
Computing Many Faces in Arrangements of Lines and Segments *

Pankaj K. Agarwalt Jiii Matou3ek* Otfried Schwarzkopf

Abstract

We present randomized algorithms for computing

many faces in an arrangement of lines or of seg-

ments in the plane, which are considerably simpler

and slightly faster than the previously known ones.

The main new idea is a simple randomized O(rz log n)

expected time algorithm for computing A cells in an

arrangement of n lines.

1 Introduction

Given a finite set of lines, L, in the plane, the ar-

rangement of L, denoted as A(L), is the cell complex

induced by L. The O-faces (or vertices) of A(L) are

the intersection points of L, the l-face (or edges) are

maximal portions of lines of L that do not contain

any vertex, and the 2-faces (called cetls) are the con-

nected components of R2 – IJ L. For a finite set S

*A part of this work waa done while the first and third

authors were visiting Charles University and while the first

author was visiting Utrecht University. The first author has

been supported by National Science Foundation Grant CCR-

93-01259 and an NYI award. The second author has been

supported by Charles University grant No. 351 and Czech Re-

public Grant GAdR 201/93/2167. The third author has been

supported by the Netherlands’ Organization for Scientific Re-

search (NWO) and partially supported by ESPRIT Baaic Re-

search Action No. 7141 (project ALCOM II: Algorithms and

Complexity)

tDepartment of Computer Science, Box 90129, Duke Uni-

versity, Durham, NC 27708-0129, USA.
tDePartment of Applied Mathematics, Charles University,

Malostransk6 n~m. 25, 11800 Praha 1, Czech Republic.
SDepartment of Computer Science, Utrecht University,

P.O. Box 80.089, 3508 TB Utrecht, the Netherlands.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantaqe, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwke, or to republish, requires a fee
and/or specific permission.

10th Computational Geometry 94-6/94 Stony Brook, NY, USA
@ 1994 ACM 0-89791 -648-4/94/0006..$3.50

of segments we define the arrangement, A(S), in an

analogous manner. Notice that while the cells in a

line arrangement are convex, in an arrangement of

segments they need not even be simply connected.

Line and segment arrangements have been exten-

sively studied in computational geometry (as well

as in some other areas), as a wide variety of com-

putational geometry problems can be formulated

in terms of computing such arrangements or their

parts [11, 14].

Given a set L of n lines and a set P of m points

in the plane, we define A(L, P) to be the collection

of all cells of A(L) containing at least one point of

P. The combinatorial complexity of a cell C, denoted

by ICI, in A(L) is the number of edges of C’. Let

6(L, ~) = ~c~d(~,p) Icl denote the total combina-
torial complexity of all cells in A(L, P), and let

~(n, m) = max K(L, P),

where the maximum is taken over all sets of n lines

and over all sets of m points in the plane. It is known

that

H(n, m) = Q(n2i3m2/3 + n + m) .

The upper bound was proven by Clarkson et al. [9];

previous results and related work can be found in

Canham [4], Edelsbrunner and Welzl [13], Szemer6di

and Trotter [20]
In this paper we study the problem of computing

A(L, P), that is, for each cell C e A(L, P), we want

return the vertices of C in, say, clockwise order. We

will refer to the cells of A(L, P) as the marked cells of

A(L). Edelsbrunner et al. [12] presented a random-
ized algorithm, based on the random sampling tech-

nique [16], for computing A(L, P), whose expected

running time was

0(m2/3–’n2/3+2’ log n + n log n log ~)

for any fixed e >0. A deterministic algorithm with

running time

0(m2j3n213 log o(l) n + n log3 n + m logn)

76

http://crossmark.crossref.org/dialog/?doi=10.1145%2F177424.177548&domain=pdf&date_stamp=1994-06-10

was given by Agarwal [1], These algorithms thus

are nearly worst-case optimal, but both of them are

rather involved.

Recently randomized incremental algorithms have

been developed for a wide variety of geometric prob-

lems, which add the input objects one by one in a

random order and maintain the desired structure; see

e.g. [6, 10, 18, 19]. In our case, we can add the lines
of L one by one in a random order and maintain the
marked cells in the arrangement of lines added so far.

However, this approach seems to yield expected run-

ning time of Q(n@+m log n) in the worst case. We,

therefore, do not quite follow the randomized incre-

mental paradigm.

We begin by presenting an expected 0(m2+n log n)

time randomized algorithm for computing A(L, P).

Notice that for m < ~=, this algorithm is op-

timal. We then apply the random sampling tech-

nique in a standard way, obtaining an expected

O(m2J3n2\3 log213 ~ +(m+n) log n) time algorithm.

We also study a similar but more complicated prob-

lem of computing the marked cells in an arrangement

of n segments. Let S be a set of n segments in the

plane. We use an analogous notation A(S, P) to de-

note the set of the cells in A(S) containing at least

one point of P, and q(n, m) to denote the maximum

combinatorial complexity of A(S, P) over all sets S

of n segments and sets P of m points in the plane.

Aronov et al. [2] proved that

q(n, m) = O (m2i3n213 + n logm + n a(n)) .

A randomized algorithm with expected running time
qm2/3-.n2/3+2. 1og n + n a(n) log2 n log m) is de-

scribed by Edelsbrunner et al. [12], and a slightly

faster deterministic algorithm is presented by Agar-

wal [1].

Following a similar strategy as for the case of

lines, we first develop a randomized algorithm with

0((m2 + n log m + n a(n)) log n) expected running

time. Let’s remark that the above upper bound

for ~(n, m) is not known to be tight, and a bound

like q(n, /Fi) = O(n a(n)) (which is conjectured to

be the complexity of @ cells) will immediately im-

prove the expected running time of our algorithm

to O(n log n a(n)). Plugging this algorithm to the

standard random sampling technique, as in the case

of lines, we obtain a randomized algorithm for com-

puting A(S, P) in 0(m2i3n2/3 log4i3 ~ crl/3(~) +

(m + n log m + n a(n)) log n) expected time. If

the segments of S have only k = o(n2) intersec-

tion points, the expected running time of the algo-

rithm is 0(m2i3k113 log4’3 ~a l/3($)+(m+n logm+

na(n))logn).

For the analysis of the expected running time of our

algorithms we will use a generalization of a lemma

due to Chazelle and Friedman [7]. (An alternative

analysis could probably be obtained using a method

similar to that of Chazelle et al. [6], but we hope that

our approach is somewhat more intuitive).

2 A generalization of Chazelle

and Friedman’s lemma

Let S be a set of lines or segments, and P a set

of points in the plane. For a cell C of the collec-

tion A(S, P), let G’ t denote the collection of trape-

zoids in the vertical decomposition of C, 1 and let

Al’ (S, p) = UCeA(~,P) C1l denote the set of trape-

zoids in the vertical decomposition of A(S, P). Abus-

ing the notation slightly, we will use Al 1(S, P) to de-

note the corresponding planar subdivision as well.

Let R be a subset of S. For a trapezoid A c

Al[(R, P), let w(A) denote the number of elements

of S intersecting the interior of A.

Let n = IS[, and suppose R is a random subset of

S of size r. For the analysis of our algorithms, we

are interested in estimating the expectation, over all

random choices of R,

E[~ WC], (2.1)

A6A1L (R,~)

where c is a small constant like c = 2. Well-known

results concerning the so-called e-nets (Haussler and

Welzl [16]) imply that, for every A G d“ (R), w(A) <

C’(n/r) log r with high probability, where C is a suit-

able constant. From this one can derive a bound for

(2.1). We are, however, interested in the following,

slightly stronger bound (better by a factor of log’ r):

Proposition 2.1 (i) Let L be a set of n lines and P

a set of m points in the plane. I. R C L is random

subset of size r, where each subset of size r is chosen

with equal probability, then for any constant c 21.

E[~ w(A)’] = ti,(r, m) . O((n/r)c).

AEA1l (R,P)

(ii) Let S be a set of n segments and P a set of
m points in the plane. If R G S is random subset

1The vertical decomposition Cl 1 of a cell C in an arrange-

ments of segments (or of lines) is obtained by drawing a vertical

line from each vertex of C in both directions (within C) until

it hits another edge of C.

77

of size r, where each subset of size r is chosen with

equal probability, then for any constant c ~ 1.

E[~ w(A)’] = ~(r, m) . O((n/r)c) .

Ad’ (RF’)

These bounds essentially say that the cth moment

of the quantities w(A) behaves as if they were O(n/r).

If we sum w(A) over all cells in A(R)—the case

where every cell of A(R) contains a point of P—then

Proposition 2.1 follows from a result of Clarkson and

Shor [10]. In our situation, where the sum is taken

over only some of the cells, the Clarkson-Shor frame-

work does not apply directly anymore (the main dis-

tinction between these two situations will be outlined

below). We give a proof based on a generalization

of an approach due to Chazelle and Friedman [7],

which is somewhat different from the Clarkson-Shor

method. Recently, de Berg et al. [3] gave an alterna-

tive prooi of Proposition 2.1.

We derive a key lemma in a somewhat abstract

framework; see also [6, 7, 10] for various approaches

to axiomatize similar situations.

Let S be a set of objects. For a subset R C S, we

define a collection of ‘regions’ called CT(R); in the

situation of Proposition 2.1 the objects are segments,

the regions are trapezoids and CT(R) = All (R, P).

Let T = T(S) = lJ~c~ CT(R) denote the set of re-

gions defined by all ~ossible subsets of S. We asso-

ciate two subsets D(A), K(A) ~ S with each region

AET.

D(A), called the defining set, is a subset of S defin-

ing the region A in a suitable geometric sense. z We

assume that for every A E T, ID(A) I < d for a

(small) constant d. In Proposition 2.1, each trape-

zoid A is defined by at most 4 segments (or lines)

of S, which constitute the set D(A); details can be

found in Chazelle et al. [6].

K(A), called the killing set, is a set of objects of

S, such that including any object of K(A) into R

prevents A from appearing in CT(R). In many ap-

plications K(A) is the set of objects intersecting the

cell A; this is also the case in Proposition 2.1. Set

w(A) = IK(A)I.

Let S, CT(R), D(A), K(A) be such that for any

subset R ~ S, CT(R) satisfies the following axioms:

(i) For any A ~ CT(R), D(A) G R and RnK(A) =

0, and

(ii) If A ~ CT(R) and R’ is a subset of R with

D(A) Q R’, then A G CT(R’).

2We need not make this precise here, as this is only an
intuitive meaning of D(A). The analysis depends only on the

axioms involving D(A) given below, and these will be satisfied

in our specific examples.

It is easily checked that these axioms hold in the sit-

uations of Proposition 2.1.

For any natural number t, let us denote

CT,(R) = {A ~ CT(R) I w(A) z tn/r} .

We establish the following:

Lemma 2.2 Given a set S of objects, let R be a ran-

dom sample of sizer < n = \Sl drawn from S, and let

t be a parameter, 1< t < r/d, where d = max lD(A)\.

Assuming that CT(R), D(A) and K(A) satisfy Ax-

ioms (i) and (ii) above, we have

El CT,(R)! = 0(2-’). E ICT(R’)1 , (2.2)

where R1 ~ S denotes a random sample of size r’ =

~rjtj.

Roughly speaking, Lemma 2.2 says that the expected

number of “large” trapezoids in CT(R), that is trape-

zoids which the value of w(A) exceeds the “right”

value n/r more than t times, decreases exponentially

with t.

Chazelle and Friedman [7] proved a result analo-

gous to Lemma 2.2 under the following stronger ax-

iom replacing (ii):

(ii’) If D(A) ~ R and K(A) (1 R = 0, then A ~

CT(R).

This assumption implies that the presence of A in

CT(R) depends only on D(A) and K(A), thus it is

determined purely “locally.” Notice that (ii’) may

fail in the situation of Proposition 2.1. However, (ii’)

holds in the special case, when CT(R) is the vertical

decomposition of all cells in A(R).

Proof of Lemma 2.2: Let T, = u~c~ CT,(R).

We have
—

E ICT,(R)I = ~ Pr[A ~ CT(R)] , (2.3)

AETA

E jCT(R’)1 = ~ Pr[A ~ CT(R’)]

AGT

> ~ Pr[A 6 CT(R’)] . (2.4)

AcT*

We will prove that, for each A ~ Tt,

Pr[A ~ CT(R)] = 0(2-’). Pr[A ~ CT(R’)] , (2.5)

which in conjunction with (2.3) and (2.4) implies

(2.2).

Let AA denote the event that D(A) G R and

K(A) (1 R = 0, and let Ah denote the event D(A) G

R’ and K(A) n R’ = 0.

78

We rewrite Pr[A c CT(R)] using the definition of

conditional probability:

Pr[A E CT(R)] = Pr[AA] “ Pr[A ~ CT(R) I AA]

and analogously

Pr[A E CT(R’)] = Pr[A~] . Pr[A ~ CT(R’) I Ah].

We observe that by Axiom (ii), we have

Pr[A e CT(R) I AA] s F’r[A G cT(~’) I Ah]. (2.6)

Indeed, Pr[A c CT(R’) I Ah] is the probability that

A appears in CT(R’), where R’ is created as follows:

Include all elements of D(A), and then choose the

remaining # – ID(A) I elements randomly among the

elements of S\ (D(A) UK(A)). We may continue this

experiment by choosing R to be R’ plus a random

subset of r – # elements of S \ (R’ U K(A)). Clearly

for such subsets R’ and R, Pr[A e CT(R)] < Pr[A c

CT(R’)]. Moreover, the subset R selected by this

experiment cent ains D(A) plus r – ID(A) I random

elements of S \ (D(A) U K(A)), so Pr[A E CT(R)] is

the same as the left hand side of (2.6).

Therefore

Pr[A E CT(R)] < Pr[-h] .

Pr[A c CT(R’)] – pr[Akl

(Note that # = lr/tj> d, and hence both denomi-

nators are nonzero.)

It remains to estimate the latter ratio, which can be

done in the same way as by Chazelle and Friedman.

Let d = ID(A)I, w = w(A), and for two non-negative

integers a < z, let ~Q = ~(~– 1)””” (Z–a+ l). ‘hen

_ = (Vi’) (;)%[AA] .—
Pr[A~] c) (“;!;’)

,Q (n - w - ?-y
——

p“ (n-?q~ ‘

By our assumption r’ > d, so we obtain

~<dt fori=o, l,. ..,l–l.
r’—i —

Thus, the first factor in the above expression is O(t~).

To bound the second factor, we observe that, for i =

r’,r’+l,1.l,

~—w—~
=1– _X_ <1 –– ~ < exp(–w/n) .

n—i n—i—

Since w > tn/r, we have w/n z t/r, and therefore

Pr[AA] < O(td)exP

Pr[A~] –

[-t,.;.))

= O(td) exp(–(t – 1)) = 0(2-t),

as desired. ❑

We now prove Proposition 2.1.

Proof of Proposition 2.1: We will only prove the

first part, the second part is identical. For any subset

R ~ L of size r, let CT(R) denote the set of trape-

zoids in the vertical decomposition of the marked

cells of A(R), i.e., CT(R) = d“ (R P). obviously,

ICT(R)I < ~(r,~). NOW

E [~ w(A)’]

AEA” (R,P)

——

[

E ~ (t:)’ (lcTt(R)l – P’L1(R)I)
t~l 1

S ~(r,~) (’)’ ~O(t’. 2-t)

—— ~(r, rn) .0 ((~)c) . ❑

3 Computing cells in line ar-

rangements

In this section we describe a randomized algorithm for

computing A(L, P), where L is a set of n lines and

P a set of m points in the plane. In fact, OF algo-

rithm computes the vertical decomposition A (L, P).

Each face of Al’ (L, P) is a trapezoid, bounded by at

most two vertical segments and portions of at most

two edges of a cell of Al 1(L, P). We first present a

randomized algorithm for computing Al 1(L, P) with

0(m2 + n log n) expected time, which is optimal for
m < ~s. We assume that the points of P are

sorted in nondecreasing order of their x-coordinates,

and that the lines of L are sorted by their slopes. We

first describe the outline of the overall algorithm, and

then discuss each of the steps in detail.

1. Let tbe some sufficiently large constant. Choose

a random subset R ~ L of r = in/tj lines.

2. Partition P into q = [W 1 subsets PI, Pq,

each of size at most k = lm/ W], where

Pi = {p(i–l)k+l, . . . !Pk} for~ < q>

P* = {p(q–l)k+l, . . . >%} “

79

3.

4.

5.

6.

For each i < q, compute Al 1(R, Pi) recursively.

If a cell C of A(R) is computed more than once,

retain only one copy of C. (Note that multiple

copies of a cell C are computed if C’ contains the

points of more than one Pi ‘s.) Since P is sorted

in the x-direction, it is easy to detect multiple

copies of a cell. In this way, obtain Ai 1(R, P).

For each line / ~ L \ R, compute the cells of

A(R, P) that / intersects.

For each trapezoid A ofd’1 (R, P), compute the

set LA C L \ R of lines that intersect the interior

of A.

For each trapezoid A c Ali (R, P), compute the

arrangement- of lines of LA’ within A, ‘and the

vertical decompositions of its cells. For each cell

C G A(R, P), perform a graph search on trape-

zoids of these vertical decomposition to merge

appropriate trapezoids and to discard superflu-

ous ones, thus forming the portion of d’1 (S, P)

within the cell C.

Steps 1-3 are trivial, so we now describe Steps 4-6

in more detail.

Step 4. We want to compute the cells of A(R, P)

intersected by each line in L\ R. The situation can be

viewed as follows: we have a collection C of disjoint

convex polygons (the cells of A(R, P)), and a set L\R

of lines. The collection C has at most m polygons

with a total of O(n. -tm2) edges3. For each cell C E C,

consider C*, the set of points that are dual to the lines

intersecting C. C* is a polygonal region, bounded

by an infinite convex chain from above and by an
infinite concave chain from below. Each vertex of C’

is dual to the line supporting an edge of C. For a

pair of polygons Cl, Cz C C, an intersection point of

the edges of C;, Cl is dual to a common tangent of

Cl and C2. Since Cl, C2 are disjoint, the boundaries

of C;, C; intersect in at most 4 points.

Let us consider the arrangement A(C*) of the

polygonal chains bounding the regions C*, for all

C c C. It has O(n + m2) complexity, and can be com-
., ,-

puted in time 0(m2+n log n), for instance by Mulmu-

ley’s randomized incremental algorithm [18, 6]. This

algorithm actually computes the vertical decomposi-

tion Al’ (C*) of the arrangement, together with a point

location data structure with O(log n) expected query

time. We use this data structure to locate the points

1* dual to all lines 1 c L \ R. From this we can de-

termine, for every 1, the regions of C* containing 1*,

sThe latter estimate follows from the bound fOr K(n, ~)

mentioned in Section 1, in fact it is the weaker bound proved

by Canham [4].

or in other words, the polygons of C intersecting t.

Indeed, after having located all points of the form /“,

we traverse the adjacency graph of the trapezoids in

A’t (C*). At each trapezoid -r c d“ (C*) we compute

C*(~), the set of regions that contain the trapezoid

~ e A’1 (C*), and output the pairs (1, C) for l?” c ~

and C* e C*(r). Suppose we arrive at -Tfrom r’, then

C* (T-) and C* (~’) differ by at most one region (the re-

gion whose boundary separates T from T’), and thus

C*(r) can be obtained from C* (~’) in O(1) ~me.

The total time spent in this step is O(rn2 + n log n)

plus the number of polygon/line incidence. The

expected number of these incidence is bounded by

O(H(r, m). (n/~)) = O(n+ m2), using Proposition 2.1

with T =n/t and c= 1.

-.. .
-..

-..
...

.....
-..

Figure 1: Finding a.

Step 5. Let C be a cell in A(R, P), and let

Lc G L \ R be the set of lines intersecting the in-

terior of C. For each line 1 c Lc, we compute the

trapezoids of Cl i intersected by [, as follows. Since

the lines in L are sorted by their slopes, by being care-

ful in Step 4, we can ensure that the lines of LC are

also sorted by their slopes. For each line d c Lc we

compute the two vertices vl, V2 of C that support the

lines parallel to ~ (see Figure 1). This can be done,

over all lines of Lc, in 0(1 Lcl) time by merging the

slopes of Lc with the slopes of the edges of C; we
leave out the easy details for the reader. Next, we

traverse dC in clockwise as well as counter-clockwise

order in a lock-step fashion, starting from both VI

and V2 simultaneously (so we preform 4 traversals in

a lock-step fashion, as depicted in Figure 1), until

we reach an intersection point c of P and C. Since

f? intersects C, we will eventually find such an in-

tersection point. Finally, by tracing 1 through Cl r,

starting from a, we compute all k trapezoids of C)’

80

that 1 intersects. The time spent in finding u and

tracing 1 is easily seen to be O(k). Summing over all

cells C ~ A(R, P) and over all lines of Lc, the total

time spent is O(~be~l I ~R,p) w(A)), whose expected

value, by Proposition 2.1 (i), is O(m2 + n log n).

Step 6. Let A be a trapezoid of Al’ (R, P). Af-

ter having computed LA, we compute the arrange-

ment A(LA) using, say, a randomized incremental

algorithm. We clip A(LA) within A, and compute

the vertical decomposition of the clipped arrange-

ment. For each point p e P n A, we also compute

the trapezoid of this vertical decomposition contain-

ing p. The time spent in this step is easily seen

to be 0(w(A)2 + 1P (1 Al log w(A)) per trapezoid

AcA1l(R, P).

For a cell C ~ A(R, P), let Ac be the set of the

resulting trapezoids that lie in C. We now define a

graph L7c on the trapezoids of Ac. The vertices of

~c are the trapezoids of Ac, and two trapezoids are

connected by an edge if they share a vertical edge.

By performing a depth first search on G’c, we can

extract all connected components of ~c whose trape-

zoids cent ain any point of P. That is, we pick a point

p = P fl C. Let I-P c Ac be the trapezoid containing

p. We perform a depth first search in Qc starting from

Tp until we find the entire connected component of GC

containing I-P. Let Ac (p) be the set of trapezoids in

this component; then the union of these trapezoids is

exactly the cell of A(L, {p}). The vertices of the cell,

sorted in the clockwise order, can be easily obtained

by merging the trapezoids of Ac (p) in an obvious

manner.

If there is a point of P n C that does not lie in

Ac (p), we repeat the same procedure. We continue

this step until we have extracted all component of G’c

that contain any point of P fl C. This gives A(L, P (1
c).

Repeating this step for all cells of A(R, P), we ob-

tain all cells of A(L, P). Finally, we compute the ver-

tical decomposition of all the cells. The total running

time for Step 6 k O(m hgn)+xA~A(R,p) 0(w(A)2) ,
and its expected value is

O(mlogn + N(T, m)(n/?-)2) = O(mz+ n).

Putting all the pieces together, the total expected

running time of Steps 4–6 is 0(m2 + n log n). Let

T’(n, m) denote the maximum expected time of the

entire algorithm, then we obtain the following recur-

rence.

9

T(n, rn) < ~T(l?2/tj ,Tn,) +C(T7Z2 +nlogn) ,

where m, < m/~ for i < q = [til, Xj=l m, = m,

and C is an appropriate constant. The solution of

this recurrence is

T(n, m) = 0(m2 + nlogn) ,

If m > ~=, we can divide the points of P into

groups of size (=, and solve the subproblems

separately. This standard batching technique yields

a more convenient bound for the expected running

time, namely O(m~= + n log n). Hence, we can

conclude

Lemma 3.1 Given a set L of n lines and a set P of
m < n2 points in the plane, the cells of A(L) contazh-

ing the points of P can be computed by a randomized

algorithm in expected time O(m~= + n log n).

We now present another randomized algorithm

whose running time is significantly better for larger

values of m. Although the basic idea is the same as in

[1], the algorithm presented here is simpler because

we allow randomization.

We choose a random subset R G L of size r, where

I m2f3 1r = nl/3 log1j3(n/@) “

Using a randomized incremental algorithm, we con-

struct Al 1(R) plus a point-location data structure for

A” (R) in expected time O(T-2) [6]. For each trape-

zoid A c Al’ (R), let LA Q L \ R be the set of lines

that intersect the interior of A and PA G ,P the set of

points that are contained in A. LA can be computed

in time O(nr) by tracing each line through Al 1(R) and

PA can be computed in expected time O(m log n) by

locating each point of P in d“ (R). Set ?%A= ILA [

and mA = IPA 1. Let ZA be the set of trapezoids in

the vertical decomposition of cells of A(LA U {8A})
that intersect the boundary of A and lie inside A.

Clarkson et al. [9] proved that l~A] = O(nA).

For each trapezoid A E A“ (R), it is sufficient

to compute A[1(LA, PA) and 2A. We compute

A(LA, PA) in expected’ time O(mAfilA log nA +

nA log nA) using Lemma 3.1. ZA can be computed by

a randomized incremental algorithm. Roughly speak-

ing, we clip the lines of LA \ R within A, add the

clipped segments one by one in a random order, and

maintain the vertical decomposition of the cells of

the segments added so far which intersect 8A. Fol-
lowing the same analysis as in [6], it can be shown

that the expected running time of the algorithm is

O(nA log ?ZA). Hence, the expected running time of

81

the algorithm is

EIA~(R,O(~A/WA+.AIO,.A)] +

o(m) + O(m logn) .

By a result of Clarkson and Shor [10] (or also by

Proposition 2.1), we have

.[~ ..] = O(nT) and

Adl(R)

Thus, the expected running time of the algorithm

is bounded by .(m~~+nr log ~ +m log n) .

Substituting the value r in the above expression, we

obtain

Theorem 3.2 Given a set L of n lines and a set P

of m points, the faces of A(L) containing the points

of P can be computed by a randomized algorithm in

expected 0(m213n2/3 log2/3 ~ + (m + n) log n) time.

4 Computing cells in segment

arrangements

Next, we present an algorithm for computing marked

cells in arrangements of segments. Let S be a set

of n segments and P a set of m points in the plane.

The goal is to compute A(S, P) and its vertical de-

composition Al 1(S, P). Again, we begin by a simpler

algorithm which is effective for few cells, and then

plug the random sampling technique to handle larger

values of m.

The outline of the first algorithm is the same as

in the previous section, except that we must now in-

tetpret the operations in terms of segments. Since

the cells of Ali (1?, P) are not necessarily simply con-

nected, we may have to deal with m + n polygons

even though there are only m cells. Consequently,

the computation of the sets of cells intersected by

each segment of S \ R in Step 4 and the computation

of 3A for each trapezoid A ~ A’1 (R, P) in Step 5 now

become considerably more complicated. Another dif-

ficulty in computing SA is that we now have to detect

intersections between simple polygons and segments

rather than between convex polygons and lines. In

the remainder of this section we will describe how to

compute the sets SA.

The boundary of each cell C, W’, of A(R, P) is

composed of (at most) one outer component and a

family of inner components such that C lies in the

interior of the outer component and in the exteribr of

each inner component. Each component of L3C can

be regarded as a simple polygonal chain. Let O be

the set of outer boundary components of the cells in

A(R, P), and let Z be the set of the inner boundary

components of these cells. We have 101 g m and

IZI < m + n. Let p be the total number of edges of

all polygons in O U ~ obviously, p S q(n/t, m).

We first decompose each segment g E S \ R into

maximal subsegments, so that each subsegment lies

in the interior of some outer component O, i.e. we

cut each segment at the intersection points of O and

S and discard the subsegments that lie in the exte-

rior of 0. Let Z be the set of resulting subsegments.

Next, for each subsegment a c Z, we compute the

trapezoids of A[1(R, P) intersected by cr.

Suppose that we have already computed E in

Step 4. Then in Step 5 we compute SA, for all

A c A’1 (R, P), as follows. We preprocess each polyg-

onal chain 1 c Z, in linear time, for ray shooting

queries, so that the first intersection point of a query

ray and I can be computed in logarithmic time, see

[5, 1.5]. The total time spent in preprocessing Z is

.(p) = .(q(n, m)).

Let a be a segment of Z that lies in the interior of

the outer component O E O of i3C. Let a, b be the

endpoints of a, and let A(a) be the trapezoid of C11

containing a, If a is not an endpoint of a segment of

S\ R, then a lies on the boundary of A(a). We check

whether b ~ A(a). If the answer is ‘yes’, then A(a)

is the only trapezoid of C“ 1 intersected by O, and we

stop. If b @A(a), we compute the other intersection

point, al, of u and A(a). If al lies on a vertical edge

of A(a), we also compute, in constant time, the next

trapezoid A(al) of Cl 1 intersected by a. We then re-

peat the same step with al and A(al). if al, on the

other hand, lies on an edge of the cell C, then al lies

on the boundary of some inner component I c Z of

C, and the portion of the segment a immediately fol-

lowing al lies outside C. Using the ray shooting data

structure, we compute the next intersection point a2

of the polygonal chain 1 and the segment alb. Once

we know az, we can also compute the trapezoid of

C“ containing a2, and we continue tracing o through

c“.

For each trapezoid intersected by u, we spend

.(log n) time, so the total time spent in comput-

ing the kc trapezoids intersected by a is .(kc log n).

Summing over all segments of X, the total time spent

is ~Oez O(kO log n) = 0 (zAGdll (lt,p)
)

nA IOg n ,

where nA = ISA 1.

Next, we describe how to compute the set Z. No-

tice that it is sufficient to compute all intersection

points between the segments of S \ R and the outer

polygonal chains in 0.

Let Jo be an interval corresponding to the projec-

tion of the polygoal chain O G O onto the x-axis, and

let$={JOIO~ O}.

We construct an interval tree T on ~; see Mehlhorn

[17] for details on interval trees. T is a minimum

height binary tree with at most 2m leaves. Each node

u of T is associated with an interval U., and a point

xv. Let WV = UV x [–m, +cm] be a vertical strip, and

let hV be the vertical line passing through XV. For the

root u, WU is the entire plane and hU is the vertical

line passing the middle endpoint of the intervals of

$. Each interval J E ~ is stored at the highest node

v of T such that xv c J.

Let ~U be the set of intervals stored at v. We as-

sociate two subsets OV, Zv of O with v. Let 0. =

{0 [Jo c Jo} and Z = (JU 0~, where the union
is taken over all descendants of v, including v; set

m. = IO. I and z. = IZV 1. Finally, let ~v (resp. <V) de-

note the total number of edges in OV (resp. ZV). Since

each polygonal chain of O appears in exactly one

Ov, we have ~V~~ p. = p and ~Ve~ <~ < 2P log m.

Moreover, it can be shown that if VI, Vz are the chil-

dren of v then z.,, z., < 2./2, which implies that

~V=~ z: = 0(m2).

Since the polygonal chains in 0. are pairwise dis-

joint and all of them intersect a vertical line, we can

regard C!u along with appropriate portions of the ver-

tical line hV as a simple polygon II., and prepro-

cess II. in O (p.) time for answering ray shooting

queries. Using this data structure, one can report

all k intersection points of a segment g and OV in

time O((k + 1) logpu).

Next, we take the convex hull of each polygonal

chain in Zv, and preprocess the resulting convex poly-

gons into a data structure, as described in the previ-

ous section, so that all convex polygons intersected

by a query line can be reported quickly. Since any

two polygonal chains of O are disjoint, the bound-

aries of their convex hulls intersect in at most two

points, and so they have at most 4 common tan-

gents. Consequently, the line intersection searching

structure has size O (z: + CV). Moreover, it can be

computed in time O(Z: + .zVlog <V + <V), using the

algorithm of [19]. We also preprocess each O e O

in linear time for ray shooting queries as in [15]. It

can be shown that the total preprocessing time is

0(m2+~0 (ZV log<. + C.)) = 0(m2+mlogmlogn+
p log m). We omit the details.

Let g E S \ R be a segment. All intersection points

of g and O can be computed as follows. We search the

tree T with g starting from the root. Let v be a node

visited by the query procedure. If the endpoints of g

do not lie in the vertical strip WV, i.e., !9 completely

crosses W., then g intersects O ~ Z. if and only if

the line supporting g intersects the convex hull of O.

Thus, we first compute all polygonal chains of Z.

intersected by g, using the line intersection searching

structure, and then, for each O E Z. intersected by g,

we compute the intersection points of g and O using

the ray shooting data structure. If k: is the number

of intersection points between g and the polygonal

chains of ZV, then the total time in reporting these

intersections is O((k~ + 1)log <V).

If one of the endpoints of g lies in WV, we can com-

pute all a; intersection points between 0. and g in

time 0((a: + 1) log p.), using the ray shooting data
structure for 0.. Let VI, V2 be the children of the
node v. If g intersects Wvl (resp. WV2), we visit V1

(resp. V2). It is easily shown that the query proce-

dure visits O(log m) nodes, and the query time is

0((log m + kg) log n), where kg is the total number

of intersection points reported.

We repeat this procedure for all segments g c S\R.

Since p < q(n, m) = 0(m2 + n(logm + a(n)))

k < ~AcA1l (R,P)and ~gES\R 9 – nA , the total cost

of computing the intersection points is 0((m2 +

nlogm + na(n)) logn + ~AeAII ~R,p) nA 10gn). As

in the previous section, the time spent in Step 6

(refining the cells of A“ (R, P)) is O(XA n~). Us-

ing Proposition 2.1 (ii), we obtain that the to-

tal expected time spent in the merge step is

O ((m2 + nlogm +na(n)) logn).

Following the same analysis as earlier, we

can conclude that the total running time of

the first algorithm for computing A(S, F’) is

O ((m2 + n log m + n a(n)) logn). We can again use

the batching technique if m is large. omitting the

details, we obtain

Lemma 4.1 Given a set S of n segments and a set

P of m points, the faces of A(S) that contain a point

of P can be computed by a randomized algorithm in

expected time O((m~=+n(log m+t~(n))) log n).

For larger values of m, we again use the ran-

dom sampling technique as in the previous section.

That is, we choose a random subset R & S of size

[

m2i3 log1i3 (n/@)
r.—.

1

and compute Al 1(R).
nl/3 ~2/3 (n/JFL) ‘

For each A E Al’ (R), we compute PA = P n A

and SA, the set of segments that intersect A. We
clip the segments within A. The total time spent

in this step is 0(r2 + (m + nr) logr). Let z be a

point lying in the unbounded face of A(S). For each

83

A c d“ (R), we compute A’[(SA, PA U {z}), in time

@(mA<~ + nA(logmL + ~(nA))) lognA),

using Lemma 4.1, and then glue them together. We

omit the rather routine details from here. The overall

expected running time of the algorithm is

E[~ o((nA(a(nA)+@~A)+

AcA1l (R)

1
~A/~ +o((~+~~)hg~) .

Again, using the results by Clarkson-Shor [10] and

substituting the value of r, we obtain

Theorem 4.2 Given a set S of n segments and a set

P of m points, the faces of A(S) that contain a point

of P can be computed by a randomized algorithm in

expected time 0(m2j3n213 log4/3 ~ &1j3 (~) + (m+

nlogm+ncx(n)) logn).

Finally, let us remark that if A(S) is sparse, that

is, if it has only k = o(n2) vertices, then using

the fact that the expected number of trapezoids in

Al[(R) is 0(kr2/n2 + r), we can do a more care-

ful analysis, choose r = [n(%)2’3*1 and
can show that the expected running time of the algo-

rithm is O(m2i3k1/3 log4i3 ~a 1/3(~)+(m+n log m+

na(n)) logn) .

Acknowledgments. The authors thank Mark de

Berg, Mark Overmars, and Micha Sharir for several

useful discussions.

References

[1]

[2]

[3]

[4]

[5]

P. Agarwal, Partitioning arrangements of lines: II.
Applications, Discrete and Computational Geome-

try 5 (1990), 533–573.

B. Aronov, H. Edelsbrunner, L. Guibas and M.
Sharir, Improved bounds on the complexity of
many faces in arrangements of segments, Combi-

natorics, 12 (1992), 261–274.

M. de Berg, K. Dobrindt and O. Schwarzkopf, On
lazy randomized incremental construction, to ap

pear in Proceedings 26th Annual ACM Symposium

on Theory of Computing, 1994.

R. Canham, A theorem on arrangements of lines in
the plane, Israel J. Math. 7 (1969), 393-397.

B. Chazelle, H. Edelsbrunner, M. Grigni, L.
Guibas, J. Hershberger, M. Sharir and J. Snoeyink,
Ray shooting in polygons using geodesic triangula-
tions, Proc. 17th Int. Colloq. Automata, Languages
and Programming, 1991, pp. 661-673.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir
and J. Snoeyink, Computing a face in an arrange-
ment of line segments, SIAM J. Computing 22

(1993), 1286-1302.

B. Chazelle and J. Friedman, A deterministic view
of random sampling and its use in geometry, Com-
binatorics 10 (1990), 229-249.

K. Clarkson, Computing a single face in an arrange-
ment of segments, 1990, manuscript.

K. Clarkson, H. Edelsbrunner, L. Guibss, M. Sharir
and E. Welzl, Combinatorial complexity bounds for
arrangements of curves and spheres, Discrete and

Computational Geometry 5 (1990), 99-160.

K. Clarkson and P. Shor, Applications of random
sampling in computational geometry II, Discrete

an”d Computational Geomet~ 4 (1989), 387–421.

H. Edelsbrunner, Algorithms in Combinatorial Ge-

ometry, Springer-Verlag, Berlin, 1987.

H. Edelsbrunner, L. Guibas and M. Sharir, The
complexity of many faces in arrangements of lines
and of segments, Discrete and Computational Ge-

ometry 5 (1990), 161–196.

H. Edelsbrunner and E. Welzl, On the maximal
number of edges of many faces in an arrange-
ment, Journal of Combinatorial Theory, Series A

41 (1986), 159-166.

L. Guibss and M. Sharir, Combinatorial and
algorithms of arrangements, in New Trends in

Discrete and Computational Geometry (J. Path,
ed.), Springer-Verlag, New York-Berlin-Heidelberg,
1993, 9-36.

J. Hershberger and S. Suri, A pedestrian approach
to ray shooting: Shoot a ray, take a walk, Proc. ~th

ACM-SIAM Symp. Discrete Algorithms, 1993, pp.
54-63.

D. Haussler and E. Welzl, Epsilon-nets and simplex

range queries, Discrete Comput. Geom. 2 (1987),

127-151.

K. Mehlhorn, Data Structures and Algorithms 3:

Multi-dimensional Searching and Computational

Geometry, Springer-Verlag, Berlin, 1984.

K. Mulmuley, A fast planar partition algorithm, I,
J. Symbolic Computation 10 (1990), 253-280.

K. Mulmuley, A fast planar partition algorithm, II,
J. ACM 38 (1991), 74-103.

E. Szemer6di and W. Trotter Jr., Extremal prob-
lems in discrete geometry, Combinatotica 3 (1983),

381-392.

84

