
Simulated Annealing based Algorithm for Smooth Robot
Path Planning with Different Kinematic Constraints

Yi-Ju Ho and Jing-Sin Liu
Institute of Information Science, Academia Sinica, Nangang, Taipei, Taiwan 115, ROC.

u882524@alumni.nthu.edu.tw, liu@iis.sinica.edu.tw

ABSTRACT
In this paper, we present a simulated annealing (SA) based
algorithm for robot path planning. The kernel of our SA en-
gine is based on Voronoi diagram and composite Bezier curve
to obtain the shortest smooth path under given kinematic
constraints. In our algorithm, a Voronoi diagram is con-
structed according to the global environment. The piecewise
linear path in the Voronoi diagram which keeps away from
the obstacles is obtained by performing Dijkstra’s shortest
path algorithm. The control points on the reference path are
used to create the control variables for our SA engine. Our
SA engine then updates the control variables to obtain the
shortest composite Bezier curve path while satisfying given
kinematic constraints. Experimental results on two maps
containing sharp turns demonstrate the effectiveness of the
proposed SA-based smooth path planning algorithm.

Keywords
smooth path planning, Voronoi diagram, shortest path, Bezier
curve, curvature constraint, simulated annealing, optimiza-
tion

1. INTRODUCTION
Path planning plays an important role in robotic and au-

tomation fields for both static and dynamic environments
and many researchers have worked on it since 80’s. Many
techniques have been researched to utilize multiple path
schemes for different applications [1, 3, 6, 8, 9, 11, 12].
Among these applications, the kinematic constraints of the
mobile robot play an important role in path planning.

There exist different kinematic constraints for different
type and control of mobile robots. For example, an omnidi-
rectional mobile robot does not have the maximal curvature
constraint which car-like mobile robot has. For the control
and power of the robot, there exist upper bounds on velocity
and acceleration. Many researches focus on one or some con-
straints of them in planning a smooth path. It is difficult to
concern all the constraints simultaneously and there is less

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$5.00.

work doing that. In [8], the authors proposed a dynamic
programming algorithm to smooth the piecewise linear path
along Voronoi diagram using composite Bezier curve. Al-
though their method can adapt different constraints, the
small solution space limits their solution quality. In many
cases, their method fails to find a feasible path satisfying
the curvature constraint. In [4], Dubins proposed a minimal
length path based on circles and straight lines. The path ob-
tained by Dubins’ method has zero curvature (straight lines)
or fixed curvature (circle arcs). However, the path is only
velocity continuity (C1 continuity) with curvature bounded.
After Dubins, there are many researches try to improve Du-
bins’ method to satisfy curvature continuity constraint, etc.
But less of them consider the different constraints all to-
gether.

In this paper, we propose a simulated annealing based al-
gorithm which can handle different kinematic constraints.
We model the path planning problem in mathematical for-
mula. The target is to obtain the shortest smooth path while
satisfying all the kinematic constraints. All the kinematic
constraints are embedded into a new objective function by
introducing Lagrangian multipliers. Because the new ob-
jective function is neither convex nor concave, many mathe-
matical programming algorithms may fall into local minimal
solution. We use simulated annealing to subdue this pitfall.

The kernel of our simulated annealing engine is based on
Voronoi diagram and Bezier curve. The Voronoi diagram for
partitioning a map is used in many researches to build up a
collision free path. The resulting path is a piecewise linear
path which is clearest from the obstacles. Bezier curve is
intuitive to smooth the linear path due to its space property
that the curve lies entirely in the convex hull of the control
points. We use this property for efficient detection of colli-
sion status of Bezier curve with surrounding obstacles. We
modify the nodes on the linear path to iteratively obtain
new composite Bezier curve with our simulated annealing
engine. In our experimental results, we compare the path
length, maximal curvature and execution time for different
path planning methods. We notice that our SA engine can
obtain a short smooth path which satisfies the given kine-
matic constraints.

The rest of this paper is organized as below. Section 2 de-
scribes our algorithms: The whole process of the simulated
annealing engine, the control variable design concept, con-
trol variable update method and the detail for each step in
the process will be introduced. The experimental results are
presented in section 3 and section 4 concludes this paper.

1277

2. PROPOSED ALGORITHM
In this paper, we study the problem of generating obstacle-

avoiding smooth path with minimal path length under differ-
ent kinematic constraints. As described in [8], the Voronoi
diagram is useful to find a reference path and the Bezier
curve is useful for collision detection. The path planning
problem can be formulated as a mathematical problem with
different constraints. The general formulation is shown be-
low:

min Length(B(P0, P1, ..., Pn)) (1)

s.t. PiPi+1 does not collide, ∀0 ≤ i ≤ n− 1 (2)

max |κ(B(P0, P1, ..., Pn))| ≤ κup (3)

max |B(P0, P1, ..., Pn)′| ≤ vup (4)

max |B(P0, P1, ..., Pn)′′| ≤ aup (5)

...

Let B(P0, P1, ..., Pn) denote the composite Bezier curve which
is constructed by the control points P0, P1, ..., Pn and satis-
fies the C1, C2 and curvature continuity constraints. Length(γ)
denotes the path length of the path γ. The eqn. (2) guaran-
tees there may exist at least one solution. The inequality (3)
means the maximal absolute value of the curvature of the
Bezier curve must be less than a given upper bound κup.
The inequality (4) means the derivative of the Bezier path
must be less than a given upper bound vup. Similarly, the
inequality (5) means the second derivative of the Bezier path
must be less than a given upper bound aup. These inequali-
ties stand for the kinematic constraints, curvature limit, ve-
locity limit and acceleration limit of the mobile robot. The
kinematic constraints κup, vup, aup are obtained basing on
the control of the robot. There may exist more kinematic
constraints such as the energy constraint, etc, and they can
be introduced in the formulation easily. The problem can
be solved using simulated annealing algorithm. In order to
simplify the algorithm expression, we reduce the constraints
and explain our algorithm in the consequent paragraphs.

2.1 Problem Formulation : Lagrangian Re-
laxation

To simply explain our method, we design the path to be
only collision free, velocity continuity (C1), acceleration con-
tinuity (C2), curvature continuity and the maximal curva-
ture must be less than a given upper bound. Then the prob-
lem is formulated as

min Length(B(P0, P1, ..., Pn)) (6)

s.t. PiPi+1 does not collide, ∀0 ≤ i ≤ n− 1 (7)

max |κ(B(P0, P1, ..., Pn))| ≤ κup (8)

The construction of the compoiste Bezier curve B(P0, P1, ...
, Pn) must be collision free and must satisfy the continuity
constraints. The inequality (7) guarantees that there may
exist at least one feasible solution and inequality (8) ensures
the curvature of the resulting CBC path does not violate the
max curvature constraint. In order to solve the constrained
optimization problem, the inequality (8) is embedded into
the objective function Length(B(P0, P1, ..., Pn)) to form a
new objective function by introducing a Lagrangian multi-
plier λ and a continuous transformation function H(y) [13].

Algorithm : SAEngine
Input: α, NT , Tinit

01. control point set construction;
02. old cost = calculate obj;
03. do {
04. for n = 1 to NT {
05. update control point or λ;
06. new cost = calculate obj;
07. if (isAccept(old cost, new cost))
08. modify control point;
09. old cost = new cost;
10. else
11. recover last control point change;
12. }
13. update temperature by T = α× T
14. } while terminate condition not met

Figure 1: Simulated annealing process

The Lagrangian relaxation objective function is shown be-
low:

obj =Length(B(P0, P1, ..., Pn))+ (9)

λH(max |κ(B(P0, P1, ..., Pn))| − κup)

where

λ ≥ 0 (10)

H(y) =

0, y ≤ 0
y, otherwise

(11)

The objective function of the Lagrangian relaxation problem
is neither convex nor concave such that many mathematical
programming methods may fall into local minimal. In order
to obtain the global optimal solution, we solve the problem
by simulated annealing algorihtm which has a probability to
run over the local minimal solution. We notice that when
the λ approaches infinity with the iteration grows, the solu-
tion to the minimal obj satisfies the constraint in inequality
(8). The simulated annealing algorithm is shown in fig.2.1.
The variable α is used to update the temperature, NT is the
number of trials for each temperature and Tinit is the initial
temperature. The control point sequence is generated by
constructing the Voronoi diagram of the environment and
performing Dijkstra’s algorithm to obtain the shortest ref-
erence path. The control point sequence is postprocessed to
generate control point sets (line 01). For each trial of vari-
able update (line 05), the objective value (eqn.9) is calcu-
lated. A probability function is used to determine whether
the trial is accepted or not (line 07). After every NT tri-
als, the temperature T is updated by a ratio α ≤ 1. The
simulated annealing process terminates and converges to a
feasible solution. The details for each step of the process
will be introduced in subsections.

2.2 Control Variable Design and Update Method
Before solving the optimization problem by simulated an-

nealing algorithm, we must define the control variables to
the problem and their solution spaces. We first divide the
boundaries of each obstacle into segments and the end points
of each segment are sites of Voronoi diagram. Then we use
Fortune’s algorithm [7] to construct the Voronoi diagram
basing on the sites. Consequently, all edges of the Voronoi
diagram colliding with the obstacles are removed from the
diagram. The source and destination points are connected
to the corners of the remaining Voronoi regions in which

1278

Algorithm : Control Point Clustering
Input : Control Point Sequence P1, P2, ..., Pn−1

Distance Threshold ε
Output : Clustering Sets S0, S1, ..., Sj

01. Pbase = P1;
02. j = 0;
03. put Pbase into set Sj ;
02. for Pt = Pbase+1 to Pn−1 {
03. if (

p
(Ptx − Pbasex)2 + (Pty − Pbasey)2 ≤ ε)

04. put Pt into set Sj ;
05. else {
06. Pbase = Pt

07. j = j + 1
08. Goto line 03
09. }
10. }

Figure 2: Control Point Clustering

the source and destination nodes are located and the newly
created edges can not collide with the obstacles. We then
use Dijkstra’s shortest path algorithm to obtain the short-
est path in the remaining diagram. The resulting path is
the piecewise linear path that has better clearance to sur-
rounding obstacles. The nodes on the path form the con-
trol point sequence S = P0, P1, ..., Pn. We notice that if
we take each control point as control variable for SA en-
gine, the solution space is very large. As shown in [8], the
control points may be crowded. If we remove the crowded
control points, the resulting Bezier curve still maintains the
shape and the path length is shorter. Thus, we know that
many control points in the initial control point sequence
are unnecessary and can be removed. In order to reduce
the search space for the problem, we create a new control
point set from the initial sequence. For initial control point
sequence P0, P1, ..., Pn, we first cluster the control points
P1, P2, ..., Pn−1 into subsets Sis with a given threshold ε.
After the subsets S0, S1, ..., Sj are determined by the algo-
rithm in fig.2.2, we design new solution sets basing on the
Sis. For each subset Si = Pk, Pk+1, ..., Pl, we create a circle
Ci basing on Si. Ci is a three tuple entry Ci = (xi, yi, ri)
where (xi, yi) is the geometric center of Pk, Pk+1, ..., Pl and
ri = ε

2
. The control point determined by the set Si is then

defined as a point on the circumference of the circle, denote
it as CPi = (CPix, CPiy) = (xi + ricosθi, yi + risinθi) or
CPi = (xi, yi, ri, θi). The fig.3 demostrates the concept. We

Figure 3: Modified control point set. P0 and Pn are the
source and destination nodes. The blue circles are the orig-
inal control points and we cluster them by circles C0, C1,
C2 and C3. CP0,..., CP3 are the new control points on the
circumference of the circle C0,..., C3.

use P0, CP0, CP1, ...CPj , Pn as the control point sequence
for constructing a composite Bezier curve. Initially, the
control points CPis are randomly generated such that the
line segment connecting each two consequent control points
does not collide with obstacles. With these control point se-
quence, we can change the position of CPi by changing it’s
radius ri or angle θi for each trial in simulated annealing
process. We keep (xi, yi) unchangable to retain the space
relation between control points.

After the control point set CP0, CP1, ..., CPj are deter-
mined, we obtain the control point sequence {Q0, Q1, ..., Qj+2}
= {P0, CP0, CP1, ..., CPj , Pn}. The control variables to the
Lagrangian relaxation problem are λ, θis and ris. In order
to improve the performance, we reduce the solution space
from continous space to discrete space. We discretize the θi

as a multiple of π
36

, represented by kiπ
36

and ri as a multiple
of 2.0f, represented by 2li. Then the problem is formulated
as below:

min obj =Length(B(Q0, Q1, ..., Qj+2))+ (12)

λH(max |κ(B(Q0, Q1, ..., Qj+2))| − κup)

s.t. QiQi+1 does not collide, ∀0 ≤ i ≤ j + 1 (13)

Qi+1 = CPi = (CPix, CPiy) = (14)

(xi + ricosθi, yi + risinθi), ∀0 ≤ i ≤ j

θi =
kiπ

36
, ki ∈ N0, ∀0 ≤ i ≤ j (15)

ri = 2li, li ∈ N0, ∀0 ≤ i ≤ j (16)

Q0 = P0 (17)

Qj+2 = Pn (18)

The control variables are now modified to λ, kis and lis. Let
Λ stand for the Lagrangian multiplier space and K, L stand
for the solution space of kis and lis respectively. We denote
the control point as a (2j + 3)-entry tuple, v = (λ, k, l),
where k and l have j + 1 entries. At each trial of simulated
annealing process, a new point v̂ is randomly generated in
N(v) of current point v = (λ, k, l) in search space S = Λ ×
K × L, where

N(v) ={(λ̂, k, l) ∈ S where λ̂ ∈ N1(λ)} (19)

∪{(λ, k̂, l) ∈ S where k̂ ∈ N2(k)}

∪{(λ, k, l̂) ∈ S where l̂ ∈ N3(l)}

N1(λ) at (λ, k, l) is the neighborhood of λ that satisfies the
following property:

N1(λ) = {µ ∈ Λ | µ > λ and µ = λ if H(v) = 0} (20)

H(v) = 0 means the control variable v let the H(max
|κ(B(Q0, Q1, ..., Qj+2))| − κup) = 0. Neighborhood N1(λ)
prevents λ from being changed when the corresponding con-
straint is satisfied. N2(k) and N3(l) at (λ, k, l) are the neigh-
borhoods of k and l respectively satisfying eqn. (13). For
example, one neighborhood of N2(k) at (λ, k, l) has one

different entry at ki, as shown in fig.4 (a). θi = (ki−1)π
36

and θi =
kjπ

36
which (ki+l)π

36
does not satisfy eqn. (13)

∀l, ki + l < kj are the different values for the neighborhood.
Similarly, if one neighborhood of N3(l) at (λ, k, l) has one
different entry at li, we check whether the neighboring can-
didate with ri = 2(li +1) or ri = 2(li−1) satisfies eqn. (13).
If the new solution candidate violates eqn. (13), we remove

1279

Figure 4: (a). Neighborhood example for N2(k) (b). Neigh-
borhood example for N3(l)

it from the neighborhood of N3(l). As shown in fig.4 (b),
the candidate with ri = 2(li + 1) collides with the obstacle.
We remove the candidate from the neighborhood.

At each trial, the N(v) has different probabilities to select
a neighboring candidate in N1(λ), N2(k) and N3(l). After
the new solution candidate is determined, the new value
to the objective function will be calculated and we use a
probability function to determine whether the new solution
is accepted or not, known as the isAccept function in fig.2.1
(line 07). The probability function is defined as

Prob =

(
1, new obj ≤ old obj

e
−(new obj−old obj)

T emperature , otherwise
(21)

While the temperature decreases to a small number, the
probability that the simulated annealing engine will accept
a worse solution approaches zero. This avoids the simulated
annealing engine to run over the global minimal.

2.3 Objective Function Calculation
At each trial of SAEngine, the control point CPis are up-

dated and the new objective function value need to be calcu-
lated. Instead of using the dynamic programming algorithm
in [8] to obtain the composite Bezier curve, we use a greedy
method in this paper to enhance the performance. For the
resulting control point sequence P0, CP0, CP1, ...CPj , Pn, we
want to divide the sequence into subsequences such that
each convex hull of the subsequence does not collide with
any obstacle. We notice that to construct a C1, C2 and cur-
vature continuity smooth path requires extra control point
addition. We have to take these extra control points into
concern while detecting collision. Take fig.5 for example.

Figure 5: Control sequence subdivision S0 = {P0, P1, P2},
S1 = {P2, P3, P4}. The convex hull of each subsequence after
extra control point addition must not collide with obstacles.

The control points P0, P1, P2, P3 and P4 are divided into
two subsequences S0 = {P0, P1, P2} and S1 = {P2, P3, P4}.
Two extra control points e1, e2 have to be added into S0 be-
fore P2 and two extra control points e3, e4 have to be added

into S1 after P2 to ensure C1, C2 and curvature continuity.
The equation e3−P2 = P2− e2 holds for C1 continuity and
the equation 2(e3−e2) = e4−e1 holds for C2 continuity, see
appendix for the details. The five control points e1, e2, P2, e3

and e4 are collinear to make the curvature equals zero at the
join to ensure curvature continuity. In our current imple-
mentation, we add the extra control points before and after
Pi on the line which passes through Pi and has the direction−−−−−−→
Pi−1Pi+1. After the extra control points are added into the
subsequence, we have to check whether the resulting convex
hull is collision free. We use greedy method to subdivide the
control point sequence into subsequence. We will iteratively
put the control points into a subsequence until the resulting
convex hull of the subsequence collides with obstacles. If
the process detects a collision, a new subsequence is created
and the iteration continues. After the subsequences are de-
termined, we contruct the corresponding Bezier curves for
each subsequence. The path length and the maximal ab-
solute value of the curvature are calculated to obtain the
objective function value obj (eqn.12).

3. EXPERIMENTAL RESULTS
Instead of building our algorithm into real robots, we use

software simulation for testing our algorithm. We use Intel
cpu with 4 Cores and 1 GB memory on linux platform. We
test two maps which contain sharp turns causing large curva-
ture, as shown in fig.6(a) and fig.6(b). We test several path
planning algorithms such as piecewise linear path in visi-
bility graph (VS-Path), the smooth path by smoothing VS-
Path using Cardinal spline (CS-Path) [3], composite Bezier
curve obtained by the method in [8] (DPN-Path), compos-
ite Bezier curve with curvature constraint by the method
in [8] (DPB-Path), smooth path by our simulated anneal-
ing algorithm with and without curvature constraint, called
SAB-Path and SAN-Path respectively.

Path VS-Path CS-Path DPN-Path
Continuity C0 C0, C1 C0, C1, κ

κ constrained No No No

Path DPB-Path SAN-Path SAB-Path
Continuity C0, C1, κ C0, C1, C2, κ C0, C1, C2, κ

κ constrained Yes No Yes

Table 1: Path property for each path planning method

Table 1 lists the continuity property for each method.
These paths are shown in the maps. The black path is the
VS-Path, the green path is the CS-Path, the yellow path is
the DPN-Path and the purple path is the SAB-Path. The
SAN-Path is ignored to show in maps for context clearence
and its statistics are shown in the tables. For each map,
we compare the execution time, path length and maximal
curvature for each methods. For each map, the maximal
absolute curvature should be set according to the control
of real robot. In our simulation, we just set the curvature
upper bound to 0.1. The experimental results are shown in
table 2 and table 3. For each map, VS-Path is the path with
global minimal path length. However, the VS-Path is not C1
continuity and it does not allow the robot to move without
stopping. We use VS-Path just to estimate how close is the
path obtained by our algorithm while comparing to the min-
imal length path. Also, we calculate the curvatures at the
join points for VS-Path by the method in [2] to obtain the

1280

Map Name
VS-Path CS-Path DPN-Path

length max |κ| time length max |κ| time length max |κ| time
map1 674.8223 0.0222 0.04s 688.7349 253.1738 0.05s 867.1133 0.6257 2.79s
map2 1470.5089 0.0068 0.00s 1584.2484 30.1428 0.02s 1781.8575 0.8655 5.52s

Table 2: Path length, maximal curvature and execution time comparison for VS-Path, CS-Path and DPN-Path

Map Name
DPB-Path (κup = 0.1) SAN-Path SAB-Path (κup = 0.1)

length max |κ| time length max |κ| time length max |κ| time
map1 NA NA NA 799.5233 0.7038 1.24hr 758.7318 0.08935 1.19hr
map2 NA NA NA 1648.4496 770.0236 3.34hr 1671.9509 0.0997 3.39hr

Table 3: Path length, maximal curvature and execution time comparison for DPB-Path, SAN-Path and SAB-Path

maximal curvature of the VS-Path. The CS-Path has the
path length close to VS-Path with C1 continuity. But it is
difficult to guarantee the resulting path is collision free and
the curvature constraint is difficult to satisfy. In our exper-
iments, the CS-Path collides with obstacles in both maps.
The CS-Path can be tuned to ensure collision free, but the
method is like brute-force method. We didn’t implement the
method to ensure collision free for CS-Path since there is no
good method but try and error. Also, the curvature of the
CS-Path is quite large (over hundreds). Because the inflex-
ibility of the control point sequence, there exists no feasible
DPB-Path which satisfies the maximal absolute curvature
constraint. To test the feasibility of the DPB method, we
reduce the curvature upper bound (κup) to 0.5 and then the
method can find a feasible path for the maps. We notice
that the dynamic programming based method can also find
a feasible path if the curvature constraint is not so restrict.
The inflexibility (small solution space) of the control points
along the Voronoi diagram limits this method’s ability to
find feasible paths. Our SA-based algorithm can improve
the flexibility of DPB-Path and obtain a short path length
while satisfying any given kinematic constraints.

Figure 6: (a). Map1 with size 895×759. There are only
14 obstacles in this map. (b). Map2 with size 1176×770.
This map is full with narrow passages and the time used to
find neighboring solution is longer. The blue circles are the
clustering circles C0, C1,...,Cj .

4. CONCLUSION
We create a simulated annealing based algorithm by com-

bining Voronoi diagram and composite Bezier curves. Our
algorithm can generate the shortest smooth path with differ-
ent kinematic constraints, many kinematic constraints can
be embedded into our problem formulation and solved by the
SA engine. We use the property of Bezier curve to easily de-
tect the collision with obstacles and to generate high order

continuity smooth path. We test our SA based path plan-
ning algorithm for planning in two maps containing sharp
turns. Experiments show that the proposed algorithm, as
compared to the methods in [3] and [8], is capable of deal-
ing well with various contraints arising from kinematics and
dynamics of physical mobile robots in motion.

5. REFERENCES
[1] Priyadarshi Bhattacharya and Marina L. Grvrilova, ”Voronoi

diagram in optimal path planning”, in 4th IEEE International
Symposium on Voronoi Diagrams in Science and
Engineering, 2007, pp.38-47.

[2] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and
James Diebel, ”Path Planning for Autonomous Driving in
Unknown Environments”, Springer Tracts in Advanced
Robotics, Vol.54, 2009, pp.55-64.

[3] Halit Eren, Chun Che Fung and Jeromy Evans,
”Implementation of the Spline Method for Mobile Robot Path
Control”, in 16th IEEE Instrumentation and Measurement
Technology Conference, Vol.2, 1999, pp.739-744.

[4] Dubins L. E., ”On curves of minimal length with a constraint
on average curvature, and with prescribed initial and terminal
positions and tangents”, American Journal of Mathematics,
1979, pp.497-516.

[5] S. Fortune, ”A sweepline algorithm for Voronoi diagrams”,
Proceedings of the second annual symposium on
Computational geometry, 1986, pp.313-322

[6] El-Hadi Guechi, Jimmy Lauber and Michel Dambrine, ”On-line
moving-obstacle avoidance using piecewise Bezier curves with
unknown obstacle trajectory”, in 16th Mediterranean
Conference on Control and Automation, 2008, pp.505-510.

[7] Ron Goldman, ”PYRAMID ALGORITHMS: A Dynamic
Programming Approach to Curves and Surfaces for Geometric
Modeling”, Morgan Kaufmann, 2003, p254.

[8] Yi-Ju Ho, Jing-Sin Liu, ”Collision-free Curvature-bounded
Smooth Path Planning using Composite Bezier Curve based on
Voronoi Diagram”, in IEEE International Symposium on
Computational Intelligence in Robotics and Automation, 2009

[9] K. Nagatani, Y. Iwai and Y. Tanaka, ”Sensor Based
Navigation for car-like mobile robots using Generalized
Voronoi Graph”, in IEEE International Conference on
Intelligent Robots and Systems, Vol.2, 2001, pp.1017-1022.

[10] A. Okabe, B. Boots and K. Sugihara, ”Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams”, 2nd edition,
John Wiley&Sons, 2000.

[11] Igor Škrjanc and Gregor Klančar, ”Cooperative Collision
Avoidance between Multiple Robots Based on Bézier Curves”,
in 29th International Conference on Information Technology
Interfaces, 2007, pp.451-456.

[12] Marcos de Sales Guerra Tsuzuki, Thiago de Castro Martins
and Fabio Kawaoka Takase, ”Robot Path Planning using
Simulated Annealing”, in 12th IFAC Symposium on
Information Control Problems in Manufacturing, 2006,
pp.173-178.

[13] Benjamin W. Wah and Tao Wang, ”Constrained Simulated
Annealing with Applications in Nonlinear Continuous
Constrained Global Optimization”, in Proceedings of the 11th
IEEE International Conference on Tools with Artificial
Intelligence, 1999, pp.381-388.

1281

