
Implicit Invocation of Traits

Thomas Pawlitzki
Lehrgebiet Programmiersysteme

Fakultät für Mathematik und Informatik
Fernuniversität in Hagen

D-58084 Hagen, Germany
Thomas.Pawlitzki@fernuni-hagen.de

Friedrich Steimann
Lehrgebiet Programmiersysteme

Fakultät für Mathematik und Informatik
Fernuniversität in Hagen

D-58084 Hagen, Germany
steimann@acm.org

ABSTRACT
We propose the introduction of a special kind of traits that
implement methods implicitly invoked when an event of a
given type occurs. Events are announced explicitly in the
source code at their place of origin, and classes publishing
events, as well as traits subscribing to them, are explicitly
marked as such. The result is greater independence of pub-
lisher and subscriber (when compared to other implementa-
tions), as well as an explicit interface between the two. An
implementation in Scala is briefly sketched.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—polymorphism, control structures

General Terms
Languages, Design

Keywords
implicit invocation, traits, modularity

1. INTRODUCTION
Implicit invocation is a mechanism by which methods are

called without being referenced at the call site [10, 14]. Im-
plicit invocation is the underlying mechanism of publish/
subscribe systems and event driven programming. In con-
temporary object-oriented programming languages, implicit
invocation is usually realized using the Observer pattern [5]:
it maps the implicit invocation, the event of which is be-
ing notified, to explicit invocations of notification methods
in registered observers (or listeners, or subscribers). True
implicit invocation, however, keeps the invoker completely
ignorant of (and thus decoupled from) the invoked. More re-
cently, aspect-oriented programming (AOP), AspectJ [1] in
particular, has popularized a special form of implicit invoca-
tion, called implicit invocation with implicit announcement.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

It promotes the invocation of unnamed methods (called ad-
vices) before, after, and around the execution of certain
statements, and this without the creation and dissemination
of explicit events announcing the execution. While implicit
announcement establishes coupling without explicit inter-
faces (see, e.g., [12] for a critical account of AOP and modu-
larity), tying events to the execution of statements has some
merits: it allows one to add behaviour the implementation
of which depends on the concrete system composition. It
is thus comparable to—yet significantly different from—the
dynamic binding of object-oriented programming [12].

Traits [11] are partial specifications of objects (behaviour
and sometimes also state) that can be mixed into classes.
Traits are abstract in the sense that they cannot be instan-
tiated—to obtain instances exhibiting a trait’s behaviour,
classes enhanced with traits must be instantiated. Deviating
from interfaces, traits do not only specify behaviour, they
also provide implementation. They are thus units of code
reuse. In this paper, we suggest the combination of traits
and implicit invocation so that behaviour specified in a trait
is implicitly invoked by the occurrence of an event of a given
type—rather than objects (or classes) subscribing to that
event type, objects enhanced with a trait are automatically
activated through one of the trait’s methods being called,
in response to the occurrence of a corresponding event. Our
proposal of implicit invocation of traits (abbreviated as IIT)
involves a special kind of classes, called events, and a special
kind of traits, called handler traits. Events are explicitly an-
nounced; they can be parameterized with variables from the
context in which they occur, and their occurrence can be as-
sociated with the execution of a block of statements. Analo-
gous to [13], this gives us implicit invocation with parameter
passing through clearly marked interfaces, promoting both
independent development and code reuse.

The remainder of this paper is organized as follows. In
Section 2, we motivate our approach by presenting a brief
example of implicit invocation and its implementation based
on the Observer pattern, contrasting it with our solution
using IIT, and comparing this solution to related work. In
Section 3, we present the language constructs involved in IIT
and how they work together. Section 4 sketches a prototype
implementation of IIT as a Scala library.

2. MOTIVATION
Implicit invocation is a popular architectural style for build-

ing loosely coupled software systems. Under implicit invoca-
tion, components communicate via events published by one
component and consumed by others, its subscribers. One

1 interface Observer {
2 void update(Cell cell , Value value);
3 }
4 abstract class Cell {
5 Value value;
6 abstract void recalculate ();
7 List <Observer > observers;
8 void notifyObservers () {
9 for(Observer o: observers) {

10 o.update(this , value);
11 }
12 }
13 }
14 class Expression { Value evaluate () {...} }
15 class Equation extends Cell {
16 Expression expression;
17 void recalculate () {
18 value = expression.evaluate ();
19 notifyObservers ();
20 }
21 }
22 class Table implements Observer {
23 void update(Cell cell , Value value) {...}
24 }

Figure 1: Implementation using the Observer pattern in Java.

key feature of implicit invocation is that publishers remain
ignorant of their subscribers [6], thus allowing system ex-
tension unanticipated at the publishers’ design time. Im-
plicit invocation has originally been used as an extension
mechanism for integrated development environments [10],
and later been generalized to interactive systems, distributed
systems, real-time monitoring, etc.[2].

2.1 Example
To motivate our approach, we use a simple spreadsheet

example. A spreadsheet consists of a set of cells that can
contain values, equations, etc. The contents of the cells are
displayed in various forms, namely tables, diagrams, etc.
When the content of a cell changes, the displays may need
to be updated to reflect the change. An implementation of
this simple mechanism using the Observer pattern is shown
in Fig.1; note that in this implementation the invocation of
the observers is implicit where the event occurs (the calling
of notifyObservers() in line 16), but explicit in notify-

Observers() (the calling of update(.,.) in line 7 on the
particular observers).

Using the Observer pattern, the implementation of the
example not only involves considerable boilerplate code for
registration and notification (which is not included in Fig.1),
it also establishes an explicit dependency of the class Cell

and its descendants (the publishers) on their subscribers
(here abstracted through an interface Observer; see Figure
2). The event itself is coded as a (synchronous) method call
with parameters to the event implemented as parameters to
the method. What we would rather see (and what we sug-
gest in this paper) is a reification of events as instances of

«Subject»

Cell
notifies

Equation

«Interface»

Observer

Table
registers with

Figure 2: Dependencies between subject and observer established
by the Observer pattern. (Notation ist UML)

1 event class ValueChange { Value value; Cell cell; }
2 handler trait Update subscribes ValueChange {
3 abstract void refresh(Cell , Value);
4 subscribe (ValueChange vc) {
5 refresh(vc.cell , vc.value)
6 }
7 }
8 abstract class Cell {
9 Value value;

10 }
11

12

13

14 class Expression { Value evaluate () {...} }
15 class Equation extends Cell publishes ValueChange {
16 Expression expression;
17 void recalculate () {
18 value = expression.evaluate ();
19 publish ValueChange(this ,value);
20 }
21 }
22 class Table uses Update {
23 void refresh(Cell cell , Value value) {...}
24 }

Figure 3: Alternative implementation using event types and han-
dler traits.

event types, and a subscription to event types rather than to
publishers, so that instead of publishers and subscribers de-
pending on (abstractions of) each other, they both depend
on event types as interfaces between the two. Furthermore
(and borrowing from the aspects of AspectJ), we would like
to allow the grouping of handlers of different event types in
one logical unit of reuse, called a handler trait. To see how
this should work, we have rewritten the example of Fig.1 in
Fig.3, using an ad hoc extension of Java’s syntax (whose se-
mantics should be intuitive enough for the time being, and
which will be detailed in the following sections). Note that
there is no explicit invocation of the handler trait—it occurs
implicitly through the publishing of the event in line 12. The
resulting dependencies are illustrated in Fig.4.

2.2 Related Work
Typed based publish/subscribe. The example in Fig.4 is
strongly reminiscent of typed based publish/subscribe
(TPS), as described in [3]. TPS uses the types of events
primarily as an event filtering mechanism: subscribers sub-
scribing to events of certain types will not be notified by
events of other types. By contrast, we establish event types
and declarations to publish and to subscribe them as explicit
interfaces between publishers and subscribers whose adher-
ence to can be checked by a compiler. Also, by assigning
event handlers to traits, the handling of specific (groups of)
events implemented in a trait can be reused across different
classes, effectively introducing a behavioural layer between
events and their consumers that is not available in TPS à la
[3].

«Publisher»

Equation

«uses»

«Event Type»

Value Change
«Handler Trait»

Update

«Subscriber»

Table

«publishes» «subscribes»

Figure 4: Dependency of publisher and subscriber on the event
type, as established by IIT (Notation ist UML)

AspectJ. As mentioned in the introduction, the aspect ori-
ented programming language AspectJ [1] comes with un-
named methods (called advices) that get invoked upon the
execution of certain points in the program (called join points).
As in IIT, advices can be grouped in behavioural units of
code reuse (called aspects). However, because the desig-
nation of join points (the events) occurs implicitly in As-
pectJ (through so-called pointcuts), invocation is not only
implicit, but also implicitly announced [15]. This means
that for someone inspecting a join point at source level, it is
not obvious whether its execution means an event and thus
leads to the (implicit) invocation of advice (let alone which
variables of the join point’s context are passed as parame-
ters). By contrast, we require events to be clearly marked
in the code (by the instantiation of an event type) and all
context variables to be passed as parameters be explicitly
included in the event creation expression. Replacing the im-
plicit announcement of AspectJ with an explicit one not only
introduces a mutually decoupling interface between the im-
plicit invoker and the invoked, it also allows us to dispense
with the whole-program analysis required by AspectJ’s com-
pilation mechanism (called weaving), regaining separate de-
velopment on the class level. Last but not least, since event
handlers are eventually provided by classes, our approach
is symmetric (both event sources and sinks are classes or,
rather, objects), which AspectJ is not (all sinks are aspects).

Classpects. Classpects [9] is an approach to AOP that re-
moves the asymmetry of AspectJ, by separating advice from
its binding expressions and placing both in ordinary classes.
Resulting is a language whose event handlers are plain meth-
ods (which are named and therefore can be overridden in
subclasses), bound to runtime events (join points) by sep-
arate binding declarations. As in IIT, event handlers are
executed on the object level (on instances of the hosting
classes). However, classpects adopt the implicit announce-
ment strategy of AspectJ (using pointcuts), inheriting the
modularity problems that we want to avoid.

Ptolemy. Like IIT, Ptolemy [8] builds on explicitly announced
events and uses event types to transport context information
to the implicitly invoked event handlers. Event handlers are
named methods that are bound to (sets of) event types using
special binding declarations. Rather than copying context
information into the fields of an event using a constructor
(as we suggest for IIT), Ptolemy uses closures to gain access
to the context of an event. On the other hand, Ptolemy
does not support event subtyping as we do, therefore miss-
ing out an opportunity for further decoupling (handlers for
a given type can accept events of subtypes; see Sections
3.1 and 3.3). Also, Ptolemy differs from our IIT in that it
makes it possible that only some instances of a class act as
observers (making handler methods useless ballast for unreg-
istered objects), but these observe events from all subjects;
whereas with our IIT, all instances of a subscribing class are
automatically observers, but can choose individually which
subjects they wish to observe (by setting a filter; see Section
3.4).

IIIA for Java. In our own prior work on Implicit Invoca-
tion with Implicit Announcement (IIIA) for Java, we have
introduced join point types as types of events that can be
both explicitly and implicitly announced [13]. Implicit an-
nouncement of events requires pointcuts that are defined
within (and restricted in scope to) each publishing class,

and which are interpreted as polymorphic type predicates
(polymorphic because each class has to define its own point-
cut, analogous to how each concrete class has to provide
its own implementation of an inherited abstract method).
Although theoretically, polymorphic pointcuts would allow
separate compilation, using the pointcut implementation of
AspectJ (and its associated weaving technology) does not,
so that classes cannot be compiled modularly. Since two
extensive case studies we conducted showed that implicit
announcement (as enabled by pointcuts) was rarely advan-
tageous over explicit announcement, we decided to dispense
with implicit announcement altogether and replace aspects
as keepers of event handlers with a construct that allows
for separate compilation, such as traits. The result is the
subject of this paper.

3. IMPLICIT INVOCATION OF TRAITS
As indicated by Fig.4, IIT involves handler traits and

event types as new language constructs. The following ex-
plains how these are defined and integrated into a host lan-
guage.

3.1 Event Types
Event types are types whose instances’ sole purpose is

to convey the occurrence of events parameterized by infor-
mation from the context in which the events occurred. The
creation of an event instance caused by a publish statement
(line 12 in Fig.3) implicitly causes the invocation of all event
handlers subscribing to this type of event (unless additional
filtering criteria are provided; see below); it corresponds to
the explicit announcement of the event.

Event types can be thought of (and implemented) as spe-
cial kinds of classes with fields and implicitly defined con-
structors for setting the fields during instantiation. In a way,
they are similar to Java’s exception types; in particular, al-
though they can have methods and their instances can be
stored in variables just like all other objects, there is usu-
ally only little use in doing this—their main purpose is the
signalling of an event, which is inherently transient.

Event types can have subtypes which are again event types;
an instance of an event type is an (indirect) instance of all
its super-types and substitutable for them. This is of partic-
ular interest for event handling, where a handler defined for
an event type will accept instances of its subtypes. Event
types inherit all properties from their supertypes.

3.2 Publishing Events
As indicated in the previous subsection (and in line 12 of

Fig.3), to publish an event for IIT takes little more than
instantiating the corresponding event type with the param-
eters from the context to be conveyed as part of the event—
the only extra we require is that the type of events a class
publishes is announced in the header of the class (using
the publishes keyword). This is again analogous to Java’s
exception handling, which requires a throws clause in the
header of a method throwing (checked) exceptions.

Inheriting from AspectJ [1] (and ultimately from CLOS),
we allow events to be associated with the execution of (blocks
of) statements, so that the event handler may choose to re-
act before the execution, after it, or both (by providing cor-
responding handler methods; see below). Syntactically, we
express this by attaching a block to the event type instanti-
ation, as in

value = publish ValueChange(this , value) {
expression.evaluate ();

}

Note that the publish expression returns a value which is
the value returned by the block. As far as publishing is con-
cerned, standard event creation corresponds to event cre-
ation with an empty block.

3.3 Event Handling
While different classes likely react to events of the same

kind differently, experience shows that there is usually also
some boilerplate code associated with handling events of a
given type1, and also that events of different types are sub-
scribed to by the same group of classes. Therefore, we tie
event handling to traits that can be used by the classes show-
ing interest in the events.

So-called handler traits are special traits with three prede-
fined handler methods, named subscribe, before, and af-

ter. All three methods have a single parameter whose type
must be an event type. If a handler trait subscribes to more
than one event type, the handler methods are overloaded. In
case of event subtyping, the implicit invocation of a handler
method is bound to the method definition with the most spe-
cific event type (which, due to the single inheritance of event
types, is always uniquely determined). Handler traits can
have subtraits extending them; the rules of inheritance are
basically those of the host language (with handler methods
of same parameter type overriding one another). For reasons
of symmetry, handler traits declare which event types they
subscribe to in their headers, using the subscribes keyword.
Event subscribing is inherited by the classes using the traits.
While traits can provide complete event handlers, they can-
not be instantiated. For this, they must be used by classes.
A class using a handler trait inherits its handler methods
(and everything else the trait defines); if a handler trait in-
vokes abstract methods (as in line 18 of Fig.3) overridden in
the class, the class is directly involved in handling the event.
Treatment of multiply inherited handler methods with same
parameter type is the same as in the host language.

3.4 Event Filtering
Until this point, event handling is defined completely on

the type level: handler methods are defined in traits which
are used by classes. The publishing of an event of a given
event type will therefore implicitly invoke the handler meth-
ods on all instances of all classes using traits subscribing
to the event type. This is in contrast to event publishing,
which—although also declared on the type level—is tied to
the execution of code and thus (unless the code is declared
static) to (the context of) individual objects.

To tie the handling of events to single objects (as is inher-
ently the case for implementations of the Observer pattern,
and also for Classpects [9], EventJava [4] and Ptolemy [8]),
handler traits are equipped with a filtering function which
decides whether a given event instance should be accepted.
The filter can be set for each instance of a subscribing class
individually, by invoking, on the instance, a method setFil-

ter(.) that takes a filtering expression (a function object).
For instance, if a given display subscribing to ValueChange

1Note that this boilerplate code cannot be attached to the event
class, since this would mean that to get involved in event han-
dling, subscribing classes either have to subclass the event class
(which makes no sense) or need to register with it, leading to a
re-introduction of the Observer pattern.

events is interested only in negative values, the statement
display.setFilter ((ValueChange e) => {

return e.value < 0;});

(using Scala syntax for defining function literals [7]) must
be added. Filters also allow one to tie an observer to a
single subject: for instance, if the subject is referred to by a
variable cell, the statement
display.setFilter ((ValueChange e) => {

return e.cell == cell ;});

makes sure that the instance referred to by display will
be notified by ValueChange events originating from the cell
referred to by cell only.

3.5 Event Chaining
The handling of an event can give rise to new events, and

therefore a handler trait can publish events (including ones
of the type that it handles; note once more the similarity to
Java exception throwing and handling). The following gives
an example of this:
handler trait CheckValueChanged subscribes
PotentialValueChange , ActualValueChange publishes

ActualValueChange {
Value cache = null;
before (PotentialValueChange vc) {

cache = vc.value ;
}
after (PotentialValueChange vc) {

if (cache != vc.value)
publish ActualValueChange(vc.value , vc.cell);

}
subscribe (ActualValueChange vc) {

refresh (vc.value);
}
abstract void refresh(Value v);

}

in which PotentialValueChange and ActualValueChange

are subtypes of ValueChange.

3.6 Event Dispatching
While publish/subscribe communication is traditionally

asynchronous, implementations based on the Observer pat-
tern are typically not. Also, the intuitive semantics of be-
fore and after handlers suggests that corresponding event
handlers are actually invoked before and after the event,
i.e., the execution of the wrapped code block. Therefore we
defined our IIT such that implicit invocations triggered by
events not wrapped around code blocks are dispatched asyn-
chronously (to handler methods named subscribe), while
those tied to code blocks are dispatched synchronously (to
handlers named before or after).

4. IMPLEMENTATION IN SCALA
As a proof of concept, we have created a Scala [7] library

that allows us to explore the possibilities of implicit trait
invocation with syntax and semantics only marginally dif-
ferent from that suggested by the previous sections. The li-
brary, as well as further examples of its use, can be found un-
der http://www.fernuni-hagen.de/ps/prjs/IIT; here, we
sketch only its major contributions.

4.1 Event Classes and Publishing
Event classes must extend the predefined iit.Event class

(where iit is the name of our package for IIT). Event is
empty and basically serves type checking (to make sure that
handler methods declare only subtypes of Event as their for-
mal parameters). An event class (including standard con-
structors) is thus defined, in Scala syntax, as in

http://www.fernuni-hagen.de/ps/prjs/IIT

class ValueChange (val cell: Cell , val value: Value)
extends iit.Event

In order to publish event instances the publishing class
has to be enhanced with the trait iit.Publisher. This
trait defines two methods, one for publishing an event asyn-
chronously and one for publishing it synchronously. Both
methods forward to a (singleton) dispatcher object (described
in Section 4.2) and require as first argument the event cre-
ation expression (not an event!). In addition, the method
for synchronous publishing requires a code block which is
executed between execution of the before and after handler
methods of subscribed handlers.
trait Publisher {

def publishAsynchronously(eventCreation: => Event)
{ Dispatcher.publishAsynchronously(eventCreation) }
def publish[T](eventCreation: => Event)(proceed: =>

T): T =
{ Dispatcher.publish[T](eventCreation)(proceed) }

}

The publish method for instance can then be called from
the publishing classes using the syntax
value = publish[Value](new ValueChange(this , value)){

expression.evaluate ()
}

4.2 Handler Traits, Subscribing and Event Dis-
patching

Handler traits must extend the predefined trait iit.Handler.
Handler methods must be named subscribe (for asynchronous
event handling), before, or after (both for synchronous
event handling). The handled event type must be the pa-
rameter type of the handler method. The default of a han-
dler method is do nothing.

Upon instantiation of a class using a handler trait, the in-
stance is automatically registered with the iit.Dispatcher

object for the event types it provides handlers for (Dispatcher
determines this reflectively). Registration occurs automati-
cally through a call of iit.Dispatcher.register(), inher-
ited from the constructor of trait iit.Handler.
abstract trait Handler {

assert(Dispatcher.register(this))
}

Once the dispatcher receives an event of a given type (as
the result of calling one of the publish methods; see above), it
checks for all subscribed handler instances whether the event
is accepted by a potential filter. If no filter is defined or if
the filter for this event type accepts the event instance, it
is passed to the handler by calling the appropriate handling
method.
object Dispatcher {

def register(handler: Handler): Boolean = { ... }
def publish[T](eventCreation: => Event)(proceed: =>

T): T = {
var e = (eventCreation)
// select handlers with passing filters
val handlers = ...
// determine most specific before () and dispatch
handlers.foreach(h => dispatchBefore(h, e))
val ret: T = proceed
e = (eventCreation) // re-create in new context
// determine most specific after() and dispatch
handlers.foreach(h => dispatchAfter(h, e))
ret

}
}

Note how this implementation depends on closures: pro-

ceed is a closure representing the code block passed to the
publish statement and the eventCreation expression is also
passed as closure, so that the event can be re-created (with
new parameters from the context) after the execution of
proceed.

5. CONCLUSION
Our approach to IIT is modelled after typed publish/sub-

scribe (TPS) as advocated in [3]; it adds to it by defining
event handlers as traits, and by allowing implicit invocation
to be associated with a block of code, letting handlers act
as a kind of method wrappers (similar to the advice of As-
pectJ). It also draws on our own prior work [13] on handling
implicit invocation with implicit announcement in a mod-
ular, type-safe manner. Using traits subscribing to event
types as suggested in this paper makes (1) the link between
event sources and sinks explicit as the event types are part
of the declaration headers of publisher and subscriber, and
(2) the event handling code reusable as traits can enhance
classes with event handling capabilities independently from
their class hierarchy. The applications of IIT are those of
publish/subscribe, including all applications of the widely
used Observer pattern.

6. REFERENCES
[1] AspectJ. http://www.eclipse.org/aspectj/.

[2] J. Dingel, D. Garlan, S. Jha, and D. Notkin.
Reasoning about implicit invocation. In SIGSOFT
Software Engineering Notes, pages 209–221, 1998.

[3] P. Eugster. Type-based publish/subscribe: Concepts
and experiences. ACM Trans. Program. Lang. Syst.,
29(1):6, 2007.

[4] P. Eugster and K. Jayaram. EventJava: An extension
of java for event correlation. Proc. ECOOP ’09, 2009.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Professional, 1995.

[6] D. Garlan and D. Notkin. Formalizing design spaces:
Implicit invocation mechanisms. In Proc. VDM ’91,
pages 31–44, London, UK, 1991. Springer-Verlag.

[7] M. Odersky, L. Spoon, and B. Venners. Programming
in Scala. Artima, 2008.

[8] H. Rajan and G. T. Leavens. Ptolemy: A language
with quantified, typed events. In Proc. of ECOOP ’08,
pages 155–179, 2008.

[9] H. Rajan and K. J. Sullivan. Classpects: Unifying
aspect- and object-oriented language design. In Proc.
ICSE ’05, pages 59–68. ACM Press, 2005.

[10] S. P. Reiss. Connecting tools using message passing in
the Field environment. IEEE Softw., 7(4):57–66, 1990.

[11] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black.
Traits: Composable units of behaviour. In In Proc.
ECOOP ’03, pages 248–274. Springer, 2003.

[12] F. Steimann. The paradoxical success of aspect-
oriented programming. In Proc. OOPSLA ’06, pages
481–497, 2006.

[13] F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner.
Types and modularity for implicit invocation with
implicit announcement. ACM TOSEM, accepted for
publication in 2011.

[14] K. Sullivan and D. Notkin. Reconciling environment
integration and component independence. In
SIG-SOFT Softw. Eng. Notes, pages 22–33, 1990.

[15] J. Xu, H. Rajan, and K. Sullivan. Understanding
aspects via implicit invocation. In ASE, IEEE
Computer, pages 332–335. Society Press, 2004.

http://www.eclipse.org/aspectj/

	Introduction
	Motivation
	Example
	Related Work

	Implicit Invocation of Traits
	Event Types
	Publishing Events
	Event Handling
	Event Filtering
	Event Chaining
	Event Dispatching

	Implementation in Scala
	Event Classes and Publishing
	Handler Traits, Subscribing and Event Dispatching

	Conclusion
	References

