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Abstract

Generalized intersection searching problems are a

class of geometric query-retrieval problems where

the questions of interest concern the intersection

of a query object with aggregates of geometric ob-

jects (rather than with individual objects.) This

class contains, as a special case, the well-studied

class of standard intersection searching problems

and is rich in applications. Unfortunately, t he solu-

tions known for the standard problems do not yield

efficient solutions to the generalized problems. Re-

cently, efficient solutions have been given for gen-

eralized problems where the input and query ob-

jects are iso-oriented (i.e., axes-parallel) or where

the aggregates satisfy additional properties (e.g.,

connectedness). In this paper, efficient algorithms

are given for several generalized problems involv-

ing non-iso-oriented objects. These problems in-

clude: generalized halfspace range searching, seg-

ment intersection searching, triangle stabbing, and
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triangle range searching. The techniques used in-

clude: computing suitable sparse representations of

the input, persist ent data structures, and filtering

search.
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1 Introduction

Consider the following generic searching problem:

Suppose that we are given a set S clf n geomet-

ric objects in 7?~. Moreover assume that the ob-

jects come aggregated in disjoint groups, where the

grouping is dictated by the underlying application.

(The number of groups can range from 1 to @(n).)

Our goal is to preprocess S into a data structure

so that given any query object q, we can report

or count efficiently the groups that are intersected

by q. (We say that q intersects a group iff q in-

tersects some object in the group.) Notice that we

are not interested in reporting or counting th~in-

dividual objects intersected by q as i;s the case in

a standard intersection searching problem. Indeed

the standard problem is a special case of the above

formulation, where each group has cardinalit y 1.

For this reason, we call our version a generalized

intersection searching problem.

For our purposes, it will be convenient to asso-

ciate with each group a different color and imagine

that all the objects in the group have that color.

Suppose that q intersects i groups. Then, we can

restate our problem as: “Preprocess a set S of n

colored geometric objects so that for any query ob-

ject q, the i distinct colors of the objects that are

intersected by q can be reported or counted effi-
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ciently.” This is the version that we will consider

throughout the paper.

Before going further, let us illustrate the useful-

ness of our generalized formulation with some ap-

plications: (1) In designing a VLSI chip, the wires

(line segments) can be grouped naturally accord-

ing to the circuits they belong to. A problem of

interest to the designer is determining which cir-

cuits (rather than wires) become connected when

a new wire is to be added. This is an instance

of the generalized segment intersection searching

problem. (2) Consider a collection of supply points

(e.g., warehouses) of different types in 7?2. We

would like to preprocess these points so that given

a demand point q and a radius T, we can determine

the types of supply points that are within distance

r from q. By using a well-known “lifting” trans-

formation, this problem can be transformed to an

instance of genemlized halfspace range searching in

123.

1.1 Potential approaches

One approach to solving a generalized problem is

to take advantage of known solutions for the corre-

sponding standard problem. For example, to solve

a generalized reporting problem, we can determine

all the objects intersected by q (a standard prob-

lem) and then read off the distinct colors among

these. However, with this approach the query time

can be very high since q could intersect fl(n) ob-

jects but only O(1) distinct colors. Thus, the chal-

lenge in the generalized reporting problem is to

attain a query time that is sensitive to the out-

put size i, typically of the form O(f(n) + i) or

O(f(n)+i.polylog( n)), where f(n) is “small” (e.g.,

polylog(n) or np, where O < p < 1), For a general-

ized counting problem, it is not even clear how one

can use the solution for the corresponding standard

problem (a mere count) to determine how many

distinct colors are intersected. Nevertheless, we

seek here query times of the form 0( f (n)). Of

course, in both cases, we seek solutions that are

also as space-efficient as possible.

1.2 Previous work

While the standard problems have been investi-

gated extensively, their generalized counterparts

have been less studied. The generalized problems

were first considered in [J L93], where efficient so-

lutions were given for several problems defined on

iso-oriented objects (i.e., the input and the query

objects are axes-parallel). In [GJS93a], efficient so-

lutions were given for the counting, reporting, and

dynamic versions of several iso-oriented problems.

In [GJS93b], solutions were given for generalized

problems involving circular and circle-like objects

(among other results). In [AvK93], Agarwal and

van Kreveld consider the problem of reporting the

intersections of a query line segment with color

classes consisting of line segments and satisfying

the property that each color class is a simple poly-

gon or a connected component.

1.3 Summary of results and techniques

In this paper, we present efficient solutions to

several generalized intersection searching prob-

lems that are defined on non-iso-oriented objects.

Specifically, we consider the following problems:

generalized halfspace range searching in l?~, for

any fixed d ~ 2, generalized segment intersection

searching, triangle stabbing, and triangle range

searching in ‘R2. Our main results are summa-

rized in Table 1. No results were known pre-

viously for any of these problems, with the ex-

ception of generalized segment intersection search-

ing: For this problem, the following results were

known: (a) O(n’+’) space and O(n’/2+C + i)

query time for color classes consisting of simple

polygons or connected components [AvK93]; (b)

O((n + X)2 log n) (resp. O((n + X)2)) space and

O(log n + i) (resp. O(log2 n + i)) query time for

general color classes [JL93]; and (c) O(nl+’) space

and O((i + I)filog”ill n) query time for general

color classes [AvK93]. (x is the number of pairwise-

intersecting segment s.)

Our results are based on a combination of sev-

eral techniques: (1) Computing for each color class

a sparse representation which. captures essential in-

formation about the color class and allows us to

reduce the generalized problem at hand to a stan-

dard problem. (2) The persistence-addition tech-

nique of Driscoll et al. [D SST89], which allows us

to reduce a generalized problem to a generalized

dynamic problem one dimension lower. (3) A ver-

sion of filtering search which, in combination with
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# fnput objects

Points

1 in Rd

I

2 Line segs.

in R2

&
5 Line segs.

in R2

6 Triangles

Fat-Wedges

7 Points

Query object Space Query time ]

d=2 n log n logz n + i 1
nl/2

n logz n n ‘+i

Halfspace d=3 nz+c logz n + i

in 7?d n log n n2/3+c

d z 2 ntdlz]+’ logn+ ilog n

Halfplane n log n log n+i
~lJ2“~1

Vertical ray I rm(n) log n

I
log’n + i

(na(n~11J2 I
Line n log n log2 n + i

Vertical line # 5-P log n n~+i

segment nz log n logn+i

Vertical line
segment (n+ x) log n logn+i

Arbitrary line

segment logz n + i log n

Point n31210E n 10K n+i21

I n log n I log’ n + i

Fat-Triangle n log3 n I log4 n + i logz n i

Table 1: Summary of main results for generalized intersection searching problems; additional results

can be found in the text. Wherever the output size, i, is missing in a query time bound, it is a

counting problem. A fat-wedge or fat-triangle is one where each interior angle is greater than or

equal to a fixed constant. Here:
n input size

i : output size (number of distinct colors intersected)

6 arbitrarily small constant >0

P : tunable parameter, 0.5< p <1

x : number of pairwise-intersecting segments, O ~ x s ~)

a(n) : slow-growing inverse of Ackermann’s function

persistence, yields a space-query time tradeoff. 2 Generalized halfspace range

Moreover, when the input objects or query objects searching in Rd
satisfy cert tin reasonable conditions (e.g., fatness),

then we use further ideas to obtain very efficient so- Let S be a set of n colored points in R ‘, for any

lutions. Due to space limitations, we will describe fixed d ~ 2. We show how to preprocess S so that

only a subset of our results here and will omit all for any query hyperplane ~, the i distinct colors

proofs and many details. The full paper is avail- of the points lying in the halfspace ~- (i.e., be-

able as [GJS93C]. low ~) can be reported or counted efficiently. We

371



first give solutions for 722 and X!3. Let F denote

the well-known point-hyperplane duality transform

[Ede87]. Using F we map S to a set S’ of hyper-

planes (lines in 7?2 and planes in 7?3) and map Q

to the point q = Z(Q). Our problem is now equiv-

alent to: “Report or count the i distinct colors of

the hyperplanes lying on or above q, i.e., the hy-
perplanes that are intersected by the vertical ray r

emanating upwards from q.”

Let S. be the set of hyperplanes of color c. For

each color c, we compute the upper envelope E= of

the hyperplanes in S.. In 7?2, E. is an unbounded

convex chain, and in 7?3, EC is an unbounded con-

vex polytope whose facets are convex polygons. It

is clear that (i) r intersects a c-colored hyperplane

iff ~ intersects E= and, moreover, (ii) if ~ intersects

E=, then ~ intersects the interior of a unique facet

of E=. (For this version of the paper, we assume

that r does not intersect two or more facets of E.

at a common boundary; in the full paper [GJS93C],

we show how to remove thki assumption.) Let &

be the collection of the envelopes of the different

colors. By the above discussion, our problem is

equivalent to: “Report or count the facets of $

that are intersected by ~“, which is a standard in-

tersection searching problem! Since we use differ-

ent techniques to solve this problem in 7?2 and in

T?3, we will discuss each case separately.

2.1 Solving the ray–envelope intersec-

tion problem in 7?2

We store the z-projections of the line segments

of & in a segment tree T. Let v be any node of

T. Associated with v is an z-interval 1(v). Let

Strip(v) be the vertical strip defined by 1(v). We

say that a segment s G & is allocated to a node

v c T M I(v) # 0 and s crosses Str@(v) but

not Strip(panmt(v)). Let S(o) be the set of seg-

ments allocated to v. Within Strip(v), the seg-

ments of &(v) can be viewed as lines since they

cross Strip(v) completely. Let t?(v) be the set of

points dual to these lines. We store &’(v) in an

inst ante H(v) of the standard halfplane reporting

(resp. counting) structure for ‘R2 given in [CGL85]

(resp. [Mat92b]). This structure has size O(m)

and a query time of O(log m + kv) (resp. 0(rnl/2)),

where m = \&(v) [ and kw is the output size at v.

To answer a query, we search in T using q’s z-

3

coordinate. At each node v visited, we need to

report or count the lines intersected by T. But, by

duality, this is equivalent to answering, in ‘RZ, a

halfplane query at v using the query ~(q)- = Q-,

which we do using H(v).

Theorem 2.1 A set S of n colored points in X!2

can be stored in a data structure of size O (n log n)

so that the i distinct colons of the points lying in

any query halfplane can be reported (resp. counted)

in time O(log2 n + i) (resp. 0(nl/2)). •l

Using a similar approach, we can also solve Prob-

lem 2 in Table 1.

2.2 Solving the ray–envelope intersec-

tion problem in 7?3

We triangulate the facets of EC for all colors c. For

any triangle t,let h(t) be its supporting plane. Let

t’and q’ be the projections of t and q (the origin

of ray r) on the zy-plane respectively. Clearly, t is

intersected by ~ iff (a) t“s interior contains q’ and

(b) h(t) is on or above q.

Wlog assume that t’has a vertical side; other-

wise decompose it into two such triangles. To find

the triangles satisfying condition (a), we store each

t’ in a segment tree T according to “its x-span. Let

v be any node of T and let A(v) be the set of tri-

angles allocated to v. Let m = IA(v) 1. Note that if

t’ c A(v) then both its non-vertical sides, call the

upper one t: and the lower one t;, cross Strip(v). If

q’ G Strip(v), then q’ is in t“s interior iff q’ is above

tfand below t~. Since tf and t~ behave like lines

within Strip(v), by duality we have that q’ G t’ iff

in 7Z2 one endpoint of F(t~)fi(t~) lies in the open

halfplane F(q’)- and the other lies in the open half-

plane Z(q’)+. Next, consider condition (b). By

duality, h(t) is on or above q iff in 7Z3 the point

F(h(t)) is in the halfspace ~(q)-.

So, our problem at v is to report or count the

iV triangles of A(v) that satisfy the above half-

plane and halfspace queries. We can do this by

augmenting v with a 3-level data structure D(v),

using partition trees [Mat92a] in the outer two lev-

els of D(v) and the data structure of [AHL90] for

halfspace range reporting at the innermost level.

For the counting problem, we use partition trees

at all three levels. D(v) can be built in space
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O(rn log m) (resp. O(m)) so that all the desired

triangles can be reported (resp. counted) in time

O(ml/2+’ + iw) (resp. 0(rn2/3+’)). For the re-

porting problem, instead of partition trees, we can

also use 2-dimensional cutting trees [Mat91a] for

the two outer levels of D(v). Then D(v) has size

O(rn2+e) and query time O(log m + iV). Plugging

these bounds into the segment tree, we get:

Theorem 2.2 The reporting version of the gener-

alized haifspace range searching problem for a set of

n colored points in 723 can be solved in O(n log2 n)

(resp. 0(n2+’)) space and O(nl/2+’ + i) (resp.

O(log2 n + i)) query time, where i is the output

size and E >0 is an arbitrarily small constant. The

counting version is solvable in O(n log n) space and
O(nZ/WE ) query time. ❑

2.3 Generalized halfspace range report-

ing in d z 2 dimensions

The preceding approach extends to 72~, d >3, but

the space bound is high, namely, 0(ndld/2J+’). We

now give an approach for the reporting problem in

7Z~ (d ~ 2) that needs much less space. In pre-

processing, we store the distinct colors in the input

point-set S at the leaves of a balanced binary tree

CT (in no particular order). For any node v of

CT, let C(v) be the colors stored in the leaves of

v’s subtree and let S(v) be the points of S colored

with the colors in C(v). At v, we store a data

structure HSE(V) to solve the halfspace emptiness

problem on S(v), i.e., “does a query halfspace con-

tain any points of S(v)?” HSE(V) returns “true”

iff the query halfspace is empty. If \SV I = nv, then

HS.E(V) uses 0(n!jd’2J+’ ) space and has query time

O(log n.) [Mu193, page 290].

To answer a generalized halfspace reporting

query we do a depth-first search in CT and query

HSE(V) at each node v visited. If v is a non-leaf

then we continue searching below v iff the query

, if v is a leaf, then we output thereturns “fake”.

color stored there iff the query returns “false”.

Theorem 2.3 For any fixed d ~ 2, a set S of n

colored points in ‘Rd can be stored in a structure of

size 0(nLd/2~+e ) such that the i distinct colors of

the points contained in a query halfspace Q– can

be reported in time O(log n + i log2 n). Here e >0

is an arbitrarily small constant. ❑

We note that the reporting (resp. counting) prob-

lem can also be solved in O(nd+’) space and

O(log n + i) (resp. O(log n)) time, using constant-

depth cutting trees.

3 Generalized intersection re-

porting on lines and line seg-

ments

We consider several versions of the generalized in-

tersection searching problem for a set S of n colored

lines or line segments; the query q is a line or a line

segment.

3.1 Querying colored line segments with

a line

We dualize the colored line segments cjf S to a set

S’ of colored doublewedges and map the query line

q to a point q’. Thus, our problem reduces to re-

porting the i distinct colors that are stabbed by q’.

In Section 4, we solve this problem in 0(n3/2 log n)

space with a query time of O (log2 n --t i). In the

rest of this section, we consider the case where the

segments of S all lie in the unit square U and each

segment has length at least A, where A :> 0 is a con-

stant. These assumptions are reasonable for prac-

tical applications and they allow a very efficient

solution.

For now assume that all the segments intersect

the y-axis Y. Thus, one endpoint of s has neg-

ative z-coordinate and the other has positive Z-

coordinate. Thus in the corresponding dual dou-

blewedge one of the bounding lines has positive

slope and the other has negative slope. We split

each doublewedge into a left-wedge and a right-

wedge. Note that each wedge is y-monotone. Con-

sider the right -wedges. Because of y-monot onicit y,

q’ is contained in a right-wedge w iff the horizon-

tal, leftward-directed ray ~ emanating from q’ in-

tersects the boundary of w. Thus for each color c,

we compute the left-envelope of the boundaries of

all c-colored right wedges. If there are n. c-colored

right wedges, then the c-colored left -envelope has

size O(nc) (see [Ede87, page 357, Problem 15.6]).

In thh way, we obtain a collection S“ of colored line

segments. Note that (i) ~ intersects thle boundary

of a c-colored right-wedge iff r intersects a c-colored
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left-envelope and (ii) if ~ intersects a c-colored left-

envelope then it intersects a unique line segment

of this envelope. Thus we have a standard prob-

lem which we can solve in O(n log n) space and

0(log2 n + i) query time by using a segment tree

as in Section 2.1.

What if the segments of S do not all intersect Y?

Suppose that there is a constant K such that each

segment intersects one of K fixed lines Y1, ..., YK.

Let S; ~ S be the set of segments intersecting ~.

(If a segment intersects more than one K, we put

it in any one of the Si’s; thus the Si’s partition S.)

For 1 < i s K, we create a coordinate system C;l

where Yi is the y-axis and any line perpendicular

to Yi is taken as the z-axis. We give the segments

of Si coordinates in Ci and store them in the data

structure described above. To answer a query, we

query each of the K structures separately. The

space and query time are as above.

We can now solve the problem stated at the

beginning. Wlog assume that the origin is at

the bottom-left corner of 24. Consider the K =

2+2[fi/Al lines z = i. A/ fi and y = i. A/@,

where O s i s [fi/Al. Since each segment has

length at least A, either its z-span or its y-span is

at least A/@. Thus each segment intersects one

of the K lines. We now use the above structure.

Theorem 3.1 Let A >0 be a constant and let Z4 be

the unit square. A set S of n colored line segments

in 722, where each segment has length at least A and

all segments lie in U, can be stored in a structure

of size O(n log n) such that the i distinct colors of

the segments that are intersected by a query line q

can be reported in time 0(log2 n + i). •l

3.2 Querying colored lines with a verti-

cal line segment

We give a simple approach based on persistence

[DSST89], and then show how to incorporate fil-

tering search to get a space-query time tradeoff.

We divide the plane into t = 0(n2) strips

by drawing vertical lines through the intersection

points of the n lines. Within any strip, Vk, the

lines are totally ordered from top to bottom, as

Ek :11,.4’2, . . , tn. Suppose that the vertical query

segment q is in V, and let 1. and lb be the highest

and lowest lines of Ek intersected by q. Our prob-

lem is now equivalent to the following generahzed

l-dimensional range searching problem: Given col-

ored integers 1,2, ..., n (where integer j gets the

color of lj ), report the distinct colors in the query

intervzd [a, b]. In [GJS93a], this problem is solved

using a structure ~k of size O(n) and a query time

O(log n + i). 11~ supports updates in O(log n) time

wit h O (log n) memory modifications. By sweeping

over the strips vk, 1 ~ k < t, and making the asso-

ciated ~k’s partidy persistent, we get a solution

with space 0(n2 log n) and query time O(log n + i).

In a nutshell, the idea for the space-query-time

tradeoff is as follows: We extract from the se-

quence & = (El,. . . . Et+l) a smaller subsequence

&’ = (E~, . . . . EL) such that (i) E; and 11~+1 differ

in just two (not necessarily adjacent) positions, (ii)

for each Ek c & there is an E; G El which “approx-

imates” Ei in a sense that we will elaborate upon

later, and (iii) m = 0(n2”5-~), where 0.5< p <1

is a tunable parameter. Properties (i) and (iii) sug-

gest that we can apply persistence to $’ and get a

scheme with space bound o(n2); property (ii) sug-

gests that instead of querying Ek, as we might in

the simple scheme, we can query E$ in the new

scheme and still be assured of correctness.

Formally, we define a sequence bl, b2, . . . . bB of

distinguished list positions called borders, where

b;=(i– l)ld’ + 1] + 1 and B = O(nl-~) .

We construct &’ by scanning &. Let Ei be the

currently scanned list of &. Let E$ be the most

recently constructed list of &’ and suppose that

we constructed E; when we reached E6j c &. If

Ei+l is obtained from Ei by swapping lines across

some border bk, i.e. by swapping the bkth line a

with either the (bk – l)th line ~ or the (bk + l)th

line 7, then we create E$+l from E; by swap-

ping Q with ~ or 7, as appropriate; we also set

6j+1 = i + 1. It can be shown that E; approx-

imates any list Ek C {EAj, EA, +1, . . . . EA,+l–l} in

the following sense: for any two successive borders

bl and br+l, the (unordered) set of lines at positions

bl+l,. ... bl+l in E$ is the same as the (unordered)

set of lines in .f?k at these same positions. More-

over, it can be shown that the border-lines in E;

and Ek are the same; this implies that the border-

lines in {E6j, E6j+l, . . . . E6j+1–1 } are the same and

can be totally ordered. Finally, using k-set theory,

it can be proved that [&’1 = 0(n25-fl).

The data structure consists of (1) a red-black
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tree T; storing the total order of the border lines

of l?;, (2) an instance D; of the generalized 1-

dlmensional range searchhg structure built on the

colored integers lj : (1,2,.. .,n), where integer p

gets the color of the pth line of E;, and (3) a red-

black tree 1; storing Ij. We make all these struc-

tures persistent.

Given q, suppose we need to query E$. We find

the smallest border b. on or above q’s upper end-

point and, symmetrically the greatest border bg.

We query the structure D; with [bs + 1, b~]. Then

we scan all the integers b,, b. -1, ..., b~_l + 1 in lj

and report the dktinct colors of the lines of E$ at

these positions that are intersected by q; symmet-

rically for bg.

Theorem 3.2 A set S of n colored lines in ‘R2 can

be stored in a data structure of size 0(n2’5-~ log n)

such that the i distinct colors of the lines that are

intersected by a vertical query line segment can be

reported in O (n~ + i) time. Here p is a tunable

parameter in the mnge 0.5< p < 1. The problem

is also solvable in 0(n2 log n) space and O(log n+i)

query time. •l

We remark that our method is based on an idea

used in [AvK093] for a different (standard) prob-

lem. However, there are several crucial differences:

(i) because our problem is a generalized one, our

algorithm for constructing &’ uses a different swap

criterion, (ii) because our query is a vertical line

segment rather than a ray (as in [AvK093]), our

choice of borders needs to be different in order to

get a sublinear query time. Further discussion of

this appears in [GJS93C].

3.3

3.3.1

Querying colored line segments with

a line segment

Vertical query line segments

We can use an approach similar to the one at

the beginning of Section 3.2. However, since we

are now dealing with line segments rather than

lines, we must overcome a subtle problem that can

arise. We discuss this later. We draw vertical lines

through the endpoints and the intersection points

of the segments of S. Within any strip, the seg-

ments that cross it can be totally ordered. We

sweep over the strips starting at the leftmost non-

empty strip. Let S1, S2, . . . . Sm be the segments

that cross this strip, sorted from bottDm to top.

For 1< i ~ m, we give Si a label Z(si) = i and give

this label the color of Si. We store the segments

51, . . . . Sm in this order in a partially persistent red-

black tree Ts. We also store the colored labels l(si),

1 < i ~ m, in a partially persistent version T1 of

the data structure of [GJS93a] for the generalized

l-dimensional range reporting problem.

Suppose we sweep from the ith to the (i+ l)th

strip. The cases where we encounter a, right end-

point of a segment or the intersection point of two

segments are easy to handle [GJS93C]. If we en-

counter the left endpoint of segment s, then in the

current version of l’s, we locate s. Let t and u

be the segments that are immediately below and

above s in the (i + l)th strip. We insert s into the

current version of Ts and store with it a label /(s)

that lies between l(t) and i(u). Moreover, we give

the label l(s) the same color as s and insert this

colored number into the current version of T1.

In this scheme, we need to assign special labels

to the segments as we encounter them because all

the segments are not present in each strip. How-

ever, we must be careful in choosing the labels since

otherwise we may end up getting labels consisting

of O(n) bits. Towards this end, we use a label-

ing scheme due to Dietz and Sleator [D S87]. Using

their approach we take integer labels in the range

[0..0 (n2)], i.e., labels consisting of only O(log n)

bits. We need to give segment s a label that lies in

between l(t)and l(u). Using the scheme of [DS87],

this may result in the relabeling of other segments.

Dietz and Sleator show how to choose the labels

such that only O(1) amortized relabelings are nec-

essary per update. If we relabel segment s from

1(s) to 1’(s), then we just delete the colored num-

ber i(s) from T1 and insert the number l’(s), having

the same color as 1(s), into it.

Now let q be a vertical query segment. We locate

the strip containing q and then search in the version,,

of Ts corresponding to this strip for the lowest and

highest segments s and t that intersect q. Finally,

we search in the version of Tl corresponding to this

strip for the distinct colors ,of all labels that are

contained in the interval [1(s), l(t)].

Theorem 3.3 A set S of n colored line segments
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in the plane can be preprocessed into a data struc-

ture of size O((n + X) log n) such that the i dis-

tinct colors of the segments intersected by a vertical

query line segment q can be reported in O(log n + i)

time. Hem X, 0< x < ~), is the number of pair-

wise intersections among the segments in S. D

3.3.2 Arbitrary query line segments

If q is not vertical, then we use a different approach

which we sketch briefly. We break up the input seg-

ments at their x intersection points and store them

in a segment tree T. For any node v < T, the set

S(v) of segments allocated to v can be totally or-

dered within Strip(v) as sl, . . . . s~, from bottom

to top. Suppose q = ~ is such that a, b ~ Strip(v),

with a below b. Let Su be the lowest segment

of S(v) that is above a; define SW symmetrically

w.r.t. b. Clearly it suffices to report the distinct

colors in {sU, sU+l, . . . 7~w}> which we can solve us-
ing a structure for generalized l-dimensional range

searching. If q = [a, b] is not as above, then we can

identify a set V of O(log n) nodes in T such that

for each v c V, the segment q. = q (l Strip(v) is as

above. We simply query at each such v with qV.

Theorem 3.4 A set S of n colored line segments

in 722 can be preprocessed into a data structure of

size O ((n + x) log n) so that the i distinct colors

of the segments that are intersected by a query seg-

ment q can be reported in 0(log2 n + i log n) time.

Here X, O 5 x 5 ~) is the number of pairwise

intersections between segments in S. ❑

4 Generalized triangle stabbing

We consider the following problem: “Preprocess

a set S of n colored triangles in ‘R2, so that the

i distinct colors of the triangles stabbed by any

query point q can be reported efficiently.”

Wlog assume that each triangle t G S has a hor-

izontal side. We group the triangle vertices into

@(nl/2) vertical strips each of size @(nl/2). The

triangles that intersect any strip ~ form two dis-

joint subsets Ti and T:, where Ti (resp. T/) consists

of triangles having no (resp. at least one) vertex

inside w. We further subdivide K into vertical

strips by taking each triangle in T; and drawing a

vertical line through each of its vertices that lies

in Vi. Let Wij be any such substrip within Vi and

let Tij consist of the triangles of T; that cross Wij.

Note that, by construction, no triangle of Tij can

have a vertex inside Wij. (This partitioning tech-

nique is reminiscent of a method used in [OY88] for

computing the measure of the union of iso-oriented

boxes in Xd.)

Given the query point q, suppose that q c K

and q E Wij. Then we need to only report the

distinct colors of the triangles of Ti and of Tij that

are stabbed by q. We discuss how to do this for Vi

and T;. (The discussion for W;j and Tij is similar.)

For any triangle t E Ti, let p(t) be the vertex of

t shared by the horizontal side h(t) of t and the

slanted side s(t) of t which crosses Vi. Let w(t) be

the wedge defined by p(t) and (the extensions of)

h(t)and s(t). Consider the set Ri ~ Ti that yields

right-facing wedges. Clearly, q stabs t c I?i iff the

horizontal, leftward directed ray from q intersects

w(t). We can now solve the resulting generalized

ray-rightwedge intersection problem by computing

left envelopes and using a segment tree (as in Sec-

tion 3.1). Symmetrically for left-facing wedges.

Theorem 4.1 A set S of n colored triangles in

7i!2 can be stored in a data structure of size

0(n312 log n) such that the i distinct colors of the

triangles that are stabbed by a query point q can be

reported in O(log2 n + i) time. •l

5 Generalized triangle range

searching

We wish to preprocess a set S of n colored points

in 722 so that the i distinct colors of the points

cent ained in a query triangle q can be reported

efficiently. For arbitrary q we note that the problem

can be solved in O (n2+’ ) space and O(log n + i)

query time using constant-depth cut ting trees. In

the rest of this section, we give an efficient solution

for query triangles that are fat. We define a fat-

triangle to be a triangle in which each internal angle

is at least ~ for some constant ~ >0.

We begin with a solution for a query fat-wedge q.

i.e., a wedge where the internal angle at the vertex

t+ of q is at least y. For now assume that q is y-

monotone. We store the points of S at the leaves of

a balanced binary search tree T by non-decreasing
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y-coordinates from left to right. We augment each

node v of T with an instance lJF’(w) of the struc-

ture of Theorem 2.1 for generalized halfplane range

reporting; HP(v) is built on the points in v’s de-

scendant leaves.

Given q, we divide it into an upper wedge q= and

a lower wedge q~, by drawing a horizontal line L
through Vq. Consider q=. Let la be the line con-

taining the slanted side of q=. We search in T us-

ing the y-coordinate of Vg and determine a set V.
of nodes that lie to the right of the search path.

We query HP(v) at each v 6 V. with the halfplane

l;. Symmetrically for “qb. It can be shown that

the space used is O(T-Llog2 n) and the query time is

0(log3 n + i log n).

What if q is not y-monotone? In preprocess-

ing, we select i! = [2r/71 coordinate systems Ci =

(~iyi), where all the Ci share the same origin and

Ci+l is offset from Ci by an angle 7, 0 S i S t – 1

(indices are modulo t.) Within each Ci we build

an instance of the data structure for yi-monotone

fat-wedges. Given a query fat-wedge q, we locate a

Ci such that q is yi-monotone and then query the

associated structure. (It is easily seen that such a

Ci exists.)

Now consider the case of a query fat-triangle

q. We store the points by non-decreasing z-

coordinates from left to right in a balanced search

tree T’ and augment each node v with an in-

stance FW(V) of the structure given above for fat-

wedges, which is built on the points in v’s descen-

dant leaves. Given q, we divide it into two triangles

ql and q., each with a vertical side s, with ql to the

left ofs and q, to the right. We search in T’ with

the x-coordinate ofs and identify a set V1 of nodes

that lie to the left of the search path. For each

node v c V1, we query F W( v) with the wedge sup-

porting qz, which is a fat-wedge. Symmetrically for

% .

Theorem 5.1 Let 7>0 be a constant. A set S

of n colored points in 722 can be stored in a data

structure of size O(n log3 n) such that the i distinct

colors of the points that are contained in a query

triangle q each of whose internal angles is at least

7 can be reported in time 0(log4 n + i log2 n). ❑

6 Conclusions and further work

We have presented efficient solutions to several

generalized intersection problems involving non-

iso-oriented objects. Our methods have included

sparse represent ations, persistence, and filtering

search.

Besides improving our bounds, three problems

are of particular int crest: (i) obtaining dynamic

data structures for the generalized problems con-

sidered here, (ii) obtaining linear-space or near

linear-space solutions with output-sensitive query

times (of the form O(n~+i) or O(nP+i.;polylog( n)),

O < p < 1) for the generalized halfspace range

searching problem in d ~ 4 dimensions and for

the generalized simplex range searching problem

in d z 2 dimensions, and (iii) solving the counting

versions of Problems 3–7 in Table 1.
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