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Abstract

We give an O(n log n)-time method for finding a best k-

link piecewise-linear function approximating an n-point

planar data set using the well-known uniform metric to

measure the error, c z O, of the approximation. Our

method is based upon new characterizations of such

functions, which we exploit to design an efficient al-

gorithm using a plane sweep in “e space” followed by

several applications of the parametric searching tech-

nique. The previous best running time for this problem

was O(n2 ).

1 Introduction

Given a set S = {(xi, yI), (z2, v2),. ... (z~, Y~)}, the

problem of approximating S by a function is classic

in applied mathematics, and it finds applications in a

number of computational problems. The general goals

in this area of research are to find a function F belong-

ing to a class of functions F such that each F G 3 is

simple to describe, represent, and compute and such

that the chosen F approximates S well. For example,

one may desire that 3 be the class of linear or piecewise-

Iinear functions, and, for any particular F ~ 7, that the

measure of the error be the well-known uniform metric:

which is also known as the la or Chebychev measure of

error [16, 18, 30]. The goal, then, is to determine the

value of

.5* = ypiys-q[m,
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and find an F c F achieving this error bound.

The version of this problem we address in this pa-

per is to find a function F E F that minimizes the

uniform error term with respect to S where $ is the

class of k-link piecewise-linear functions, for some given

k~{l,2, . . ..n– 1}. Using terminology from the ap-

proximation theory literature (e.g., see [9, 16, 18, 19]),

this is equivalent to the problem of finding a best (k+l)-

knot degree-1 spline approximating S under the lm

norm. Of course, the case k = n – 1 is trivial, and

there is a simple reduction of the case k = 1 to 3-

dimensional linear programming, which can be solved

in O(n) time [12, 20, 40, 42, 43, 53]. Thus, the inter-

esting cases are for 1 < k < n – 1. We show how to

solve this problem for any such k in O (n log n) time.

The motivation for this problem is that one may

have limited resources with which to describe the set S,

but one wishes the best approximation possible within

the given resource bounds. This can also be viewed as

a data compression problem.

1.1 Previous work

The problem we address is a special case of a whole class

of problems in approximation theory where one wishes

to fit a set of data using a spline function under some

metric. Thus, the interested reader is referred to texts

discussing approximation theory, such as those by Bell-

man and Roth [9], Conte and de Boor [16], Davis [18],

and Dierckx [19], for a general treatment of such prob-

lems. Research in this literature is primarily interested

in minimizing the number of knots in a spline under the

the least squares metric, e.g., Jupp [36] gives a numer-

ical approach to this problem. For the specific prob-

lem we address here, Bellman and Roth [8] describe

a dynamic-programming approach based upon using a

uniform grid to determine possible placements of link

endpoints (which they call knots). Their method is not

guaranteed to find a best k-link approximation, how-

ever.

Hakimi and Schmeichel [30] show that such a best

approximation can be found in O (n2 log n) time, and

this is the first method we know of that is guaranteed
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to find a best approximation. Their algorithm is based

upon a clever lemma that shows that one can limit the

number of “critical” c values that are candidates for

C* to be 0(n2 ). They also show that one can test if

any such c value is equal to c’ in O(n) time, which

implies that, once enumerated and sorted, one can per-

form a “binary search” among these critical values to

find e“. Of course, enumerating these critical e’s re-

quires fl(n2 ) time. Indeed, a straightforward applica-

tion of the lemma by Hakimi and Schmeichel would

require O (n3 ) time to enumerate them. They reduce

the time to 0(n2 log n) using the powerful plane sweep-

ing technique (e.g., see [51]), which involves “sweeping”

the plane ‘with a line L while maintaining appropriate

data structures for the points L encounters along the

way. More recently, Wang et al. [58] show how to use

an even more clever plane sweep procedure to find a

best k-link approximation under the uniform metric in

0(n2 ) time.

1.2 Related work

With the exception of the papers by Haklmi and Schme-

ichel [30] and Wang et al. [58], related work in the

computational geometry literature has been directed

at what can be viewed as the “inverse problem,” which

is also addressed in the paper by Hakimi and Schme-

ichel [30]. In this problem one is given an error mea-

sure e ~ O and asked to find a minimum-link polygo-

nal path (which may or may not be required to be a

function) that has distance at most e from all the ob-

jects in S (which need not just be points), under some

reasonable distance metric. As mentioned earlier, for

the case when S is a set of points and the error mea-

sure is the uniform metric, then Hakimi and Schme-

ichel show that this problem can be solved in O(n)

time. Their method can be viewed as an extension

of the linear-time method of Suri [54], which computes

a minimum-link path inside a simple polygon, to the

problem of finding a minimum-link monotone polygonal

chain that “stabs” a given set of line segments. Hersh-

berger and Snoeyink [32] show how to further generalize

this method to find in O(n) time a minimum-link path

of a particular homotopy type in a non-simple polygon,

and Guibas, Hershberger, Mitchell, and Snoeyink [29]

show how to generalize this method even further to

find in O(n) time a minimum-link stabber for any given

set of disjoint convex objects that must be stabbed in

some given order (not necessarily just by increasing

z-coordinates). Robert and Toussaint [52] study the

problem of finding a line L that minimizes a weighted

minmax error measure to a set of convex polygons in

0(n2 log n) time.

There has also been a considerable amount of work

on finding a minimum-link approximation to a polygo-

nal curve, sub ject to some error tolerance. The prob-

lem of fitting a minimum-link convex polygon nested

between two given polygons was studied by Aggarwal

et al. [5], who give an O(n log n) time solution to this

problem. In addition, Imai and Iri [34, 35] give an O(n)

time method for finding the minimum-link function ap-

proximating a given monotone chain. Thleir method

is very similar to an O(n) time method independently

discovered by Suri [54, 55] for solving the more-general

problem of finding a minimum link path joining two

points inside a simple polygon. There has also been

some work on approximations that are required to use

a subset of the endpoints of the given polygonal chain.

For example, using an approach of Imai andl Iri [33, 35],

Toussaint [57] and Melkman and O’Rourke [44] give

several O (n2 log n) time methods under various met-

rics.

There hasn’t been much work on three-dimensional

version of these approximation problems with guaran-

teed performance bounds, however, although the recent

work by Mitchell and Suri [49] on a speciall case of the

3-dimensional function approximation problem is a no-

table exception.

There is also a rich literature that studies minimum-

link distance as a metric in its own right (e.g., see [6,

23, 24, 37, 39, 47, 48, 54, 55]).

1.3 Our results

As mentioned above, we give an O(n log n) time algo-

rithm for finding a best k-link piecewise-linear function

approximating a set S of n points in the plane under

the uniform metric. Our method is based upon new

geometric insights that allow us to apply a novel plane

sweep in “6 space” to enumerate a set of O(n) criti-

cal e values, which we then search in a binary search

fashion. This allows us to restrict the range of e values

containing c’ to be an interval [cl, C2], but, it does not

necessarily give us cl = cz = C*. To achieve this latter

result we give additional geometric characterizations of

a best k-link approximation that allow us to follow this

preprocessing step by several applications of pipelined

versions of the well-known parametric searching tech-

nique (e.g., see [2, 3, 4, 11, 13, 14, 15, 41]).

Admittedly, the use of this technique typically

makes an ,#gorithrn rather impractical tcl implement.

But we show that this is not true in our case, for we

can design a relatively simple version of our algorithm

that uses only the most simple versions of parametric

searching (which can be made even more practically

efficient via randomization).

In the section that follows we give some properties

of a best k-link approximation and in Section 3 we show

how to exploit these properties to restrict the range of

candidate c values. We show how to then complete the

on. -)



Figure 1: An example set S such that S(c”) has

a l-link ordered stabber, but any ordered stabber

of S(/) requires 10 links if ~ < ~“.

construction in Section 4 by relying on additional geo-

metric properties of a best k-link approximation, which

we show can be exploited in a series of applications of

parametric searching. Finally, we show how to simplify

our implementation in Section 5.

2 Some Properties of a Best 1+

Link Approximation

Let S = (pl, p2, . . . . p~) be a left-to-right ordered listing

of the points in S and let e ~ O be given. So as to for-

mally define our approximation problem and articulate

some of its important properties, let us introduce a bit

of additional notation. For each point p, = (x,, y,) in

S define u, = (z,, ~, + e) and g, = (x,, y, – e), and

let S(c) denote the ordered set of vertical segments

(ulgl, u2g2, . . . —, u~g~). Thus, if we view points as de-

generate segments, then S = S(0). For any ordered set

of disjoint geometric objects A a polygonal chain C is

an ordered stabber if a traversal of C’ intersects the ob-

jects of A in the given order [29]. Finally, define F(c)

to be a minimum-link ordered stabber of S(e).

The formal problem we address in this paper, then,

is to find c’, the smallest e 2 0 such that F(c) has

at most k links. Formulating the problem in this way

allows us to deal with “degenerate” inputs, such as the

one illustrated in Figure 1, where S(C* ) may allow an

ordered stabber with k’ < k links, but a minimum-link

stabber of S(t) may require ~ > k links for any .2< c’.

Thus, a best k-link approximation F = F(~* ) may, in

fact, have fewer than k links because of degeneracies.

Of course, one can always introduce “dummy” vertices

along F to force its link-count to be exactly k in such

a case.

.%

2.1 A Canonical Form for Best /c-Link

Approximations

Let us connect consecutive g,’s and u%’s so as to form

two “parallel” monotone chains U(e) and G(e), with

U(e) being the upper chain, i.e., let us create edges

gigt+l defining G(e) and u,, ~t+l defining U(e) for

2G {1,2,..., n – 1}. One might be tempted to think

that a best k-link function F approximating S can be

Figure 2: An instance where a minimum-link

stabber of S(.s) is not confined to lie between U(c)

and G(e).

constrained to lie between U(C’ ) and G (c”), but this

is not the easel (as shown in Figure 2). This is ac-

tually a good thing, for otherwise we would run into

some robustness difficulties, for we would have to use

a method for finding a minimum-link path in a simple

polygon as a subroutine, and, as Snoeyink observers2,

the bit complexity for finding such a path can be sign-

ificantly larger than the bit complexity for representing

the vertices of the input polygon. This is no problem

for our method, however, for we will be using methods

for finding minimum-link stabbers as subroutines in our

algorithm, and these methods do not suffer from this

bit complexity blow-up difficulty.

To describe why we can use minimum-link stabber

methods as subroutines, we must show how to restrict

F to a certain canonical form. For a given ~, let nU (e)

be the shortest path from U1 to Un that does not go

above U(e) and does not cross G(e). Similarly, let fig (e)

be the shortest path from gl to gn that does not go

below G(e) and does not cross U(c). Such paths were

introduced by Lee and Preparata [38] and are often

referred to as geodesic paths [1, 7, 10, 25, 28, 45, 46,

56], and the union of two such paths is often called an

hourglass [22, 26]. Let us therefore use II(e) to denote

this hourglass nU(e)Un, (e). We say that an edge of H(c)

is an inflection edge if one of its endpoints lies on U(e)

while its other endpoint lies on G(c). Let 1(c) denote

the set of all such inflection edges. (See Figure 3.)

We say that two consecutive links ~ and F in F

have a zig turn type if r is above the ray ~ (i.e., ~

and ~ form a “left turn”). Similarly, two consecutive

1We are indebted to Jack Snoeyink (personal communication)

for pointing this example out to us.
2Again, by a personal communication.
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Figure 3: An example hourglass. The inflection

edges are shown shadded.

links ~ and w in F a zag turn type if r is below the ray

$. This allows us to characterize each link in F, other

than the first and last links, by the turn types they

form with their predecessor and successor links. For

example, a zig-zag link forms a left turn with its pre-

decessor and a right turn with its successor. The next

lemma establishes an important relationship between

such links and inflection edges in 1(c).

G(e:)

Lemma 2.1: There is a best k-link function F approx-

imating S such that

1. each e ~ I(c” ) is contained by the first or last link ,

of F or by a zig-zag or zag-zig link of F, and

2. the first and last link of F, as well as each zig-zag

and zag-zig link of F, contains an e E I(c* ).

Proof: (l:) Suppose e E 1(6’), i.e., e is an inflection
G(EV)

edge of II(c* ). Also suppose, for the sake of contra-

diction, that e is contained in no link of the appropri-

ate type in any best k-link approximation F. We will (b)

follow a proof technique of Ghosh [23], which involves

performing local perturbations of a candidate stabber,

to derive a contradiction. Since e is an inflection edge,
Figure 4: Example zig-zag edges. In (a) we il-

lustrate why an inflection edge is contained in a
it connects a u, to a g]; hence, F must intersect e along

some link A, for F cannot go above any u, nor below
zig-zag link, and in (b) we illustrate why ia zig-zag

link contains an inflection edge.
any gj. Let us assume for the time being that ~ is nei-

ther the first nor last link of F, and let A– denote A’s

predecessor and let 2+ denote A’s successor. Also, let

L(e) denote the line containing e and let B denote the

set of all points on some segment from a point p on A–,

A, or A+ to p’s nearest neighbor on L(e), i.e., the points

“between” L(e) and A–, A, and A+. B can contain no

points of U(C” ) nor G(c* ), for if this were not the case,

then e would not be an inflection edge (e.g., see Fig-

ure 4a). Thus, we can “move” the common endpoint

of A– and A to be on L(e), and the common endpoint

of ~ and A+ to be on L(e), keeping the rest of F fixed,

and we will keep F as a k-link approximation to S. To



establish that A must be a zig-zag or zag-zig link, note

that the first place where the ray uii crosses G(c* )

cannot be before the first place it crosses U(C* ), and,

likewise, the first place where the ray g= crosses U(6’ )

cannot be before the first place it crosses G(c* ) (e.g.,

see Figure 4a). If this were not so, u.gj would not be

an inflection edge of Il(c” ). Thus, either ~ is the first
----+

or last link of F (which occurs if one of the rays u,gj or

g= crosses neither U(C*) nor G(c* ) ) or A is a zig-zag or

zag-zig link (since F is a minimum-link approximation

to S(C* )). Similar (actually simpler) arguments hold

for the cases when A- or A+ do not exist, and are left

to the reader. Therefore, there is a best k-link approx-

imation to S that contains each edge in S, and each

such edge is contained in the first or last link of F or

in a zig-zag or zag-zig link.

(2:) For the second part of the lemma, let m be

the minimum number of zig-zag, zag-zig, first, and last

links that do not contain any edge in I(c* ), taken over

all best k-link approximations to S satisfying part one

of the lemma (which we have just shown to be true).

In addition, let A = ~ be one of these m links. Let

us assume for the time being that A is zig-zag link in

F. Let A- = w denote the predecessor of A in F and

let A+ = @ denote the successor of A in F. Since

F is a minimum-link path, the line i% must intersect

both U(6*) and G(c*)(e.g., see Figure 4b). But this

implies that F crosses an inflection edge, which is a

contradiction; hence, we establish the second part of

the lemma for this case. The proofs for the other cases

are similar; hence, this establishes the lemma. ❑

Having established an important property of some

of the links in a best k-link function approximation to

S, let us now turn to the problem of enumerating these

edges, and in the process we will also restrict the range

of c’s that allow a k-link approximation.

3 Finding the Inflection Edges

We say that an e is geodesic-critical if H(e) has 1 edges,

but H(F) has fewer than 1 edges for t > e. Our method

for finding all the inflection edges is to determine an

interval [El, ●q] that contains ●* and is such that EI(cl )

is combinatorially equivalent to H(c2 ). This will allow

us to determine all inflection edges that F must con-

tain. Our procedure is conceptually quite simple. First

we enumerate all O(n) geodesic-critical e values, and

then we perform a binary search among these values to

determine the interval [cl, CZ] containing c“.

3.1 Enumerating all geodesic-critical c

values

Our method for enumerating all geodesic-critical c val-

ues is based upon a sweep through “~ space.” We main-

tain the hourglass H(c) = TU(C) U ng (e) while taking e

from O to +CO, stopping at each geodesic-critical c value

along the way. To simplify the discussion, however, let

us concentrate on the problem of maintaining n.(e),

so that we restrict our notion of geodesic-critical c’s to

those that change TU(C); the method for maintaining

7rg (c) is similar. Initially, for e = O, rv (c) is the chain

U(e) = G(c); hence, it consists of n -1 edges. If we

then increase c by an “infinitesimal” amount we find

that some of the vertices of n~ (e) lie on U(c) while oth-

ers lie on G(e). For any vertex p on mu(e), if one of

p’s adjacent vertices on n~ (e) lies on the chain oppo-

site from the chain that p lies on, then we say that p

is a pinch vertex. For each pinch vertex p on n~ (6),

let q and r denote p’s adjacent vertices on nti (c), and

compute the 2> c value at which p would cease to be a

pinch vertex if we were to restrict U(:) and G(t) to that

portion of the plane bounded by the lines z = z(q) and

~ = ~(r) inclusive, where x(t) denotes the x-coordinate

of a point t.Call this 2 value locally-critical for p, and

let 13 be the set of all t’s that are locally-critical for

pinch vertices on n~ (c).

Lemma 3.1: The smallest t in E is the smallest

geodetically-critical value bigger than e.

Proofi Let d be the smallest geodetically-critical value

bigger than e. If we were to increase d “infinitesimally,”

then, by definition, ~U (6’) would have at least one fewer

edge. For this to occur, two consecutive edges of TV (c’)

would have to be replaced by a single edge. Thus, the

vertex incident upon the two removed edges is a pinch

vertex; hence c’ is in E. Now, let d’ be the smallest

value in E. Since there is no value in E smaller than e“

in E, mu(;) does not change for ii?e (e, e“]. Thus, there

is a global change to nti (~) for; > t“, which implies that

e“ is geodetically-critical. Therefore, d = d’, which

completes the proof. ❑

Our method for maintaining mu(e), then, is as fol-

lows. We store the values belonging to E in a priority

queue that supports the operations of insert, delete,

and extract-rein in O(log n) time (e.g., see [17]). While

E is not empty, we extract the smallest 2 in E, perform

the modification of nU (~) implied by this geodesically-

critical value, and then update E to reflect the new

geodesic path. This update involves examining the two

vertices of nu (t) that now become adjacent and up-

dating E accordingly. If either of them were previ-

ously pinch vertices, then we remove its corresponding

locally-critical value from E. Likewise, if either of them
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becomes a pinch vertex after performing the update

for ~, then we insert its new locally-critical value into

E. Since we reduce by one the number of edges of the

geodesic path with each event in E, the total number

of events must be O(n); hence, the total time to enu-

merate all the geodetically-critical values is O (n log n).

Given these geodetically-critical values it is then a

simple manner to determine the consecutive pair that

contains C* by using the method of Hershberger and

Snoeyink [32], Guibas et al. [29], or Hakimi and Schme-

ichel [30] to drive a binary search among the set of

geodetically-critical values. Using one of these simple

algorithms, all of which are based upon the “greedy

method,” to test if a given c is smaller than e’ takes

O(n) time. This implies that we can determine, in

O(n log n) time, the combinatorial structure of mu (e” ),

and, as mentioned above, a similar procedure gives us

the combinatorial structure of mg (e”). Therefore, we

can identify all the inflection edges in H(e* ), each of

which F must contain, by Lemma 2.1.

All that is left, then, is for us to determine all the

links of F that do not contain inflection edges.

4 Completing the Construction

technique, as optimized by Cole [13, 14]. one such op-

timization applies to any situation that iXIIVOlves a set

2= {21,.22, ..., Zm } of m independent binary searches

among an ordered set A = (al, az, . . . . an) of n items,

where each comparison c(a,, Zfl ) is parameterized by c.

The outcome of c(a,, ZJ ) depends upon which of a con-

stant number of intervals, determined by a. and Zj,

contain t’. If it takes T steps to determine if c’ < c,

for a particular ~, then this parametric searching tech-

nique allows us to perform all m binary searches in

O((T + m) (log n + log m)) time (see Cole [13] for de-

tails). It also gives us an interval [cl, C2] containing C*,

which is the intersection of all the intervals determined

to contain e’ during the m searches.

The second optimization applies when one wishes

to sort a set A = {al, a2, . . . ,a~}, where, as in the

previous case, each comparison c(ai, aj ) is parametri-

zed by c so that the outcome of c(a,, aj ) depends upon

which of a constant number of intervals, determined

by a, and aj, contain c“. If it takes T steps to deter-

mine if C* < e, for a particular e, then this parametric

searching technique allows us to sort the elements of A

in O((T + n) log n) time (see Cole [13, 14] for details).

Also, this method gives an interval [cl, E2] containing 6*,

which is the intersection of all the intervals determined

Whereas we used geodesic paths to find the zig-zag and
to cent ain c’ during the sort.

The challenge, of course, in applying these tech-
zag-zig links, to complete the construction we use a re-

lated structure—the visibility graph. In particular, re-
niques is to design the parameterized sorts and searches

so that the result is meaningful. Let us therefore turn
call that the visibility graph of a set of line segments R

has a vertex for each endpoint of a segment in R and an
to our application of these techniques.

edge for each pair (p, q) such that the line segment n

does cross any segment in R, although we allow R to

intersect segment endpoints and even contain the seg-

ment ~ if it is in R. It is well-known, for example, that

geodesic paths always follow visibility graph edges3. In

our case we are interested in the visibility graph defined

on the segments in U(c) uG(e). We say that an line seg-

ment s is U-anchored (resp., G-anchored) if s contains

an edge e in the visibility graph of U(C* ) U G(E* ) such

that both of e’s vertices lie on U(e*) (resp., G(e”)). The

following lemma establishes an important relationship

between a best k-link function approximation to S and

these anchored links.

Lemma 4.1: Any canonical best k-link approximation

to S has a U-anchored link containing a vertex of G(e* )

or a G-anchored link containing a vertex of U(C* ).

4.1 Finding E*

Our method for completing the construction is to

perform a parametric search for a U-anchored or G-

anchored link satisfying Lemma 4.1. Observe that find-

ing such a link effectively “clamps” U(c) and G(c) at

E = e“. Also note that we can use the linear-time

method of Hershberger and Snoeyink [3:2], Guibas et

al. [29], or Hakimi and Schmeichel [30] to resolve com-

parisons and to give us the final approximation F once

we have narrowed the interval of candidate c values to

[e*, C*].

To simplify the discussion let us concentrate on the

problem of determining a U-anchored link that contains

a vertex of G (c*); the method is similar for visibility

edges anchored on G(e). Our algorithm will actually

‘(dovetail” the search for a U-anchored link containing

Proofi The proof follows immediately from the char-
a vertex of G (~’) with the search for a G-anchored link

acterization lemma of Hakimi and Schmeichel [30]. ❑
containing a vertex of U(.5* ).

Call a vertex p of U(e) a left inflection (resp., right

Our method for enumerating all such edges is based
inflection) vertex if p is the left (resp., right) endpoint

upon several applications of the parametric searching
of an inflection edge of II(c* ). Following an approach

similar to that used by Ghosh [23], considler a portion of
3For more information about visibility graphs and their PrOP- U(c) between a left inflection vertex p and the leftmost

erties see the excellent book by O’Rourke [50].

327



P

Figure 5: A U-anchored edge determining E*.

right inflection vertex q to the right of p. Denote this

portion of U(e) as UIP,~l (c). Note that the portion of

n. (~’) between p and q is a convex chain of edges such

that each consecutive pair forms a “right turn.” De-

note this portion of mu (c*) as n~, q] (but note that we

have yet to determine e+—at this point we only know

the combinatorial structure of ~U (6* )). Finally, observe

that if U[p,ql(e) contains the endpoints v and z of the

U-anchored link that we seek, then = must be equal

to the the common tangent of w and fib, q] as well as

z and n~, q]. (See Figure 5.) Moreover, if the link sat-

isfying Lemma 4.1 is a U-anchored link, then it must

contain such a tangent edge for some UiP,~l (e).

Our first parametric search therefore is to determine

for each vertex v on UIP,ql (6) its vertex of tangencY, t(’u),

with the convex chain n~, q] at c = ~“ (see Figure 5).

In this case we can use binary-search-based parametric

searching [13] applied to a well-known “binary search”

tangent-finding method (e.g., see [21, 51]) to find all

such tangents in O (n log n) time. This may still not

restrict our interval of e values to [c”, c*], however, for

a vertex w will have the same vertex oft angency, t(v),

over a range of c values.

For each vertex w on n~, q], collect each vertex w

on u[p,~l (c) such that w = t(v) into two sets—l(w),

cent aining the vertices to the left of w, and r(w), con-

taining the vertices to the right of w. If w is the vertex

of tangency for the U-anchored edge we seek, then that

edge is determined by a v ~ 1(w) and a z E r(w).

In order for these two vertices to be able ‘(search for

each other,” however, we must first order the vertices

in 1(w) and r(w) radially around w. To accomplish this

we make a second application of parametric searching,

this time using the second version, based upon a paral-

lel sorting algorithm [13, 14], together with the linear-

time method of Hershberger and Snoeyink [32], Guibas

et al. [29], or Hakimi and Schmeichel [30] for resolving

comparisons, to sort all 1(w) and r(w) lists in O(n log n)

time. This may still not restrict the range of e values

to [~’, c*], however, for the vertices in an i(w) and r(w)

may have the same ordering with respect to w over a

range of e values.

Therefore, to complete the process we must perform

one more application of parametric searching where we

perform a binary search in 1(w) for each z ~ T-(w) to

locate the vertex in l(w) hit by the ray zt(z~, if it exists.

Given that each l(w) is now sorted, we can perform all

of these binary-search parametric searches in O(n log n)

time. Since one of these searches (or a corresponding

search for G-anchored edges) must succeed, we finally

are guaranteed to have restricted the range of candi-

date e values to the interval [c’, e“]. Moreover, seeing

how the last comparison in this parametric search was

resolved using a minimum-link ordered stabber algo-

rithm, this completes the construction, giving us the

following theorem.

Theorem 4.2: Given a set S of n points in the plane,

and an integer parameter 1 ~ k ~ n — 1, one can con-

struct a best k-link approximation to S under the uni-

form metric in O(n log n) time.

5 Simplifying the Implementa-

tion

Although our method for finding a best k-link approx-

imation to S is conceptually simple at a high level, im-

plementing it in practice would probably not be so easy.

The chief difficulty arises from the (up to) three calls

to parametric searching that are made at the end of

the algorithm; all the other steps would be relatively

straightforward to implement. But those calls to para-

metric searching, especially the version based upon a

parametric sorting, would be a challenge to implement,

and the constant factors they would imply in the run-

ning time would not be very small. Fortunately, as

we show in this section, we can considerably simplify

these calls to parametric searching. In particular, we

show how to eliminate the (second) call based upon

sorting all together, and we observe how one can sim-

plify all our calls to parametric searching through a

simple randomization technique. The resulting algo-

rithm will still be guaranteed to find a best k-link ap-

proximation to S, however, for the randomization will

only impact the running time of our method, not its

correctness. Nevertheless, it will result in a method

that runs in O(n log n) time with very high probabil-

ityy. Moreover, the (expected) constant factors will be

reasonably small.

Let us begin by describing how we can eliminate

the call to sorting-based parametric searching, which
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Figure 6: An illustration of why lvi~ (w) is already

sorted.

comprises the second call to parametric searching in our

algorithm. Recall that after we have made our first call

to (binary-search based) parametric searching, we have

determined for every vertex v on ~IP,~l (e) its tangent,

t(v) on n~, q]. Previously, we then collected, for each

w on r~, q], all the vertices on UIP,~l (c) whose tangent

is w to the “left set” 1(w) and the “right set” r(w), and

we sorted the vertices of 1(w) radially around w (using

sorting-based parametric searching) so that we can then

do a binary search in l(w) for each vertex in T-(w) (using

binary-search based parametric searching). Observe,

however, that we do not need all the vertices of 1(w) to

perform this search; we need only those vertices that

are visible from w on ?l[p,~l (~’). Thus, let us use lvi~ (w)

to denote the set of vertices in 1(w) that are visible

from w on UIP,~l (c*). If we can determine these visible

vertices, then, as the following lemma shows, we can

sort them without resorting to parametric searching.

Lemma 5.1: Sorting the vertices of lvi~ (w) radially

around w as they appear on UIP,gl (~’) gives the same

order as a listing of the vertices of lvi~ (w) by increasing

x-coordinates.

Proofi Suppose, for the sake of a contradiction, that

there are two vertices u and z in lVi~ (w) such that u is

before z in a radial listing around w as they appear on

UIP,gl (e”), but Z(Z) < z(u). (See Figure 6.) Since w

is below the curve UIP,~l (e”), this implies that UIP,~l (~”)

intersects the segment ~. But this contradicts the

fact that z is visible from w; hence, this establishes the

lemma. •!

Thus, it is sufficient for us to determine the mem-

bers of lvi~ (w), for each w on 7r~, q], since they are

already given by increasing ~-coordinates (for that is

how the vertices are ordered in S).

So, let us turn to the problem of determining the

members of lvi~ (w) for some given w on Tr~, g]. Let

w’ denote the vertex on ?7[P,~1(~) directly above w (i.e.,

if w = g,, then w! = u*). A simple consequence of

the proof of Lemma 5.1 is that a vertex v in 1(w) is

in lvi~ (w) if and only if the geodesic path from v to

w’ is above the line segment ZFiD. Indeed, it is suffi-

cient that the first edge e(v) in this path be above the

segment G. Since each such geodesic path remains

unchanged for e c [cl, e2] (because it is a !sequence of

left turns that occur at vertices of UIP,ql (e)), we can

determine e(v) for each such v without knowing the

value of C*. Specifically, we can use the data structure

of Guibas and Hershberger [27], as simplified by Her-

shberger [31], to determine each e(v) in O(log n) time.

This data structure is relatively simple to construct and

query, especially since each ~[p,~l (e) is a single mono-

tone chain.

Note that each e(v) determines a critical i?V value

such that v is visible if e ~ i?, and w is not visible oth-

erwise. Thus, once we have determined alll the e(v) ‘s,

we can then determine which u‘s are visible from their

respective w = t(v) vertices simply by resolving all of

the t’s against e“ using the method of Herslhberger and

Snoeyink [32], Guibas et al. [29], or Hakimi and Schme-

ichel [30] to drive a binary search. Since there are O(n)

such parameterized comparisons, and each resolution

requires O(n) time, the total time needed to resolve all

of these comparisons is O(n log n). This implies that

we can substitute the most simple form of paramet-

ric searching for the more-complicated sorting-based

method [13, 14]. The resulting algorithm would still

run in O (n log n) time. The only slightly impractical

steps in this algorithm are repeated computations of

medians (e.g., of the remaining unresolved ?s in each

iteration of the above binary search), for which the best

deterministic algorithm has a relatively large constant

(e.g., see [17]).

But the computation of a median or weighted me-

dian (which is the least-efficient step in the binary-

search based parametric searching method of Cole [13])

can be significantly improved in practice through the

use of randomization (e.g., see [17]). The effect in our

case is that the resulting algorithm will still be guaran-

teed to find a best k-link approximation, but it will not

be guaranteed to run in O(n log n) time. Nevertheless,

it will run in O (n log n) time with very high probabil-

ity, and the (expected) constants factors in the running

time will be very reasonable. Thus, we suggest such

a use of randomization in any implementation of our

method.
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6 Conclusion and Directions for

Future Work

We have given an O(n log n)-time method for finding

a best k-link approximation to set of n points in the

plane under the uniform metric, and we have even

given a method for efficiently implementing it in prac-

tice. This suggests a number of interesting directions

for future work. Some possibilities include examining

metrics other than the uniform metric, approximating

with higher-degree spline functions, and approximat-

ing more-general types of geometric objects (such as

segments joined in a polygonal path). As with our re-

sults, the general goal should be to find a best k-piece

approximation, since this is the version of the prob-

lem driven by bounds placed upon the computational

resources needed to represent the approximate ion.
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