are said to be part of
the data postprocessing stage, in which data patterns are processed for visualization and interpretation
purposes [TSK06].

Data Mining tasks can be divided in two major categories [TSK06] :

1. Descriptive tasks: are used to derive patterns that describe relationships in data (e.g., correla-
tions, trends, clusters, anomalies, etc.). These tasks generally require postprocessing techniques
to validate and explain the results that were achieved.

2. Predictive tasks: are used to predict the value of a particular attribute by taking into account the
values of other attributes. The attribute to be predicted is called target or dependent variable,

while the attributes used for making the predictions are known as explanatory or independent

variables.

In this research we focus on predictive data mining tasks. Classification and regression are probably
the most common predictive tasks in data mining, and they can be used to extract models that describe
important data classes or that predict future data trends, respectively. We focus specifically on the
regression task.
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Figure 2.1: Knowledge discovery process. Source: [HK06]

Han and Kamber [HK06] differentiate classification and regression through the following sen-
tence:

Whereas classification predicts categorical (discrete, unordered) labels, regression models continuous-
valued functions. For example, we can build a classification model to categorize bank loan applications as
either safe or risky, or a regression model to predict the expenditures in dollars of potential customers on
computer equipment given their income and occupation. (p. 285)

A popular strategy to deal with both classification and regression is through hierarchical models
in the form of trees. Next section covers the main types of trees for classification and regression.

2.2 Data Mining Trees

Data mining trees are an efficient nonparametric method which can be used both for classification
and regression. They are hierarchical data structures that usually implement the divide-and-conquer
strategy to split the input space into local regions and predict the dependent variable accordingly
[Alp04].

2.2.1 Decision Trees

Decision trees are hierarchical graphical representations of knowledge extracted from data sets,
which are used for classifying objects. They are widely-used mostly because of the following reasons
[TSK06]:

(i) ease of understanding, because they can be easily converted in a set of rules written in a natural
language;

(ii) robustness to the presence of noise;
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(iii) availability of computationally inexpensive induction algorithms, even for very large data
sets; and

(iv) good handling of irrelevant attributes.

Figure 2.2 presents a decision tree for classifying animals as “mammals” or “non-mammals”, a
typical binary-class problem.

Figure 2.2: Example of decision tree. Source: [TSK06]

First, an attribute is chosen to be the root node and then it is recursively split in internal nodes
until certain criterion (criteria) is (are) reached and we stop splitting the tree. The nodes in the bottom
of the tree (leaf nodes) are labeled according to the most frequent class of the instances that reach that
given node. The criteria to split the nodes, the stopping conditions and tree-pruning decisions vary
according to the algorithm used.

Decision trees cannot deal with continuous classes problems. One possible solution would be
discretize the continuous attribute in intervals spaced according to a certain heuristic. This approach
often fails, partly because decision trees induction algorithms cannot make use of the implicit ordering
of the discretized classes [Qui92]. Several more effective learning methods for predicting real values
are available, noticeably regression and model trees, which are presented below.

2.2.2 Regression Trees

Regression trees follow the same basic principles of decision trees. The difference is the result
hold by the leaf nodes, which is no longer a class label, but a real value (Figure 2.3). Typically,
these real values are the average of the dependent variable values of the instances that reach each leaf
node. For splitting the tree, most algorithms (e.g., CART [BFOS84]) choose a test to give the greatest
expected reduction in either variance or absolute deviation.

Regression tree’s accuracy is competitive with linear regression, with the potential of being much
more accurate on non-linear problems. These trees offer an interesting alternative for looking at
regression problems, since they can sometimes give clues to data structure that is not apparent from a
linear regression analysis perspective [BFOS84].
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Figure 2.3: Example of regression tree. Source: [WF05]

2.2.3 Model Trees

Model trees, similarly to regression trees, are hierarchical structures for predicting continuous
dependent variables. At each leaf node they hold a linear regression model that predicts the class
value of instances that reach the leaf. The only difference between regression tree and model tree
induction is that, for the latter, each node is replaced by a regression plane instead of a constant value
(Figure 2.4).

Figure 2.4: Example of model tree. Source: [WF05].

Suppose we have d predictor variables, X1, X2, , ..., Xd and a response continuous variable Y ,
which is the target of the prediction model. The training set has n records, (xi, yi), where xi is the
vector of predictor variable values for the ith training record, i.e. xi =(xi1, xi2, ..., xid) and yi is the
target attribute value for this same ith record. A model tree holds K terminal nodes that will partition
the predictor variable space into Rk regions, where k = 1, 2, .., K. Each region Rk will predict the
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value of Y through a multivariate linear regression function, created through a least-square method
[Bjö96]. A terminal node will have α predictor variables (a number ≤ d) and β records (a number
≤ n), the linear regression demands the creation of a β × α design matrix, M1,M2, ...,Mt such as
shown in (2.1).

Mi =


1 x11 x12 ... x1α

1 x21 x22 ... x2α

... ... ... ... ...

1 xβ1 xβ2 ... xβα

 (2.1)

Considering Ω = (ω0, ω1, ..., ωα−1)
T the α-dimensional vector that represents the regression coef-

ficients that minimize the sum of the squared error for the response variable Y , and y = (y1, y2, ..., yβ)T

the β-dimensional vector that represents the β values of the response variable Y , we can define the
coefficients by solving the matrix equation given in (2.2).

Ω = (MTM)−1MTy (2.2)

Once the coefficients are known, each terminal node will hold a regression model such as the one
in (2.3).

y = $0 +
α∑
i=1

wαxα (2.3)

Hence we can notice that model trees are more sophisticated than either regression trees or linear
regression. Since each terminal node will hold a regression model based on the instances that reach
that node, model trees can also approximate non-linear problems, which is the case of a wide range
of real-world mining applications.

For growing a model tree, most algorithms rely on a greedy top-down strategy for splitting re-
cursively the nodes, which is also the case of both decision and regression trees. These algorithms
seek to minimize some error measure that results from testing each attribute for splitting the node.
M5 [Qui92] uses the standard deviation as the error measure for choosing the best split at each node.
The goal is to maximize the standard deviation reduction (SDR) by testing the possible splits over the
training data that reaches a particular node, as shown in (2.4).

SDR = sd(D)−
∑
i

|Di|
|D|
× sd(Di) (2.4)

where sd(.) is the standard deviation calculation, D is the training set portion that reaches the node
that is being tested and Di the training set portion that results from splitting the node according to a
given attribute and split value.

The tree induction of model trees through the greedy algorithms is sequential in nature and locally
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optimal at each node split, which means that convergence for a global optimal solution is hardly
feasible. In addition, minor modifications in the training set often lead to large changes in the final
model due to the intrinsic instability of these algorithms [FG05]. Ensemble methods were proposed to
take advantage of these unstable algorithms by growing a forest of trees from the data and averaging
their predictions. They are covered in the next section.

2.2.4 Ensemble Methods

Techniques that aggregate the prediction of multiple models in order to improve predictive per-
formance are known as ensemble methods. They tend to perform better than any single model alone
when in conformity with two necessary conditions: (i) the base models should be independent of each
other, and (ii) the base models should do better than a model that performs random guessing [TSK06].
Well-known examples of ensembles are:

1. Bagging [Bre96] - the training set is sampled (with replacement) according to a uniform prob-
ability distribution, and for each sample a base model is trained. For classification problems,
data are classified by taking a majority vote among the predictions made by each base model.
For regression, data are predicted by taking the average of the predictions made by each base
model. Bagging’s effectiveness depends on the (in)stability of the base models. If a base model
is unstable, bagging helps to reduce the errors associated with random fluctuations in the train-
ing data (reduction of variance). Inversely, if a base model is stable, it means that the error of
the ensemble is caused by bias in the base model, which cannot be solved by bagging.

2. Boosting [FS97] - the distribution of the training set is changed iteratively so that the base
models will focus on examples that are hard to predict. Unlike bagging, boosting assigns a
weight to each training instance and dynamically changes the weights at the end of each boost-
ing iteration. Generally, the weights assigned to the training instances are used as a sampling
distribution to draw a set of samples from the original data (meaning that instances with higher
weights have higher probability of being drawn from the original data to train the base mod-
els. Data is predicted through a weighted voting scheme, where models with a poor predictive
performance are penalized (e.g., those generated at the earlier boosting iterations).

3. Random forests [Bre01]: the training set is divided into a set of random vectors, generated
from a fixed probability distribution. A random vector can be used to build base trees in many
ways. One possible approach is to randomly select F input features (data set attributes) to
split at each node of the tree. The disadvantage of this approach is the difficulty of choosing
an independent set of random features when the number of original features is too small. To
overcome this problem, the feature space can be increased by generating new features that are
linear combinations of randomly selected features. A third approach would be to randomly
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select one of the F best splits at each node of the tree, although it may potentially generate
correlated trees, which is not desirable in the context of ensembles.

2.3 Chapter Remarks

Traditional decision/regression/model tree induction algorithms rely on a greedy top-down divide-
and-conquer partitioning strategy. Such an heuristic is interesting because it produces trees effi-
ciently and inexpensively. Nonetheless, there are at least two major problems related to this strategy
[BBC+09a]: (i) the greedy heuristic usually produces locally (rather than globally) optimal solutions,
(ii) recursive partitioning iteratively degrades the quality of the data set for the purpose of statistical
inference, because the larger the number of times the data is partitioned, the smaller the data sample
that fits the current split becomes, making such results statistically insignificant and contributing to a
model that overfits the data.

The research community focused on the ensemble methods to alleviate the problems previously
mentioned. All these ensemble methods have a major problem, which is the scheme for combining
the generated trees. It is well-known that, in general, an ensemble of predictive models improves
predictive performance by comparison with the use of a single model. On the other hand, the use of
ensembles also tend to reduce the comprehensibility of the predictive model. A single comprehensible
predictive model can be interpreted by an expert, but it is not practical to ask an expert to interpret
an ensemble consisting of a large number of comprehensible models. In addiction to the obvious
problem that such an interpretation would be time consuming and tedious to the expert, there is also
a more fundamental conceptual problem. This is the fact that the models being combined in an
ensemble are often to some extent inconsistent with each other – this inconsistency is necessary to
achieve diversity in the ensemble, which in turn is necessary to increase the predictive accuracy of the
ensemble. Considering that each model can be regarded as a hypothesis to explain predictive patterns
hidden in the data, this means that an ensemble does not represent a single coherent hypothesis about
the data, but rather a large set of mutually inconsistent hypothesis, which in general would be too
confusing for an expert [BBC+09b].

In order to find a good trade-off between predictive performance and model comprehensibility,
this work presents a novel algorithm based on the evolutionary algorithms paradigm [Gol89]. Instead
of local search, evolutionary algorithms perform a robust global search in the space of candidate
solutions [Fre08]. More on evolutionary algorithms is presented in the next chapter.
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Evolutionary Algorithms

This chapter presents general concepts on evolutionary computation and focuses on a specific
subset that is broadly used for optimization tasks: evolutionary algorithms (EAs). It describes briefly
the two most common techniques used: genetic algorithms and genetic programming. It also presents
some considerations regarding multi-objective optimization approaches.

3.1 Concepts

According to Olariu and Zomaya [OZ06], EAs are a collection of optimization techniques whose
design is based on metaphors of biological processes. Freitas [Fre08] defines EAs as “stochastic
search algorithms inspired by the process of neo-Darwinian evolution”, and Weise [Wei09] states that
“EAs are population-based metaheuristic optimization algorithms that use biology-inspired mecha-
nisms (...) in order to refine a set of solution candidates iteratively”.

The idea surrounding EAs is the following. There is a population of individuals, each one a
possible solution to a given problem. This population evolves towards better and better solutions
through stochastic operators. After the evolution is completed, the fittest individual represents a
“near-optimal” solution for the problem at hand.

For evolving individuals, an EA evaluates each individual through a fitness function that measures
the quality of the solutions that are being evolved. After all individuals from an initial population have
been evaluated, the iterative process of the algorithm starts. At each iteration (hereby called genera-

tion), the best individuals have a higher probability of being selected for reproduction to increase the
chances of producing good solutions. The selected individuals undergo stochastic genetic operators
such as crossover (swapping of genetic material from two individuals) and mutation (modification of
the genetic material of an individual), producing new offspring. These new individuals will replace
the current population of individuals and the evolutionary process is repeated until a stopping criterion
is satisfied (e.g., a fixed number of generations or until a satisfactory solution has been found). Figure
3.1 presents a typical EA flowchart.

Among the advantages of EAs is that their “black box” character makes only few assumptions
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Figure 3.1: Typical evolutionary algorithm.

about the underlying fitness functions. Furthermore, the definition of fitness functions usually re-
quires lesser insight to the structure of the problem space than the manual construction of an admis-
sible heuristic, which enables EAs to perform consistently well in many different problem categories
[Wei09].

There are several kinds of EAs, such as genetic algorithms, genetic programming, classifier sys-
tems, evolution strategies, evolutionary programming, estimation of distribution algorithms, etc. This
chapter will focus on genetic algorithms (GAs) and genetic programming (GP), the two kinds of EAs
most commonly used for data mining, according to Freitas, in [Fre08].

3.2 Genetic Algorithms and Genetic Programming

At a high level of abstraction, both GAs and GP can be described by the pseudocode in Algorithm
3.1. Even though GAs and GP share the structure depicted in this pseudocode, there are important
differences between them.

GAs, which were initially presented by Holland in his pioneering monograph [Hol75], is defined
as:

(...) search algorithms based on the mechanics of natural selection and natural genetics. They combine
survival of the fittest among string structures[our italics] with a structured yet randomized information
exchange to form a search algorithm with some of the innovative flair of human search. (p. 1)

Representation is a key issue in GAs, and while they are capable of solving a great many problems,
the use of fixed-length character strings may not work on a variety of cases. John Koza, the researcher
responsible for spread the GP concepts to the researching community, argues in his text book on GP
[Koz92] that the initial selection of string length limits the number of internal states of the system and
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also limits what the system can learn. Moreover, he states that representation schemes based on fixed-
length character strings do not provide a convenient way of representing computational procedures
or of incorporating iteration or recursion when these capabilities are desirable or necessary to solve a
given problem. Hence, he defines GP as:

(...) a paradigm that deals with the problem of representation in genetic algorithms by increasing the
complexity of the structures undergoing adaptation. In particular, the structures undergoing adaptation in
genetic programming are general, hierarchical computer programs of dynamically varying size and shape.
(p. 73)

Algorithm 3.1 Pseudo-code for GAs and GP. Source: [Fre08].
Create initial population
Calculate fitness of each individual
repeat

Select individuals based on fitness
Apply genetic operators to selected individuals, creating new individuals
Compute fitness of each new individual
Update the current population

until (stopping criteria)

Freitas [Fre08] affirms that the use of GP in the context of data mining is quite interesting once the
dynamic representation of individuals provides GP with a potentially robust strategy for knowledge
discovery purposes, which is not so naturally done when using GAs.

Although the definition of GP claims each individual to be a computer program or algorithm, in
practice (in the context of data mining) most GP algorithms evolve a solution (for instance, a decision
tree) specific for a single data set, rather than a generic program that can be used for deriving solutions
(e.g., a decision tree induction algorithm such as C4.5). An exception is the work of Pappa and Freitas
[PF09], where each GP individual is a full rule induction algorithm, that evolves in a grammar-based
approach. This approach has the advantage of not limiting the evolution of solutions to a single data
set, and also of avoiding the bias inserted by human beings coding.

The evolutionary algorithm proposed in this dissertation does not evolve an algorithm or computer
program but solutions (model trees) for predictive regression problems. Nonetheless, its individual
representation is not based on fixed-length character strings, but in dynamic tree structures. Thus, the
proposed algorithm is presented as a GP-based approach instead of a GAs-based approach.

3.3 Multi-objective optimization

A crucial issue in data mining is how to evaluate the models that are generated. In many cases,
researchers focus their attention on a single measure (objective) that indicates predictive performance
of the models they generate. For instance, in classification models the goal is often to maximize
accuracy (rate of correctly predicted labels) while in regression models the goal is to minimize a
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generic error measure (such as the mean squared error). However, there are cases where we must pay
attention to several objectives and it is not possible to concentrate on one of them. When this is the
case, the problem is said to be a multi-objective or multi-criteria optimization problem [Koz92].

In a multi-objective problem, seeking for the optimal solution is not obvious. Consider the fol-
lowing example. Two model trees are generated for predicting a numeric value of a given data set.
Model tree A has an error rate of 0.7 while model tree B has one of 0.9. If the goal is simply to
minimize the error rate, model tree A would be selected as the optimal solution. However, model
tree A has 79 leaf nodes (and thus 79 linear models) while model tree B has 10 leaf nodes (10 linear
models). Model tree B may be the preferred option, since it is much smaller and consequently easier
to interpret and less prone to overfiting. But what if there is a third model tree, C, with an error rate of
0.8 and 15 leaf nodes? Which one should we choose, B or C? The answer depends on the user needs
and the problem domain. For instance, if we want to predict trends of the stock market, we would
choose a predictive model that has the highest accuracy overall, whereas in a cancer detection system
we would prefer a model that is biased towards detecting the disease, but not necessarily the one with
highest accuracy overall. In software metrics estimation, we would like to have a predictive model
that is both accurate and easy to interpret, so the project managers can make decisions to improve the
estimation process and the software development process as a whole.

Freitas in [Fre04] discusses three general approaches to cope with multi-objective optimization
problems: (i) weighted-formula; (ii) lexicographic analysis; and (iii) Pareto dominance. Next sections
detail each of the mentioned approaches.

3.3.1 Weighted-formula approach

This is by far the most common approach in data mining applications [Fre04]. It transforms
a multi-objective problem into a single-objective one by assigning numeric weights to each objec-
tive (evaluation measure) and then combining the values of the weighted criteria into a single value
through arithmetic operations such as addition and multiplication. Typically, the quality Q of a given
predictive model is given by one of the two kinds of formula [Fre04]:

Q = w1 × c1 + w2 × c2 + ...+ wn × cn (3.1)

Q = cw1
1 × cw2

2 × ...× cwn
n (3.2)

where wi,i = 1, ..., n, denotes the assigned weight to the ci corresponding criterion (objective) and
n the number of objectives. The quality measure Q becomes the sole objective and each predictive
model is evaluated according to its value.

The weighted-formula approach has the advantage of being conceptually easy to use and imple-
ment, and also of being computationally inexpensive for appointing the optimal solution.
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One of its disadvantages is the well-known “magic number” problem, which is the fact that,
in general, weights are assigned in an ad-hoc fashion, based on the intuition of the user about the
relative importance of each objective. Researchers generally justify their options with sentences like
“the weights were empirically determined”.

Another disadvantage is the fact that the manual setting of weights may prevent the predictive
system to find a model with a better trade-off among different objectives. In particular, weighted-
formula that are a linear combination of different objectives are quite problematic. Freitas [Fre04]
presents the following scenario to show the limitations of linear combinations. Suppose we want to
select a candidate for a position as a data miner in a company and we want to evaluate them according
to two criteria: c1, which is the knowledge of the candidate in machine learning and c2, the knowledge
in statistics. Suppose we have three candidates with the following scores: candidate 1, c1 = 9.5 and
c2 = 5; candidate 2, c1 = 7 and c2 = 7 and candidate 3, c1 = 5 and c2 = 9.5. Freitas notices that
while it is trivial to think of weights for the criteria that would make candidate 1 or candidate 3 the
winner, it is impossible to choose weights for c1 and c2 that would make candidate 2 the new company
employee, assuming the weighted-formula is a linear combination like in (3.1). The second candidate
might be a better choice, whatsoever, once he/she has a more balanced knowledge in both subjects.

There is also another drawback of weighted-formula approaches, which is mixing non- commen-
surable criteria. For instance, consider we have two objectives, “liters of water wasted” and “age of
the oldest family member”. Common sense tells us that it does not make sense to add 500 liters to
83 years-old. The result would be meaningless 583 of an unknown unity. It should be noticed that
the problem in here is not only the fact that measures with different units are being mixed, because
the values could be normalized according to some criterion. The main problem is that the quantity
produced would be meaningless to the user, which goes against the trend that discovered knowledge
should be understandable to the user [FPSSU96].

3.3.2 Pareto-dominance approach

To illustrate the concept of Pareto-dominance or Pareto optimality, consider the following example
presented by Goldberg [Gol89]. Suppose a widget manufacturer wishes to minimize both on-the-job
accidents and widget cost. Both of these criteria are important to the successful operation of the
plant, and furthermore, it is not trivial to estimate the cost of an accident. Suppose also the five
scenarios below (A, B, C, D and E) which result in the following widget cost and accident count
values, respectively:

A = (2, 10)

B = (4, 6)

C = (8, 4)
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D = (9, 5)

E = (7, 8)

These data are plotted in Figure 3.2, a graph of accident count (y) versus widget cost (x). By
scanning the graph, we can notice that the best points in our multi-objective optimization task are the
ones nearer the origin (0, 0), since both objectives should be minimized. More specifically, scenarios
A, B and C seem to be good possible choices, though none is best for the two objectives. There are
trade-offs from one of these three scenarios to another - for instance, scenario A has a better widget
cost than scenario B but also a higher accident count. These three points are said to be nondominated

because there are no points better than these for all criteria. Conversely, scenarios D and E are said
dominated by another point. ScenarioE(7, 8) is dominated byB(4, 6) once 4 < 7 and 6 < 8, whereas
scenario D(9, 5) is dominated by C(8, 4) because 8 < 9 and 4 < 5.

In this example, instead of having a single optimal scenario, we have the Pareto optimal set {A,
B, C}. We can state that a point (vector) x dominates y, symbolically expressed by x≺ y, when the
following conditions hold:

(x ≺ y)⇔ (∀i)(xi ≤ yi) ∧ (∃i)(xi < yi) (3.3)

Figure 3.2: Five scenarios compared on the basis of widget cost (x) and accidents (y). Source:
[Gol89].

In practice, the Pareto-dominance approach does not help the user to select a single alternative
from the Pareto optimal set. The ultimate decision to which single option is best should be done
by the decision maker, considering the application domain and his/her own expertise on the subject.
This can be seen as an advantage, since data mining is only one step of a comprehensive and highly
interactive knowledge discovery process.

Freitas [Fre04] argues that the difference between the weighted-formula approach and the Pareto
approach is the timing when the user has to make a subjective decision. For instance, in the weighted-
formula approach, the user has to make a choice of the weight values for each criterion, which is in
practice a subjective decision made a priori, before the data mining algorithm is run. By contrast,
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in the Pareto approach the user makes a subjective choice a posteriori, after he/she has seen all
nondominated solutions returned by the data mining algorithm. We can notice that it is much more
comfortable to analyze trade-offs associated with the different solutions produced by the algorithm
and choose one based on our preference instead of making, in general, a very uninformed decision by
choosing weights before the algorithm is run.

The robustness of the Pareto approach, however, comes with a price. When there is a high number
of objectives to be optimized, the manual exploration of nondominated solutions may become tedious
and even impracticable, due to the combinatorial explosion of trade-offs among objectives.

3.3.3 Lexicographic approach

The lexicographic analysis intends to determine priorities among the objectives, and the best so-
lution is the one that is significantly better according to a higher-priority objective. If there is no
decision whether a solution is better than the other in a given objective, the next objective is chosen in
order of priority. To better exemplify this approach, consider the following example. Let x and y be
two model trees and a and b two evaluation measures. Besides, consider that a has the highest priority
between the measures and that ta and tb are tolerance thresholds associated with a and b respectively.
The lexicographic approach works according to the following analysis: if |ax − ay| > ta then it
is possible to establish which model tree is “better” considering objective a alone. Otherwise, the
lower-priority measure b must be evaluated. In this case if |bx− by| > tb then the fittest tree between
x and y can be decided by considering measure b alone. If it is still the case the difference between
values falls within the assigned threshold tb, the best value of the highest-priority measure a is used
to determine the fittest tree.

The lexicographic approach might be an interesting choice considering that it recognizes the non-
commensurability of the different criteria, and it allows the user to determine which criteria are more
important without the need of identifying the correct weight of each measure, while preserving the
simplicity of the weighted-formula approach and returning a single solution as the best one. Its
disadvantage is the threshold values that must be defined a priori. Although defining thresholds
can be critically appointed as a “magic number” problem, there is a commonplace approach to deal
with this situation: statistics-oriented procedures [Fre04]. For instance, standard-deviation based
thresholds that allow us to reject a null hypothesis of insignificant difference between two criterion
values with a certain degree of confidence. This is a statistically sound solution for this approach,
even though the degree of confidence is a parameter that has to be chosen.

3.4 Chapter Remarks

Evolutionary algorithms are a solid search-algorithms class for solving optimization problems. Its
biological inspiration allows diversity of solutions, generally avoiding convergence to local optima.
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In data mining, the two most commonly used approaches of EAs are GAs and GP. While sharing their
basic structure, GAs differ from GP in the way they represent the candidate solutions: fixed-length
character strings. In GP, the structures undergoing adaptation are computer programs of dynamically
varying size and shape, which allows the development of potentially robust strategies for coping with
knowledge discovery problems.

EAs evolve candidate solutions based on a defined fitness function that ranks the individuals
according to some criteria. In real data mining applications, a good solution is often selected based on
multiple objectives to be optimized, meaning that an ideal solution must excel in all criteria used to its
evaluation, or the one that presents the better trade-off among criteria. Different approaches for multi-
objective optimization were proposed in the literature, all presenting advantages and disadvantages.
Among those, we highlight (i) the weighted-formula approach, which reduces the multi-objective
problem into a single-objective one by assigning weights to the objectives and combining them into a
single equation; (ii) the Pareto-dominance approach, which separates all solutions that are better than
others in all objectives, in a Pareto optimal set; and (iii) the lexicographic analysis, which assigns
priorities to the objectives and evaluates the solutions in a “cascade” fashion.

Next chapter details related works, which consist of evolutionary algorithms that evolve tree-
structures for the data mining regression task.
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Related Work

To the best of our knowledge, there are two works that relate evolutionary algorithms and trees
used for mining continuous-valued classes: TARGET [FG05, GF08] and GPMCC [PE08], both pre-
sented in the next sections. We analyze them according to the following criteria: (i) initial forest
initialization; (ii) fitness function; (iii) genetic evolution; and (iv) experimental results.

4.1 TARGET

TARGET [FG05, GF08] (Tree Analysis with Randomly Generated and Evolved Trees) is an EA
proposed to evolve regression trees. Each candidate solution is a regression tree of variable size and
shape and random initialization.

4.1.1 Initial forest

The initial population consists of 25 randomly created trees. The authors claim to have experi-
mented with forest sizes between 10 and 100 trees, but with no apparent impact on the outcome. The
random generation of trees starts with a single root node, with probability psplit that dictates whether
the node is split and two child nodes are created or the node becomes a terminal node. If the node is
split, then an attribute from the data set and a split value are randomly chosen from a pool of candidate
attributes and split values. The default value of psplit is 0.5.

After the tree is randomly created in TARGET, the training data are applied to the tree from the
root down to the leaves. Since the split rules are randomly chosen, some nodes might be empty or
have a value of observations below the minimum required. These nodes are pruned from the tree
before the evaluation step is performed.

4.1.2 Fitness Function

For evaluating the trees, TARGET makes use of the Bayesian information criterion (BIC) as a
measure of tree fitness. BIC, which was proposed by Schwarz [Sch78], is a statistical model selec-
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tion criterion based on likelihood. In other terms, it is a weighted-formula that penalizes for model
complexity (size of the tree). It is expressed as

BIC = max(ln L)− 1

2
p ln n = −n

2
ln 2π − n

2
ln
SSE

n
− n

2
− 1

2
p log n (4.1)

where p is the effective number of parameters in the tree model, L is the likelihood function and the
maximum is taken over the possible values of the terminal node means and the constant variance. The
last term in (4.1) is the model complexity penalty, which is a function of both the effective number of
parameters p and the training sample size n. SSE is the residual sum of squares, expressed as

SSE =
n∑
i=1

(yi − f̂(xi))
2 (4.2)

where yi is the actual value of the ith instance and f̂(xi) the predicted tree value for the same instance.

One critical problem of using the BIC criterion in TARGET is determining the value of p, essential
part of the model complexity penalty term. Increasing p by too much leads to smaller trees with less
predictive performance. The authors state that further research is required to determine the appropriate
adjustment of the model complexity penalty term.

4.1.3 Genetic Evolution

TARGET implements the elitism technique, meaning that the best trees in the current generation
are kept to the next generation. The default elitism value is 3. It also implements two different
crossover types: (i) subtree swap crossover, where entire subtrees are swapped between two selected
trees; and (ii) node swap crossover, where only split rules (attribute and split value) are actually
swapped. TARGET generates two offspring, and the best of the four (parents and offspring) is kept
to the next generation.

TARGET implements four distinct types of mutation, with probability proportional to fitness, and
the user specifies the number of mutations that are to occur at each generation (default value is 2). The
possible types of mutation are: (i) split set mutation: randomly change the split value of a randomly
selected node; (ii) split rule mutation: randomly change both attribute and split value of a randomly
selected node; (iii) node swap mutation: swap both attribute and split value of two randomly selected
nodes within the same tree; (iv) subtree swap mutation: randomly swap subtrees of two randomly
selected nodes within the same tree.

Finally, TARGET implements the “transplant” operation, which consists of adding new randomly
generated trees in each new generation. Default value of transplant is 3. The new generation of trees
after each iteration is composed of 25 trees resulting from elitism (3), crossover (19) and transplant
(3). The stopping criterion of the algorithm is the lack of improvement in the best trees of the gen-
erations, though the authors do not make clear which is the default number of generations without
improvement.
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4.1.4 Experimentation

TARGET is compared to the traditional greedy regression tree induction algorithm CART, to
Bayesian CART [CGM97, DMS98] (Markov chain Monte Carlo technique based algorithm) and also
to the ensemble methods Random Forests and Bagging.

The first comparison is with Bayesian CART. It uses the published examples and results in
[CGM97] and [DMS98]. In the data set used by Chipman et al. [CGM97], TARGET manages to
identify the correct tree model (R2 of .6457 with 5 terminal nodes) in 6 out of 10 runs. Bayesian
CART identified the correct tree model in only 2 out of 10 runs. In the data set proposed by Denison
et al. [DMS98], TARGET presented smaller trees than Bayesian CART, though with similar residual
sum of squares (RSS) values.

The comparison with CART, Random Forests and Bagging was made through two public regres-
sion data sets from UCI [AN07]: Boston housing and Servo. TARGET outperformed CART in terms
of mean squared error, but it is outperformed by both ensemble methods. The authors claim that TAR-
GET presents a good trade-off in terms of accuracy (error measures) and model interpretability (final
result is a single tree), whereas CART presents only good interpretability and the ensemble methods
only a good accuracy.

4.2 GPMCC

GPMCC [PE08] (Genetic Programming approach for Mining Continuous-valued Classes) is a
framework proposed to evolve model trees. Its structure is divided in three different parts: (1)
GASOPE [PE07], which is a genetic algorithm to evolve polynomial expressions; (2) K-Means
[Llo82], which is a traditional clustering algorithm and is used in this framework to sample the train-
ing set; and (3) a GP to evolve the structure of model trees.

4.2.1 Initial Forest

Trees are generated by randomly expanding a node and randomly selecting attributes and split
values. The growth of the trees is dictated by a parameter that indicates the maximum tree depth.
Default value of population size is 100.

4.2.2 Fitness Function

The fitness function used by GPMCC is an extended form of the adjusted coefficient of determi-

nation (4.3)

R2
a = 1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − yi)2

× n− 1

n− d
(4.3)
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where n is the size of the sample set, yi is the actual output of the ith instance, ŷi is the predicted output
for the same instance, yi is the average of all instances and d is a complexity factor that penalizes the
size of an individual (in number of nodes) and the complexity of each model of the terminal nodes
(number of terms and their corresponding order). The higher the value of complexity factor d, the
lower the value of R2

a. The best individuals are those with the highest values of R2
a.

4.2.3 Genetic Evolution

GPMCC implements the crossover operator as follows. Two individuals A and B are chosen by
tournament selection. A non-terminal node NA is randomly selected from A and a node NB from B.
A new individual C is created by installing NB as a child of NA. It is not clear though which child of
NA is replaced by NB.

GPMCC makes use of 8 different mutation strategies: (i) expand-worst-terminal-node; (ii) expand-
any-terminal-node; (iii) shrink; (iv) perturb-worst-non-terminal-node; (v) perturb-any-non-terminal-
node; (vi) perturb-worst-terminal-node; (vii) perturb-any-terminal-node; and (viii) reinitialize.

The expand operators (i) and (ii) partition a terminal node (the one with highest mean squared error
or any node) in an attempt to increase the fitness of an individual. The shrink operator (iii) replaces a
non-terminal node of an individual with one of its children. The perturb operators (iv), (v), (vi) and
(vi) seek to modify the split values of non-terminal nodes or to replace the non-regression expressions
of the terminal nodes with expressions of the fragment pool. Finally, the reinitialize operator (viii) is
a reinvocation of the procedure that expands a node into a tree according to an informed maximum
depth (this procedure is used for building the initial forest of individuals).

Fragment Pool

GPMCC uses GASOPE [PE07], a genetic algorithm that evolves polynomial expressions to be
used in the terminal nodes of the model trees. K-Means is used to cluster the training data, and
GASOPE produces a non-linear regression model from each cluster. The number of clusters is itera-
tively reduced in order to produce non-linear regression expressions that vary from specific to more
general approximations (the higher the number of clusters, the more specific the expressions, and
vice-versa). The expressions generated in this fragment pool receive a lifetime mapping so those
that are used the most in the model trees have their lifetime index reset (i.e., their lifetime increases)
while non-used expressions are taken out of the pool. The lifetime index ensures the usefulness of the
created expressions.

4.2.4 Experimentation

GPMCC is compared to a neural network approach called NeuroLinear [SLZ02] and to a commer-
cial version of Quinlan’s M5 [Qui92], in various data sets from UCI [AN07]. GPMCC outperformed
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these approaches only by the number of rules generated (paths of the tree), and was consistently
outperformed in terms of accuracy (mean absolute error).

One important remark is that GPMCC has a total of 42 configurable initialization parameters that
control several steps of the algorithm. The authors claim that the influence of GPMCC parameters
on performance was empirically investigated and that it was shown that performance was insensitive
to different parameter values. Since the authors make such claim, one has to ask the real utility of
presenting so many configurable options that in practice will not alter the algorithm’s results. As a
second point of criticism, GPMCC seems to be overly-complex, presenting results that do not justify
all the choices made during the algorithm’s development.

4.3 Chapter Remarks

We present our approach for evolving model trees (E-Motion) in the next chapter. It differs from
TARGET since we are evolving model trees and not regression trees. It is important to notice that
model trees are a more robust and effective approach when compared to regression trees, often pre-
senting more accurate results [WF05]. Our strategy, while having the same goal as the GPMCC
framework, makes use of a single evolutionary algorithm to evolve model trees, which makes the
induction of model trees faster and simpler. Our goal throughout this work was to achieve at least the
same level of accuracy than GPMCC and traditional algorithms such as M5, but with more legible
trees (trees with fewer nodes).

Table 4.1 summarizes the typical steps of an evolutionary algorithm adopted in TARGET and
GPMCC. This table is further filled in after we present E-Motion, in the next chapter.

Table 4.1: Related work comparison.

Algorithm Initial Forest Fitness Selection Crossover
Consistency

Check
Stopping Criteria

TARGET
random controlled

through psplit
W.F roulette

2 children, 1 kept for

next gen
node pruning

no gen. without

improvement

GPMCC
random controlled

through maxDepth
W.F tournament

1 child, 1 kept for next

gen.
no max number of gen.
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5

Evolutionary Model Tree Induction (E-Motion)

E-Motion is a novel multi-objective genetic programming algorithm for model trees induction.
Each step of E-Motion is presented in this chapter following the flow previously depicted in Figure
3.1. In addition, we describe two specific steps that are not presented in Figure 3.1: (i) consistency
check; and (ii) prediction smoothing.

5.1 Solution Representation

We adopt the tree representation to represent the candidate solutions of E-Motion, because it
seems logical that if each individual is a model tree, the solution is best represented as a tree. Thus,
each individual is a set of nodes, with each node being either a non-terminal or a terminal node.

Each non-terminal node contains an attribute, and each leaf node contains a linear regression
model that is calculated after each genetic iteration (generation). A set of edges linking each non-
terminal node with its respective children is also a part of the tree representation. In E-Motion, every
node-split is binary.

There are two distinct possible cases of node relations: (i) the relationship between a categorical
node and its children: if a node x represents a categorical attribute, there will be 2 edges representing
different categories aggregations, which will be further explained in Section 5.2; and (ii) the relation-
ship between a numeric continuous node and its children: if a node x represents a numeric continuous
attribute, there will be a binary split according to a given threshold chosen by the algorithm, also fur-
ther clarified in Section 5.2. Figure 5.1 presents an example of an E-Motion individual.

5.2 Initial Forest

The initial forest generation implemented by E-Motion is twofold. First, the algorithm produces
basic trees, based on each data set attribute. Basic trees are trees with a root node and two children
that are terminal nodes.
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Figure 5.1: E-Motion individual.

For creating basic trees where the root node is a categorical attribute, the average target-attribute
value corresponding to each possible category in the enumeration is calculated from the training
instances, and the values in the enumeration are sorted according to these averages. Then, if the
categorical attribute has k categories, it is replaced by k − 1 synthetic binary attributes, the ith being
0 if the value is one of the first i in the ordering and 1 otherwise. This strategy is also implemented in
M5 [Qui92].

Witten and Frank [WF05] state that it is possible to prove analytically that the best split at a node
for a categorical attribute with k values is one of the k−1 positions obtained by executing the process
aforementioned. Even though this sorting process should be executed each time a node is included
in a model tree, there is no significant loss by performing such ordering just once, before starting to
build the tree [WF05]. Hence, for each categorical attribute, E-Motion produces k− 1 different basic
trees, where k is the number of categories the attribute owns.

To exemplify the categorical basic trees generation, consider the following scenario. The cate-
gorical attribute Algorithm has 5 categories: CART, M5P, REPTree, Neural Networks and Random
Forests. The target attribute is ErrorV alue. E-Motion calculates the average value of ErrorV alue
grouping the data set instances by the attribute Algorithm categories. The result is the following:
CART = 0.75, M5P = 0.64, REPTree = 0.83, Neural Networks = 0.59 and Random Forests = 0.58.
These values are sorted resulting in the following order: Random Forests, Neural Networks, M5P,
CART and REPTree. Since we have 5 categories, we will have 4 different binary splits, by aggre-
gating the categories in: (i) {Random Forests} X {Neural Networks, M5P, CART, REPTree}; (ii)
{Random Forests, Neural Networks} X {M5P, CART, REPTree}; (iii) {Random Forests, Neural Net-
works, M5P} X {CART, REPTree}; and (iv) {Random Forests, Neural Networks, M5P, CART} X
{REPTree}. These 4 possible binary splits will generate 4 categorical basic trees, as presented in
Figure 5.2.

For numeric attributes, E-Motion implements two different strategies that seek to incorporate
task-specific knowledge in order to derive reasonable threshold values. Both consist of dividing the
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Figure 5.2: 4 categorical basic trees created from a 5-category attribute.

training set in different pieces and calculating the SDR of each piece, generating five different basic
trees with possibly different threshold values. The difference between them is in the way the training
set is divided.

In the first approach, E-Motion calculates the SDR of the entire training set and then divides it
in four random equally-sized pieces, calculating the SDR of each piece. This strategy is depicted in
Algorithm 5.1.

In the second strategy, the training set is clustered in 5 clusters with K-Means1 [Llo82], and the
SDR of each cluster is calculated, generating 5 numeric basic trees with possibly different threshold
values. The distance function used is the Euclidean Distance. This strategy is presented in Algorithm
5.2.

These approaches have two main advantages: (a) the thresholds are defined in a data-driven man-
ner (i.e., by using the standard deviation reduction for selecting interesting threshold values), instead
of selecting random values, which is the case of most evolutionary approaches; and b) a certain de-
gree of heterogeneity is achieved by partitioning the training set into different pieces (random pieces
or clustered pieces), increasing the chances of selecting a good threshold value. Both advantages
are a result of incorporating general knowledge about the regression task being solved into the GP

1Appendix 7 presents brief information on K-Means.
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Algorithm 5.1 Pseudo-code for random numeric basic trees generation.
Let x be the training data set
Let n be the number of data set attributes
Let a[i] be the ith attribute of x
for i = 1 to n do

root = a[i]
threshold = SDR(a[i], x)
new basicTree(root,threshold)
Divide x in 4 different random pieces
Let y[k] be the kth piece of x
for k = 1 to 4 do

threshold = SDR(a[i], y[k])
new basicTree(root,threshold)

end for
end for

algorithm, which tends to increase its effectiveness [BBC+09b, BBR+10].

Algorithm 5.2 Pseudo-code for clustered numeric basic trees generation.
Let x be the training data set
Let n be the number of data set attributes
Let a[i] be the ith attribute of x
Cluster x in 5 clusters
Let y[k] be the kth cluster of x
for i = 1 to n do

root = a[i]
k := 1
repeat

threshold = SDR(a[i], y[k])
new basicTree(root,threshold)
k := k + 1

until k = 6
end for

The choice of which approach to use for generating numeric basic trees is a user-defined parame-
ter. After creating the basic trees, E-Motion aggregates them to build the initial forest. The user sets
the maximum depth value for the trees that will be part of the initial forest, and E-Motion randomly
combines different basic trees so as to create a tree with depth that can range from 1 to the maximum
depth value informed. Figure 5.3 shows this rationale, where basic tree A was chosen as the root node
and its leaves were replaced by basic trees B and C.
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Figure 5.3: Merging basic trees A, B and C into an individual.

5.3 Fitness evaluation

After generating an initial forest, E-Motion evaluates each single tree in terms of its predictive
performance. It makes use of two error measures to evaluate the fitness of each model tree: root mean
squared error (RMSE) and mean absolute error (MAE). The mean squared error is the most common
measure to evaluate numeric predictions. We take the square root to give it the same dimensions as
the predicted value itself. The RMSE is given by

RMSE =

√∑n
i=1(ŷi − yi)2

n
(5.1)

where yi is the actual value of the target attribute and ŷi is the estimated value of the target attribute.
MAE, which is another common choice for evaluating regression problems, is given by

MAE =

∑n
i=1 |ŷi − yi|

n
(5.2)

It is known that any given evaluation measure is biased to some extent. RMSE for instance is
quite sensitive to outliers, while MAE treats all size of errors evenly according to their magnitude.
It is clear that each evaluation measure can serve a different purpose and its use depends on a large
extent upon the objectives of the prediction system user.

We have chosen these two error measures because they are the most common for regression prob-
lems, and even though they present significant differences when dealing with particular cases, it turns
out that in most practical situations the best numeric prediction method is still the best for whatever
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error measure used.

Although predictive performance is clearly of great importance and has been the primary focus of
researchers when developing prediction models, we believe it is not sufficient to indicate how robust
a predictive approach is. Comprehensibility or the capability of explaining to the end-user how a
prediction was obtained is crucial in several applications. Understanding the predictions made by a
model helps the end-user to get more confidence in the prediction, and more importantly, can provide
the basis for the end-user to have new insight about the data, confirming or rejecting hypotheses
previously formed. A comprehensible model can even allow the end-user to detect errors in the
model or in the data [FWA08].

Burgess and Lefley [BL01] suggest that an evolutionary algorithm that optimizes a single evalua-
tion measure is faded to degrade the other measures, and that a fitness function that is not tied to one
particular measure may present more acceptable overall results. Based on such assumption, we have
decided to use three different measures to evaluate how fit an individual is: RMSE and MAE as error
measures and tree size (number of nodes) as a measure of model comprehensibility, assuming that
smaller trees are more comprehensible than larger ones.

Since E-Motion has to deal with three different measures to evaluate each tree, it was necessary
to define which strategy would be used to cope with the multi-objective optimization. In Section 3.3
we have presented three well-known strategies for handling multi-objective optimization. E-Motion
implements two of them: weighted-formula and lexicographic analysis. It does not implement the
Pareto-dominance approach due to time restrictions but we propose to extend E-Motion by imple-
menting the Pareto approach in a near future and test it properly.

5.3.1 Weighted-Formula

The weighted-formula approach was implemented through the equation defined in (5.3).

Fitness(Ix) = 0.4× (
RMSE(Ix)− argmin(RMSE)

argmax(RMSE)− argmin(RMSE)
)+

0.4× (
MAE(Ix)− argmin(MAE)

argmax(MAE)− argmin(MAE)
)+ (5.3)

0.2× (
Size(Ix)− argmin(Size)

argmax(Size)− argmin(Size)
)

where Ix is a given individual of the current population P . The highest value of a given measure is
given by argmax(measure) (5.4) and the lowest value by argmin(measure) (5.5).

argmax(measure) = {measure(In) | ∀y ∈ P,measure(In) ≥ measure(Iy)} (5.4)
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argmin(measure) = {measure(In) | ∀y ∈ P,measure(In) ≤ measure(Iy)} (5.5)

The idea behind this weighted-formula is to give the same priority to the error measures (RMSE

and MAE) and a lower priority to tree size. The choice of weights (40% for the error measures and
20% for tree size) was empirically defined, based on common-sense and non-exhaustive experimenta-
tion (as discussed before, this approach suffers from the "magic number" problem, i.e., how to select
the "correct" weights?).

5.3.2 Lexicographic Analysis

E-Motion also implements the lexicographic analysis of the error measures and tree size. The
priority set was: (i) RMSE; (ii) MAE; and (iii) tree size, respectively.

Differently from the weighted-formula approach, now one of the error measures (RMSE) has
priority over the other (MAE). We have chosen RMSE as the highest-priority measure because it
is the principal and most commonly used measure [WF05]. MAE comes second because the goal is
to seek for high predictive performance. And finally tree size is used to decide which model is best
among those with similar error values.

The lexicographic analysis works as described in Algorithm .2 - Appendix 7. Basically, given two
individuals IA and IB, it evaluates which is best by analyzing, in order of priorities, each measure.
For instance, it checks if the difference of RMSE between the two individuals falls within a given
tRMSE threshold. If the difference is higher than the threshold, the individual with the lower value of
RMSE is the fittest one. Otherwise, it checks if the difference of MAE between the two individuals
falls within a given tMAE threshold. The same analysis is made, and tree size is the last measure to
be checked, in case there is no clear winner regarding MAE values.

In case all differences fall within the thresholds assigned to each measure, the lowest absolute
value of RMSE indicates the winner. If it is the case both individuals have the exact same value
or RMSE, the lowest absolute value of MAE is evaluated, and so on. If both individuals have the
exact same values of RMSE, MAE and tree size, any of them can be considered the winner of the
analysis.

Even though the lexicographic analysis is made 2 individuals per time, all individuals are ranked
according to the results in a list, from the fittest to the worst individual. It should be noticed that
the error measures calculations are made considering the validation set. This set is a 30%2 sample
from the data set and it is used exclusively for fitness calculation with the purpose of avoiding data
overfiting.

The threshold values assigned to each measure were defined as follows. For the error measures, a
tolerance of 5% of the average value of each measure in a population is used to indicate which solution

2We divide the data set in 60% for training, 30% for validation and 10% for testing, as recommended in [WF05].
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is best. For tree size, a tolerance of 20% the average tree size of individuals within the population was
chosen. To illustrate the rationale behind the choice of these threshold values, suppose we have two
individuals IA and IB with the following measure values:

IA IB Pop. Average
RMSE = 0.7355 RMSE = 0.7588 RMSE = 0.7740

MAE = 0.8640 MAE = 0.9020 MAE = 0.9544

Size = 9 Size = 7 Size = 12

The tolerance thresholds regarding the population average are: RMSE = 0.0387, MAE =

0.0477 and Size = 2.4. The difference in RMSE between IA and IB (0.0233) falls within the
tolerance threshold, so the next measure is analyzed. The difference in MAE (0.038) also falls
within the tolerance threshold, so tree size is now analyzed. Since the difference in tree size (2 nodes)
also falls within the tolerance threshold, the best individual is IA for having the lowest absolute value
of RMSE.

Several tolerance threshold values were tested non-exhaustively, and the tolerance thresholds of
5% and 20% seem to provide a good selection of the best trees. As future work, a statistics-oriented
procedure based on standard deviation will be implemented to automatically select interesting thresh-
old values.

5.4 Selection

E-Motion uses tournament selection, a popular and effective selection method. t individuals from
the current population are selected randomly (default value is t = 3), and they "battle" against each
other, i.e., the fittest individual is chosen to undergo crossover or mutation. This process is repeated
until the reproduction pool is full. E-Motion also implements the elitism technique, which means it
preserves a percentage x of the fittest individuals of the current population for the next one (default
value is 5%). Figure 5.4 shows the rationale of the tournament selection.

5.5 Crossover

E-Motion implements the crossover operation as follows. First, two individuals randomly chosen
among the selected ones (selection operation) will exchange sub-trees. According to a randomly se-
lected number which varies from 1 (root node) to n (total number of tree nodes), E-Motion performs
an adapted pre-order tree search method, visiting recursively the root node and then its children from
left to right. The search method is equivalent to the traditional binary pre-order search. After identi-
fying the nodes according to the randomly selected number in both parents, E-Motion will exchange
the whole sub-trees which are represented by the selected nodes, generating two new individuals (off-
spring). Figure 5.5 illustrates the crossover operation, where the offspring is created by keeping the
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Figure 5.4: Tournament selection.

structure of the parents but with the selected nodes being replaced. Linear models are updated after
the genetic operators take place. In the figure, we suppose the children’s linear models have already
been updated (that is the reason for the apparent change in the numbering of each LM).

By exchanging the whole sub-trees from the selected nodes and not only specific nodes, we avoid
domain irregularities, because each edge refers to attribute characteristics that are represented by a
node. It does not prevent, however, redundant rules and inconsistencies. See Section 5.7 for details
on how E-Motion addresses these issues.

5.6 Mutation

E-Motion implements two different strategies for mutation of individuals. The first one considers
the exchanging of a whole sub-tree, selected randomly from an individual, by a leaf node, acting like
a pruning procedure. The second strategy replaces a randomly selected leaf node in an individual by
a basic tree generated during the initial forest creation. Figure 5.6 presents both strategies.

These strategies aim at increasing or diminishing the individual’s size, improving the heterogene-
ity of the population and avoiding convergence to local optima.
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Figure 5.5: Crossover between two individuals and the resulting offspring.

5.7 Consistency check

The stochastic operators of the evolutionary algorithm, due to their own nature, may create in-
coherent scenarios regarding the logical structure of model trees. E-Motion implements a filtering
process to deal with these validity issues.

After each evolutionary iteration and before each individual is evaluated, the training data set is
distributed along each individual so the linear models are calculated according to the instances that
reach the leaf nodes. The following inconsistent scenarios may occur:

- A categorical attribute appears more than once in a sub-tree. It is well-known that the same
categorical attribute test should not be done more than once in a same sub-tree, thus such a situation
should be prevented. E-Motion deals with this case by pruning the sub-tree in which the categorical
attribute appears more than once.

- Incoherent thresholds for repeated numeric nodes. If a numeric attribute appears in a same sub-
tree more than once, a special caution should be taken regarding the threshold values. For instance, if
a given numeric attribute x is tested according to a threshold 10, the sub-tree that results from the test
x < 10 may possibly contain another test over the attribute x, but no threshold larger than 10 would
result in a node that holds instances. Incoherent thresholds also should be prevented from happening.
E-Motion recalculates the SDR and, thus, the thresholds for these cases, preventing the existence of
incoherent thresholds.

This filtering process generally provides smaller trees that are consistent with the training data set.
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Figure 5.6: Two distinct kinds of mutation.

Figure 5.7 presents both cases, with the original and filtered trees.

5.8 Stopping criteria

E-Motion implements two distinct stopping criteria. The first one is the maximum number of
generations (iterations) in which the solutions will evolve. Such a number is a user-defined parameter
(E-Motion’s default is 200 generations). The second criterion is the maximum number of generations
without improvement in the best solution, which is a percentage of the maximum number of genera-
tions. It is also a user-defined parameter (E-Motion’s default is 10% the max number of generations).

5.9 Prediction Smoothing

In a model tree, for predicting the outcome of a test instance, we have to walk along the tree until
reaching a leaf node, using the instance’s attribute values to make routing decisions at each node. The
leaf contains a linear model that was built according to training instances, and it is used for the test
instance to yield a predicted value.

Quinlan [Qui92] states that the prediction accuracy of tree-based models can be improved by a
smoothing process. This process is described as follows: (i) generate a linear model for each node
of the tree (instead of generating linear models for the leaves only); and (ii) once the leaf model has
been used to obtain the predicted value for a test instance, filter this value along the path back to the
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Figure 5.7: Filtering process.

root, smoothing it at each node by combining it with the value predicted by the linear model for that
node. Figure 5.8 presents a draft of this process.

The combination of values in the smoothing process is given by (5.6):

p′ =
(n× p) + (k × q)

n+ k
(5.6)

where p′ is the prediction that will be passed up to the next higher node, p is the prediction passed
to this node from below, q is the value predicted by the linear model at this node, n is the number of
training instances that reach the node below and k is a smoothing constant. The default value for the
smoothing constant is 15, as suggested by Quinlan [Qui92].

Smoothing achieves good results specially on cases when models along the path predict very
different values and when models are constructed from few training cases [Qui92]. The smoothing
process also compensates for the sharp discontinuities that inevitably occur between adjacent linear
models at the leaves of pruned trees [WF05].

5.10 Chapter Remarks

E-Motion is a multi-objective genetic programming algorithm that seeks a trade-off between pre-
dictive performance and model comprehensibility. It implements two different strategies for coping
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Figure 5.8: Smoothing process.

Table 5.1: Algorithms comparison.

Algorithm Initial Forest Fitness Selection Crossover
Consistency

Check
Stopping Criteria

TARGET
random controlled by

psplit
W.F roulette

2 children, 1 kept for

next gen
node pruning

no gen. without

improvement

GPMCC
random controlled by

maxDepth
W.F tournament

1 child, 1 kept for next

gen.
no max number of gen.

E-Motion
data-driven controlled

by maxDepth

W.F

and

Lex.

tournament
2 offspring, 2 kept for

next gen.

node pruning and

thresholds adjustment

max number of gen.

and no gen. without

improvement

with the multi-objective optimization problem. It also implements the traditional genetic operators
such as selection, crossover and mutation. Moreover, E-Motion avoids inconsistent scenarios by fil-
tering each individual after it undergoes the genetic operators. Table 5.1 includes E-Motion in the
comparison among related work.

We consider the initial forest initialization of E-Motion an advantage over the other algorithms,
once we are trying to reduce the search space through a data-driven heuristic, which may help speed-
ing the convergence to the final solution. The possibility of choosing between two distinct types of
multi-objective optimization is also a clear advantage of E-Motion. Furthermore, E-Motion’s con-
sistency check seems to implement a more robust strategy when compared to the other approaches.
Finally, E-Motion implements two stopping criteria, which may also help speeding the algorithm’s
convergence.
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6

Evaluating E-Motion

This chapter presents some experiments conducted in order to evaluate E-Motion in terms of
predictive performance and comprehensibility. It is divided in two stages. The first one was published
in the proceedings of the 2010 ACM Symposium of Applied Computing, in the track of evolutionary
computation [BBR+10], where 8 UCI data sets were used to compare E-Motion, M5 and REPTree.
The second stage presents variations in the evolutionary parameters of E-Motion and the respective
results for 2 data sets.

6.1 Default Parameters

The parameter values of an evolutionary algorithm can greatly influence whether the algorithm
will find a near-optimum solution, and whether it will find such a solution efficiently. Choosing
correctly the parameters, however, is a time-consuming task and considerable effort has gone into
developing good heuristics for it [MS07]. For instance, Lobo et al. [LLM07] compiled a series of
papers presented in the 2005 Genetic and Evolutionary Computation Conference, as well as other
papers from invited authors in the theme parameter setting in evolutionary algorithms, presenting the
state of the art in parameter tuning and control. While parameter setting is an important step of this
work, a deeper discussion on different strategies for choosing the optimal set of parameters is out of
the scope of this dissertation. Table 6.1 presents the default parameter values of E-Motion, and we
discuss our choices below.

The initial forest max depth parameter controls the random merging of basic trees. It means that
the initial population can have trees of one level (for instance, basic trees have only one level), two
levels (like the individual in Figure 5.1) or three. The choice of this parameter affects the average size
of the population, and since our target is to produce comprehensible trees, 3-levels depth was a good
choice in our experiments. By setting this parameter with values higher than 3, we have ended up
generating large trees overall, and initializing the forest with values lower than 3 affected the search
of optimal trees in problems where the near-optimal solution is a large tree.

The population size parameter controls the algorithm’s number of possible candidate solutions.
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Table 6.1: E-Motion default parameters.

Parameter Value
Initial forest max depth 3 levels
Population size 200 individuals
Convergence rate 10% max no of generations
Max no of generations 200 generations
Tournament size 3 individuals
Elitism rate 5% population size
Crossover rate 90%
Mutation rate 10%

De Jong and Spears [JS91] work is said to present the de facto parameters standard for most GAs.
It works with populations with 50 individuals. Since GP is more complex than GAs in its solution
representation, we believe that more individuals are necessary to achieve good diversification. Zhao’s
work [Zha07] that evolves decision trees through GP suggest 5000 individuals is the recommended
value, based on their pilot testing. GPMCC [PE08] on the other hand suggests that 100 individuals are
enough to find near-optimal solutions. TARGET [FG05] uses 25 individuals, and the authors argue
that values between 10 and 100 were tested, without drastic changes in the outcome. We have opted
for 200 individuals because the number of basic trees generated are based on the number of data set
attributes. For instance, a data set with 10 numeric attributes and 10 categorical attributes will have 50
numeric basic trees and around 40 categorical basic trees (assuming each attribute has 5 categories).
Thus, with 90 distinct basic trees, we think 100 individuals in the initial forest would not explore the
several possible combinations of basic trees, so we have doubled this value and obtained good results
in non-exhaustive experimentation.

The convergence rate parameter is one of the algorithm’s stopping criteria. If there are no modifi-
cations in the best solution for a certain number of generations (E-Motion’s default is 20 generations
without improvement), the algorithm ends its execution. Horn [Hor93] states that in an EA with se-
lection, crossover and low mutation, the population should converge in just a few generations (e.g., 30
to 50 generations for a population of 1000 individuals). Since E-Motion works with 200 individuals,
it is a fair assumption that 20 generations without improvement are enough to stop its execution.

The max no of generations parameter is the other algorithm’s stopping criterion. De Jong and
Spears [JS91] suggest 1000 generations is a good value, and TARGET [FG05] follows this sugges-
tion. GPMCC [PE08], on the other hand, has a default value of only 10 generations for evolving the
population of model trees. We have tested values between 100 and 500 generations in E-Motion, and
there was no significant gain between 200 and 500 generations, so we set the default value to 200
generations. The main reason for not using a higher value of generations like 1000 was due to time
constraints, but we will try to address this issue in future works.
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The tournament size parameter defines the number of individuals that battle in each tournament
round. E-Motion’s default value is 3. Blickle and Thiele [BT96] state that typical values are 2 (binary
tournament) and 3, while there is a great loss of diversity when the value is higher than 5.

The elitism rate parameter defines the percentage of the current population that is kept unaltered
for the next generation. E-Motion’s default is 10 individuals (5% the population size). By doing so,
we make sure that the 5% best solutions are always kept for the next generations, preventing that
crossover or mutation eventually ruin good solutions.

The crossover rate parameter is the probability that two selected parents from the reproduction
pool generate two offspring. Crossover rates are usually high. For instance, De Jong and Spears
[JS91] set a 60% crossover rate while Grefenstette’s work [Gre86], which presents another well-
accepted set of parameters, suggests a crossover rate of 90%. E-Motion implements the crossover
rate of 90%, indicating that two selected parents will generate offspring that will replace them in 90%
of the times, whereas there is a chance of 10% that the selected parents will be copied into the next
generation. E-Motion can afford such a high crossover rate once it implements the elitism technique,
so it seeks for high diversification with the certainty that the best trees will not be altered.

Finally, the mutation rate parameter indicates the probability of each individual to suffer mutation.
Mutation in GAs is usually bitwise, which means each bit of the chromosome has the chance of
suffering mutation, with a rate of around 1%. In GP, because the chromosomes are complex structures,
the rate of 1% is not sufficient. Since each chromosome in E-Motion is a tree composed by nodes,
it is a fair assumption that mutation could be tested per node. The problem here is that E-Motion’s
trees have dynamic sizes, so we have fixed the mutation rate in 10% per chromosome (tree). GPMCC
[PE08], for example, sets a default mutation rate of 20% and Zhao’s MOPG (multi-objective genetic
approach) [Zha07] a default of 10%.

6.2 Public data sets

Table 6.2 depicts the 10 regression data sets tested in this dissertation. They were randomly chosen
from the UCI (University of California at Irvine) Machine Learning Repository [AN07].

6.3 Experimental Methodology

We have divided our experimentation in two moments: (i) a comparison among E-Motion, M5
[Qui92] and REPTree [WF05] using 8 data sets from those in Table 6.2; and (ii) a comparison among
4 different configurations of two data sets from Table 6.2 (Abalone and Cloud). The machine used
for both experiments is a dual Intel Xeon Quad-core E5310 running at 1.6 GHz each, 8 MB L2 and 8
GB RAM.
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Table 6.2: Data sets used in experimentation.

Data set #Instances
#Num.
Attrib.

#Cat.
Attrib.

Description

Abalone 4177 7 1

Predicting the age of abalone from physical
measurements. Abalone is determined by cutting
the shell through the cone, staining it, and
counting the number of rings through a
microscope - a boring and time-consuming task.

AutoMPG 398 4 3
Concerns city-cycle fuel consumption in miles per
gallon, to be predicted in terms of 3 multivalued
discrete and 5 continuous attributes.

Breast
Tumor

286 1 8
This is one of three domains provided by the
Oncology Institute that has repeatedly appeared in
the machine learning literature.

Cloud 108 4 2
These data are those collected in a cloud-seeding
experiment in Tasmania between mid-1964 and
January 1971.

Fish
Catch

158 5 2

159 fishes of 7 species are caught and measured.
Altogether there are 8 variables. All the fishes are
caught from the same lake (Laengelmavesi) near
Tampere in Finland.

Machine
CPU

209 6 0
The problem concerns Relative CPU Performance
Data.

Quake 2178 3 0
Dataset from Smoothing Methods in Statistics,
[Sim96]

Stock 950 9 0
The data provided are daily stock prices from
January 1988 through October 1991, for ten
aerospace companies.

Strike 625 5 1

The data consist of annual observations on the
level of strike volume and their covariates in 18
OECD countries from 1951-1985. The average
level and variance of strike volume varies across
countries. The data distribution also features a
long right tail and several large outliers.

Veteran 137 3 4 Veteran’s Administration Lung Cancer Trial.

6.3.1 First Experiment Protocol

For the first experiment, we have tested E-Motion with the lexicographic approach and random
division of the training set to generate the numeric basic trees. We have analyzed the RMSE,
MAE and tree size obtained by the M5P algorithm (WEKA’s implementation of the well-known
M5) [Qui92] and REPTree [WF05], a regression tree algorithm also implemented in WEKA, for all
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data sets listed in Table 6.2.

The M5P and REPTree parameter settings used are the default ones of each algorithm and we
have used 10-fold cross-validation, a widely disseminated approach for validating prediction models.
In each of the ten iterations of the cross-validation procedure, the training set is divided into sub-
training and validation sets, which are used to produce the basic trees and linear models (sub-training
set), filtering process (sub-training set) and fitness function (validation set). The sub-training set
represents 60% of the full training set whereas the validation set represents 30%, as recommended in
[WF05]. This split is intended to avoid training data overfiting.

E-Motion was executed according to the parameters listed in Table 6.1. We have made no attempt
to optimize these parameter values, a topic left for future research. For the lexicographic analysis,
as mentioned in Chapter 5, RMSE is the highest-priority measure, followed by MAE and tree size,
respectively. Thresholds were calculated dynamically, where each error measure has a threshold of
5% of its average value within the current population, and 20% for the average tree size. These
parameters were defined empirically, through previous experimentation.

Due to the fact that GP is a non-deterministic technique, we have run E-Motion 30 times (varying
the random seed across the runs) for each one of the ten training/test set folds generated by the 10-fold
cross-validation procedure. These folds were the same ones used by M5P and REPTree, to make a
fair comparison among the algorithms. After running E-Motion on each of the ten data sets, we have
calculated the average and standard deviation of the 30 executions for each fold and then the average
of the ten folds. We have calculated the averages and standard deviations for the ten folds of M5P and
REPTree since these are deterministic algorithms.

To assess the statistical significance of the differences observed in the experiments for each data
set, we have executed the corrected paired t-test [NB03], with a significance level of 1% and 9 degrees
of freedom. The measures we analyzed were the same we used in the lexicographic analysis: tree size,
RMSE and MAE.

6.3.2 Second Experiment Protocol

In this second experiment, we have executed four different versions of E-Motion in two data sets
from Table 6.2: Abalone and Cloud. The four different versions are summarized in Table 6.3. The
goal of this experiment is to check whether the different fitness and numeric basic trees implementa-
tions provide distinct results.

We have also executed 30 times the 10-fold cross-validation procedure to collect the results, and
the statistical test used was once again the corrected paired t-test [NB03]. The choice of the data sets
was made randomly, and we have not tested the four configurations to all data sets listed in Table 6.2
due to time constraints, but it is also in our list of future work.
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Table 6.3: Four different configurations of E-Motion.

Configuration Type Numeric Basic Trees Generation Fitness Function
E00 Random division of training set Lexicographic Analysis
E01 Random division of training set Weighted-Formula
E10 Clustering of training set Lexicographic Analysis
E11 Clustering of training set Weighted-Formula

6.4 First Experiment Results

Table 6.4 presents the average values for the error measures for E-Motion (E), M5P and REPTree
(REP). Standard deviation values are within parentheses. Table 6.5 presents the results regarding the
average tree size (number of nodes) of the solutions produced by each algorithm.

Table 6.4: Error measures for E-Motion, M5P and REPTree.

RMSE MAE
Dataset E M5P REP E M5P REP

AutoMPG 2.98 (0.65) 2.72 (0.52) 3.44 (0.59) 2.20 (0.38) 2.00 (0.33) 2.53 (0.36)

Breast Tumor 10.45 (1.24) 9.94 (1.36) 10.47 (1.02) 8.36 (1.15) 8.05 (1.08) 8.30 (0.92)

Fish Catch 62.72 (0.98) 59.92 (15.96) 139.30 (60.56) 43.41 (0.81) 40.76 (10.45) 81.72 (29.36)

Machine CPU 45.91 (21.82) 54.81 (27.38) 93.13 (58.08) 29.51 (11.13) 29.82 (10.27) 49.73 (24.28)

Quake 0.19 (0.01) 0.19 (0.01) 0.19 (0.01) 0.15 (0.01) 0.15 (0.01) 0.15 (0.01)

Stock 1.04 (0.07) 0.92 (0.20) 1.21 (0.24) 0.81 (0.05) 0.67 (0.08) 0.84 (0.12)

Strike 440.44 (282.66) 436.99 (277.65) 459.87 (274.23) 217.52 (52.36) 211.29 (48.91) 225.40 (54.68)

Veteran 133.35 (86.34) 126.85 (78.12) 140.01 (81.91) 92.68 (47.97) 91.95 (42.88) 98.98 (37.39)

For the next tables, the data sets were abbreviated as follows: AutoMpg {A}, BreastTumor {B},
FishCatch {F}, MachineCPU {M}, Quake {Q}, Stock {So}, Strike {Si} and Veteran {V}.

Table 6.6 shows in which data sets the differences regarding the error measures and tree size were
statistically significant, according to the corrected paired t-test. This table is divided into two parts.
The left part indicates the data sets in which E-Motion was significantly better than M5P or REP
according to each of the three criteria in column (a). Each entry in the column E-Motion contains 8
values, one for each of the data sets, and the value in question is a data set identifier if E-Motion was
significantly better than the corresponding algorithm in the second column (M5P or REP) according
to the corresponding measure in column (a); otherwise the value in question is "-". The second part
of the table has a similar structure, but now each entry in the column E-Motion indicates for which
data set E-Motion was significantly worse than the corresponding algorithm in the second column,
according to the corresponding measure in column (b).
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Table 6.5: Tree Size for E-Motion, M5P and REPTree.

Tree Size
Dataset E M5P REP

AutoMPG 3.17 (0.26) 6.60 (2.63) 71.90 (14.08)

Breast Tumor 2.59 (0.80) 1.80 (1.03) 10.30 (12.60)

Fish Catch 3.34 (0.60) 7.80 (4.34) 38.60 (10.72)

Machine CPU 6.18 (0.83) 6.00 (3.16) 21.20 (14.28)

Quake 1.00 (0.00) 3.60 (2.99) 18.00 (33.88)

Stock 11.78 (0.67) 87.80 (15.70) 160.40 (15.69)

Strike 4.93 (0.72) 10.40 (7.55) 41.20 (16.10)

Veteran 3.31 (0.75) 1.80 (2.53) 9.80 (8.44)

Table 6.6: E-Motion significantly better (a) or worse (b) than M5P and REP according to the corrected
paired t-test.

(a) E-Motion (b) E-Motion
M5P ---M---- M5P --------

RMSE REP --F----- RMSE REP --------
M5P ---M---- M5P -----So--

MAE REP --FM---- MAE REP --------
M5P --F-QSo-- M5P ---M----

Size REP A-FM-SoSi- Size REP --------

Regarding statistical significance results, we can notice that E-Motion performs similarly to M5P
and REPTree in terms of error measures. It outperforms M5P in the MachineCPU data set (RMSE

andMAE), and it outperforms REPTree in FishCatch (RMSE andMAE) and MachineCPU (MAE).
E-motion is never outperformed by REPTree considering the error measures, and it is outperformed
by M5P only in Stock (MAE). Considering absolute values only, E-Motion is superior to REPTree in
7 data sets for RMSE and 6 for MAE. However, it is outperformed by M5P, though by statistically
insignificant margins.

Once E-Motion induces trees with predictive performance similar to M5P and REPTree, it is
interesting to analyse the comprehensibility of the models generated. As we can see in Table 6.5,
E-Motion always produces smaller trees when compared to REPTree. In addition, it produced trees
that are smaller than M5P ones in 5 out of the 8 datasets we used. This difference is statistically
significant in 5 out of 8 datasets when comparing E-Motion to REPTree, and in 3 out of 8 when
comparing E-Motion to M5P. Only in the MachineCPU dataset M5P was able to generate trees that
are smaller than E-Motion’s trees with statistical significance.

Overall, these results suggest that E-Motion seems to produce trees which are often both accurate
and significantly smaller than the other two traditional algorithms. We conclude this experiment by
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arguing that the lexicographic analysis used as fitness function has achieved its goal by providing a
good trade-off between predictive performance and model comprehensibility, which we consider one
of the main contributions of this work.

We point out that E-Motion’s execution time for this experiment is coherent to most evolutionary
algorithms, which means it turns out to be around 100 times slower (per fold) than most greedy
algorithms for generating model trees. Note that in predictive data mining tasks such as regression,
computational time is normally considered much less important than solution-quality criteria such as
prediction error and tree size.

6.5 Second Experiment Results

Table 6.7 presents the average values for the error measures and tree size for 4 different E-Motion
configurations (E00, E01, E10, E11), M5P and REPTree (REP). Standard deviation values are within
parentheses. Values in bold indicate the best algorithm/configuration according to absolute values.

Table 6.7: Results for 4 different E-Motion configurations, M5P and REPTree in two data sets.

Data set Algorithm RMSE MAE Size
E00 2.19 (0.14) 1.57 (0.06) 3.80 (1.20)

E01 2.19 (0.12) 1.57 (0.06) 2.94 (0.08)

Abalone E10 2.19 (0.13) 1.57 (0.06) 3.60 (0.99)

E11 2.19 (0.13) 1.57 (0.06) 2.93 (0.05)

REP 2.35 (0.35) 1.63 (0.14) 75.90 (30.25)

M5P 2.14 (0.12) 1.54 (0.07) 9.60 (4.32)

E00 0.44 (0.17) 0.30 (0.07) 10.20 (3.10)

E01 0.41 (0.19) 0.29 (0.08) 3.07 (0.31)

Cloud E10 0.43 (0.16) 0.29 (0.07) 8.04 (2.46)

E11 0.41 (0.18) 0.28 (0.08) 3.10 (0.25)

REP 0.61 (0.30) 0.38 (0.17) 13.90 (4.77)

M5P 0.39 (0.17) 0.28 (0.08) 10.47 (3.30)

By analyzing Table 6.7, we can notice that the difference in error measures for the different con-
figurations of E-Motion is not representative, but there is variation regarding tree sizes. For instance,
approaches that make use of the weighted-formula strategy seem to generate smaller trees than those
that implement the lexicographic analysis. This happens in both data sets, with a greater difference in
Cloud.

Moreover, the approaches with lower error values are also those that implement the weighted-
formula. This was particularly a surprise, specially due to the fact that there was no extra effort in the
definition of a complex weighted-formula. Perhaps the superiority of the weighted-formula approach
in this small experiment explains why it is the most used approach in evolutionary algorithms for data
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mining, even though it presents the drawbacks described in Chapter 3. Another possible explanation
for the low performance of the lexicographic approach is the difficulty of establishing good threshold
values for each measure, and also of choosing which error measure has the priority over the other.

E01 and E11 presented the best results among E-Motion’s configurations. Since they presented
statistically identical results, Table 6.8 shows in which data sets the differences between E01/E11 and
M5P or E01/E11 and REPTree were statistically significant, according to the corrected paired t-test.
The left part of the table indicates the data sets in which E01/E11 were significantly better than M5P
or REP according to each of the three criteria in column (a). Each entry in the column E01 contains
2 values, and the value in question is a data set identifier (A stand for Abalone and C for Cloud) if
E-Motion was significantly better than the corresponding algorithm in the second column (M5P or
REP) according to the corresponding measure in column (a); otherwise the value in question is "-".
The second part of the table indicates for which data set E01/E11 were significantly worse than the
corresponding algorithm in the second column, according to the corresponding measure in column
(b).

Table 6.8: E-Motion’s configurations E01 and E11 significantly better (a) or worse (b) than M5P and
REP according to the corrected paired t-test.

(a) E01/E11 (b) E01/E11
M5P -- M5P --

RMSE REP AC RMSE REP --
M5P -- M5P --

MAE REP AC MAE REP --
M5P AC M5P --

Size REP AC Size REP --

By analyzing Table 6.8, we can notice that E01/E11 are statistically better than REPTree for both
data sets, as expected. They also provide smaller trees than M5P for both data sets. Regarding error
measures, there is practically no difference between E01/E11 and M5P because even though M5P
provides lower absolute values, the difference is not enough to be consider statistically significant.

6.6 Chapter Remarks

In this chapter we presented two different experiments for trying to assess quantitatively E-
Motion’s performance. In the first experiment (documented in [BBR+10]) we have executed E-
Motion with its default parameters plus the lexicographic approach and random division of the train-
ing set to generate numeric basic trees. We compared the performance of E-Motion in 8 data sets from
UCI machine learning repository to well-established regression algorithms such as M5P and REP-
Tree. The results were quite encouraging, since E-Motion was able to consistently provide smaller
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trees while keeping its predictive performance very similar to M5P, the state of the art algorithm for
model trees induction.

In the second experiment, the goal was to analyze whether changing the fitness evaluation and
the strategy for generating numeric thresholds would increase or decrease E-Motion’s performance.
Results have shown that, in two data sets from UCI repository, the configurations that made use of the
weighted-formula fitness evaluation approach provided better trees (smaller trees with similar/slightly
lower error values). This was unexpected since our first belief was that the lexicographic approach
would be a robust and efficient alternative for multi-objective optimization.

Considering the good results obtained by the weighted-formula approach, we propose as future
work to repeat the first experiment with E-Motion’s fitness set to perform this approach, for we believe
the results can be significantly enhanced. We are aware that more tests should be done until a definitive
conclusion about E-Motion’s true performance can be presented. Nonetheless, the results of these two
experiments seem to indicate that our goal of providing model trees with high predictive performance
and also high comprehensibility was achieved.

Finally, we have considered comparing E-Motion to TARGET and GPMCC, but the authors did
not reply our e-mail that asked for the source code of both. We need the source code of them otherwise
the comparison will not be fair since each algorithm divides the data sets in different partitions, and
this can affect severely the final results.
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7

Final Remarks and Future Work

Model trees are a popular alternative to classical regression methods, mainly because the models
they provide resemble the human reasoning. We emphasize that the comprehensibility of the discov-
ered model is important in many applications where decisions will be made by human beings based
on the discovered knowledge. Therefore, there is a clear motivation to provide model trees that are
not only accurate but also relatively simple.

Traditional model tree induction algorithms which rely on a recursive top-down greedy strategy
are relatively fast but susceptible to converging to local optima, while an ideal algorithm should
choose the correct tree partitioning in order to converge to a global optimum. With this goal in mind,
we have proposed a novel evolutionary algorithm for inducing model trees called E-Motion. It is
based on Legal-Tree [BBC+09b], a GA for induction of decision trees.

E-Motion avoids the greedy search performed by conventional tree induction algorithms, and
performs instead a global search in the space of candidate model trees. Additionally, while other
approaches typically rely on a single objective evaluation, we allow the user to choose between the
lexicographic approach and weighted-formula. In the lexicographic approach, multiple measures are
evaluated in order of their priority. it is relatively simple to implement and control and does not suffer
from the problems the weighted-formula and Pareto dominance do, as discussed earlier.

E-Motion considers the two most common error measures used for evaluating regression prob-
lems: root mean squared error and mean absolute error. Also, it considers tree size as a measure of
model comprehensibility, assuming that smaller trees are easier to interpret.

In an experiment with 8 UCI data sets, E-Motion’s results did not significantly differ from the
popular M5 algorithm regarding the error measures, but E-Motion consistently induced smaller model
trees. This means an overall improvement in simplicity was obtained without any statistically signif-
icant loss in predictive performance in most data sets. This is a clearly positive result, which is also
supported by the well-known principle of Occam’s razor, a principle very often used in data mining
and science in general. Regarding the comparison with REPTree, E-Motion is superior both in error
measures and tree size, which is partially explained by the different types of trees that are induced
(model trees versus regression trees), but also by the ability of E-Motion of producing reduced and
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accurate trees.
In a second experiment with 2 data sets, we have compared four different configurations of E-

Motion. Surprisingly, those that implement the weighted-formula provided smaller trees and similar
(if not slightly lower) error values. We did not expect that to happen, specially due to the lack of sci-
entific evidence to support the weights chosen in the formula and its apparent simplicity. Hence, this
initial evidence suggests that more experiments are necessary to check whether E-Motion’s weighted-
formula version can consistently provide better results in comparison to any tree-based algorithm
designed for regression problems.

The greatest challenge of this work was the continuously attempt of reducing E-Motion’s execu-
tion time. As most evolutionary algorithms, E-Motion is very time-consuming. Due to the fact it is
a non-deterministic algorithm, it was necessary to execute E-Motion 30 times per fold, in a 10-fold
cross-validation procedure, which means the algorithm was executed 300 times per data set. Con-
sidering that each execution can run up to 200 generations, each one evolving 200 individuals, it is
not hard to see why E-Motion is not so efficient in terms of execution time when compared to most
traditional tree-based induction algorithms. We have started an attempt to parallel the processing of
some genetic operators as selection and crossover, as well as the filtering process, in order to speed-up
the algorithm’s execution time. This is our first goal in future works.

Other possibilities for future research are as follows. We plan to test the weighted-formula version
of E-Motion in more than 30 data sets, so we can properly assess its true performance. Moreover, we
intend to implement the Pareto dominance approach and test it properly. The lexicographic analysis
will also be modified so we can set the threshold values through statistical techniques, as previously
mentioned. We also plan to explore different basic trees generation to improve diversification and
convergence to global-optima. Furthermore, the setting of input parameters for E-Motion could be
done through a supportive GA, helping to achieve convergence to a global optimum and avoiding
empirical-based parameters setting. Finally, we intend to extend the leaf models in order to generate
polynomial expressions, so each model tree will hold non-linear models in its leaves, allowing optimal
exploration of time-series data, for instance.
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Appendix A
K-Means

K-means is one of the oldest and most widely used clustering algorithms [TSK06]. It is prototype-
based, which means that objects are clustered according to the distance (similarity) each object is to
the prototype that defines each cluster. In K-Means, prototypes are known as centroids, i.e., the
average of all objects in the cluster it represents.

The K-means basic algorithm is quite simple. First we have to choose k initial centroids, where k
will be the number of clusters the data will be partitioned in (a user-specified parameter). Then each
point is assigned to the closest (most similar) centroid, and each set of objects assigned to a same
centroid is a cluster. The centroids are recalculated according to the objects assigned to them. This
process is repeated until no object changes clusters or until the centroids remain the same. Algorithm
.1 depicts this rationale.

Algorithm .1 Pseudo-code of basic K-means.
Select k points as centroids
repeat

Form k clusteres by assigning each point to its closest centroid.
Recompute the centroid of each cluster

until Centroids do not change or no object changes clusters

The assignment of each object to its closest centroid is done through a distance function that will
clearly quantify the notion of proximity. Examples of distance functions are the Euclidean distance,
Manhattan distance, cosine similarity, Bregman divergence, etc.

K-Means is relatively scalable, handling efficiently large data sets since the computational com-
plexity of the algorithm is O(nkt), where n is the total number of data set instances, k is the number
of clusters and t is the number of iterations. The necessity for users to specify the number of clusters
in advance can be seen as a disadvantage, as well as its sensitivity to noise and outliers due to their
influence in the calculation of the centroids [HK06].
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Appendix B
Lexicographic analysis

Algorithm .2 Pseudo-code of the lexicographic fitness analysis.
{this code returns the best individual between IA and IB}
diffRMSE := RMSE(IA)−RMSE(IB)
diffMAE := MAE(IA)−MAE(IB)
diffSize := Size(IA)− Size(IB)
if |diffRMSE| > tRMSE then

if diffRMSE > 0 then
return IB

else
return IA

end if
else if |diffMAE| > tMAE then

if diffMAE > 0 then
return IB

else
return IA

end if
else if |diffSize| > tSize then

if diffSize > 0 then
return IB

else
return IA

end if
else if diffRMSE > 0 then

return IB
else if diffRMSE < 0 then

return IA
else if diffMAE > 0 then

return IB
else if diffMAE < 0 then

return IA
else if diffSize > 0 then

return IB
else if diffSize < 0 then

return IA
else

return IA ∨ IB
end if
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