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ABSTRACT
We present an automated ontology matching methodology,
supported by various machine learning techniques, as im-
plemented in the system MoTo. The methodology is two-
tiered. On the first stage it uses a meta-learner to elicit
certain mappings from those predicted by single matchers in-
duced by a specific base-learner. Then, uncertain mappings
are recovered passing through a validation process, followed
by the aggregation of the individual predictions through lin-
guistic quantifiers. Experiments on benchmark ontologies
demonstrate the effectiveness of the methodology.

1. INTRODUCTION
Ontology matching [6] is among the most difficult tasks in

the context of the Semantic Web (SW) research. Although a
variety of automatic systems have been proposed so far, their
performance may vary a lot depending on the different do-
mains [3]. This problem is generally tackled by selecting the
optimal matcher based on the nature of the matching task
and the different features of the systems. This selection may
involve Machine Learning techniques [10] for finding optimal
configurations of the matchers, determining the appropriate
heuristics / parameter values to achieve the best results [4].

We propose a comprehensive approach that differs from
the previous ones for exploiting a combination of multiple
matchers which are able to capture diverse aspects of the
alignment. This should allow for overcoming the weakness of
the individual matchers. The idea of ensemble learning is in-
ducing multiple classifiers (matchers) so that the accuracy of
their combination (different classifiers can complement and
complete one another) may lead to a higher performance.

The proposed methodology is made up of two stages. In
the first stage it uses individual base-learners and then a
meta-learner to elicit certain mappings from those predicted
by single matchers induced by the base-learners. This phase
adopts the stacking [14], an ensemble learning technique,
which seems the most appropriate for composing diverse
learners. In the second stage, mappings that were previously
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deemed as uncertain can be recovered through a taxonomic /
structural validation process, followed by the aggregation of
the individual predictions made by linguistic quantifiers [7].
This stage may be considered of as a way of enriching the
features utilized for the choice of the best matchers, in order
to get a more effective combination [3].

The methodology is validated in a realistic setting on
benchmark ontologies. In particular, we use datasets from
past OAEI campaigns that provide a gold standard mapping
as well as mappings created by different matching systems.
Thus, our system can train a classifier on the outcome of
different matching systems and learn what combination of
results from different matchers with the best indication of
a correct correspondence. This is competitive w.r.t. previ-
ous attempts of combining matchers which have often been
based on ad hoc methods or had to be customized manually.

The paper proposes the following contributions: a hy-
brid approach for combining various matching systems us-
ing machine learning techniques and linguistic aggregation;
a methodology is especially meant to recover cases of uncer-
tain mappings: with structural validators adopting general-
ized similarity functions [11]; and an aggregation operator
implementing a large choice of quantifiers [7]; 3) experiments
on OAEI benchmark ontologies prove that recovering map-
pings (through validation and aggregation) can significantly
improve the overall performance of the ontology matching
system (especially in terms of recall).

2. STACKING AND AGGREGATION
Let O· = 〈N ·C , N ·R, N ·I〉 denote the input ontology, where

N ·C , N ·R and N ·I stand, respectively, for the sets of the
names for the concepts (classes), the roles (properties) and
the individuals of the ontology. For simplicity, we will con-
sider the problem of matching the concepts of some ontology
O1 = 〈N1

C , N
1
R, N

1
I 〉 to those of O2 = 〈N2

C , N
2
R, N

2
I 〉. We will

focus on the problem of finding equivalence mappings (≡),
although the method could be extended to discover sub-
sumption mappings (w).

2.1 Application Context
The reference application context of our hybrid ontology

system is illustrated by Fig. 1. Given two input ontologies
under comparison O1 and O2, let us suppose the matching
system eventually provides a similarity matrix for the en-
tities belonging to either ontology. Namely each element
of the matrix contains a value that indicates the similarity
between the couple of entities related to the row and col-
umn. This may have been computed through any specific
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Figure 1: The reference application context.
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Figure 2: The MoTo system logical architecture.

technique which is aimed at determining such a value. On
the ground of this matrix, a decision making module will tell
the certain mappings (those whose similarity value exceeds
a given threshold ε) from the others. If the system discarded
all other mappings it would likely commit some errors, es-
pecially with those mappings that yielded a similarity which
was not far from the threshold. Hence a number of uncertain
mappings (i.e. a sub-matrix of the whole similarity matrix)
are retained as candidate mappings to be evaluated along
further techniques. To this purpose a taxonomic validator
and a structural validator have been devised. They shall be
discussed later in this section. Likewise, aggregation oper-
ators can be applied in the perspective of combining more
validators. In such a perspective, the problem of assigning
a degree of trust to each validator arises. In the following,
we discuss our method for coping with this problem.

2.2 Functional Architecture
MoTo (Mapping ontology To ontology) is a multistrategy

ontology mapping system. It resorts to a variety of matching
techniques based on machine learning, linguistics and struc-
tural criteria. Additionally, it also implements aggregation
principles for the mappings. Fig. 2 shows its functional ar-
chitecture. The system is among the composite systems,
according to the classification in [12, 6]. The main functions
implemented as separate modules are:

• instance classification. All individuals from an ontology
are collected and the membership of each of them w.r.t.
each concept of the ontology is determined along with
both a deductive and an inductive approach. This is
performed through deductive inference performed with
a standard OWL-DL reasoner and through inductive
inference that is utilized when the response given by
deductive reasoning is not satisfying, i.e. the reasoner
cannot ascertain the membership (or non-membership)
of an individual to some concept.

• distribution estimation. This module works on the on-
tologies to be matched utilizing the services of a sep-
arate ML module to estimate the probability distri-
bution related to each couple of concepts (C1, C2) ∈
N1
C×N2

C . The ML module currently includes four base-
learners and one meta-learner (implementing the tech-
nique of stacking of base-classifiers produced by base-
learners) to combine their predictions [14]. The avail-
able base-learners produce a k-Nearest Neighbor clas-
sifier, an Artificial Neural Network and two Bayesian
Classifiers, i.e. a content and a name classifier.

This module is for estimating, for each couple (C1, C2),
the joint probability of membership of the individu-
als to either concept. Each base-learner L receives a
dataset made up of individuals from O1 divided in the
group of members of C1 and the group of non-members
of C1. This is exploited to train a base-classifier. Then
the individuals in O2 are divided in two groups accord-
ing to their membership to C2 ∈ N2

C . The classifier
trained on the instances in O1 is then used to clas-
sify the instances in O2. Thus, four instance sets are
formed, UC1,C2

2 , U¬C1,C2
2 , UC1,¬C2

2 and U¬C1,¬C2
2 , cor-

responding to the combinations of inductive/deductive
membership w.r.t. C1 and C2.

The same procedure is repeated swapping the roles of
the concepts (and related instances). The whole pro-
cedure can be iterated for each of the available base-
learner. This is likely to lead to different outcomes, i.e.
different U -sets. A simple procedure to make a deci-
sion in controversial classification cases may be based
on a majority vote, which proves a sub-optimal but of-
ten quite effective a method [3]. In these cases stacking
may come into service, with the meta-learner produc-
ing the final decision on the ground of the determi-
nation of the base-learners. The results provided by
the ML-module are passed to the distribution estimator
which computes the joint distributions related to the
membership / non-membership to the two concepts.

• similarity estimation. This module receives the joint
probability distributions computed by the previous one
that are exploited when determining the concept sim-

ilarity. A similarity matrix S ∈ R|N
1
C |×|N

2
C | is com-

puted where each element sij ∈ [0, 1] represents the
similarity of the couple of concepts (Ci, Cj) ∈ N1

C ×
N2
C . Two thresholds (θmin, θmax) are determined to

separate certain {(Ci, Cj) ∈ N1
C×N2

C |sij ≥ θmax}, dis-
carded {(Ci, Cj) ∈ N1

C×N2
C |sij ≤ θmin} and uncertain

mappings {(Ci, Cj) ∈ N1
C × N2

C |θmin ≤ sij ≤ θmax}.
The first group can be output, the second one is sim-
ply discarded, while the last one is subject to further
computation (candidate mappings).



• validation. Two types of validators were developed:
text-based validators that use the vocabulary in con-
junction with the ontological model (it will not be fur-
ther detailed in the following) and structure-based val-
idators that use the taxonomic structure of the input
ontologies or also the entire graph established by the
relationships (properties) therein.

• aggregation. the aggregation operator is activated at
the end of the whole process for the composition of
the results provided by the different validators to give
a single decision regarding the uncertain mappings.

2.3 Taxonomic and Structural Validation
Following [5], five criteria have been considered for the

comparison of two concepts:
#1 most of their direct super-concepts are similar ;
#2 most of their direct sub-concepts are similar;
#3 most of their super-concepts are similar ;
#4 most of their sub-concepts are similar ;
#5 all of their related concepts and properties are similar.
Criteria #1-#4 merely employ the taxonomic relationship
between concepts in the ontology. Validation following these
criteria can be determined by a taxonomic validator. The
final criterion considers also other relationships determined
by the properties in the ontologies. This is implemented in
a structural validator.

2.3.1 Taxonomic Validation.
The taxonomic validation module is based on the idea of

comparing two concepts based on their respective position
within the related subsumption hierarchy. The candidate
mappings found to be uncertain in the previous phase are
input to this validator to make a decision on their final re-
jection or a possible recover. By analyzing the taxonomies
(parenthood relationships between the concepts) the module
re-computes a similarity value for the candidate couples of
concepts along the criteria #1-#4 above. This value is an
estimate based on the similarity of their respective (direct)
ancestors and/or (direct) descendants.

The taxonomic validation module requires an initial simi-
larity matrix St containing the values that determined cer-
tain mappings and the couples of uncertain mappings that
are to be validated. Each concept Ci ∈ O1 is assigned with a
unique concept Cj ∈ O2 so that we have a injective mapping
represented in St (which turns out to be sparse). The val-
idator adopts an independent similarity measure σ. Fig. 3
depicts the algorithm for the n-th criterion. This algorithm
takes into account both the observed average similarity and
the rate of matches found. They are carefully combined since
it should be considered that although the average similar-
ity may be high the hierarchical structure of the ontologies
should be also taken into account.

After computing the similarity of all couples of concepts
from either ontology according to simi(C1, C2), i = 1, . . . , 4,
the final similarity value given by the validator is a lin-
ear combination of these values with an optional additional
term, which stands for the similarity value computed via
another function σ covering a different aspect.

2.3.2 Structural Validation.
The structural validator takes into account criterion #5

(see [5, 8]). The measure employed in this validator esti-
mates the concept similarity through transitive relationships

simn(C1, C2) : [0, 1]
input: C1, C2: concepts; // under comparison

n: integer; // criterion index
output: value: [0, 1]; // estimated similarity
begin
RC1 ← set of concepts related to C1 according to criterion n;
RC2 ← set of concepts related to C2 according to criterion n;
nMatches← 0; sum← 0; average← 0; rate← 0;
if max(|RC1|, |RC2|) = 0 then return 0;
else for each (Ci, Cj) ∈ RC1 × RC2 do

if St(Ci, Cj) > 0 then
sum← sum + St(Ci, Cj);
nMatches← nMatches + 1;

if nMatches = 0 then return 0
else rate← nMatches/max(|RC1|, |RC2|);

avg← sum/nMatches;
return α · avg + β · perc;
end

Figure 3: Taxonomic similarity algorithm.

in the respective ontologies O1 and O2 and is based on the
notion of Information Content (IC) [11].

We generalize the notion of least common subsumer (LCS)
(or closest common parent) working on both ontologies. The
structural validation module requires a similarity matrix S
as input, containing the values that determined the certain
mappings among the others. This matrix is sparse since
each concept of O1 is mapped to a single concept in O2.
A problem of granularity arises when an ontology may be
more detailed than others w.r.t. a certain domain. LCSs
can be extended with the related concepts: given (C1, C2),
(RC1, RC2) is a couple of related concepts w.r.t. (C1, C2)
and S iff

1. (RC1, RC2) are corresponding concepts in a mapping
determined by S, RCi ∈ N i

C , and in the concept graph
related to the ontologies there must exist a path from
Ci to RCi or viceversa, for i = 1, 2.

2. a list representing one such path (whose first element
denotes the direction) is a relation; we will consider
limited relations up to a certain maxlen with no loops.

3. there is at least a couple of optimal relations connect-
ing C1 and C2 through RC1 and RC2. Optimality
refers to a minimal total length (lensum) and reduced
relations, i.e. those obtained by eliminating isA links
and repeated transitive roles.

Given the set RE(C1, C2) of the couples of related con-
cepts w.r.t. the input ones, it is possible to define a struc-
tural similarity measure sims : N1

C ×N2
C 7→ R as follows

sims(C1, C2) = w0 · str(C1, C2) + w1 ·map(C1, C2)

where

str(C1, C2) =
X

(RC1,RC2)∈RE(C1,C2)

σ(RC1, RC2)α · IC(RC1, RC2)

lensum(RC1, RC2)β

with α, β ∈ [0, 1], IC(Ci, Cj) =
p

log p(Ci) · log p(Cj) and
map(C1, C2) is a similarity matrix computed on the ground
of the joint probability distributions determined by the re-
lated module described before.

The IC function is generalized considering the estimated

probability p̂(C) = freq(C)+Mµ
|N·

C
|+M , where the Laplace estimator

technique (for some M ∈ N, µ ∈ [0, 1]) is used to avoid
values for which the function or its logarithm is undefined.



final final 
similaritysimilarity

matrixmatrix

uncertainuncertain
mappingsmappings

taxonomictaxonomic
validationvalidation

structuralstructural
validationvalidation

contextualcontextual
validationvalidation

linguisticlinguistic
validationvalidation

similaritysimilarity
cubecube

similaritysimilarity
matrixmatrix

similaritysimilarity
matrixmatrix

similaritysimilarity
matrixmatrix

similaritysimilarity
matrixmatrix

Figure 4: Aggregation scheme.

2.4 Aggregation
Similarity values computed according to different perspec-

tives (matchers) ought to be aggregated to provide a final
value. Various methods have been proposed to compute such
aggregate values (see [2, 1, 13]). All require the computa-
tion of weights (confidence levels) for the different match-
ers implemented. The main problem is then how to de-
termine these values automatically (e.g. by recurring to ma-
chine learning techniques). One possibility is the usage of an
ad hoc ensemble learning technique like stacking [14]. The
problem with these methods is the amounts of data required
for training the individual and the meta-learner.

We resort to Yager’s OWA (Ordered Weights Aggrega-
tion) operators [9]. Given a n-tuple of normalized weights ~w,
an OWA operator is a function F : [0, 1]n 7→ [0, 1] such that:
F (a1, . . . , an) =

Pn
i=1 wibi where the tuple (b1, . . . , bn) is

obtained from (a1, . . . , an) by sorting its element in descend-
ing order. Note that weights are associated to the positions
rather than to the values.

The aggregation operator is based on weights computed
through linguistic quantifiers [7]. A quantifier θ can be rep-
resented as Q ⊆ I = [0, 1], where for each r ∈ I, Q(r) indi-
cates the degree of satisfaction the criterion specified by θ.
So if θ = most then Q(.8) = 1 means that 80% of the objects
are compatible with this criterion. Suppose that n match-
ers produce n similarity values for the compared concepts
to be aggregated (σ1, . . . , σn), the value of the OWA oper-
ator is computed as before: θ(C1, C2) = F (a1, . . . , an) =Pn
i=1 wibi. The weights are determined by the equations:

wi = Q(i/n)−Q((i− 1)/n) i = 1, . . . , n

Q(r) =

8<: 0 r < a
(r − a)/(b− a) a ≤ r ≤ b

1 r > b
a, b, r ∈ [0, 1]

where a and b are pre-defined thresholds for the single quan-
tifiers. Nine quantifiers are implemented in MoTo. Max
satisfy at least one matcher; Min: satisfy all matchers; Avg :
identity – treats all similarity values equally; Most : satisfy
most of the matchers; Alh: satisfy at least half of the match-
ers; Amap: satisfy as many as possible matchers; Few : sat-
isfy few matchers; NH : satisfy nearly half of the matchers;
75Perc: satisfy 75% few matchers (similar to Most).

The aggregation process consists of the following steps
(see Fig. 4): 1) get the similarity matrices from the various
validation modules; 2) reduce them to sparse ones such that
each concept C1 in one ontology corresponds to a single C2

in the other; 3) create a similarity cube by composition of
such matrices; 4) given a selected quantifier θ: compute the
final similarity matrix based on the associated function

Table 1: Comparing the taxonomic validator (tv) to
the base system (bs).

a-n-c k-a-c k-a-n k-n-c k-a-n-c
bs tv bs tv bs tv bs tv bs tv

204 .89 .91 .91 .91 .93 .93 .89 .91 .91 .91

205 .53 .57 .57 .61 .50 .52 .51 .58 .48 .57

206 .59 .64 .67 .74 .64 .67 .64 .74 .59 .64

221 .56 .56 .62 .62 .59 .59 .59 .59 .80 .80

222 1.0 1.0 .93 .91 .98 .97 .86 .89 .88 .90

223 .75 .87 .97 .97 .97 .97 .75 .87 .89 .91

228 .91 .99 .97 .99 .99 .99 .93 .99 .91 .94

233 .36 .36 .40 .40 .36 .36 .36 .36 .50 .50

239 .93 .92 .79 .89 .84 .90 .88 .87 .77 .81

240 .69 .84 .94 .96 .96 .96 .71 .94 .86 .90

301 .61 .61 .59 .61 .59 .61 .59 .61 .67 .69

304 .78 .82 .78 .82 .73 .75 .71 .78 .81 .81

3. EXPERIMENTATION
The experiments evaluated the improvement yielded by

the adoption of the taxonomic and structural validators w.r.t.
the performance of the base system. Moreover, we also
wanted to find the related best linguistic quantifier.

Some of ontologies from the OAEI campaign1 were se-
lected. Specifically the suite was made up of a reference
ontology (101) and a number of variants obtained by omit-
ting properties, replacing names with synonyms, changing
the graph structures, etc.. numbered 204, 205, 206, 221,
222, 223, 228, 233, 239, 240, 301, 304.

The four learners were set to their default parameters:
Bayesian Name (n) and Bayesian Content (c) learners, k-
Nearest Neighbor (k); Artificial Neural Network (a). Various
combinations of the base-learners were possible. We will
show the best ones, obtained by employing a choice of 3 or
all four learners. For brevity, we omit the settings of all
other parameters,

In Tab. 1 the results of the base matching system (bs) are
compared to those of the taxonomic validation (tv), varying
the choice of basic-learners. The table shows that tv im-
proves w.r.t. bs in all but a couple of ontologies – namely, 221
and 233 – which have been obtained by eliminating the hier-
archy. The improvement reaches the 15% for ontologies 223
and 240. Even more so, the improvement for 240 has been
observed combining only 3 base-learners. This was probably
due to the fact that the ontologies present an richer taxo-
nomic structure (w.r.t. the original one). Conversely, for the
same reason, slight decreases were observed for ontologies
222 and 239 because of their poorer taxonomic structures.
In terms of precision and recall (omitted for brevity) the tv
generally did not yield an improvement of the precision, as
it may suggest erroneous mappings. Besides, the precision
of bs with the ensemble of learners is already quite high,
hence difficult to improve. The improvement is much more
evident in terms of recall, as bs is not equally efficient.

Tab. 2 reports the outcomes of the experiments compar-
ing the results of (bs) to those of the structural validation (sv)
varying the choice of basic-learners. This table shows that
sv improves the performance of the system, except for the
ontology 233 for the same reasons outlined before. This was
evident especially for ontologies 223, 239, and 240 (with a
peak of +19% for 239) with the combination k-a-c. In par-
ticular, ontology 223 presents an extensive hierarchy which
helped finding related concepts. A little decay was observed
for ontology 221, one where the taxonomy was eliminated
w.r.t. the original one, with opposite effects compared to
the mentioned 223. Again, disaggregating these outcomes

1http://oaei.ontologymatching.org



Table 2: Comparing the structural validator (sv) to the
base system (bs).

a-n-c k-a-c k-a-n k-n-c k-a-n-c
bs sv bs sv bs sv bs sv bs sv

204 .89 .91 .91 .93 .93 .94 .89 .91 .91 .93

205 .53 .58 .57 .56 .50 .52 .51 .57 .48 .49

206 .59 .64 .67 .69 .64 .67 .64 .64 .59 .62

221 .56 .55 .62 .60 .59 .58 .59 .58 .80 .82

222 1.0 1.0 .93 1.0 .98 1.0 .86 1.0 .88 .93

223 .75 .93 .97 .97 .97 .97 .75 .93 .89 .96

228 .91 .97 .97 .99 .99 .99 .93 .97 .91 .93

233 .36 .36 .40 .40 .36 .36 .36 .36 .50 .50

239 .93 .98 .79 .98 .84 .98 .88 .98 .77 .81

240 .69 .83 .94 .96 .96 .96 .71 .83 .86 .84

301 .61 .72 .59 .63 .59 .63 .59 .67 .67 .67

304 .78 .88 .78 .86 .73 .84 .71 .82 .81 .88

Table 3: Performance of the linguistic quantifiers.
Alh Amap Avg Max Min

.82 .75 .78 .85 .75

Most 75Perc Few Nh –

.77 .78 .82 .81 -

in terms of precision and recall, one observers that precision
of bs was already quite high and so difficult to be further
improved: a single erroneously validated candidate mapping
may even worsen the precision. Recall is improved by the
validator w.r.t. the base system up to a 31% observed on
ontology 239 (with the k-a-c combination) although the re-
striction of the hierarchical structure of this ontology w.r.t.
the original one and the elimination of the properties might
lead to predict this as a difficult case for sv.

Finally, we made experiments for testing bs together with
the various additional components of the system, and es-
pecially the aggregation operator. Preliminarily, we tested
the linguistic quantifiers. This produced a choice of the best
quantifier to be utilized for the aggregation operator in the
comparison with the other components (see Tab. 3). This
has led to selecting the Max quantifier, although also Alh,
Few and Nh produced good results.

Then experiments were performed comparing bs, tv, sv,
linguistic-contextual validation (lcv) and aggregation (ao). Ta-
ble. 4, reporting the average outcomes, shows that using ao
the system was often able to produce better results. The
most problematic ontologies were 222, 223, 239 and 301 for
which ao lost some correct mappings. However, in general,
ao produced the maximum average improvement w.r.t. the
performance of bs. As with the previous experiments with
the validators, the values for the precision index were dif-
ficult to improve. It is important to note that the choice
of the Max quantifier sometimes led to erroneous mappings
which diminished the overall performance of ao. The real
gain is then in terms of recall with large improvements in
some cases and only two cases were a minimal decay was
observed (222 and 223) w.r.t. the performance of sv.

4. CONCLUSIONS AND OUTLOOK
This work focused on ontology matching validation based

on structural aspects on the ontologies. It also concerned the
aggregation of the similarities computed by different match-
ers, that are able to reconcile the various aspects targeted by
each matcher through many linguistic quantifiers. The ex-
perimentation demonstrates that a combination of different
techniques yields some added value in the quality of map-
pings found. Specifically, the taxonomic validator proved
its effectiveness despite of the simplicity of the underlying

Table 4: Comparing the base system (bs) and the
validators to the aggregation operator (ao).

bs lcv tv sv ao

204 .91 .91 .91 .92 .92

205 .52 .56 .57 .54 .61

206 .63 .64 .68 .65 .69

221 .63 .81 .63 .63 .94

222 .93 .98 .93 .99 .97

223 .87 .95 .92 .95 .94

228 .94 .96 .98 .97 .98

233 .40 .52 .40 .40 .85

239 .84 .91 .88 .95 .89

240 .83 .86 .90 .88 .92

301 .61 .61 .63 .66 .64

304 .76 .83 .80 .86 .88

idea. Another point in favor is that it can be applied to
any kind of ontology being focused on the taxonomic aspect
only. The structural validator goes a step even further as it
exploits also other relationships between the concepts. The
aggregation operator can select the best mappings from each
system component and allows different types of aggregation
by changing the most appropriate quantifier.

We are currently planning an enhancement of the valida-
tors so that other criteria may be implemented. The struc-
tural validator may also be enhanced by taking into account
annotations/comments in natural language. A more in-deep
investigation of the application of ensemble machine meth-
ods is also necessary. This may affect also the choice of
weights for the aggregation operator.
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