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ABSTRACT 
In this paper we demonstrate the use of a dynamic, six-degree-of-
freedom (6DOF) laser tracker to empirically evaluate the 
performance of a real-time visual servoing implementation, with 
the objective of establishing a general method for evaluating real-
time 6DOF dimensional measurements. The laser tracker provides 
highly accurate ground truth reference measurements of position 
and orientation of an object under motion, and can be used as an 
objective standard for calibration and evaluation of visual 
servoing and robot control algorithms. The real-time visual 
servoing implementation used in this study was developed at the 
Purdue Robot Vision Lab with a subsumptive, hierarchical, and 
distributed vision-based architecture. Data were taken 
simultaneously from the laser tracker and visual servoing 
implementation, enabling comparison of the data streams.  

Keywords 
computer vision, laser tracker, dynamic 6DOF metrology, 
performance evaluation. 

1. INTRODUCTION 
Real-time three-dimensional vision has been rapidly advancing 
over the past twenty years, leading to a number of successful 
laboratory demonstrations, including real-time visual servoing 
[7,16,17]. However, the advances have frequently not yet made 
the transition to commercial products, due in part to a lack of 
objective methods for empirical performance evaluation. To 
ensure a new algorithm for optical flow, stereo, visual servoing, 
laser Simultaneous Localization And Mapping SLAM, or other 
dynamic visual 3D task is valid, it would be very helpful to have a 
reference standard sensor system (ground truth) along with 
appropriate metrics for the comparison of test systems with the 
reference system. Standards and test procedures for dimensional 
metrology are well-established and highly accurate for static 
measurements, with coordinate measuring machines and laser 
trackers giving position measurements to microns. However, the 
theory, technology, and test procedures are not well established 

for dynamic dimensional measurements in uncontrolled 
environments.  

In this paper we demonstrate the use of a dynamic, six-degree-of-
freedom (6DOF) laser tracker to empirically evaluate the 
performance of a real-time visual servoing implementation, with 
the objective of establishing a general method for evaluating real-
time 6DOF dimensional measurements of an object or assembly 
component under moderately constrained motion. The proposed 
evaluation procedure collects data simultaneously from the laser 
tracker and the visual servoing system under test, so the two data 
streams can be compared. Laser trackers produce highly accurate 
position and orientation data at a high data rate and for the 
purposes of this study will be considered ground truth.  

The questions addressed in this work primarily focus on how to 
collect and compare the data streams. Issues here include 
synchronizing the data streams, so individual data points are taken 
at the same time; external calibration of the two sensors, so 
individual data points can be compared in the same coordinate 
system; and comparison metrics, so individual data points can be 
compared between the two sensors to determine how close the 
system under test comes to the ground truth. It would be useful to 
have comparison metrics that are robust to errors in 
synchronization and calibration, or even not dependent on 
calibration, to ensure accurate comparisons in the field.  

The real-time visual servoing implementation used in this study 
was developed at the Purdue Robot Vision Lab using a 
subsumptive, hierarchical, and distributed vision-based 
architecture for smart robotics [3,6,16,17]. This is a robust, 
advanced dynamic visual servoing implementation with a high 
level of fault tolerance to non-cooperative conditions such as 
severe occlusions and sudden illumination changes. The Purdue 
system combines a ceiling mounted camera with a trinocular 
system mounted on the robot end-effector, and uses position 
based visual servoing (PBVS). The work in this paper is aimed at 
the evaluation of sensors for PBVS, in which the servoing system 
senses the position and orientation of the part in 3D coordinates, 
as opposed to image based visual servoing (IBVS), in which the 
servoing system senses the position and orientation of the part in 
2D image coordinates.  
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2. PREVIOUS WORK 
The general need for empirical evaluation has been well-
recognized in the computer vision literature. Here we review 
articles on empirical evaluation of sensor-only 6DOF static and 
dynamic pose estimation, as well as articles on evaluation of 



visual servoing algorithms that may combine sensor evaluation 
with robot control issues. In reviewing the literature, there are a 
number of questions that can be asked: what is under evaluation 
(pose estimation only, pose calculated for visual seroving, or 
other tasks), how measurements are taken from the system under 
test, how ground truth or other reference measurements are taken, 
what metrics are computed from the measurements, and how the 
metrics are interpreted to give summary judgments on system 
performance. We also have looked at the conditions of each test 
to consider the objects, motions, occlusions and environment. 

For pose estimation, most evaluation papers consider static pose 
only [9,12] and not dynamic 6DOF sensor measurements of a part 
under motion. References [12,13] use Monte Carlo simulation for 
the evaluation of pose algorithm accuracy under noise and object 
orientations. In those articles, results are given for pose estimation 
for a complex industrial part and the error from unnamed ground 
truth is plotted as position or orientation error vs. the rotation of 
the object. The key result is to note the error as a function of part 
rotation varies considerably, spiking at ambiguous orientations of 
the object. Two papers that do consider dynamic pose are [10,15]. 
In [10] benchmarked video sequences are used for tests of a 
model-based algorithm with four parameter variations to analyze 
the relative contributions of subcomponents such as the edge 
detection operator or search technique. The results are given as 
deviations from the results of the one parameter set that 
successfully maintained track through the video sequences, but 
the nature and quality of this retrospective ground truth is not 
described in the article. In [15] three tracking approaches for 
6DOF pose estimation and grasping of hand-held objects are 
evaluated using ground truth from an unnamed infrared marker 
tracking system good to 1.5 meters in position but with no 
rotation accuracy or measurements per second cited. The three 
approaches run at 8 Hz to 25 Hz. The article gives results in 
graphs that compare ground truth position and orientation data to 
robot end-effector position and tracked position, but no 
quantitative or summary statistics are given for the graphed data.  

For visual servoing, many papers that present a new approach 
include an empirical evaluation, but since the paper emphasizes 
the development of the new approach, the evaluation section can 
be brief. An exception is [8] which uses sensitivity analysis and 
simulation to compute the contribution of image measurement 
errors to the calculated pose and control trajectory for PBVS and 
hybrid visual servoing.  

The metrics used to evaluate pose estimation and visual servoing 
systems vary. Typical is the mean and standard deviation of a 
measure of error in world coordinates, including individual 
differences for each coordinate, a norm for position and 
orientation separately, or rarely a combined norm for all 6 degrees 
of freedom. The orientation can be compared in roll-pitch-yaw or 
as quaternions. In experiments without ground truth in world 
coordinates, or for IBVS in which pose in world coordinates is not 
computed, errors are computed in the image domain. [5] uses the 
reprojection error in the image domain. In some visual servoing 
evaluations, the metric is the number of cases successfully 
completed during the experiments.  

In physical experiments in the evaluation of pose estimation or 
visual servoing, a mechanism must be used to generate motion, 
frequently a robot arm [2,4,15]. [15] uses an arm to move a 
camera towards a car battery through a known trajectory linear in 

both translation and angle, and repeats the motion 80 times to 
judge repeatability of the tracking algorithm.  

3. PURDUE LINE TRACKING SYSTEM 
Using robots to perform industrial assembly tasks is not new.  In 
fact, robots have been used successfully in such applications over 
the past few decades.  However, one common constraint still 
present in most of these applications is that the objects to be 
manipulated by the robot must be stationary in a known position, 
or moving along a well-known path with a very small amount of 
uncertainty.  Consequently, industrial tasks such as painting, 
palletizing, welding, or decking have traditionally been set up in 
stationary locations in the assembly line where the involved parts 
have to come to a complete stop.   

In order to eliminate inflexible, expensive stationary stations in 
the assembly line, robots must be able to perform their tasks on 
moving targets.  The Purdue Robot Vision Lab addresses this goal 
using a subsumptive, hierarchical, and distributed vision-based 
architecture for smart robotics [3]. The system consists of 
multiple real-time control modules running in parallel, where each 
module is controlled by a different tracking method, with unique 
capabilities with respect to accuracy, computational efficiency, 
sensitivity to varying conditions, etc.  By taking the most reliable 
input from all the modules, the system is able to achieve a high 
level of fault tolerance and robustness to non-cooperative 
conditions such as severe occlusions and sudden illumination 
changes. 

In this architecture, each control module can be in a different 
hierarchy level.  The more accurate the module is, the higher its 
hierarchy level. Modules from higher hierarchies can subsume 
functionality of modules in lower levels.  Each module can run 
independently in a different computer over a network. Any 
number of modules is allowed in any given level of hierarchy, 
providing redundancy and fault tolerance. 

Each module is composed of two main parallel processes. The 
first process is the visual-tracking loop that estimates the 6DOF 
3D pose of the target object.  This loop can be further broken 
down into three main parallel threads: data acquisition, data 
processing, and message exchange.  The second process is the 
visual-servoing loop, which generates commands to the robot to 
move its end-effector to a desired position.  This second loop is 
composed of two main threads: the message exchange and the 
control law calculation. 

Even though every control module is able to run at its own sample 
rate and accuracy level in our architecture, only one module will 
be able to pass its generated command to the robot controller.  
The arbitrator listens to all the control modules and decides which 
module input to use to control the robot, based on module 
availability, estimation reliability, and module hierarchy. 

Finally, the robot controller is implemented at the top of the robot 
controller interface.  Therefore, the control modules in our system 
fall into the position-based look-and-move category [7].  This 
means that the robot controller is receiving commands directly in 
the Cartesian space, which makes the control plant much simpler 
compared to the image-based servoing category [3].  However, 
the position-based servoing requires camera calibration, robot 
calibration, and hand-eye calibration [6]. 



3.1 Peg and Hole Experiment 
In order to demonstrate the capabilities of this architecture, we set 
up a variation of the traditional peg-and-hole experiment (see 
Figure 1).  In our experiment, we attached a hollow wooden 
cylinder to an engine cover part, and attached a peg to the end-
effector of a 6DOF robot manipulator. The engine cover is loosely 
attached to a linear slide, so the main motion of the engine cover 
is provided by the motion of the linear slide.  In addition, we also 
attached strings to the engine cover, which a human can 
manipulate to generate random motions of the engine cover 
during the experiment.  The goal of this experiment is to 
command the robot to insert the peg into the cylinder on the 
engine cover while the engine cover is in motion, resembling the 
automation needed to perform tasks such as glass decking or 
wheel decking on-the-fly [16]. 

Our system consists of three control modules, a system arbitrator, 
and a robot controller interface.  The three control modules are: 
coarse control, model-based fine control, and stereo-based fine 
control. 

 
Figure 1.  Peg and Hole experiment 

3.2 Coarse Control 
The coarse control module resides at the lowest level in the 
system hierarchy, meaning that it will work only when the other 
two modules become unavailable or unreliable.  Its main purpose 
is to provide an initialization point for the controllers with higher 
hierarchy.  That is, the coarse control is intended to track the 
target and command the robot to an approximate location in front 
of it.  This module only requires the level of accuracy that would 
place the end-effector in front of the target such that cameras for 
the other controllers can view the target. 

Coarse control visual-tracking uses a camera mounted on the 
ceiling with a view of the entire workspace. When the target 
object enters the workspace, the bar holding the target is detected 
and the 3D translational position of the bar in the coordinates of 
the robot is estimated.  No rotation information is needed here.  
This estimated pose is passed to the visual-servoing loop that in 
this case would simply command the robot to move its end-
effector near the target. 

3.3 Stereo-based Fine Control  
This is the control module that resides at the highest hierarchy 
level in the system, meaning that while tracking the target it 

subsumes the other two modules.  It uses a stereo pair of cameras 
located on the robot's end-effector. 

The visual-tracking loop in this module uses a blob analysis 
algorithm to detect, in both cameras, three prominent coplanar 
features on the engine cover.  Then, using the calibration 
information, the 3D coordinates of those features are 
reconstructed, and the 6DOF 3D pose of the target is estimated in 
the robot coordinate system [17].  Based on the estimated pose, 
the visual-servoing loop then performs the peg-and-hole motion 
using a Proportional-Integral-derivative (PID) control law. 

Since the 3D pose estimation relies on the visibility of three 
specific features on the engine cover, this module will only work 
if all three features are detected in both cameras. 

Using an efficient blob analysis algorithm makes this module run 
very fast.  It takes an average of 8.2 ms to estimate the 3D pose of 
the target, which is more than sufficient to process stereo images 
at 30 frames per second.  However, this approach requires some 
thresholds to extract the blobs, making this module sensitive to 
sudden illumination changes. 

3.4 Model-Based Fine Control 
The main purpose of this module is to provide redundancy to the 
stereo-based fine controller.  It uses a monocular vision system 
and a known wire-frame model of the target [16]. 

The visual-tracking loop of this module first projects the model 
into the input scene with respect to the initial pose that is given by 
the coarse control module or the stereo-based control module. 
Then, it sequentially matches the straight lines of the wire-frame 
model to the detected edges in the scene for an updated 
calculation of the pose of the target. For robust pose estimation, it 
uses a backtracking scheme for correspondence search [16]. 

Since this module uses extracted edges in the image, as opposed 
to applying thresholding to extract blobs in the stereo-based 
control module, it is less sensitive to illumination changes.  Also, 
since the number of model features used in this module is 
typically much larger than 3 (the bare minimum number of 
features required to estimate the pose of an object), it is naturally 
robust to partial occlusions.  However, it is slower than the 
Stereo-Based controller. It takes an average of 48 ms to estimate 
the 3D pose of the target, where 80 % of the computation time is 
taken by the edge detection phase. 

4. EVALUATION EXPERIMENTS 
In the experiments, the visual tracking system was set up to 
perform the peg and hole task using an engine part cover as the 
target. The engine part was either stationary or moved by an 
overhead linear rail at a constant velocity. The part was suspended 
from the linear rail to allow the experimenters to move the part 
back and forth by an attached string.  

During each pass of the experiment, the position of the engine 
part was measured simultaneously by the Purdue visual tracking 
system and the NIST laser tracker. Data acquisition from each 
system was triggered by a common hardware signal, and the data 
time stamped and streamed to storage for off-line comparison.  



The key elements of the data collection system were the laser 
tracker, the simultaneous data collection, and the establishment of 
common coordinate systems through calibration. 

 

4.1 Laser Tracker 

 
Figure 2.  SmartTRACK  sensor below engine part 

The laser tracker system used consisted of two major components, 
a base unit and an active target, both made by Automated 
Precision Inc1. (API). The active target is a SmartTRACK Sensor 
(STS) capable of determining its orientation in 3D space. 
Weighing 1.4 kg, the STS has an angular resolution specification 
of ±3 arc-sec (or ±0.000833… degrees). The complete 
manufacturer’s specification can be found in [18]. The base unit is 
the Tracker3TM Laser Tracking System (T3) which tracks the 3D 
position of the STS. The T3 system has ± 10 ppm absolute 
accuracy (e.g., ± 50 μm at 5 m). In addition, the base unit can be 
used with a passive target (a spherically mounted reflector (SMR) 
retro-reflective mirror) instead of the active target for single point 
measurements. 

Together, the T3 and STS provide an accurate but limited 6DOF 
pose estimation system. The STS and T3 devices can take 
measurements independently at their own rate or they can be 
connected to a common external trigger. 

4.2 Synchronization Issues 
Both the T3/STS system and the Purdue visual-tracking system 
allow an external signal to trigger their data acquisition.  
Although the STS/T3 system is capable of handling a trigger 
signal up to 150 Hz, the visual-tracking system requires a 30 Hz 
data stream.  We use a single 30 Hz trigger signal shared by both 
systems. 

                                                                 
1 Certain commercial equipment, instruments, or materials are 
identified in this paper in order to adequately specify the 
experimental procedure. Such identification does not imply 
recommendation or endorsement by NIST, nor does it imply that 
the materials or equipment identified are necessarily best for the 
purpose. 
 

Although a shared trigger signal provides a solution to 
simultaneous measurements, the trigger itself needs to be reliable, 
repeatable, and controllable. We use a digital function generator 
that can be programmed to produce a clean squarewave signal.  
The digital function generator also allows us to start and stop the 
signal with a push of a button. The resulting signal is 
deterministic and free of the button-bouncing effect typically 
associated with inexpensive analog function generators. 

The data collection programs maintain their own sequence 
number, which is increased each time a trigger signal is received. 
In addition, the program time-stamps the sequence number with a 
microsecond timer from the computer clock.  Both systems 
synchronize their computer clock with a NTP (Network Time 
Protocol) server every 10 s  throughout the entire data collection.  

For data to be a matched pair, we require them to have the same 
sequence number.  In addition, we check the difference between 
the corresponding timestamps and verify that the difference is 
small (i.e., the difference should never be greater than the period 
of the trigger signal shared by the two systems). 

4.3 External Calibration Issues 
To evaluate data collected during the experiments, we need to 
define metrics to compare the 6DOF pose data collected by the 
API T3/STS laser tracker and the Purdue line tracking system.  
There are eight coordinate systems involved, defined in Figure 2. 
We want to establish relationships between data collected in the 
coordinate system T of the laser tracker and one more coordinate 
systems of the Purdue system. We use the notation  to 
denote the homogenous transformation from coordinate system Y 
to X, so 

YHX

T HW is a transformation from W coordinates to T 
coordinates. The 6DOF pose of the object O in the T3 coordinate 
system would be represented by .  OHT

 
Figure 2.  The coordinate systems of the Purdue Line Tracker 

and the STS/T3 Tracker System 



 
Figure 3.  The world coordinate system 

External calibration provides an estimate of the homogeneous 
transformation matrix (H) between the world W, and the robot 
base B, where W is defined by the calibration pattern behind the 
target as shown in Figure 3.   

If we can successfully use the laser tracker coordinates T to 
establish the transformation  or   between the world 
(W)  and T3, we can relate the coordinate T to the robot base B 
coordinate as in Equation 1. 

WHT THW

 
 

X 
Y 

Z 

 
Figure 4.  The object coordinate system (Y=OB, Z=up) 

 

We don't have direct access to the origin of the engine cover O 
coordinates.  Instead we use the Cartesian positions of three 
features (A,B,C), to reconstruct the coordinate frame for O with 
respect to coordinate T (see Figure 4).     

We use the T3 laser tracker with an SMR to measure A, B and C 
in T coordinates. We then compute the origin O as the midpoint 
between A and B, and use the position of C to complete the object 
reference frames.  Hence we construct   or  .  

Similarly, we construct  by measuring the origin of W.   
OHT THO

WHT

Given   from T3/STS system, we obtain   from 
Equation 2. 

THS OHS

OTTSOS HHH ×=  Eq.  2 

Using Equation 1 and Equation 2, we establish transformations 
between the T3 base system T and the object system O in both the 
T3 and Purdue system, and compare those two transformations. 
The ground truth transformations provided by the T3/STS are on 
the left hand side, and the measurements provided by Purdue 
system and the hand-eye calibration are on the right hand side: 

OBBWOSSTTW HHHHH ×=××  Eq.  3 

This gives the relationship W HO (laser )=W HO (visual )  and the 
inverse between the two systems in a common coordinate system, 
where visual stands for the Purdue tracking system.   

Now we relate the two estimations of the inverse O HW   in the 
world coordinate system. In Equation 3, the calibration error in  

 ,  and  can’t be eliminated, so the absolute 
measurement approach was not used in this paper. 

THW OHS BHW

Since the Purdue system is a tracking system, the differential pose 
with respect to time is computed every cycle.  It is reasonable to 
compare the differential pose between ground truth and the 
Purdue system using the world coordinates. We define Oi HW (P ) 
as the pose of the engine part in the world coordinate at time i for 
the Purdue Tracking system  as the pose of the engine 
part in world coordinate at time i for the ground truth system 
(laser tracker).  

)(GHWOi

We can then obtain the following relationships for each system 
between time i and time i+1: 

   )()()( 11 PHPHPH OiOiOiWWOi ++ =×

  )()()( 11 GHGHGH OiOiOiWWOi ++ =×

As one can see from the above derivation, the differential 
measurement will not depend on coordinate system.   This 
approach produces the same numerical result for  

and  in any coordinate system.  

)(1 GHOiOi +

)(1 PHOiOi +

5. EXPERIMENTAL RESULTS 
We present here preliminary results from a series of experiments 
conducted at Purdue in April, 2008. The protocol was to run three 
sets of experiments, one with the target stationary, one with the 
target moving with a simple linear velocity, and one with the 
target moving with a linear velocity but randomly displaced 
manually by the experimenters. The results are given below for 
the three sets. 

The experiment had two complications. One is that the calibration 
of the laser tracker and Purdue system proved difficult and we 
were not able to establish a full set of coordinate transformations 
between laser tracker and visual system data. We did establish 
enough to compare relative poses, which are reported. Also, the 

BWWTBT HHH ×=  Eq.  1 



Purdue system is both a visual tracker and a robot control system. 
The data may at times confound the effects of both subsystems, as 
the robot introduces a physical motion. We only wished to 
evaluate the performance of the visual tracker. 

5.1 Stationary Tests 
The stationary tests allowed us to evaluate the basic performance 
of both systems and assure that the laser tracker was performing 
to specifications after shipping. The target was placed in four 
positions and data collected for 15 to 30 seconds for each. The 
results showed that both systems performed within specifications. 

Table 1 lists the standard deviations of the stationary data set 
measured by the STS/T3 system.  The results are consistent with 
the specifications [7]. The laser tracker stayed in a fixed position 
so the target distance varied.  

Table 1. STS/T3 system: repeatability for stationary data 

 Sample 
Size 

T3/STS mean 
distance (mm) 

2 std 
(mm) 

Position 1 466 3550.054 0.006 

Position 2 1157 3781.466 0.006 

Position 3 1050 3882.787 0.005 

Position 4 1018 4002.035 0.008 
 

Table 2 lists the standard deviations of the stationary data set 
measured by the Purdue system.  The Purdue system moves the 
robot end-effector near the object, so the distance remains 
relatively constant.  The results show a consistent value near 0.6 
mm at a range of approximately 2.6 m.   

Table 2. Purdue system: repeatability for stationary data 

 Sample 
Size 

T3/STS mean 
distance (mm) 

2 std 
(mm) 

Position 1 466 2670.582 0.629 

Position 2 1157 2625.820 0.582 

Position 3 1050 2625.036 0.560 

Position 4 1018 2636.701 0.561 
 

For use as a reference system, a metrology technology should 
have an accuracy at least one order of magnitude greater than the 
system under test. In this case, the laser tracker is two orders of 
magnitude more accurate than the Purdue vision system. 

5.2 Linear Motion Tests 
In the linear motion tests, the target was moved about 1.5 meters 
left to right and tracked by both the laser tracker and the Purdue 
system. For each trial, the motion was repeated 30 times as the 
target moved, and then was quickly moved back to the start 
position. The backward sweep was ignored in the data analysis as 
the Purdue system only tracked during the forward motion.  

The differential motion as measured by both systems was used to 
determine the consistency between laser tracker and Purdue 
system. In effect, the comparison is being made on the measured 

speed of the target in each separate coordinate (X,Y,Z, roll, pitch, 
yaw).  

The data below are from pass 6 of the first trial, and are typical of 
the linear runs. The sample size is 453, with 33 ms between data 
points. In the graphs below the horizontal axis is frame number, 
and the vertical axis is the difference between the laser tracker 
motion change (delta) in each coordinate and the Purdue system 
delta. Since the laser tracker was accepted as ground truth, the 
difference is defined as the error in the Purdue system. 

In Figure 5 the errors can be seen to be consistent and relatively 
independent of position along the path, although that is yet to be 
evaluated statistically. The error does vary by coordinate – 
different coordinates proved to be more sensitive to the left-to-
right motion.  In object coordinates the target is moving in the Y-
Z plane, primarily in the Y direction, and the Z coordinate has 
slightly less error. Similarly, the roll angle is around the X axis, 
and proved an order of magnitude reduced in error over the other 
rotations. Table 3 quantifies the error values, while Figure 6 gives 
a histogram of the error values to show roughly symmetric, zero 
centered error distributions. For coordinate Y there appears to be 
a secondary peak in positive error. 

 
Figure 5.  Pass 6 – Coordinate Errors in Delta vs. Frame 

Number 

 
Figure 6.  Pass 6 – Coordinate Errors in Delta (histogram) 



Table 3. Pass 6 – Coordinate Error Statistics (n=453) 

 Mean Std Max Min 

X in mm 0.01614 0.45376 1.49003 -1.41190 

Y in mm -0.03513 0.33355 1.27399 -1.32852 

Z in mm 0.05206 0.21991 0.74652 -0.69851 

distance -0.04305 0.33273 1.21320 -1.50436 

Roll in deg 0.00168 0.04915 0.14368 -0.16532 

Pitch in deg 0.00088 0.40811 1.21672 -1.27938 

Yaw in deg 0.00184 0.21589 0.56194 -0.71260 

Total angle -0.04798 0.05195 0.03383 -0.28635 
 

5.3 Shaking Motion Tests 
In the shaking motion tests, the basic target motion and repetitions 
were identical to those in the moving target test, but the 
experimenters could pull a string to swing the target with an 
impulse motion. This was done through a series of different 
motions – first with no extra motion to match the linear case, then 
with the impulse motion varying by amplitude and frequency.  

The data below are from pass 3 of the first shaking motion trial. 
The sample size is 455, with 33 ms between data points. In the 
graphs below, the horizontal axis is frame number, and the 
vertical axis the difference between the laser tracker delta in each 
coordinate and the Purdue system delta.  

 
Figure 8.  Pass 3 – Coordinate Errors in Delta vs. Frame 

Number 
The graphs show four impulse motions as the target was pulled 
back four times, relatively smoothly and consistently. The error 
first goes positive as the speed of the target slows down and the 
Purdue system undershoots the speed, and then negative as the 
Purdue system overshoots the speed. The graph scales have 
changed from the linear motion case, as the error range has 
approximately doubled. The Z axis remains the one with lowest 
error, while the roll angle error is greater compared to the linear 

motion tests as the impulse motion rotated the target around the 
X-axis. 

6. CONCLUSIONS 
In this paper we have demonstrated the use of a precision laser 
tracker to evaluate a state-of-the-art visual servoing perception 
system, with the objective of establishing general techniques for 
evaluating 6DOF sensors. The demonstration involved a 
synchronized data collection system that used a hardware trigger 
to collect at a 30 Hz rate, while the laser tracker has the ability to 
collect at up to 150 Hz. The laser tracker was verified accurate 
enough for the approximate 1 mm range of error that needed to be 
measured.   

Future work will involve a more detailed analysis of the data and 
the establishment of better calibration techniques and metrics to 
insure consistent comparisons between laser tracker and sensor 
data streams. 

 
Figure 9.  Run 6 – Coordinate Errors in Delta (histogram) 

Table 4. Run 6 – Coordinate Error Statistics (n=453) 

 Mean Std Max Min 

X in mm 0.00219 1.13255 2.90429 -3.32659 

Y in mm -0.04633 1.26350 2.21070 -3.62808 

Z in mm -0.01445 0.58950 1.42051 -1.53047 

distance 0.90879 0.95975 3.77670 -1.84237 

Roll in deg 0.00362 0.30460 0.87745 -0.78979 

Pitch in deg -0.00329 0.50645 1.48264 -2.10615 

Yaw in deg 0.00103 0.23520 0.61750 -0.76112 

Total angle -0.42713 0.30752 0.15745 -1.51979 
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