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ABSTRACT

This paper explores 3D object recognition basedboal shape
descriptor. 3D object recognition is becoming acréasingly
important task in modern applications such as cderptision,
CAD/CAM, multimedia, molecular biology, roboticspé so on.
Compared with general objects, CAD models contaiorem
complicated structures and subtle local featuttes éspecially
challenging to recognize the CAD model from thenpalouds
which only contain partial data of the model.

We adopt the Bag of Words framework to do the phtt-
global 3D CAD retrieval. In this paper the visuands diction-
ary is constructed based on the spin image loealife descrip-
tor. The method is tested on the Purdue Engine&@éarghmark.
Furthermore, several experiments are performechtavshow
the size of query data and the dissimilarity mezs@nt affect
the retrieval results.

Categoriesand Subject Descriptors
1.2.10 [Vison and Scene Understanding]: Shape, Representa-
tions, data structures, and transforms

General Terms
Algorithms, Performance, Reliability.

Keywords

CAD model retrieval, bag of words, spin image.

1. INTRODUCTION

Large number of 3D models are created everydaystored in
databases. In order for these 3D databases to dfal,use
should be able to search on them. Therefore, ifiteatton, re-
trieval and classification of 3D objects are beaman increas-
ingly important task in modern applications suchcamputer
vision, CAD/CAM, multimedia, molecular biology, rofics,
and so on.

With recent developments in 3D range scannerspbssible
to capture 3D shapes in real time. However, becafifee limi-
tation of the point of view, the occlusion in theese, and the
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real time requirement, only parts of the object bancaptured
during scanning. This proposes a challenging rekearoblem:
given an incomplete point cloud of an object, howstrieve the
corresponding complete model from a database. 18plthis
problem will also benefit several other applicatipsuch as data
registration [Mitra06], model fixing [Founkhousejp4nd so
on.

Nevertheless, most of the 3D shape retrieval methere
based on global shape descriptors, which requiectmplete
geometry of a 3D object, such as Light Field degors
[Chen03], spherical harmonics descriptor [Kazhdn@32
shape distribution [Osada02]. That these methodsat suit-
able for solving the problem provides an impetusrate meth-
ods for partial-to-global 3D shape identificatiordamatching.

Besides the benefits of partial-to-global retrievakal de-
scriptors can capture more local details than bargtobal ones.
Compared with general objects, CAD models have ncore-
plicated structure with holes and other local feedu Using
global information, these subtle details can belewgd. From
this aspect, local descriptors are better.

In this paper, we present a complete frameworlp&rform-
ing 3D partial shape identification on 3D CAD parBeveral
experiments are performed to show how the sizeuefygdata
and the dissimilarity measurement affect the resfieesults.

The organization of the paper is as follows. Sdvesiated
works are summarized in Section 2. Section 3 ceslihe whole
framework of our method, and introduces two cru¢aims:
bag-of-words and spin image. Then, the procedufdsature
extraction and similarity computation are describe8ection 4.
In Section 5, we provide the 3D shape retrievalilteson the
Purdue Engineering Benchmark.

2. RELATED WORK

In order to perform 3D partial-to-global shape isstal, the
following methods have been proposed. [PodolakO§joits
the symmetry of the shape. [Mitra06] [Frome04] depeocal
shape signatures. Because of its simplicity anceigdity, the
bag-of-words method, which is insensitive to defation, ar-
ticulation and partial missing data, has attradted of interest
in 2D [Li05] and 3D [Shan06] [Liu06] [Ohbuchi08]efids. In
[LiO5], the method is applied to images by usingisual ana-
logue of a word, formed by vector quantizing twgiomal de-
scriptors: normalized 11*11 pixel gray values atéTSdescrip-
tors. In [Shan06] and [Liu06], visual feature dictary is consti-
tuted by clustering spin images in small regioms.otder to
procure partial-to-whole retrieval, Kullback-Leibldivergence
is proposed as similarity measurement in [LiuOGjjleva prob-
abilistic framework is introduced in [Shan06]. Rbe sake of
collecting visual words, Ohbuchi et. al. [Ohbuchi@@ply SIFT
algorithm to depth buffer images of the model cegdufrom



uniformly sampled locations on a view sphere. Aftector
quantization, Kullbak-Leibler divergence measutes similari-
ties of the models. But these methods focus orrgtréeval of
general objects.

Compared with general objects, CAD models have a&emo

complicated topology with holes and other localtdeas. In

[Ip07], partial CAD retrieval is achieved basedsmgmentation,
which directly affects the retrieval results. Tipiaper aims to
develop a new method for 3D CAD parts identificatia simi-

lar circumstance as in [Ip07]. That is, given aknown partial

3D point cloud of a part, we are trying to identifye part based
on the known CAD model in a database. Moreover, fame-

work is closely related to that of [Liu06] and [$i8&], which

does not require segmentation at all.

3. OUR FRAMEWORK

We first describe the whole framework of our methadd then
introduce the concept of the spin image [Johnsor®@] then
give several examples.

3.1 Our framework

Our method is divided into two stages as showrigiaré 1. The
first stage is completed off-line, aims to constraiwisual word

dictionary based on a 3D database. First, locdufea are ex-
tracted from each model in the database. Secodldstering or

classification method is applied to the featurdemion to con-

struct the visual word dictionary. The second stagen-line

comparison. For the query data, we extract locatufes and
search the dictionary for the nearest visual wive.then repre-
sent the query data with a feature vector, in wigiabh element
corresponds to one visual word in the dictionand ¢he value
denotes the frequency of the word appearing inqthery data.
Finally, a certain dissimilarity metric is chosem dompare the
difference between the query data and the modethendata-
base. A retrieval rank list is the output of thenfiework.
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Fig. 1. Our framework
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Fig. 2. Extracting low level features with spin images

As shown in Figure 2, the spin image, which is iesat to the
rotation and translation transform, characterizes Ibcal ap-
pearance properties around its basis ppimtithin the support
ranger. It is a two-dimensional histogram accumulatihg t
number of points located at the coordinates), whereo andp
are the lengths of the two orthogonal edges of ttlengle
formed by the oriented basis point whose orientation is de-
fined by the normah, and support poirg. The final size of the
spin images is defined by the width and the heafhthe spin
plane. We choose it as the low level feature dpsariin this
paper. Figure 3 demonstrates several spin imageacted
from different positions from the bunny.

Fig. 3. Demonstration of spin images. The support range r i
defined as the radius of the model. The width agidht of the
spin image are all 256

4. IMPLEMENTATION

In this section we will elaborate the details of tmethod pro-
posed in previous section.

4.1 Low level feature extraction

Because the 3D meshes may be composed of largéngniii-
angles, instead of calculating spin images basedhenmesh
vertices [Johnson99], a two passes sampling proeeduper-
formed here. Using Monte-Carlo strategy [Osada@#],each



3D mesh N, oriented basis points with normaln and Ngsup-

port pointsg are sampled uniformly on the surface in two passes

respectively, wher8l,=800,Ns=50000 Other parameters of spin
image are defined as: 1) r =R4whereR is the radius of the
mesh. 2) the width and height of spin imagestsase=h=10.

Now a large number of spin images are collectechftbe
3D shape database. Each mesh is represented\yipin im-
ages.

4.2 Visual wordsdictionary construction

With N,* Ny, spin images, wher, is defined previously an,,
is the number of 3D meshes we used for building viseal
words dictionary, k-means algorithm is applied gglamerateN

clusters. HereN equals to 1500, which defines the size of the

dictionary. Therefore, each spin image is assignigd the in-
dex of its nearest cluster. Actually, other clusigralgorithms
[Moosmann08] can be adopted to do the work. Funtesearch
needs to be done to analyze the effects of diffecarstering
algorithms and the size of the dictionary.

4.3 3D shaperepresentation

For a new shape data, no matter if it is a compteidel or just

a partial point cloud of an object; we represenising the vis-

ual words in the dictionary. The representation banderived

via three steps as follows:

1. Extract the low level features using spin images.

2. Calculate the distances between the spin imagesttend
visual words. The shortest distance indicates wetcan
use the corresponding visual word to record this §p-
age.

3. Count the number of times each visual word appears
this shape.

Therefore, each shape is represented by a vBetoxy, X, ..,

Xn )- This is explained visually in figure 4.
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Fig.4. Shape representation

4.4 Dissimilarity computation
The requirements for dissimilarity measure for theatial-to-
global retrieval task are quite different than giebal-to-global
retrieval problem. As described in [Liu06], suppdbkere are
query data composed of a head and a torso, ighdyhprobable
that a human model is a candidate shape for thesyquHow-
ever, the human model is not a part of this querta.dThat
means the distance between the query data anddtel does
not equal to the distance between the model andukey data.
The dissimilarity metric should reflect this asyntrieeproperty.
To satisfy this requirement, an ordinary symmetlistance
measurement, such as L1, L2, is not a suitableceh&iL diver-
gence is one of the metrics which satisfies thenasgtric prop-

erty. We will demonstrate the different retrievasults using L1
and KL distance metric in the next section.

5.EXPERIMENTAL RESULTS

The Purdue Engineering Benchmark (PEB) [Jaynti®é]ich

contains 801 3D CAD models, is chosen as the 3[Deskata-
base. It is classified into 42 classes such assc¢®j “T-shaped
parts” and “Bracket-like parts”.

Figure 5 shows the Precision Recall curves [Shidhevith
KL divergence measurement when using differentigdasizes
of the object as query data. G-G means it is the®@Re for the
global-to-global retrieval, P2-G means half of thginal model
is used as the query data, P3-G means one thitldeadriginal
model is used as the query data, and so on. fiegthe intui-
tive feeling that less information will lead to veer retrieval
results. However, even with reduced informationsoeable
performance is observed, suggesting robustneseahéethod.

Precision

IR R T T S T WL L T I R
o Yoa? or P ot W P & T s oA : e
o 07 4% 07 1 0f 0F o7 W of % o7 (B o VT oF BT of

Recall

Fig. 5. The precision recall curves regarding with diffdreize
of the query data

In order to show the effects of using differentalice metric,
we draw two PR curves corresponding to these twinicegsee
figure 6). Only one sixth of the model is used aerg data.

Partial retrieval - Use 1/6 part of the object as query
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Fig. 6. The precision recall curves regarding with differelis-
similarly metrics

Figure 7 provides two examples comparing the nedfiee-
sults of global-to-global retrieval and partialgtobal retrieval.
The top figure shows the results when using a dsoquery
shape. For Partial-to-Global retrieval, the lefp tpart of the
door is used as query data. In fact PEB contairg ®rdoor



models; both G-G and P6-G retrieval rank all theodr models
on the top of the retrieval list. The bottom figigieows results
when using a gear as query shape. It shows thaP@& re-
trieval is better than the G-G one, since P6-G find more
gears than G-G. Why does the partial-to-globaleesit perform
better? It seems impossible. However, recallingdiinition of

feature vector describes the frequency of the Viawads ap-
pearing in the shape. When using the entire gedehto be the
query data, the plane-kind of visual word overwhéfra other
features. However, using partial of the object eéothe query
data, the gear teeth shape dominates the whole sBapmore
gears are picked out, and listed on the top ofishe

the feature vector will provide some clues to tinsveer. The

/

Partial retrieval
Use 1/6 part of the object as query

(a) First example to show the difference betweenb@lo-Global (G-G) and Partial-to-Global (P-Gjrieval. The left figures show the

Global-to-G-G retrieval result using a complete eloghe first image listed in the first line) asthuery. The right figures show the P-G

retrieval result using 1/6 part of the complete giqthe second image listed in the first line) las uery. The top 20 models are listed
orderly according to the similarity metric.
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(b) The second example to show the difference Ev@ G and P-G retrieval. The layout of the imageke same as that of (a).
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Fig. 7. Two examples of retrieval results



6. CONCLUSIONS

In this paper, we propose to use the bag-of-worddainfor 3D
CAD parts retrieval. The spin image is chosen asldlal fea-
ture detector. We perform experiments to studyeffectiveness
of the method to solve the problem of partial-tokgll 3D shape
recognition. The results demonstrate the effecégsnof the
method.
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