
Parallel Programming with
Control Abstraction

LAWRENCE A. CROWL

Oregon State University

and

THOMAS J. LEBLANC

University of Rochester

Parallel programming involves finding the potential parallelism in an application and mapping it

to the architecture at hand. Since a typical application has more potential parallelism than any

single architecture can exploit effectively, programmers usually limit their focus to the paral-

lelism that the available control constructs express easily and that the ~ven architecture

explolts efficiently. This approach produces programs that exhibit much less parallelism than

exists in the application, and whose performance depends critically on the underlying hardware
and software.

We argue for an alternative approach based on control abstmctlon. Control abstraction M the

process by which programmers define new control constructs, specifying constraints on state-

ment ordering separately from an implementation of that ordering. With control abstraction

programmers can define and use a rich variety of control constructs to represent an algorlthm’s
potential parallelism.

Since control abstraction separates the definition of a construct from its implementation, a

construct may have several different implementations, each exploiting a different subset of the

parallelism admitted by the construct. By selecting an implementation for each control construct

using annotations, a programmer can vary the parallelism in a program to best exploit the

underlying hardware without otherwise changing the source code This approach produces

programs that exhibit most of the potential parallelism in an algorithm, and whose performance

can be tuned simply by choosing among the various implementations for the control constructs m
use.

We use several example applications to illustrate the use of control abstraction m parallel

programming and performance tuning and describe our implementation of a prototype program-
ming language based on these ideas on the BBN Butterfly

An early version of some of this material appeared in the Proceedings of the 1992 International

Conference on Computer Languages [Crowl and LeBlanc 1992].
This work was supported by the National Science Foundation under research grant CDA-8822724

and the OffIce of Naval Research under research contract NOOO14-92-J-1801 (jointly funded hy
ARPA, HPCC Software Science and Technology program, ARPA Order No. 8930). The U.S.
Government has certain rights m this material.
Authors’ addresses: L. A. Growl, Computer Science Department, Oregon State University,
Corvallis, OR 97331-3202; email: crowl@cs.orst.edu; T. J. LeBlanc, Computer Science Depart-
ment, University of Rochester, Rochester, NY 14627-0226; em ail: leblancc;cs .rochester.edu.
Permission to copy without fee all or part of this material M granted provided that the copies are
not made or distributed for direct commerc~al advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying M by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
@ 1994 ACM 0164-0925/94/0500-0524 $03.50

ACM Transactmn. .n Pmgrammmg LanjymgesandSystems,VOI 16, NO 3, May 1994,Pages524–576

http://crossmark.crossref.org/dialog/?doi=10.1145%2F177492.177584&domain=pdf&date_stamp=1994-05-01


Parallel Programming with Control Abstraction . 525

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming; D.2.m [Software Engineering]: Miscellaneous—reusable
software; D.3.2 [Programming Languages]: Language Classifications-concurrent, distri-

buted, and parallel languages; D.3.3 [Programming Languages]: Language Constructs and
Features—abstract data types; concurrent programming structures; control structures; proce-

dures, functions, and subroutines; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—control primitives

General Terms: Algorithms, Design, Languages

Additional Key Words and Phrases: Architectural adaptability, closures, control abstraction,

data abstraction, early reply, multiprocessors, parallel programming languages, performance

tuning

1. INTRODUCTION

Applications generally contain more potential parallelism than any one ma-

chine can effectively exploit. Although an application may have an efficient

realization on a wide range of architectures, including vector processors,

bus-based shared-memory multiprocessors, distributed-shared-memory ma-

chines, and distributed-memory multicomputers, each class of architecture

may exploit a different subset of the parallelism inherent in the algorithm.

When we write a program, we typically limit consideration to the parallelism

in the algorithm that a given machine can effectively exploit, and we ignore

any other potential parallelism. While this approach may result in an effi-

cient implementation of the algorithm on a given machine, the program is

difficult to tune or port to different architectures because the distinction

between potential and exploited parallelism has been lost. All that remains in

the program is a description of the parallelism that is most appropriate for

our original assumptions about the underlying machine.

Architectural adaptability is the ease with which programmers can tune or

port a program to a different architecture. Many sequential programs adapt

easily to a new architecture because the source code embeds few assumptions

about the underlying machine. Parallel programs, on the other hand, often

contain embedded assumptions about the overhead of process management

and the cost of communication and synchronization. When an architecture

violates any of these assumptions, the program must be restructured to avoid

serious performance degradation or to exploit alternative sources of paral-

lelism. This restructuring can be complex, because the underlying assump-

tions are rarely explicit, and the ramifications of each assumption are diffi-

cult to discern.

In this article we address one aspect of architectural adaptability for

parallel programs-the ease with which programmers can select the paral-

lelism in an algorithm appropriate for a given machine. This particular

aspect of adaptability is important because we often cannot predict the most

efficient parallelization for a given architecture in advance, and a significant

change in parallelization may require a drastic change in source code. Our

approach to adaptability requires that a program specify all the potential

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



526 . L. A. Crowl and T. J. LeBlanc

parallelism in an algorithm that architectures of interest might exploit. While

only a subset of the potential parallelism is realized on a given architecture,

including other potential parallelism in the source code facilitates perfor-

mance tuning and porting to other architectures.

We are interested in supporting this approach in explicitly parallel impera-

tive programs. These programs use control flow constructs, such as fork,

c obeg i n, and parallel for, to introduce parallel execution. Since the expres-

sion of parallelism in these languages is fundamentally an issue of control

flow, the control constructs provided by the language can either help or

hinder attempts to express and exploit parallelism.

Given the importance of control flow in parallel programming, it seems

premature to base a language on a small, fixed set of control constructs.

Additionally, if we are to encourage programmers to specify all potential

parallelism, we must make it easy and natural to do so; no small set of

control constructs will suffice. What is required is a mechanism to create

new control constructs that precisely express the parallelism in an algo-

rithm. Control abstraction provides us with the necessary flexibility and

extensibility.

With control abstraction, programmers can build new control constructs

beyond those a language may provide. Each programmer-defined control

construct accepts, as a parameter, some code to execute and its execution

environment—a closure. An implementation of the construct executes the

code in an order consistent with the construct’s definition. For example, using

control abstraction, we can define a f ora I I construct that accepts a range of

integers and a body of code to execute for each integer in the range. The

semantics of f ora 11 could be that iteration i + 1 may not proceed until

iteration i ends, thereby requiring sequential execution. Alternatively, the

semantics might allow iteration i + 1 to overlap or even precede iteration i,

admitting parallel execution. Using control abstraction, the programmer

specifies the exact semantics of the construct, as well as the implementations.

Much like data abstraction, which hides the implementations of an ab-

stract data type from users of the type, control abstraction hides the exact

sequencing of operations from the user of the control construct. When the

semantics of a construct, such as f ora 11, admit either a parallel or sequen-

tial implementation, the user of the construct need not know which imple-

mentation is actually used during execution. The program will execute cor-

rectly whichever implementation is used.

In general, a control construct defined using control abstraction may have

several different implementations, each of which exploits different sources of

parallelism. Programmers can choose appropriate exploitations of parallelism

for a specific use of a construct on a given architecture by selecting among the

implementations. The definition of a control construct represents potential

parallelism; an implementation of the construct defines the exploited paral-

lelism. Using annotations, we can easily select alternative implementations of

control constructs (and hence select the parallelism to be exploited) without

changing the meaning of the program, and thereby achieve architectural

adaptability.

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 3, May 1994



Parallel Programming with Control Abstraction . 527

1.1 Related Work

In creating a parallel program, the programmer must decide what paral-

lelism to exploit, how to map that parallelism to processors, how to distribute

data among processors, and how to communicate between parallel tasks.

Researchers have proposed several techniques that address each of these

problems; in this article we focus on the first problem, specifying and exploit-

ing parallelism. Our goal is to expose all of the potentially useful sources of

parallelism in the source code of a program, while allowing the user to select

the parallelism to exploit in the implementation. Our approach is compatible

with techniques developed by others to address mapping [Hudak 1986;

Snyder 1984], distribution [Coffin and Andrews 1989; Coffin 1992; Alverson

and Notkin 1993], and communication [Black et al. 1987].

1.1.1 Parallel Function Evaluation. Functional programs have no side

effects, so expressions may be evaluated in any order. As a consequence,

parallelism in functional programs is implicit, in that expressions can be

evaluated in parallel. There are two sources of parallelism in function evalua-

tion: parallel evaluation of multiple arguments to a function and evaluation

of a function in parallel with its caller (the promise or future). Owing to the

difficulty of automatically finding and exploiting the optimal sources of

parallelism in a functional program, several researchers have suggested the

use of annotations to specify lazy, eager, parallel, and distributed function

evaluation [Burton 1984; Halstead 1985; Hudak 1986].

ParAlfl [Hudak 1986; 1988] is a functional language that provides annota-

tions to select eager evaluation over lazy evaluation, resulting in parallel

execution, and to map expression evaluation to processors. A mapped expres-

sion in ParAlfl can dynamically select the processor on which it executes. An

eager expression executes in parallel with its surrounding context. By using a

combination of eager and mapped expressions, a programmer can select the

parallelism to be exploited and map it to the underlying architecture. The use

of mapped and eager annotations does not change the meaning of the

program, which in a functional programming language does not depend on

the evaluation order. Thus, ParAlfl achieves a significant degree of architec-

tural adaptability, requiring only changes to annotations to port a program

between architectures. ParAlfl achieves this goal only in the context of

functional languages, however. Many of the issues that we must address

before we can achieve architectural adaptability for imperative programs do

not arise in functional programs, including the expression of potential paral-

lelism, the effect of exploiting parallelism on program semantics, and the

relationship between explicit synchronization and parallelism.

Although pure Lisp is functional, most Lisp-based programming languages

are imperative. Like ParAlfl, an imperative Lisp can exploit parallelism in

function evaluation by selecting either lazy or eager (and potentially parallel)

evaluation. For example, Multilisp [Halstead 1985] (and Qlisp [Goldman et

al. 1990]) provides the function pc a I I for parallel argument evaluation, and
future for parallel expression evaluation. Unlike ParAlfl, Multilisp is an

imperative language with assignment. Since parallel execution may affect the

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



528 . L A. Crowl and T. J LeBlanc

order of assignments, the use of PC al 1 and future to introduce parallelism

can affect the semantics of the program. In particular, a programmer can use

future only when certain that it will not produce a race condition. Halstead

advocates a combination of data abstraction with explicit synchronization and

a functional programming style to minimize the extent to which side-effects

and parallelism conflict.

To the extent that only the side-effect-free subset of Multilisp is used, both

pca 11 and future can be thought of as annotations that select a parallel

implementation without affecting the semantics of the program. Like ParAlfl,

a side-effect–free Multilisp program can adapt easily to a new architecture

with the addition or deletion of peal 1 and future. However, Multilisp was

not designed to be used in such a limited fashion. A Multilisp program that

uses side-effects to any significant degree cannot adapt easily to a new

architecture, since exploiting alternative parallelism in the program requires

that the programmer understand the relationship between side-effects and

the intended use of pcall or future.

1.1.2 Data Parallelism. Data-parallel languages provide high-level data

structures and data operations that allow programmers to operate on large

amounts of data in an SIMD fashion. The compilers for these languages

generate parallel or sequential code, as appropriate for the target machine.

APL [Budd 1984], Fortran 8x [Albert et al. 1988], and its descendant Fortran

90 [ANSI 1990; Metcalf and Reid 1990] provide operators that act over entire

arrays, which can have parallel implementations. The Seymor language

[Miller and Stout 1989] provides prefix, broadcast, sort, and divide-and-con-

quer operations, which also have parallel implementations. These languages

restrict parallelism to a particular set of operations on data structures.

The Paralation model [Sabot 1988] and Connection Machine Lisp [Steele

and Hillis 1986] support data parallelism through high-level control opera-

tions such as iteration and reduction on parallel data structures. These

operations, which represent a limited use of control abstraction, are not a

general solution to the problem of specifying parallelism in explicitly parallel

programs, since they define parallelism solely in terms of a particular data

structure.

1.1.3 Fixed Control Constructs. Explicitly parallel languages typically

provide a limited set of parallel control constructs that programmers use to

simultaneously represent and exploit parallelism. Fortran 90 loosens the

correspondence between potential and exploited parallelism with the do
across construct, which has both sequential and parallel implementations.

Programmers use do across to specify potential parallelism, and the com-

piler can choose either a sequential or parallel implementation as appropri-

ate. Compilers on different architectures may make different choices, thus

providing a limited degree of architectural independence.

The Par language [Coffin and Andrews 1989; Coffin 1990; 1992] (based on

SR [Andrews et al. 1988]) extends the concept of multiple implementations

for a construct to user-defined implementations. Par’s primary parallel con-

trol construct is the co statement, which is a combination of cobegin and

ACM TransactIons on Programming Languages and Systems, Vol. 16, No 3, May 1994



Parallel Programming with Control Abstraction . 529

parallel for loops. The programmer may specify several implementations of

co, called schedulers, which map iterations to processors and define the order

in which iterations execute. Using annotations, a programmer can choose

among alternative schedulers for co, and thereby tune a program to the

architecture at hand.

Any single control construct may not easily express all the parallelism in

an algorithm, however. When the given constructs do not easily express the

parallelism in an algorithm, the programmer must either accept a loss of

parallelism or use the available constructs to express excessive parallelism,

and then remove the excess using explicit synchronization. The former ap-

proach limits the potential parallelism that can be exploited, while the latter

approach results in programs that are difficult to adapt to different architec-

tures. In the particular case of Par, programmers must express all paral-

lelism with co. There is a temptation to create new parallel control constructs

by embedding synchronization within an implementation of co. This ap-

proach changes the semantics of co, however, and leaves a program sensitive

to the selection of implementations, violating the Par assumption that anno-

tations do not change the meaning of the program.

1.1.4 Control Abstraction. Hilfinger [1982] provides a short history of

major abstraction mechanisms in programming languages, with an emphasis

on procedure and data abstraction. This history does not mention control

abstraction, although the mechanisms for control abstraction are present in

Lisp. Control abstraction has been used in several sequential languages to

support data abstraction. For example, CLU iterators [Liskov et al. 1977] (or

generators) are a limited form of control abstraction that allows the user of

an abstract type to operate on the elements of the type without knowing the

underlying representation. In CLU, and other languages designed to support

data abstraction, control abstraction plays a secondary role to the specifica-

tion and representation of abstract data types.

Given that parallelism is a form of control flow, control abstraction is

particularly important for parallel programming. Yet, to our knowledge, only

those parallel programming languages that inherit control abstraction from a

parent sequential language support it. Thus, even though Multilisp and

Paralation use Lisp closures in the implementation of the parallel program-

ming constructs presented to users, there is little or no recognition of the

benefits of user-defined control abstractions as a parallel programming tool.

1.1.5 User-Defined Control Constructs for Parallel Programming. B13Ns

Uniform System [Thomas and Crowther 1988] represents one approach to

user-defined control constructs for parallel programming. The Uniform Sys-

tem provides a global shared memory and a general-purpose task activation

routine, called Act ivateGen. This routine takes as parameters a task gener-

ation procedure and a work procedure. The task generation procedure typi-

cally consists of a loop that generates parameters for the work procedure; idle

processors invoke the task generation procedure to get work. Thus, genera-

tors are a form of control abstraction. The Uniform System provides built-in

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



530 . L. A. Crowl and T, J. LeBlanc

generators for manipulating arrays and matrices, but allows customized

generators to be implemented by calling Act i vat eGen directly.

Chameleon [Alverson 1990; Alverson and Notkin 1993] extends this form of

control abstraction by separating the partitioning and scheduling policy from

task generation. Thus, a task generator in Chameleon might specify that a

work procedure is to be applied to all elements in a two-dimensional array,

but the assignment of work to processors is specified separately in a parti-

tion-scheduler policy object (ps-object). By selecting among multiple ps-ob-

jects for a single task generator, one can easily vary the amount of work

assigned to each processor and control the assignment of tasks to processors.

Additionally, a ps-object can embed both affinity scheduling (executing a task

on a processor whose local memory contains the required data) and software

caching (loading the required data into local memory before execution begins).

Chameleon’s representation of parallelism is based on C + + functions, so

the programmer must explicitly pass the environment of a task as a parame-

ter to the task. Also, Chameleon relies on the dynamic binding of C++

virtual functions, which introduces enough overhead on every task to pre-

clude the use of tasks for fine-grain parallelism.

Both the Uniform System and Chameleon are run-time libraries, not

programming langaages, and therefore have similar limitations. Both sys-

tems have separate operations for data representation and scheduling, but

provide no explicit link to ensure compatible implementations. Both systems

use a run-to-completion execution model for tasks, which requires that all

synchronization use busy-waiting. Both systems were designed for numeric

problems, so the data distribution strategies are primarily intended for use

on arrays or matrices, and the control abstractions are limited to various

forms of loops.

The primary focus of both Par and Chameleon is on the use of data

abstraction and schedulers to hide data processing distributions that may

vary across architectures. Like CLU, Par and Chameleon provide the mini-

mum control mechanisms needed to support data abstraction and distribu-

tion; our approach to specifying parallelism via control abstraction is comple-

mentary to their approach to specifying data distribution via data abstrac-

tion.

1.2 Overview of the Article

In the following section we introduce a small set of mechanisms for program-

ming with control abstraction and present a notation for describing con-

straints on control flow in the implementation of a control construct. We use

these mechanisms and notation to define some common constructs for paral-

lel programming and present several implementations for each construct. In

Section 3 we use a number of concrete example applications to demonstrate

the power of control abstraction in parallel programming and to show some of

the effects on programming methodology that result from the liberal use of

control abstraction. In Section 4 we illustrate the role of control abstraction in

performance tuning by porting a parallel program among seven different

ACM Transactions on Programming Languages and Systems, Vol. 16, No, 3, May 1994



Parallel Programming with Control Abstraction . 531

shared-memory multiprocessors. This example not only illustrates the impor-

tance of multiple parallelizations for a single application, it also demon-

strates the effectiveness of control abstraction for tuning the performance of

parallel programs. In Section 5 we describe our BBN Butterfly implementa-

tion of Natasha, a prototype parallel language that supports control abstrac-

tion, and we argue that parallel programs based on control abstraction can

achieve execution efficiency comparable to that of conventional programming

languages. Finally, in Section 6, we summarize our experiences and present

our conclusions.

2. CONTROL ABSTRACTION

In this section we introduce both a small set of primitive mechanisms for

implementing control constructs and a notation for describing the allowable

execution orderings of control constructs built from these mechanisms. Using

this notation and the primitive mechanisms, we define an interface and

implementation for three parallel control constructs and show that the

implementations meet the specifications in the interfaces. Finally, we show

alternative implementations for these control constructs, each of which ex-

ploits a different subset of the parallelism admitted by the construct.

2.1 Primitive Mechanisms for Control Abstraction

Our primitive mechanisms for parallel programming with control abstraction

are: statement sequencing, operation invocation, first-class closures, early

reply, conditional execution, and condition variables. These mechanisms are

key components of Matroshka, an explicitly parallel imperative-programming

model, and are incorporated into Natasha, a programming language based on

the Matroshka model (see Crowl [1991] for additional details). With these

mechanisms, programmers can build a wide variety of control constructs to

represent the parallelism in an application.

2.1.1 Statement Sequencing. A sequence of statements defines a total

order on statement execution. Rotationally, we separate statements by a

semicolon, e.g., sl; sz. There are two kinds of statements, operation invoca-

tions and reply statements, both described below.

2.1.2 Operation Invocation. Operations are recursive procedures that ac-

cept parameters and return results. Operation invocation is synchronous with
respect to the caller; the caller waits for the operation to return a result

before proceeding. As in nearly all imperative programming languages, we

require that all arguments be evaluated in sequence before invoking the

operation. This requirement results in sequential evaluation of expressions,

without limiting the potential for parallelism in control flow.

In our programming model, all interprocess communication is implemented

by passing parameters to operations and returning results from them. Al-
though our focus is on shared-memory multiprocessors, an implementation of

this programming model on distributed-memory machines is possible, given

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



532 . L. A. Crowl and T. J LeBlanc

an implementation of operation invocation based on remote procedure calls or

message passing.

We apply the operation invocation mechanism uniformly to both program-

mer-defined operations and language-defined primitive operations. For pre-

sentation purposes, we use a procedural syntax for operation invocation and a

conventional infix notation for expressions. Nonetheless, we model all opera-

tions on data, including assignment, using invocations.

2.1.3 First-Class Closures. General control abstraction requires a mecha-

nism for encapsulating a sequence of operations. These operations must have

access to the environment in which the control construct is used. Like Lisp,

Smalltalk, and their derivatives, we use first-class closures to capture code

and its environment. Closures capture their environment at the point of

elaboration and may reference (and change) variables in that environment,

even though those variables may not be visible in the environment in which

the closure is eventually called (closures may access variables in the sur-

rounding environment using addresses in a shared-memory system or using

messages in a distributed-memory system).

Closures are, in essence, the in-line definition of a nested operation (proce-

dure). Operations are simply named closures. Both operations and closures

may be passed as arguments for later invocation.

Like procedures, closures may accept parameters and return results. Also

like procedures, closures are reusable, in that a program may invoke a

closure many times. Each invocation produces a separate activation, and

there is no implicit synchronization between activations.

In our syntax, the definition of a closure consists of a parameter list within

parentheses (with parameters separated by commas) followed by a sequence

of statements within braces. One of the statements may be the rep 1y

statement (all other statements are operation invocations), which returns

control to the point of invocation. A rep I y statement may contain a return

value expression; a rep 1 y without an expression simply returns control.

Using this syntax, a closure that accepts an integer parameter and returns

twice its value would be written as follows:

( arg : integer ) { reply 2*arg }

We can call a closure at the point of definition as follows:

( arg: integer ) { reply 2*arg } ( 4 )

The first pair of parentheses defines the parameter type, the brace~ define

the body of the closure, and the second pair of parentheses invokes the

closure with an integer argument. This example is somewhat atypical; we

normally name a closure and invoke it using that name, e.g., twice ( 4 ) .

Like procedures, a closure must be invoked before the first statement in the

closure can be executed. Additionally, the reply value must be evaluated
before the return from the closure occurs.

As an example of the use of closures in the definition of a control construct,

consider a for construct that iterates over a range of integers. The construct

ACM Transactions on Programming Languages and Systems, Vol 16, No 3, May 1994



Parallel Programmmg with Control Abstraction . 533

takes three parameters: an integer lower bound, an integer upper bound, and

a closure (corresponding to the loop body) that accepts an integer parameter.

The syntax for this construct is defined as follows:

define for ( lower, upper : integer;

body : closure ( iteration: integer ) )

An example of its use is:

for( 1, 10, ( i: integer ) { print i } )

In our examples we use three syntactic shortcuts. First, when a closure

takes no parameters, we omit the parameter list. Second, if a valueless reply

is the last statement in a closure, we omit the reply statement. Third, we

omit specifiers for closures’ return types when the closures return no value.

2.1.4 Early Reply. When an invocation of an operation (or closure) re-

turns a result, it may continue executing concurrently with the caller. That

is, upon executing a reply statement, a single process (the caller) splits into

two concurrent processes (the caller and the callee); the calling process

continues execution at the statement following the invocation, while the

callee continues execution at the statement following the reply. This mecha-

nism, called early reply, is the sole source of parallelism in Matroshka.1 This

mechanism is not new (for example, see Andrews et al. [1988], Liskov et al.

[1986], and Scott [1987]), but its expressive power does not appear to be

widely recognized.

We require that, in any implementation of early reply, both processes (that

is, the return to the caller and the continuation of the invocation) make finite

progress. One way to implement this guarantee is to use a fair, preemptive

scheduler in the underlying implementation of early reply. A nonpreemptive

scheduler could also be used, provided that both processes are guaranteed to

either block or terminate (thereby ensuring that both processes are able to

make finite progress regardless of which runs first).

Busy-waiting synchronization may prevent a process from terminating and

therefore cannot be used in tandem with a nonpreemptive scheduler, unless

knowledge of the scheduling policy can be used to ensure that both processes

make finite progress.

2.1.5 Conditional Execution. For conditional execution we adopt the ap-

proach of Smalltalk [Goldberg and Robson 1983] and depend on a Boolean

type and built-in i f operation that conditionally executes a closure. The

syntax for this construct is defined as follows:

define if ( cond: boolean; then_body: closure ( ) )

As in most programming languages, we evaluate the condition first, and if

the condition is true, we execute the compound statement (i.e., closure)

1 Early reply differs from rendezvous in that a new execution stream is created by early reply,

whereas rendezvous is a synchronization mechanism between two existing execution streams.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



534 . L. A. Crowl and T. J. LeBlanc

corresponding to t hen_body. We invoke the i f statement using a procedural

syntax:

if(y>O, {z :=X/y} )

Given the i f operation, we can build many other common control con-

structs for conditional execution. For example, we can define an implementa-

tion for an i f e 1 se construct as follows:

implement ifelse( cond: boolean;
then_body, else_body: closure ( ) )

{ if( cond, then_body ) : if ( not cond, else_body ) }

Similarly, the whi 1 e construct has the following recursive implementation:

implement while ( cond: closure ( ) : boolean; body: closure ( ) )
{ if( condo, { bodyo ; while( cond, body ) I ) }

The repeat construct, which repeatedly executes a boolean function (or

closure) until it produces f a 1s e as a result, has the following implementa-

tion:

implement repeat ( func: closure ( ) : boolean )
{ if( funco, { repeat ( func ) } ) }

We will use all of these constructs in our example programs.

2.1.6 Condition Variables. For expository purposes, we use condition vari-

ables for synchronization, since they are easy to describe and are sufficient

for our examples. We assume that an imperative parallel language based on

the Matroshka model would provide other synchronization primitives, such

as compare-and-swap or semaphores.

A condition variable has atomic signal and pending operations. The

s i gna 1 operation, which may only be invoked once for each condition vari-

able, certifies that the condition associated with the variable has been

established. The pending operation returns true if the condition has not yet

been established, and false otherwise. It does not wait for the signal. The

syntax for these operations is defined as follows:

define pending ( var cond: condition ) : boolean
define signal ( var cond: condltlon )

2.2 Specifying Execution Order in Control Constructs

A control construct defines an order of execution for a set of operations (or
closures). A sequential control construct, such as i f“ and whi 1 e, defines a

total order on the execution of the constituent operations. In contrast, a

parallel control construct, such as f ora 11 and cobegin, defines a partial

order of execution; the implementation of the construct need only execute the

operations in an order consistent with that partial order. Here we present a

notation for specifying the allowable partial orders c~f execution for parallel

control constructs.

A control construct may be used in many different contexts, with many

different operation parameters, and therefore the implementation of a con-

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 3, May 1994



Parallel Programming with Control Abstraction . 535

struct cannot, in general, exploit knowledge of the internal structure of the

operations it executes. Furthermore, our programming model provides no

mechanism for a control construct to suspend the execution of an operation it

has invoked. Given these two facts, a control construct can only impose an

order of execution on operations in terms of two events that take place during

the execution of an operation: the control transfer from the control construct

to the operation and the corresponding return. We will use $ op to denote the

transfer of control to an operation and ~ op to denote its return.

We use the precedes relation to describe constraints on the order of

execution imposed by a control construct. Our definition of precedes is similar

to Lamport’s [1978] happened-before relation and Hewitt and Atkinson’s

[1979] necessarily precedes relation, which are statements about causal

ordering of execution events. Informally, we say that “a precedes b” (written
a + b) if event a must occur before event b. We determine whether one event

must occur before another using the semantics of our primitive mechanisms.

For example, given

fo; g( ho )

the semantics of statement sequencing and operation invocation dictate that

~f+?f-+~h+?h--+$g-?g.

Also, if operation op has the closure definition,

(){ fo; replY90 }

and op is invoked by the following program fragment,

so; Opo; to;

then the semantics of operations, closures, and statement sequencing dictate

that

Similar precedence relations can be derived from the semantics of i f and

condition variables.

The transfer to an operation always precedes its return, and therefore V

operations op, J op - ~ op. Similarly, a control construct must begin execu-

tion before it can order the execution of any operations, so if op is passed as a

parameter to a control construct cc, then L cc - L op. The precedes relation

is transitive, but not symmetric.

Any construct defined using only the precedes relation has a valid sequen-

tial implementation corresponding to a topological sort of the relations. A

sequential implementation may not be appropriate however, especially when

the operations involved use explicit synchronization. For example, if the

operations representing the iterations of a parallel f ora 11 construct contain

explicit synchronization, then one iteration might block awaiting the comple-
tion of smother. A ~equential implementation in which the blocking operation

executes first causes deadlock. To avoid this problem, we introduce the

antiprecedes relation.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



536 . L. A. Crowl and T, J. LeBlanc

We use the antiprecedes relation to define causal orderings that the

implementation of a control construct cannot introduce. Informally, we say

that “a antiprecedes b“ (written a * b) if execution of event b does not

require that event a occur first. That is, event b cannot wait (even indirectly)

for event a to occur. Clearly, if b ~ a, then a * b. Additionally, the early-

reply mechanism allows an operation invocation to continue executing con-

currently with the caller. Therefore, if operation op has the closure definition,

(){ reply; fo )

and op is invoked by the following program fragment

Opo; go

then the semantics of early reply dictate that

The antiprecedes relation is neither symmetric nor transitive.

For notational convenience, we also define the conczu-rent relation. Given

two events, a and b, a II b means a + b ~ b * a. The concurrent relation is

symmetric, but not transitive.

When using the precedes and antiprecedes relations in the specification of

a control construct, the relations impose a requirement on all implementa-

tions of the construct. Thus, any control construct whose specification in-

cludes a ~ b requires that a ~ b in every possible execution of the con-

struct. Similarly, we use a * b in the specification of a construct to preclude
a + b in any implementation of the construct. This constraint allows the user

of a construct to introduce b + a (via explicit synchronization) in the opera-

tions passed to the construct without producing deadlock between the imple-

mentation and the operations (we illustrate this use of antiprecedes in the

definition of cobegin given below).

We use two conventions in the specifications of control constructs. First, we

use the shorthand notation + op ~ in place of + L op ~ ~ op ~ , Second,

we exploit the fact that J cc - L op is true of all operations op executed by a

control construct cc and interpret the absence of any such rule for a given

operation to mean that the operation is not executed at all by the control

construct.2 Thus, by convention, a control construct executes an operation

passed as a parameter to the construct if and only if the operation’s execu-

tion is present in the precedence rules for the construct.

Much like preconditions, postconditions, and invariants, our precedence

rules are not a required part of the source code for a program. The precedence

relations are used to define the semantics of a control construct and to reason

about the correctness of an implementation. Although these relations are not

required during compilation, we envision future programming systems that

use explicit representations of this information to aid the programmer in

writing parallel programs.

2 We use this convention to express conditional execution in control constructs.

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 3, May 1994



Parallel Programming with Control Abstraction . 537

2.3 User-Defined Control Constructs

A user-defined control construct uses the primitive mechanisms presented

above to execute a set of operations (or closures) in an order that is consistent

with the semantics of the control construct. To define a new control construct,

we must identify the syntax used to invoke the construct, specify the prece-

dence constraints on operation execution that apply to every implementation

of the construct, and provide at least one implementation of the construct

that meets those precedence constraints. We can also verify that the imple-

mentation meets the constraints. In this section, we use the i f e 1s e construct

described earlier to illustrate each of these tasks.

2.3.1 Syntax Description. The syntactic description of a construct defines

the parameters it expects, including any operations to be executed by the

control construct:

define if else ( cond: boolean; then_part, else-art : Closure( ) )

2.3.2 Precedence Constraints. The precedence constraints are specified

using the precedes and antiprecedes relations defined above.

The precedence constraints on all implementations of i f e Is e are:

~ if else ( true, then_part, else_part ) + then~art + ~ifelse
J if else ( fake, then_part , elSe_part ) - else_part ~ ~ifelse

The first precedence relation states that an invocation of if e 1s e with a

conditional expression that evaluates to true precedes the execution of

t hen_part. The second precedence rule states that an invocation of i f e 1s e

with a false condition precedes the execution of the e Is e~art. Note that
the absence of a precedence rule for invoking t hen_part when the condition

is fake, and for invoking e 1s e_part when the condition is true, means that

those operations are not executed under those circumstances.

2.3.3 Implementation. The implementation of a control construct uses the

primitive mechanisms of the language, and any previously defined control

abstractions, to implement an ordering on the execution of actions taken by

the control construct.

An implementation of i f e 1 se that meets its precedence constraints is:

implement if else ( cond: boolean;
then>art, else~art : closure( ) )

{ if ( not cond, else_part ) ; if ( cond, then_part ) )

Both this implementation, which attempts to execute the e 1 se_part first,

and the one given earlier, which attempts to execute the then–part first,

meet the constraints given in the definition of the construct.

2.3.4 Verification. We use the semantics of the primitive mechanisms for

control abstraction to verify that an implementation meets the specification

ACM Transactions on Programming Languages and Systems, Vol 16, No 3, May 1994.



538 . L, A. Crowl and T. J. LeBlanc

for a control construct. In the case of i f e Is e, one proof that the implementa-

tion given above meets the specifications is:

Jifelse( false, then_part, else_part) : Jifl ( true, else_part )

3 else_part 1 ~ifl ~ Jif2( false,
5

then_part )
6

+ ~ifz+ ~ifelse

Jlfelse ( true, then_part, else~art ) ~ Jifl( false,
8

else_part )
9

=’ ? ifl + L ifz ( true, then—pal-t )
10 11 12
+ then_part + Tif2+ Tifelse

Precedences 1 and 7 derive from the fact that an operation must be invoked

before any statement in the operation can be executed and the fact that the

condition passed to the first i f is the negation of the condition passed to

i f e Is e. Precedences 2, 3, 10, and 11 derive from the semantics of i f with a

true condition. Precedences 4 and 9 derive from statement sequencing and

the fact that the condition passed to the second i f is the same as the

condition passed to i f e 1s e. Precedences 5 and 8 derive from the semantics of

i f with a false condition. Precedences 6 and 12 derive from statement

sequencing, the implicit reply at the end of a closure, and the definition of

closures. By the transitivity of the precedes relation, we can infer that this

implementation meets the precedence constraints for i f e Is e.

2.4 Building Common Parallel Control Constructs

In this section, we provide examples of defining, implementing, verifying, and

using parallel control constructs. Our first example is the implementation of

a busy-waiting operation on condition variables. We use this operation in the

implementation of a parallel cobegin construct. We then use c obeg in in the

implementation of a parallel f oral 1 construct.

2.4.1 Wait on Condition. Given the condition variables defined in Section

2.1.6, we construct a wait operation that does not return until a condition

has been signaled. Our implementation will use busy-waiting; alternative

implementations based on blocking synchronization are also possible.

define wait ( var cond: cond~t ion )
Jsignal + ~walt

This construct has a straightforward implementation using i f and recursion:

implement wait ( var cond: condition )
{ if ( pending( cond ) , { wait ( cond ) } ) ]

We use induction on the number of recursive calls to wait and the semantics

of the primitive operations pending and s igna I to verify that this imple-

mentation satisfies the constraints in the definition of the construct. The base

case (no recursive calls to wait) occurs when pending returns a value of

false, which can only happen ifs ignal has already been invoked:

J,signal ~ ~pendlng :fake

Jwalt ~ pending :fake ~ J if ( false,
4 5

wait ) + ~if+ ~wait

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994



Parallel Programming with Control Abstraction . 539

Precedence 1 derives from the semantics of the primitive operations on

condition variables. Precedence 2 derives from the first statement of a closure

following the invocation of the closure. Precedence 3 derives from the evalua-

tion of pending as an argument before invoking if. Precedence 4 derives

from the semantics of i f with a false condition. Finally, precedence 5 derives

from statement sequencing, the implicit reply at the end of a closure, and the

definition of closures. By the transitivity of the precedes relation, we can infer

~signal + fwait.

The induction step occurs when s i gna I has not yet been invoked when

pending is evaluated:

Jsignal ~ ~wait recurszue

Jw;it ~ pending: true ~ J if ( true,
4

wait ) ~ wait
6

recursLve

+ ~if+ ~wait

Precedence 1 is the inductive assumption derived above. Precedence 2 derives

from the first statement of a closure following the invocation of the closure.

Precedence 3 derives from the evaluation of pending as an argument before

invoking if. Precedences 4 and 5 derive from the semantics of i f with a true

argument. Precedence 6 derives from the implicit reply at the end of a

closure, statement sequencing, and the definition of closures. Finally, by

transitivity, we have L signal + ~ wai t, which proves that the implementa-

tion meets the precedence constraint in the definition.

2.4.2 Cobegin. Our next example is a cobegin construct that allows two

closures to execute concurrently, returning control only when both closures

have returned from execution. Its syntax and precedence constraints are

defined as follows:

define cobegin( stmtl, stmt2 : closure ( ) )
J cobegin + stmtl + ~cobegin
J cobegin + stmt2 + ~ cobegin
J,stmt2 + $stmtl

These rules state, respectively, that both closures start execution after the

cobegin, that both closures return before the cobeg in returns, and in no

implementation may the invocation of s t mt 1 be required to wait (either

directly or indirectly) on the invocation of s tmt 2.

These precedence rules permit, but do not guarantee, a concurrent imple-

mentation based on early reply. (In particular, a sequential implementation
that executes st mt 1 first meets the precedence constraints.) We could add

another precedence rule, ~ s tmt 1 * L stint 2 and guarantee concurrent exe-

cution, since

J,stmt2 * $stmtl A J,stmtl + $stmt2 = $stmtl]l ~stmt2

However, doing so would preclude a sequential implementation. In general,

we avoid using control constructs that guarantee concurrency as building
blocks for other constructs, because they preclude sequential implementa-

tions of every construct in which they are used.

ACM Transactions on Programming Languages and Systems, Vol. 16, No 3, May 1994.



540 . L. A. Crowl and T. J. LeBlanc

implement cobegin( stmtl, stmt2: closureo )

{ var done: condition;

--- define and execute a closure to execute one argument

{ reply; --- begin parallel execution

stmtlo; --- invoke stmtl

signal( done ) --- signal stmt2 after stmtl has returned

30; --- directly execute the closure

--- execution continues here, in parallel, after the reply

stmt20; --- invoke stmt2

wait( done ) --- wait for signal from after stmtl

--- implicit reply from cobegin
1.J

Fig. 1. Implementation of cobegin

The definitionof cobegin given here is asymmetric, in that it allows the

implementation to introduce stmtl + stmt2, but not stmt2 - stmtl. We

could have defined asymmetric obeginconstruct by simply eliminating the

third precedence constraint. In that case, an implementation could execute

stmtl and stmt~ in any order. While this alternative definitionis intuitively

appealing, it could introduce deadlock in cases where stmt2 uses explicit

synchronization to wait for stmtl. By including the third precedence con-

straint, we accommodate both a sequential implementation ofcobegin and

explicit synchronization between stmtl and stmt2. We require however that

stmtl execute before stmt2 in any sequential implementation and that

strntl neverwait for stmt2. This definition ofcobeginallows stmt2 to wait

for stmtl regardless of the underlying implementationof cobegin. In the

next section we exploit this ordering of stmtl and stmt2 incobegin to build

an implementation of f o ra 11 in which lower-numbered iterations never wait

for higher-numbered iterations.

one possible implementation of cobegin appears in Figure 1. It uses only

the primitive mechanisms defined earlier and the wait operation defined

above. We use early reply as the source of concurrency and a condition

variable for synchronization.

We can show that the implementation meets the specification as follows:

J cobegin ~ J closure ~4explicit reply
3 5

explicit reply + stmtl + J signal - ~wait
6 7 8

explicit reply - stmt2 + J,wait + ~wait

~wait ~ implicit reply ~ ~ cobegin
11

J,stmt2 + $stmtl

Precedences 1 and 2 derive from the first statement in a closure executing

after the closure is invoked. Precedences 3 and 6 derive from the semantics of

early reply. Precedences 4 and 7 derive from the semantics of statement

sequencing. Precedence 5 derives from the definition of wait. Precedence 8

ACM Transactions on Programmmg Languages and Systems, Vol 16, No 3, May 1994



Parallel Programming with Control Abstraction . 541

derives from the semantics of operation invocation. Precedences 9 and 10

derive from the implicit reply at the end of cobegin, statement sequencing,

and the semantics of closures. Finally, precedence 11 derives from the

semantics of early reply. By the transitivity of the precedes relation, we can

infer that the implementation meets the first two constraints in the definition

of c obeg i n. Since precedence 11 is the third constraint, we have shown that

the implementation satisfies the definition.

2.4.3 Forall. In our next example we define an iterator over a range of

integers, analogous to a parallel for loop or a CLU iterator. The syntax for

the construct is:

define forall ( lower, upper: integer;
body : closure ( iteration: integer ) )

The precedence rules are:

~ forall ( lower, upper, body ) + Jbody( i ) [i: lower < i < upper]
~body( i ) + ~forall ( lower, upper, body ) [i: lower S i < upper]
Jbody( j ) + Jbody( i ) [ijj: lower < i <j < upper]

These rules state, respectively, that the f oral I starts before any iteration,

all iterations return before f ora I I does, and lower-numbered iterations do

not wait on higher-numbered iterations .3 Once again, we purposely omit a

rule that guarantees concurrency such as:

$body( i ) Il$body(j ) [i, j: i #jA lower <i, j< upper]

which states that the implementation must start all iterations before waiting

on the reply of any iteration.

We can use cobeg-in and recursion to build a parallel divide-and-conquer

implementation of f ora I I as in Figure 2. We omit the detailed proof that

this implementation satisfies the definition, but note that we rely on the

third precedence rule of cobegin to satisfy the third precedence rule of

forall.

2.5 Multiple Implementations for Control Constructs

Control abstraction separates the definition of a control construct from its

implementation, which permits multiple implementations for a given control

construct. Since our rules for each of the control constructs defined previously

deliberately left the partial order of execution underspecified, we can provide

either a parallel or sequential implementation.

Given that we have multiple implementations for a given control construct,

we need a mechanism for selecting an appropriate implementation. We use

g This last constraint imposes an ordering on iterations analogous to the ORDERED qualifier for

PARALLEL DO in PCF Fortran [Leasure 1990]. We exploit this property of f oral 1 in Sections 3.2
and 3.3.

ACM Transactions on Programming Languages and Systems, Vol. 16, No 3, May 1994.



542 . L. A. Crowl and T J. LeBlanc

implement forall( lower, upper: integer;

body : closure( iteration: integer ) )

~ if( lower = upper, ~ body( lower ) } );

if( lower < upper,

{ middle := (lower + upper) dlv 2;

cobegi.n( < forall(lower, middle, body) },

~ forall(middle+l, upper, body) } ) } ) }

Fig.2. Implementation offorall,

program annotations to associate the use of a control construct with an

implementation. Each implementation ofa control construct is named using

an annotation; that name is then usedto select the corresponding implemen-

tation at the point of use. In our examples we use descriptive names that

denote the parallelism providedby an implementation (e.g., $SEQUENTIAL,

$PARALLEL, $BLOCKED), but our compiler uses simple string matching to

select implementations and makes no attempt to interpret annotations.

2.5.1 Cobegin. Our earlier implementation of cobegin used early reply

and a condition variable to execute two closures in parallel. We can construct

a sequential implementation of cobeg in using statement sequencing:

implement cobegin $SEQUENTIAL ( stmtl, strnt2 : closure ( ) )
{ stmtlo ; stmt20 )

Note that the precedence rules in the definition of cobeg in require that

s t mt 1 precede s tmt 2 in any sequential implementation. It is easy to show

that this implementation meets the specification, since

stmtl () ; stmt2 () + J,stmtl + Jstmt2 = .jstmt2 + $stmtl.

We can select either this sequential implementation of cobegin or the

parallel implementation given above simply by using the corresponding

annotation at the point of use.

2.5.2 Forall. We have already shown a divide-and-conquer implementa-

tion of f oral 1 based on cobegin. If we truly desire a parallel implementa-

tion of f oral 1 then we must add an annotation to that implementation so as

to select the parallel implementation of cobegin. We will refer to the parallel

divide-and-conquer implementation based on a parallel implementation of

cobegin using the annotation $DIVIDED.

Of course there are many other possible implementations of f oral 1. For

example, rather than implement all iterations in parallel, it might be prefer-

able to implement iterations in blocks of size N, where N is determined by the

number of processors, the number of iterations remaining in the loop, or the

granularity of parallelism that can be efficiently implemented on the target

machine. One implementation based on this approach follows; other imple-

mentations based on dynamic loop-scheduling algorithms, such as guided

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No. 3, May 1994



Parallel F’rogrammlng with Control Abstraction . 543

self-scheduling [Polychronopoulos and Kuck 1987], could be implemented in a

similar fashion.4

implement forall $BLOCKED ( lower, upper: integer;
body: closure ( iteration: integer ) )

{ ifelse( lower +N>upper,

{ for( lower, upper, body ) },
{ cobegin $PARALLEL (

{ for( lower, lower+N–1, body ) },
{ forall $BLOCKED ( lower+N, upper, body ) } ) } ) }

Straightforward modifications to this implementation would allow consecu-

tive iterations to execute in parallel, while iterations separated by P (the

number ofprocessors) executein sequence. We will referto this implementa-

tions $CYCLIC.

In some cases, vector processors can exploit the parallelismin a forall

loop by invoking vector instructions. We would expect the compilerto recog-

nize a $VECTOR annotation and produce vector instructions for the loop.5 On

a vector multiprocessor, such as the Alliant FX, a single program can use

both the parallel and vector implementations of f orall.

In addition to the many parallel implementations of f oral 1 there are also

valid sequential implementations. For example, we can implement f ora 11

using the built-in sequential for operation as follows:

implement forall $SEQUENTIAL
( lower, upper: integer; body: closure( iteration: integer ) )

{ for ( lower, upper, body ) }

We can also construct a sequential implementation by modifying the parallel

divide-and-conquer implementation of f oral 1 to select a sequential imple-

mentation of c obeg i n. Although either approach results in a sequential

implementation, the use of the built-in for operation has two advantages:

the implementation of f oral 1 no longer requires an implementation of

c obeg i n, and we avoid any overhead associated with invoking the user-de-

fined cobegin operation.

These examples illustrate the power of control abstraction when used to

define parallel control flow mechanisms. With control abstraction, the defini-

tion of a control construct represents potential parallelism, while the imple-

mentation specifies the parallelism that is actually exploited during execu-

tion. The programmer can vary the parallelism in a program by using

annotations to select among the implementations for a set of control con-

4 There are several techniques that could be used to select a value for N at the point of use of the

f oral 1 construct. We could add a parameter to the definition of the f oral 1 construct; however,
doing so would change the interface to the f oral I construct and would require that we supply a
value for N even in the case of a sequential implementation. Alternatively, we could use a form of
macro substitution to define values for parameters in annotations.
5 We claim no particular advantage over vectorizing compilers in this case; however, this

example does illustrate how control abstraction can be used to represent fine-grain parallelism
explicitly.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994



544 . L A. Crowl and T. J. LeBlanc

structs, and thereby tune the program to a specific architecture or set of

inputs. In the following section, we use several example programs to illus-

trate this process.

3. PARALLEL PROGRAMMING WITH CONTROL ABSTRACTION

In this section we use concrete example programs to illustrate the issues that

arise when writing parallel programs with control abstraction. We first show

how to select a parallel implementation for Quicksort based on predefine

control abstractions. We then use Gaussian elimination to illustrate the

process of representing application-specific parallelism with control abstrac-

tion, including the interactions between control abstraction and explicit

synchronization. We use a simple model of a light bulb to illustrate how to

expose data dependence within closures so they maybe incorporated directly

into a control abstraction. In our final example, we examine the relationship

between control abstraction and data abstraction in the context of a parallel

program for subgraph isomorphism.

3.1 Selecting Parallelism with Predefine Control Constructs

In this section we illustrate the use of annotations to select a particular

parallelization for Quicksort using the predefine control construct cobegin.

There are two potential sources of parallelism we consider.G When the input

array is partitioned, the search for an element in the bottom half of the array

that belongs in the top half can occur in parallel with a similar search that

takes place in the top half. Similarly, the two recursive calls to Quicksort on

each half of the array can occur in parallel. One possible implementation

appears in Figure 3.

In this particular implementation we chose to exploit the coarse-grain

parallelism available during the recursive calls (using the $ PARALLEL anno-

tation to select the parallel implementation of the second c obeg in) and chose

not to exploit the finer-grain parallelism available during partitioning of the

elements. We could experiment with fine-grain parallelism by simply chang-

ing the $ SEQUENTIAL annotation to select the parallel implementation of the

first cobegin.

Current parallelizing compilers could probably find the fine-grain paral-

lelism automatically (there are no overlapping writes to variables), even

though this parallelism may not be useful on many multiprocessors. The

more important source of parallelism available in the recursive calls would be

much more difficult to find automatically.

3.2 Representing Application-Specific Parallelism

There are two distinct approaches to deriving a parallel program with control

abstraction. One approach begins with a sequential algorithm and exposes

any parallelism that does not violate the data dependence inherent in the

b In our examples, we assume a sequential implementation for any control construct for which no
annotation is given.

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No 3, May 1994



Parallel Programming with Control Abstraction . 545

var sorting: array [l. .SIZE] of integer;

implement quicksort $COARSE ( lower, upper: integer )

i var

if (

{

rising, falling, key: integer;

lower c upper,

rising := lower;

falling := upper;

key := sorting[louer];

uhile(

{ cobegin $SEQUEETIAL (

{ repeat( { rising+:= 1;

reply key >= sorting[rising] } ) },

{ repeat( { falling -:= 1;

reply key < sorting[falling] } ) } );

reply rising <= falling },

{ sHap sorting[rising] and sorting[falling] } );

sorting[lower] := sorting[fallingl;

sorting[falling] := key;

cobegin $PARALLEL ( { quicksort( lower, falling ) 1,

{ quicksort( falling+l, upper ) } ) } ) ~

Fig.3. Implementation of Quicksort.

problem. The alternative approach expresses all parallelismin the problem

and adds explicit synchronization that enforces data dependence. We will

illustrate these two alternatives using Gaussian elimination as an example.

We then show how to incorporate explicit synchronization within a control

construct and discuss the benefits ofdoing so.
To solve a set of linear equations using Gaussian elimination, we first

compute an upper triangular matrix from the coefficient matrix ikf, produc-

ing amodified vector ofunknowns ,which we then determine using back-sub-

stitution. In this example we will concentrate on the control constructs

needed to compute the upper triangular matrix, which is calculated by

eliminating (zeroing) the entries below the diagonal.

To eliminatean entry ill,,~, wereplacerow M, with Jf, –Jfl XM,,~/~l,l,

where Ml is known as the pivot row. We referto this operation as reducing

row i with j. We cannot perform this operation until row ml is stable, i.e.,

M= O,Vk <j. Additionally, all previous entries inrow i must alreadybe

el~~inated, i.e., M,, ~ = O, Vk <j. These two constraints limit the amount of
parallelism that we can expect to achieve.

3.2.1 Parallelizing a Sequential Program. A straightforward derivation of

a parallel program for Gaussian elimination begins with the sequential

algorithm for upper triangulation.7

7 We choose pivot equations in index order; numerically robust programs choose pivot equations
based on the data.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



546 . L. A. Crowl and T. J, LeBlanc

? ? ?

O\ ‘
\
\

‘7

Fig. 4. Phased implementation of Gaussian elimination.

var system: array [l. .SIZE] of array [l. .SIZE] of real;
for( 1, SIZE-1, ( pivot: integer )

{ for( plvot+l, SIZE, ( reduce: integer )
{ var fraction :. system[reduce] [pivot]

/ system[pivot] [piJot];
for( pivot, SIZE, ( variable: integer)

{ system[reduce] [variable]
-:= fraction * system[pivot] [variable] } ) } ) 1 )

Asimple parallel implementation ofthis algorithm replaces the inner two

for loops with parallel forall loops .8 This implementation exhibits very

fine-grain parallelism, since the innermost loop consistsof a small number of

arithmetic operations and a single assignment statement. Vector processors

could exploit the parallelism in the inner loop using the $VECTOR annotation.

To port the program to a vector multiprocessor, we would use a parallel

implementation for the outer forall and a vector implementation for the

inner forall.

Many multiprocessors lack vector units and could not profitably exploit the

parallelism in the inner loop. On these machines we could select an imple-

mentation that does not attempt to exploit fine-grain parallelism by choosing

the $ SEQUENTIAL annotation for the innermost loop. The resulting program,
which has a sequential loop nested within a parallel loop nested within a

sequential loop, exhibits a series of phases separated by the selection of a

pivot. The partial order of execution is illustrated in Figure 4.
Our experiments with this implementation on the BBN Butterfly showed

that processors spend too much time waiting for other processors to complete

8 Iterations of the outermost loop cannot be executed in parallel because of the constraint that an
equation cannot be used as a pivot until it has been reduced completely.

ACM TransactIons on Programming Languages and Systems, Vol 16, No, 3, May 1994



Parallel Programming with Control Abstraction . 547

\\ \\ ‘N
o---+ 0-+ 0-++ cJ\

\\\\
o— o— o— o— 0 ‘?

Fig. 5. Precedence constraints for Gaussian elimination.

each phase. These empirical results suggest a need for more parallelism in

the implementation.

3.2.2 Understanding an Application’s Parallelism. An alternative imple-

mentation of Gaussian elimination can be derived using the synchronization

constraints of the problem, rather than the implicit synchronization that

comes from serializing the outermost loop in the sequential algorithm. The

problem constraints are that pivot equations must be applied to a given

equation in order, and an equation must be reduced completely before it can

be used as a pivot. In our notation, these constraints (shown in Figure 5) are

expressed as follows:

~reducej with i + Jreducej withk
[i, j,k:l<i <j< size Ai<k s size]

~reclucej with i - Jreduce k wlthj
[i, j,k:l<i <~ Ssize Aj<k Ssize]

Rather than enforce these precedence constraints with serial execution, we

can admit greater parallelism in the implementation and enforce the con-

straints with explicit synchronization. In this new implementation, we pro-

cess all rows in parallel and use condition variables to enforce the synchro-

nization constraints.

var system: array [l. .SIZE] of array [l. .SIZE] of real;
var done: array [l.. SIZE] of condition;
signal( done [l] ) ;
forall $DIVIDED ( 2, SIZE, ( reduce: integer )

{ for ( 1, reduce- 1, ( pivot: integer )
{ wait ( done [pivot] ) ;

var fraction := system [reducel [plvotl
/ system [pivotl [Plvotl ;

ACM Transactions on Programming Languages and Systems. Vol. 16, No 3, May 1994



548 . L. A. Crowl and T. J. LeBlanc

forall( pivot, SIZE, ( variable: integer)
{ system[reducel [variable]

-:= fraction ‘ system[pivot] [varlablel } ) 1 ) ;
signal( done[reduce] ) } )

In this fully parallel implementation, all rows are processed in parallel.

The for loop ensures that all entries of aroware eliminated in sequence, as

is requiredby the problem constraints. As with the previous implementation,

aparticular pivot rowis appliedto all the entries in arow in parallel.

It is important to note that we cannot derive this particular version of the

program from the sequential algorithm simply by selecting an appropriate

combination of implementation choices for the f oral 1 construct. These two

implementation choices represent a tradeoff between the execution overhead

of explicit synchronization and the benefits of additional parallelism.

3.2.3 Incorporating Explicit Synchronization in Control Constructs. There

is a serious problem with the second implementation of Gaussian elimination

given above: we cannot select the use of explicit synchronization in tandem

with the parallelism we plan to exploit. In particular, we would have to

remove the explicit synchronization if we changed the annotation associated

with the outermost loop to $ SEQUENTIAL. The problem is that we have

embedded parallelism in the loop control construct and synchronization in

the body of the loop.

To solve this problem we define a new control construct, triangulate,

that moves synchronization from the body of the loop into the control con-

struct. Tr i angu 1 at e takes two parameters: the number of equations in the

system and a closure containing the work to be performed for each pivot and

reduction row pair. The construct encapsulates the possible parallelism and

required synchronization in selecting pairs of pivot and reduction equations.

The t riangu 1 at e construct invokes the closure with the appropriate pair-

ings, while maintaining the synchronization necessary for correct execution.

We define triangulate as follows:

define triangulate
( ,sIne: intege~-; work: closure ( pivot, reduce: integer ) )
J,triangulate( size, work ) + $work( i,j ) [i, j:l<i<J <size]

~work( i,j ) + $work( k,j ) [i, j,k:l<i <j<slze Ai<k <size]
~work( i,j ) ~ J,work( ~,k ) [i, j,k:l<z <j< sizeA~ <h< size]

~work( i,j ) - ~triangulate (size, work) [i, j: 1< i,j< size]

This construct has several implementations, including all of those dis-

cussed above. For example, we can create a sequential implementation of

t r i angu I at e simply by selecting a sequential implementation of fora 1 I as

follows:

implement triangulate $SEQUEIJTIAL
( size: ~nteger; work: closure ( p~vot , reduce : integer ) )

{ for( 1, size-l, ( pivot: integer)
{ forall $SEQUENTIAL ( pivot + 1, size, (reduce: integer)

{ work( pivot , reduce) } ) } ) }

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No 3, May 1994,



Parallel Programming with Control Abstraction . 549

Choosing the $DIVIDED annotation for forall produces triangulate

$ PHASES, which corresponds to the execution in Fi~~e 4.

we can implement triangulate $ PHASED_BLOCKED

$BLOCKED implementation of f ora 11. To exploit more

allowed by the problem’s synchronization constraints, we

ing implementation based on explicit synchronization:

implement triangulate $SYNCHED
( size: Integer; work: closure ( pivot, reduce:

{ vaz- done: array [l.. size] of condition;
signal( done [l] ) ;
forall $DIVIDED ( 2, size, ( reduce: integer )

{ for( 1, reduce-1, ( pivot: integer )
{ wait( done[pivotl );

work( pivot, reduce ) } ) ;
signal( done[reducel ) } ) }

In addition to this,

by selecting the

of the parallelism

can use the follow-

integer ) )

This implementation admits greater parallelism than triangulate

$pKM3E13,butmayin curhigher execution overhead dueto synchronization.

As before, we can replace forall $DIVIDED with forall $BLOCKED or

forall $CYCLIC to obtain triangulate $SYNCHED_BLOCKED and trian-

gulate $SYNCHED_CYCLIC.

This triangulate construct is similar to the built-in task generator

GenOnHalfArray inBBNsUniform System[Thomas and Crowther 1988] .A

Uniform System task generator accepts apointer to a procedure and executes

the procedure in parallel for each value produced by the generator. Thus,

generators are a limited form of control abstraction. The Uniform System

provides generators for manipulating arrays and matrices, including GenOn-

HalfArray, which generates the indices for the lower triangular portion ofa

matrix.

define GenOnHalfArray
( size: integer; work: closure( indexl, index2: integer ) )

$GenOnHalfArray( size, work ) - Jwork( i,j )
[i,j:l<i<j <size]

~work( i,j ) - ~GenOnHalfArray( size, work )
[i,j:l<i<j<size]

This generator provides the parallelismof ourtriangulat econstruct, but

without the synchronization constraints. As a result, the Uniform System

implementation must include explicit synchronization within the body of the

work. Using our notation and closures, Gaussian elimination using GenOn-

Hal f Array looks like this:

var system: array [l. .SIZE] of array [l. .SIZE] of L-eal;

var pivot_done: array [l. .SIzE] of condition;
var element_Clone: array [1. . SIZE, 1.. SIZE] of condition;
signal( pivot_done[ll ) ;
GenOnHalfArray $DIVIDED ( SIZE, ( pivot, reduce: integer )

{ trait ( pivot_ done [pivot] ) ;
If (pivot > 1, { walt( element_done [reducel [Pivot-11 ) } ) J
var fraction := system [reduce] [pivot] /

system [pivotl [plvotl ;

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



550 . L. A. Crowland T.J. LeBlanc

forall $DIVIDED ( pivot, SIZE, ( variable: integer )
{ system[reduce] [variable]

-:= fraction * system[pivotl [val-iablel } )

signal( element_done [reducel [pivot] ) ;

if( pivot = reduce-1, { slgnal( plvot_done[reducel ) } ) } )

This implementation uses explicit synchronization to provide theserializa-

tionimplicit in the for loopin triangulate $SYNCHED. Given the limited

facilities for creating new generators in the Uniform System, and the exis-

tenceofGenOnHa lfArray,this implementation is reasonable for the Uniform

System. Nevertheless, a more efficient implementation is possible if the

correct control construct is available or can be created easily.

Our original phased implementation of Gaussian elimination (based on the

sequential algorithm) and the implementations based on triangulate and

GenOnHal fArray illustrate the tradeoff between explicit synchronization

and the synchronization implicit in sequential control constructs. For exam-

ple, the synchronization implicit in the outermost sequential loop of our

original phased implementation unnecessarily limits the amount of paral-

lelism in the program. On the other hand, the explicit synchronization used

in the Uniform System program is both expensive and unnecessary. The

t r i angu 1 at e $ SYNCHED implementation is a balanced combination of ex-

plicit and implicit synchronization. It uses explicit synchronization to remove

the limit on parallelism imposed by the phased implementation and a se-

quential for loop to serialize the application of pivots to a single equation,

thus avoiding the extraneous explicit synchronization required in the Uni-

form System implementation.

When rewritten to use t r i angu I at e, the fully parallel code to form the

upper triangular matrix looks like this:

var system: array [l. .SIZE] of array [l. .SIZE] of real;
triangulate $SYNCHED ( sIz Er ( pivot, reduce: integer )

{ var fraction := system [reduce] [pivot]
/system [pivot] [pivot] ;

forall $DIVIDED ( pivot, SIZE, ( variable: integer )
{ system [reduce] [va~-iable]

-:= fraction * system [pivot] [variable] } ) } )

By selecting an appropriate implementation fort r i angul at e and the f oral I

construct embedded in its body, we can describe all of the previous paral-

lelizations of this problem. The programmer can select 35 different implemen-

tations of this program by varying the two annotations to select a divide-

and-conquer, blocked, cyclic, sequential, or vector implementation of fo ra I I

and a synchronized divide-and-conquer, synchronized blocked, synchronized

cyclic, phased divide-and-conquer, phased blocked, phased cyclic, or sequen-

tial implementation of triangulate. In our experience, t r i angu I at e

$ SYNCHED_CYCLIC and f ora 11 $ SEQUENTIAL produce the most efficient

implementation for the Butterfly. (See Figure 6 for a performance comparison

of triangulate $SYNCHED_C-YCLIC and triangulate $PHASED_CYCLIC

on the Butterfly.) We would expect triangulate $ SYNCHED_CYCLIC and

f ora I I $VECTOR to be the most appropriate combination for the Alliant. We

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No, 3, May 1994



Parallel Programming with Control AbstractIon . 551

Seconds

64

32

16

8

4

2

1

sequential

.,

,,

. .
ideal . .

. .
=_____..

. .
. .

. .

. .

I I I I I I I I I I

phased cyclic

synched cyclic

1 23468 12 16 24 32 48

f>rocessors

Fig. 6. Performance of triangulate annotations for Gaussian elimination on a 128 X 128
matrix on the BBN Butterfly.

can execute this same program on a Sun workstation by using triangulate

$SEQUENTIAL and f oral 1 $SEQUENTIAL.

In this simple example, the implementation oft riangulat e is more than

half the size of the entire program. We expect that the amount of code

dedicated to implementing control constructs in complete applications will be

a much smaller fraction of the total code, especially when programmers have

access to a library of control abstractions. Even in cases where the control

constructs are a significant portion of the code, control abstraction isolates

changes due to parallelism from the main logic of the program, including any

required changes in synchronization.

3.3 Splitting Closures to Expose Data Dependence

In the previous example we were able to separate synchronization from the

main body of computation (reducing a single equation in the matrix) and

embed it in the t r i angu I at e control construct. The code to reduce an

equation was unaffected by this change, since the dependence in the code

body were between entire iterations. Our next example illustrates how to

expose data dependence within a computation so as to isolate synchroniza-

tion in the control construct.

ACM Transactions on Programmmg Languages and Systems,Vol 16,No. 3, May 1994.



552 . L. A. Crowl and T. J LeBlanc

Our example implements a simple model of an incandescent light bulb. The

model accepts as input an initial temperature and a history of the source

current and voltage. It produces as output the history of power dissipated

(F’), filament temperature (~), and luminance of the light bulb (L). The

sequential code for this example is:

var P, T, L: al-ray [O. .N] of real;

TIO] : = AMBIENT_TEMPEP.ATUP.E ;

for ( 1, N, ( time: Integer )

{ P[time] := Powel-( Cu~-rent( time ) , Voltage( time ) ) ;

T[time] := Temperature T[time-1] , P[time] ) ;

L[time] := Lumlnance( T[timel ) } )

This example has a loop-carried data dependence between iteration i and

iteration i + 1 in the calculation of temperature. We cannot use f oral 1 to

specify parallelism in this example because it would violate this dependence.

One possible approach is to insert explicit synchronization around the second

statement in the loop, which contains the data dependence. Unfortunately,

the presence of synchronization within the body of the loop would then be

separate from the implementation of the loop, which is where we select the

parallelism to exploit.

In order to move the synchronization into a control construct, we must split

the body of the loop and expose the dependence to the loop construct. We

therefore define a new f oral I construct that uses a form of pipelining. It

accepts the loop in three pieces, corresponding to the statements that can

execute in parallel before and after the data dependence, and the statements

containing the data dependence.

define foral13( lower, uppez: integer;

head, body, tall : closure ( Iteration: integer ) )

~ foral13 ( lower, upper, head, body, tall ) + J,head( z )

[i: lower s i < head]

~head( i ) + Jbody( i ) [i: lower < i < head]
?body( i ) + J,tall( ~ ) [z: lower s i < head]

?body( i ) +J, body( i+l ) [i:lower S i < head]

~tail( i ) + ~foral13 ( lower, upper, head, body, tail )

[z: lower < z < head]

For every iteration, the implementation of fora113 must execute heal,

body,, ancl t ai 1, in sequence. In addition to this, the implementation must

execute body, before body, + ~. Within these constraints, the construct admits

several different parallel implementations. One implementation that might

be produced by a parallelizing compiler executes all of the heads in parallel,

each of the bodies in sequence, and all of the tails in parallel.

implement foral13 $pHASED

( lower, upper : integer;

head, body, tail : closure( iteration: Integer ) )

{ forall $DIVIDED ( lower, upper, head ) ;

for( lower, upper, body ) ;

forall $DIVIDED ( lower, uppe~ , tail ) }

ACM Transactions on Programmmg Languages and Systems, Vol 16, No 3, May 1994



Parallel Programming with Control Abstraction . 553

An alternative implementation that allows heads and tails to execute in

parallel, thereby allowing even greater parallelism, uses explicit synchroniza-

tion to enforce the dependence.

implement foral13 $L3YNCHED

( lower, upper : integer;

head, body, tail : closure ( iteration: integer ) )

{ var done: array [ lower. . uPPer+ 11 of condition;
signal( done [lower] ) ;

forall $DIVIDED ( lower, upper, ( i: integer )

{ head( i );

wait( done[i] ); body( i ); signal( done[i+l] );

tail( i ) } ) }

Using this control construct, we can write our light bulb example as

follows:

var P, T, L: array [O. .N] of rea

TIO] := AMBIENT_TEMPERATURE;

foral13 $SYNCHED ( 1, N,

( time: integer )

{ P[time] :. Power( Current

( time: integer)
{ T[time] := Temperature T

( time: inteaer )

.;

time ), Voltage( time ) ) },

time-l], P[time] ) },

{ L[time] ~= Luminance( T[time] ) } )

By splitting the closure (which represents theloopbody)to expose the data

dependence, and defining a control abstraction that respects that depen-

dence, we have isolated synchronization within the control construct. Once

again, we can select the appropriate degree of synchronization and paral-

lelismintandem.

3.4 Data and Control Abstraction

In this section we use subgraph isomorphism, a well-known NP-complete

problem, as an example to illustrate the relationship between data and

control abstraction in parallel programs .Giventwo graphs ,one small and one

large, the problem is to find one ormore isomorphisms from the small graph

to arbitrary subgraphs ofthe large graph. Anisomorphism isa mapping from

each vertex in the small graph to a unique vertex in the large graph, such

that iftwo vertices are connected byanedge in the small graph, then their

corresponding verticesin the large graph are also connected by an edge.

3.4.1 Subgraph Isomorphism Algorithm and Data Representation. 13efore

describing the interactions between data and control abstraction in subgraph

isomorphism, we fh-st describe the algorithm and data representation.

In our representation of graphs, each vertex has an integer label from 1 to

the maximum number of vertices. We represent each graph by an array,

where each element of the array corresponds to a vertex u, and contains the
set of labels for the neighbors of u.

type SmallVertex . 1.. MaxSmallVertex;

type LargeVertex = 1.. MaxLargeVertex;

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



554 . L A, Crowl and T. J. LeBlanc

type SmallGraph = array [SmallVertex] of set of SmallVertex;

type LargeGraph = array [LargeVerte::] of set of LargeVertex;

var smallG: SmallGraph;

var largeG: LargeGraph;

Our algorithm is based on Unman’s [1976] sequential tree search algo-

rithm. This algorithm postulates a mapping from one vertex in the small

graphto avertexin the large graph. This mapping constrains the possible

mappings for other vertices ofthe small graph. The algorithm then postulates

a mapping for a second vertex in the small graph, again constraining the

possible mappings for the remaining vertices ofthe small graph. This process

continues until an isomorphism is found or until the constraints preclude

such a mapping, at which point the algorithm postulates a different mapping

for an earlier vertex.

The search for isomorphisms takes the form of a tree, where each node in

the search tree is a partial isomorph ism. For each vertex i in the small

graph, a partial isomorphism contains the set of vertices ~ in the large graph

to which we are still considering the possibility of mapping vertex i. When

every vertex of the small graph has exactly one possible mapping to a vertex

in the large graph, then the isomorphism is complete. If some vertex has no

postulated mapping, then the partial isomorphism is invalid, and we prune

that node from the search tree.

We represent nodes in the search tree, which correspond to postulated

mappings of vertices in the small graph to vertices in the large graph, with

an array of sets. Each element of the array corresponds to a vertex in the

small graph, and the set contains the vertices in the large graph to which the

vertex in the small graph might be mapped.

type Partial Isomorph = array [SmallVertex] of set of LargeVertex;

var root : Partial Isomorph;

The children of a node are constructed by selecting one possible mapping at

the next level of the tree and then removing any conflicting mappings. Since

the vertex i in the small graph may map to only one vertex j in the large

graph, we remove all other mappings for the small graph vertex. Addition-

ally, no two vertices in the small graph may map to the same vertex in the

large graph, so we remove the postulated large-graph vertex from the possi-

ble mappings of all other small-graph vertices.

Since the search space is very large, it is prudent to eliminate possible
mappings early, before they are postulated in the search. We do this by

applying a set of filters to the partial isomorphisms, reducing the number of

elements in each mapping set, and pruning nodes in the search tree before

they are visited. In our implementation we use only two filters, uertex

distance and uertex connectivity. The vertex distance filter eliminates map-

pings where the distance between two vertices in the small graph is less than

the distance between the two corresponding vertices in the large graph. The

vertex connectivity filter ensures that the possible mappings of a vertex in

the small graph are consistent with the possible mappings of its neighbors.

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No. 3, May 1994



Parallel Programming with Control Abstraction . 555

There are many ways to exploit parallelism in the implementation of

subgraph isomorphism. The coarsest granularity of parallelism occurs in the

tree search itselfi we can search each subtree of the root node in parallel with

depth-first, sequential search at the remaining levels.g At each node of the

tree, several filters must be applied so as to prune the search tree, and this

10 We can also exploit parallelismset of filters could be executed in parallel.

when applying a filter to a candidate mapping. We will examine these

alternative parallelizations in greater detail in Section 4. In this section we

focus on the interactions between control and data abstraction in the imple-

mentation of the distance filter.

3.4.2 Iterators for Abstract Data Types. We begin our discussion of data

and control abstraction with a straightforward parallel implementation of the

distance filter. This implementation has several problems, which we resolve

over the next few sections through successive refinement using control

abstraction.

We use the distance filter to ensure that no two vertices in the small graph

separated by a distance x map to two vertices in the large graph separated

by a distance y > X.ll We rely on two precomputed arrays containing shortest

paths, smal lDi st and 1 argeDis t, to store distance information. For a set of

possible mappings between vertices in the small graph to vertices in the large

graph, and a given mapping from a particular vertex in the small graph to a
vertex in the large graph, we eliminate any other possible mappings between

vertices in the small graph to vertices in the large graph that violate the

distance filter. The following is a straightforward parallel implementation of

the distance filter:

implement distance_ filter

( smallV: SmallVertex; largeV: LargeVertex;

var mapping: Part ial Isomorph )

{ forall( 1, MaxSmallVertex, ( i : SmallVertex )

{ forall( 1, MaxLargeVertex, ( j : LargeVertex)
{ if( j in mapping [i],

{ if ( smallDist [smallV, il<largeDist [largeV, j 1,

{ remove_ element ( j , mapping [id)})})} )})}

There is a problem with this implementation of the distance filter. If we

select a parallel implementation of the innermost f ora I I, we must pay the

overhead of starting each parallel task that results. Since many postulated

mappings are sparse, the first i f condition is often false, and the correspond-

ing task immediately terminates. In such cases, the overhead of creating

9 We could choose to implement search parallelism at any depth in the search tree, rather than
solely at the root. We do not consider these other forms of search parallelism in this article.

10Our implementation uses only two filters, but others are possible.
11Two vertices in the small graph can map to vertices in the large graph separated by a distance
y < x because the isomorphism may ignore edges in the large graph that shorten the distance. If
y > x, then there must be some path between the two vertices in the small graph that has no
corresponding path in the large graph, which implies that an edge in the small graph has no
corresponding edge in the large graph.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



556 . L A, Crowl and T. J. LeBlanc

parallel tasks may not be justified. The problem is that we want to iterate

over the elements of a set, but f ora I I iterates over the integer representa-

tion for vertices in the set and then tests for set membership. A better

approach is to combine data abstraction and control abstraction by defining

an iterator for sets, as in CLU. The resulting f ora 1 l_e 1 ements construct

executes a closure for each element of a set.

define forall_elements ( members : set of integer;

work: closure ( member: integer ) )

J forall_elements ( members, work ) + Jwork( i ) [i : i G members]

?work ( i ) + ~ forall_elements ( members, work ) [i : i G members]

Given an implementation of f ora I l_e I ements, we can rewrite the dis-

tance filter as follows:

implement distance_ filter

( smallV: SmallVertex; largeV: LargeVertex;

var mapping : Part ial Isomorph )

{ forall( 1, MaxSmallVertexr ( i: SmallVertex )

{ forall_elements( mdpping [i] , ( j: LargeVertex )
{ if( smallDist [smallV, i] < largeDist [largeV, j],

{ remove_ element( I, mapping [i] ) } ) } ) } ) }

Given this version of the distance filter, we can choose to iterate over the

possible elements of a set in sequence and then apply the distance filter to

each actual element in parallel. By doing so, we avoid the overhead of

creating parallel threads of control for each possible element of a set.

3.4.3 Conditional Iterators. The last implementation of the distance filter

uses iteration over the elements of a set to avoid creating a task for every

potential element of a sparse set. Nonetheless, this implementation still

suffers from the problem noted above; the first statement of the closure

passed to f oral l_elements is an i f condition, which may cause a newly

created task to terminate immediately. Unfortunately, we cannot evaluate

this condition in terms of the members of the set alone and therefore cannot

fold the test into a simple iterator. We can define a conditional iterator,

however, which solves the problem. Conditional iterators accept a condition to

apply to elements of a data abstraction, as well as the work to perform on

each element that satisfies the condition. With a conditional iterator, we can

evaluate the conditions in sequence, avoiding the overhead of creating a

parallel task for each i f statement, while creating a parallel task for those

elements that pass the test.

define forall_element s_cond

( members : set of Integer;

test : closure ( member: integer ) : boolean;

work: closure ( member : integer ) )

J forall_element s_cond( members, test, work ) + Jtest ( z )

[i : i G members]

?test( i ) - Jwork( i ) [i:~=members Atest( i )]

~work( i ) - ~ forall_element s_cond( members, test, work)

[i:i =members A test( i )]

TteSt ( i ) + ~forall_element s_cond( member~, test, work)

[i:i Gmembers A ~test( z )]

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994



Parallel Programming with Control Abstraction . 557

Given an implementation of f oral l_e 1 ement s_cond, the distance filter

becomes:

implement distance_ filter

( smallV: SmallVertex; largeV: LargeVertex;
var mapping: Partial Isomorph )

{ forall( 1, MaxSmallVertex, ( i: SmallVertex )

{ forall_elements_cond( mapping[i],

( j: LargeVertex )

{ reply smallDist [smallV, i]~largeDist [largeV,j] },

( j: LargeVertex )
{ remove_element( jr mapping[i] ) } ) } ) }

The performance benefits of using a conditional iterator in place of an

iterator depend on the time required to evaluate the condition and the time

required to operate on those elements that meet the condition. In this

particular example, itcouldbe that the time spent on elements that meet the

conditions very small (comparable to the time required to apply the condi-

tion to an element), and therefore the tasks created by

forall_elements_cond are too fine grain for the architectures ofinterest.

If so, the implementation based on forall_elements would suffice. How-

ever, if the condition is easy to evaluate, but the operation on elements that

meet the condition is time consuming, it would be worthwhile to separate the

choice of parallelism for evaluating conditions from the choice of parallelism

for operating on elements using f oral l_e 1 ement s_cond.

3.4.4 Conditional Modification of Abstract Data Types. All of our imple-

mentations of the distance filter are based on a set abstract data type, which

must export the remove_e I ement operation. As in Multilisp [Halstead 1985],

we assume that data synchronization is embedded in data abstractions. Thus,

the remove_e I ement implementation must provide any synchronization

needed to manage multiple invocations of remove_e I ement. Unfortunately,

there is no explicit coordination between the two set operations feral l_

e 1 ement s_cond and remove_e 1 ement, so the implementation of reinove_

e 1 ement cannot know whether f oral l_e 1 ement s_cond invokes remove_

e 1 ement in parallel or not. Thus, we cannot select parallelism and synchro-

nization together.

As an alternative, we can combine the selection of parallelism and synchro-

nization within a single operation that removes those elements of a set that

meet a specified condition. This new operation, remove_e 1 ement s_cond,

applies a condition to each element of a set and removes those elements that

satisfy the condition.

define remove_el ement s_cond

( var members : set of integer;

test: closure( member : integer ) : boolean )

Jremove_elements_ cond(member, test ) + J test (i) [~ : i E members]

?test (i) - ?remove_elements_ cond(member, test) [i : i G members]

ACM Transactions on Programming Languages and Systems, Vol. 16, No 3, May 1994



558 . L, A, Crowl and T, J, LeBlanc

The distance filter, using remove_e 1 ement s_c end, is as follows:

implement distance_ filter

( smallV: SmallVertex: largeV: LargeT7ertex;

var mapping: PartialIsomorph )

{ forall( 1, MaxSmallVertex, ( I: SmallVertex )

{ remove_elements_cond( mapping[i], ( j: LargeVertex )

{ reply smallDist [smallV, i]<largeDist [largeV, j] } ) } ) }

In this final implementationwe have two sources of parallelism, the imple-

mentation of forall and the implementation of rernove_elernents_

cond. Since the parallel tasks generated by forall operate on different

partial isomorphisms (corresponding to mapping[i]), there is no need to

synchronize operations onthese sets. Since the parallel tasks inremove_ele

ments_cond all operate on the same set, we create a control construct that

encapsulates both the parallelism and synchronization for that set operation.

3.4.5 Representation-Dependent Control Abstractions. Given apackedim-

plementation of sets, in which each element is represented by a single bit in a

32-bit word, an implementation of remove_e 1 ement s_c ond might process

each word of the representation in parallel, and each bit in a word in

sequence. This implementation offers substantial parallelism and yet re-

quires no explicit synchronization. However, it depends both on the represen-

tation of sets and the knowledge that no other operation is concurrently

modifying the same set. This knowledge, which is available to remove_e 1 =

ment s_c on~ is not available if the iterator and removal operation are

separated.

In addition to the standard primitive operations on sets, such as crest e,

add_e 1 ement, and remove_e 1 ement, we have added a variety of more

complicated operations, including forall_elements,

forall_elements_ cond, and remove_ element s_cond. We can use these

operations to implement other set operations, such as intersect, which

given two sets SI and Sz, assigns S’l n Sz to SI:

implement intersect ( var S1 : set of integer; S2 : set of integer )

{ remove_ element s_cond ( S1,

( i : integer ) { reply not membership i, S2 ) } ) }

In building this rich variety of set operations there is a tradeoff to be made

between representation-independent implementations and representation-de-

pendent implementations. Given the power of control abstraction, the de-

signer of a data abstraction might be tempted to provide a small set of
primitive operations that exploit the underlying representation (such as

crest e, membership, and add_e 1 ement) and rely on control abstraction and

representation-independent operations to provide all other operations. While

this approach may simplify the implementation of the abstract data type, it

precludes certain optimizations in the implementation of the control abstrac-

tions. For example, given a bit-vector representation of sets, the representa-
tion-independent implementation of intersect given above must evaluate

the condition separately for every element in the set and remove those

elements that meet the condition. In contrast, a representation-dependent

ACM Transactions on Programming Languages and Systems, Vol. 16, No 3, May 1994



Parallel Programming with Control Abstraction o 559

implementation of intersect can exploit the bit-vector representation for

sets, using logical “and to implement intersection, and thereby avoid evalu-

ating conditions and handling individual elements. In general, we will want a

rich set of operations on each data type, so as to cope with the myriad

parallelizations we might choose to exploit, and many of these operations will

want to exploit the representation so “as to maximize the potential for

parallelism.

In summary, control abstraction encourages data representation-indepen-

dent programming, which users of abstractions desire for architectural

adaptability. Designers of abstractions must be careful to include a suffi-

ciently rich variety of operations so that implementors of abstractions can

take advantage of the parallelism inherent in the representation.

4. PERFORMANCE TUNING WITH CONTROL ABSTRACTION

When implementing a parallel program, programmers must strike a delicate

balance between the costs and benefits of parallelism. The potential benefits

include faster execution due to parallel hardware and better load-balancing

properties due to a fine-grain decomposition of work. The costs include the

overhead of process management, synchronization, and communication. A

significant change in any of these costs affects the decision about the appro-

priate granularity of parallelism in an application.

There are several situations where programmers must make decisions

about how to parallelize a program:

—When implementing the program for the fist time.

—When there is a dramatic change in the number of available processors.

—When porting the program from one machine to another.

—When exploiting special hardware features, such as vector processors.

—When optimizing the program for a particular class of input values.

The ease with which a programmer can tune the parallelization of a program

to specific circumstances depends on the ease with which alternative paral-

lelizations can be selected or implemented. The significance of program

tuning depends on whether there is one best parallelization (and tuning

therefore consists of a one-time search for that parallelization) or whether

there is no single best parallelization (and therefore tuning is an ongoing

effort that changes with circumstances).

In this section, we use subgraph isomorphism as an example application to

illustrate the benefits of control abstraction during performance tuning.

Subgraph isomorphism is representative of a large class of search problems;

but more importantly, it contains many different sources of parallelism, and

there is no obvious best choice. In fact, our experiments show that the best

parallelization for subgraph isomorphism depends on the specific machine,
the specific input, and the specific problem (the number of isomorphisms

required). As a result, performance tuning is an on-going process, and the

ability to change parallelizations easily is crucial for this application.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994



560 . L. A. Crowl and T, J, LeBianc

4.1 Parallelizations of Subgraph Isomorphism

Our algorithm for subgraph isomorphism has four primary sources of paral-

lelism: (1) searching subtrees of a partial isomorphism in parallel (search

parallelism ), (2) applying multiple filters to a node of the search tree in

parallel ( filter parallelism), (3) applying a filter to all the vertices of a graph

in parallel (graph parallelism), and (4) operating on all the elements in a set

of vertices in parallel (set parallelism). We describe each of these sources of

parallelism below, but our experiments focus primarily on the tradeoffs

between search parallelism and graph parallelism.

4.1.1 Search Parallelism. The coarsest grain of parallelism we consider

arises when examining the various possible mappings for the first small

vertex. Given the set of possibilities in mapping [ sma 1 IV ] , we need to

examine each postulated mapping. We can choose to examine each mapping

in parallel using f ora 1 l_e 1 ements as follows:

implement search $PARALLEL

( smallV: SmallVertex; mapping: Partial Isomorph )

{ forall_elements $DIVIDED ( mapping [smallV] ,

( postulate : LargeVertex )

{ examine ( smallv, postulate, mapping ) } ) }

Alternatively, we can choose not to exploit parallelism in traversing the

search tree simply by selecting a sequential implementation of f oral l_e I e-

ments.

Search parallelism is relatively coarse grain and therefore is suitable for

most multiprocessors. Search parallelism is also speczdative however, in that

we might not need to search every subtree of the root in order to find the

required number of solutions. In particular, if we only need one solution, and

if the solution space is dense (as in the case where the smaller graph has few

edges and the larger graph is almost fully connected), then a solution will

usually be found in the first subtree. In this case, any time spent searching

other subtrees is wasted.

4.1.2 Filter Parallelism. When we arrive at a node in the search tree, we

must examine a single proposed mapping and propagate the constraints of

that mapping. We must first enforce the minimal constraints of the proposed

mapping: the vertex in the small graph must be mapped to a unique vertex in

the large graph, and no other vertex in the small graph maybe mapped to the

same vertex in the large graph. Next, we must check to see if the partial

isomorphism is a leaf in the search tree. If so, we report the isomorphism.12

Otherwise, we apply better constraints.

implement examine ( smallV: SmallVerte:~; largeV: Large\’ertex;

mapping: Partial Isomorph )

‘2 The constraint filters may leave some invalid isomorphisms at the leaves of the search tree, A
separate check eliminates these leaf nodes before they are reported

ACM Transactions on Programmmg Languages and Systems, Vol 16, No 3, May 1994



Parallel Programming with Control Abstraction . 561

{ minimal_ constraints( smallV, largeV, mapping );

ifelse( smallV = MaxSmallVertex,

{ report_possible_isomorphism (mapping ) },
{ constrain( smallV, largeV, mapping ) } ) }

We use two nontrivial constraints, vertex connectivity and vertex distance,

to filter possible mappings. Each filter deletes those postulated mappings

associated with anodein the search tree that violate the constraints imposed

by the filter, thereby pruning the search space below the node. Since these

filters only remove elements from sets ofpossible mappings ,we may execute

them in parallel.

implement constrain

( SmallV: SmallVertex; largeV: LargeVertex;
var mapping: PartialIsomorph )

{ cobegin $PARALLEL (
{ distance_filter( smallV, largeV, mapping ) },
{ connect_filter( smallV, largeV, mapping ) } );

if( no_empty_mapping( mapping ) ,

{ search( smallV+l, mapping ) } ) }

Given only two filters, each node in the search tree can exploit at most

two-way parallelismby executing the filters in parallel. This parallelism is

not without cost however, since executing the filters in sequence may allow

the second filter to avoid examining any postulated mappings removedbythe

first filter.

4.1.3 Graph Parallelism. Each filter removes potential mappings based
on some relationship between the candidate vertex in the small graph and

other vertices in the small graph. For a given candidate vertex, we can

examine constraints on the remaining vertices of the small graph in parallel.

We can exploit this parallelism by choosing a parallel implementation of

forall in the distance filter and a parallel implementation of forall_

e I ements in the connectivity filter.

implement dlstance_fllter

( smallV: SmallVertex; largeV: LargeVertex;

var mapping: Partial Isomorph )

{ forall $BLOCKED ( 1, MaxSmallVertex, ( small Rel: SmallVertex )

{ remove_ element s_cond( mapping [smallRel],

( largeRel: LargeVertex )

{ reply smallDist [smallV, smallRel ]

< largeDist [largeV,largeRel] } ) } ) }

implement connect_filter

( SmallV: SmallVertex; largeV: LargeVertex;

var mapping: PartlalIsomorph )

{ forall_elements $BLOCKED ( smallG[smallV],

( smallRel: SmallVertex )

{ lntersect( mapping[smallRel], largeG[largeV] } ) )

These implementations offilters offer many opportunitiesto exploit paral-

lelism, but each parallel thread ofcontrol is relatively fine grain. This source
of parallelism may only be appropriate on machines and software systems

that support fine-grain parallelism.

ACM Transactions on Programming Languages and Systems, Vol. 16, No, 3, May 1994,



562 . L. A. Crowland T.J. LeBlanc

4,1.4 Set Parallelism. The finest grain of parallelism we consider arises

when removing mappings that violate the constraints of a filter from the set

of possible mappings for a small vertex. Given that we can represent the set

of possible mappings as a vector of booleans, we can exploit parallelism in set

operations in three ways. First, we can apply vector parallelism and operate

on individual boolean values separately but in parallel. Second, we can pack

multiple boolean values into a single machine word and use the bit opera-

tions common to most architectures to operate on multiple boolean values

together and in parallel. Third, we can use both of the above and vectorize

word-parallel operations. We refer to these implementations using the anno-

tations $VECTOR, $WORD, and $WORD_VECTOR, respectively.

Implement distance_ filter

( smallV: SmallVel-tex; largeV: LargeVertex;

var mapping: Partial Isomorph )

{ forall( 1, MaxSmallVertex, ( smalll?el : SmallVerte;: )

{ remove_ element s_concl $VECTOR (mapping [ smallRel 1,

( largeRel : LargeVertex )

[ reply small Dist [smallV, small F.el]

-s large Dist[largeV, largeRel] } ) } ) }

implement connect_ filter

( smallV: SmallVertex; largeV: LargeVertex;

var mapping: Partial Isomorph )

{ forall_elements( smallG[smallV],

( smallRel: SmallVertex )

{ Intersect $b70RD ( mapplng[smallRel], largeG[largeV] } ) )

The proper choice ofannotationfor set parallelism depends onthe machine

architecture and the exact implementation of the algorithm. The architecture

may or may not have vector processors or the appropriate instructions for

operating onthe bitsin aword. Additionally, the cost of communication for a

given machine determines the savings associated with using apacked repre-

sensation ofsets in communication operations. The algorithm determines the

frequency with which wemust pack and unpack sets into words, which could

offset any savings from parallel set operations.

4.1.5 Summary of Parallelizations of Subgraph Isomorphism. We have

identified four main sources ofparallelism in our algorithm, and each source

of parallelism has multiple implementations. Table I summarizes the set of

choices that a programmer faces when choosing a specific implementation of

subgraph isomorphism.
Choosing the best parallelization from among this myriad set ofchoicesis a

daunting task for the programmer. Search parallelism is coarse grain and

therefore likely to be worthwhile on most machines. However, search paral-

lelism is also speculative and may be of no value in cases where the solution

space of a particular problem instance is dense. Graph parallelism is fine

grain and therefore may not be worth exploiting on hardware and software

architectures that do not support fine-grain parallelism efficiently. On the

other hand, graph parallelism may be required in order to exploit a large

number of processors. The tradeoff between sequential and parallel applica-

ACM Transactions on Programming Languages and Systems, Vol 16, No 3, May 1994



Parallel Programming with Control Abstraction . 563

Table I. Annotations for Parallelizations of Subgraph Isomorphism

Operation Control Construct Annotations

search forall. elements $SEQUEMTIAL $BLOCKED$CYCLIC $DIVIDED
constrain cobegin $sEquimnL $pARALLEL

distance-filter forall $SEQUE9TIAL $BLOCKED $CYCLIC $DIVIDED

remove. elements.-cond $SEQUEHTIAL $VECTOR $UORD $HORD.VECTOR

connect-filter forall-elernents $SEQUEHTIAL $8 LOCKED $CYCLIC $DIVIDED

intersect $SEQUEFJTIAL $vEcToR $WORD $WORD-VECTOR

tion of filters depends on the cost and benefits of parallelism versus the

reduction in work that comes from the serial application of filters. The choices

for set parallelism depend on the capabilities and costs of the machine and the

frequency of certain set operations in the program.

Control abstraction did not create this difficult problem for the program-

mer, since these choices are inherent in the subgraph isomorphism algorithm.

The majority of these choices would typically be ignored by the programmer

or determined by the programming environment. Rather than choose a

specific parallelization based on limitations of the programming environment,

or implicit assumptions about the machine or the input, we specify the

alternatives explicitly using control abstraction and use experimentation

(where appropriate) to analyze the tradeoffs involved.

4.2 Experimental Comparison of Parallelizations

In order to explore the tradeoffs between the various sources of parallelism

described in the previous section, we performed a number of experiments

with implementations of subgraph isomorphism. These experiments cover a

wide range of inputs, problem instances, machines, and parallelizations. The

machines we used in this study include a 20-processor Sequent Balance, a

19-processor Sequent Symmetry, a 7-processor IBM 8CE, a 39-processor BBN

Butterfly, a 21-processor BBN TC2000, an 8-processor Silicon Graphics Iris

multiprocessor workstation (a member of the Power Series), and a 32-

processor Kendall Square Research KSR-1. We used randomly generated

inputs, where the small graph has 32 nodes, the large graph has 128 nodes,

and the probability that a given leaf in the search tree represents a valid

isomorphism is either 10’5, 10’21, 10-35, or zero, representing a range of

dense and sparse solution spaces. The problem instances vary between

searching for one solution and searching for 256 solutions.

We implemented subgraph isomorphism in Natasha, a prototype parallel

programming language that supports control abstraction. The Natasha pro-

gram for subgraph isomorphism, which uses control abstraction and annota-

tions, only runs on the BBN Butterfly. Therefore, we use conditional compila-

tion of a single source code program to mimic the effect of the Natasha

compiler and run-time.

In the following discussion, we do not consider filter parallelism at all. Also,

we do not examine the tradeoffs involved in the application of word paral-
lelism. In our results, we report the minimum execution time (in seconds)

achieved over the entire range of processors on a given machine, including

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



564 . L. A. Crowl and T. J. LeBlanc

word parallelism in those cases where it helps, and ignoring it in those cases

where it does not help.

4.2.1 Tuning to a Particular Class of Inputs. Graph parallelism reduces

the time needed to move from the root of the search tree to a leaf, while

search parallelism expands the number of paths between the root and leaves

that can be considered in parallel. Due to the speculative nature of search

parallelism, we would expect it to be most effective when searching for a

single solution in a sparse solution space. In a very dense solution space, we

would expect every subtree to contain a solution, and therefore we should

minimize the time spent on the path from the root node to any leaf using

graph parallelism if we only need one solution. Thus, assuming we only

require one solution, we might want to use search parallelism for one class of

inputs (sparse solution space) and graph parallelism for another (dense

solution space).
The results in Table II confirm this hypothesis. On the 8CE, Butterfly, and

Iris, graph parallelism performs better than search parallelism when the

solution space is dense (that is, when the probability that a leaf node

represents an isomorphism is 10 5). When the solution space is sparse,

search parallelism dominates graph parallelism on all three machines. When

there are no solutions to be found, the two parallelizations are comparable in

performance.

Given that graph parallelism is four times faster than search parallelism in

one case, while search parallelism is 67 times faster than graph parallelism

in another case, there is clearly enormous benefit to having both paralleliza-

tions in the source code. In addition to this, the ability to move easily from

one parallelization to the other is essential if we expect to tune the program

to a given class of inputs.

4.2.2 Changing the Problem Instance. When searching for a single solu-

tion in a dense solution space (where the probability that a leaf node is a

solution is 10-5), it is best to minimize the time spent on the path from the

root to a leaf node using graph parallelism. If we require multiple solutions

however, a single subtree might not contain all the solutions we need, and

therefore search parallelism might be of some benefit. The reults in Table III

confirm this hypothesis.

We can see that on each of the three machines in Table III, graph

parallelism performs much better than search parallelism when only one

solution is required. However, if we require 256 solutions, search parallelism
performs better. Clearly there is a crossover point, and as seen in Table III,

this point is different on the different machines. (The crossover point is below

128 solutions on the Butterfly and above 128 solutions on the Symmetry and

Iris.) Thus, for a given class of inputs, we would like to vary the paralleliza-

tion depending on the number of soultions required, with the choice of

parallelization also depending on the machine.

4.2.3 Porting to a New Machine. When porting a program from one
machine to another, we must reconsider all of the architectural assumptions

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 3, May 1994



Parallel !%ogramming with Control Abstraction . 565

Table II. Searching for One Solution while Varying Solution Space

solution density:

8CE graph

search

Butterfly graph
search

Iris graph
search

10-5 ~~-zl ~()-35 o

0.29 13.80 163.87 0.66

1.12 11.09 3.09 0.59

0.73 33.72 541.51 1.77
2.33 3.76 8.00 1.49

0.02 1.10 13.25 0.05
0.08 0.74 0.24 0.04

Table 111, Searching a Dense Solution Space for a Varying Number of Solutions

solutions desired: 1 128 256

Butterfly graph 0.73 4.04 7.20

search 2.33 2.98 3.26

Iris graph I0.02 0.09 0.17
search 0.08 0.11 0.13

Synunetry graph 0.32 1.31 2.32
search 1.32 1.67 1.80

that underlie our choice of parallelization. Any two machines are likely to

differ in the number of processors, the speed of the processors, and the cost of

communication. These differences may be significant enough that the best

parallelization for one machine may not be the best for another.

As seen in Table IV, if we require 128 solutions, then whether searching in

a sparse or dense solution space, the choice between graph and search

parallelism depends on the machine. For this problem, search parallelism

performs best on machines with a large number of processors (such as the

KSR-1 and the Butterfly), while graph parallelism performs best on machines

with a small number of processors (such as the 8CE and Iris). On the

Symmetry, search parallelism performs best when the solution space is

sparse, and graph parallelism performs best when the solution space is dense.

On the Balance, graph parallelism performs best when the solution space is

dense, and the two parallelizations are comparable when the solution space is

sparse. The reverse situation occurs on the TC2000, where search parallelism

performs best when the solution space is sparse, and the two parallelizations

are comparable when the solution space is dense.

There are a variety of reasons why each machine performs best using a

particular parallelization under particular circumstances, and a complete

discussion of these results is beyond the scope of this paper. (See Crowl et al.

[1994] for a complete analysis of subgraph isomorphism and an explanation

for each of these performance results and CrovelIa and LeBlanc [1993] for a

description of the tool we developed to aid in this analysis.) Here we note only

that a primary source of overhead under graph parallelization is load imbal-

ance, while the primary source of overhead under search parallelization is
wasted speculation. For machines with a large number of processors, such as

the KSR1, the degree of load imbalance under graph parallelism grows quite

ACM Transactions on Programming Languages and Systems, Vol. 16, No 3, May 1994.



566 . L, A. Crowl and T, J, LeBlanc

Table IV. Searching for 128 Solutions

8CE Balance Butterfly Iris KSR1 Symmetry TC2000

Sparse graph 24.67 91.67 75.73 2.06 10.68 29.77 11.04

search 36.05 86.73 12.60 2.59 2.24 15.84 3.78

dense graph I 1.06 4.21 4.04 0.09 0.46 1.31 0.55
search 1.53 6.52 298 0.11 0,26 1.67 0.52

large, as do the benefits of speculation. In contrast, a machine with a smaller

number of processors, such as the Iris, can exploit graph parallelism without

introducing significant load imbalance, but does not have enough processors

to fully exploit speculation.

4.2.4 Exploiting Multiple Sources of Parallelism. In the experiments de-

scribed above, we compared the performance of search parallelism versus

graph parallelism. Although we used set parallelism in conjunction with

search or graph parallelism on some machines, we did not consider search

parallelism in tandem with graph parallelism. It is possible that such a

combination performs best on all machines or on all inputs for a given

machine.

The results of experiments using this hybrid form of parallelization indi-

cate that it performs best when the solution space is neither very sparse nor

very dense. 13 When the solution space is very dense, speculative parallelism

is of no help, and therefore the implementation that uses only graph paral-

lelism performs best. When the solution space is very sparse, we have to

examine most of the search tree, and the coarse-grain implementation based

on search parallelism introduces less overhead than the fine-grain implemen-

tation based on graph parallelism. These observations hold on all of the

machines in our study. Thus, a combination of search and graph parallelism,

with or without set parallelism, is not the best parallelization for this

problem in all cases.

4.3 Summary of Results

Our experimental results clearly indicate that there is no one best paral-

lelization for subgraph isomorphism. In fact, whenever we vary the input, the

problem, or the machine, we may require a new parallelization. This conclu-

sion points out the need for multiple parallelizations and the ability to

change the parallelization easily.
Using control abstraction, we can specify potential parallelism early in the

programming process without worrying about a detailed analysis of the costs

and benefits associated with each source of parallelism. Later, we can use a

13The number of processors assigned to each source of parallelism was determined statically.
Varying the number of processors assigned to each source of parallelism would bias the results
toward graph or search parallelism, but would not affect our primary conclusion regarding the
suitability of the hybrid parallelization.

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 3, May 1994



Parallel Programming with Control Abstraction . 567

combination of analysis and experimentation to tune the implementation of

control constructs to specific circumstances. Any implementations created

during the course of program development, tuning, or porting can remain in

place as documentation of the alternatives and can be used in future experi-

ments. Thus, control abstraction helps to document the design space of

parallelizations, facilitate the analysis of this space, and simplify the task of

optimizing the parallelization for specific circumstances.

5. IMPLEMENTATION OF CONTROL ABSTRACTION

The examples in the previous sections demonstrate the power of control

abstraction for expressing parallelism and the need for flexibility in tuning

parallelizations. Programmers use parallelism to improve performance how-

ever, and if control abstraction is to be used frequently, it must be cheap. We

now consider the performance implications of control abstraction using our

prototype implementation of the Natasha programming language [Crowl

1991]. Natasha uses the primitive mechanisms for control abstraction de-

scribed in Section 2. The Natasha compiler uses the C language as an

intermediate form, and relies on GNU’s gc c compiler to generate machine

code. We have implemented a run-time environment for Natasha on the BBN

Butterfly.

5.1 Natasha Compiler

Any programming language that uses closures and operation invocation to

implement the most basic control mechanisms might appear to sacrifice

performance for expressibility. However, with an appropriate combination of

language and compiler, user-defined control constructs can be as efficient as

language-defined constructs [K.ranz et al. 1986]. Several straightforward

optimizations, taken together, can essentially eliminate the execution over-

head due to the control abstraction mechanisms. These optimizations include

the following.

Invocations as Procedure Calls. Since an invocation may execute concur-

rently with its caller after executing its reply, a conservative implementation

of invocation requires a separate thread of control for each invocation. This

approach is prohibitively expensive. We can reduce this cost by recognizing

when an operation has no statements after the reply and therefore can be

implemented as a procedure.

Delayed Replies. In those cases where an operation replies early, it is

often safe to delay the reply until the invocation completes. This delay admits

a procedure implementation for the operation, which exchanges parallelism

for the efficiency of sequential execution. We can safetly delay a reply if no

statement following the reply requires resources (such as synchronization
variables) that statements following the invocation release. Since it may be

difficult to detect whether delaying a reply is safe, we use two different forms

of reply in Natasha: one indicates that the reply may not be delayed in any

ACM Transactions on Programming Languages and Systems,Vol. 16,No. 3, May 1994



568 . L. A. Crowl and T. J. LeBlanc

implementation, and the other indicates that the reply may be delayed in

some implementations. An annotation determines whether a reply that may

be delayed is actually delayed in a given implementation. This optimization,

together with the previous optimization, allows 98~0 of the (static) invoca-

tions in our examples to be implemented as procedure calls.

In-Line Substitution. Even if we avoid creating a new thread of control for

each operation invocation, the overhead of a procedure call for each invoca-

tion remains. We can eliminate this overhead by identifying the implementa-

tion of operations (either through static typing or type analysis), which makes

it possible to use in-line substitution. In-line substitution is especially impor-

tant for the efficient execution of sequential control constructs. When the

compiler can determine the implementation of a construct statically, it can

replace the invocation with the implementation and propagate the closure

parameter through to its use. Using this technique, we can convert control

constructs that use a procedure call implementation into an equivalent set of

machine branch instructions.

Stack Allocation of Closures. Closures in Smalltalk and Lisp require that

their environments remain in existence for the lifetime of the closure. As a

result, the standard implementation of closures uses heap allocation for all

operation activations that contain closures. Since the cost of dynamic alloca-

tion can be substantial, the widespread use of closures could have severe

performance implications. Fortunately there are several language-dependent

approaches to reducing the cost of closure environments. One approach is to

analyze the program to determine if a closure is used after normal termina-

tion of its environment. If not, the compiler may allocate the environment on

an activation stack [Kranz et al. 1986]. Another approach restricts the

assignment of closures such that the environment is guaranteed to exist

(much like Algo168 reference variables). A third approach, which we used in
our implementation for expedience, simply defines as erroneous any program

that invokes a closure after its environment has been destroyed. Each of

these approaches enables stack allocation for closures, significantly reducing

the overhead associated with their use.

Our prototype compiler performs all of the above optimizations with the

following exceptions:

—When performing in-line substitution, the compiler does not propagate

closure parameters through to their use in user-defined control constructs.
This optimization would require global flow analysis in the compiler.

—The compiler relies on gcc to in-line closures and procedures. Since the

gc c compiler implements in-line procedures at the assembly code level, the

in-lined routine does not participate in the optimizations applied to the

calling environment by gc c.

—The programmer must specify those replies that may be delayed safely. To

require the compiler to detect those replies automatically would again

require global flow analysis.

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No. 3, May 1994



Parallel Programming with Control Abstraction . 569

Even with these optimizations, the Natasha compiler does not produce code

comparable to an optimizing C compiler. Most of the remaining ineflkiencies

are due to the simplistic structure of our prototype compiler, the use of C as

an intermediate language, and the interactions between our compiler and the

optimizations employed by gc c. In particular, the following optimizations

significantly improve the quality of the resulting code, but cannot be incorpo-

rated into our prototype easily:

—Convert * ( & (var ) ) to var.14

—Represent Natasha activation variables as C activation variables (rather

than members of a structure within the activation) .15

—Represent Natasha global variables as C global variables.

When applied manually to the intermediate code produced by the Natasha

compiler, these optimizations bring the execution time of a Natasha program

to within 2% of the execution time of a comparable C program.

5.2 Natasha Run-Time Environment

The Natasha run-time environment is responsible for implementing a shared

address space for each application program and for task creation and schedul-

ing. Our run-time environment cm the Butterfly implements nonpreemptive

scheduling and blocking synchronization. Since the Butterfly is a

distributed-shared-memory multiprocessor, the physical memory associated

with the shared address space is distributed among the processors. Addition-

ally, each processor has its own scheduling queues. Our implementation

exploits the following optimizations in the management of tasks.

Eager Task Creation. For each early reply, we must create a new task to

represent the process that continues execution within the callee. The refer-

encing environment for this new task is the activation record for the enclos-

ing operation, which is created when the operation is invoked. In order to

execute the newly created task on a different processor than the one execut-

ing the caller, and to ensure that local variables are stored in local memory

on the Butterfly, we would have to copy the activation record to another

processor. To avoid this copy operation, the run-time environment creates a

new task when an operation containing an early reply is invoked. The

currently executing task blocks, and the newly created task performs the

operation. When the new task encounters an early reply, the run-time

environment unblocks the calling task, and both tasks proceed in parallel.

Sharing Stacks When Possible. Since tasks may block, while waiting on

other tasks or synchronization variables, we must allocate a separate stack

for each task. However, if a task cannot block, either because it accesses no

14This optimization, when performed in isolation, can increase execution time because the
compiler no longer eliminates some common subexpressions.
15Both this optimization and the previous one are required to promote Natasha activation
variables to registers.

ACM Transactions on Programming Languages and Systems, VO1 16, No 3, May 1994.



570 . L, A. Crowl and T. J. LeBlanc

synchronization variables or because it invokes no operations containing an

early reply, we avoid allocating a separate stack and use the scheduler’s stack

to execute the task. The Lynx implementation also uses this technique [Scott

1987].

Direct Access to Scheduler Queues. We expect the run-time environment

to provide implementations of common control constructs that exploit direct

access to scheduler queues. For example, our run-time environment on the

Butterfly provides both blocked and cyclic implementations off oral 1, thereby

allowing the programmer to select a distribution of iterations among proces-

sors using annotations. These implementations exploit knowledge of the

structure and location of scheduler queues to manipulate those queues di-

rectly, resulting in a very efficient implementation.

Task Generators. Control operations, such as f oral 1, often require the

creation of a large number of tasks. Rather than create all tasks at the

beginning of the loop, we place a task generator on the scheduling queue.

Scheduling a task on a processor involves generating the task from the

description on the queue. This technique distributes task creation overhead

among all processors and avoids allocating space for tasks that are not able to

run due to a lack of processors.

LIFO Scheduling. During execution, a program based on our model cre-

ates a tree of parallel tasks, where each branch in the tree is the result of an

early reply. A FIFO scheduling strategy roughly corresponds to a breadth-first

traversal of this tree of tasks. Under FIFO, the number of active tasks grows

very quickly, and the majority of tasks consume storage without actually

executing. One solution to this problem is to use LIFO scheduling [Halstead

1990], which encourages a depth-first execution. LIFO scheduling reduces the

number of active tasks and the storage needed to represent tasks. On

machines with processor caches, LIFO scheduling can also minimize cache

corruption between tasks, by returning the processor to a recently executed

task before other tasks can evict its data from the local cache.

Avoiding the Scheduler. When the currently executing task creates a new

task, we block the current task and transfer control to the new task, without

invoking the scheduler. This optimization is possible because the original

task must block (awaiting an early reply from the new task), and the new

task must run next under LIFO scheduling.

Load Balancing. It is often advantageous for an idle processor to balance
the workload by shifting work from another processor to itself. In our

implementation, when a processor has an empty scheduling queue, it may

take tasks from another processor’s queue. In contrast to Concert Multilisp

and Mu1-T [Halstead 1990], we remove tasks from the end of the LIFO queue

rather than the front, since tasks at the end of the LIFO queue are likely to

be high in the task tree, and therefore are more likely to generate additional

tasks for the local work queue. Mohr [1991] has shown that the increased cost

of queuing operations that results from removing tasks from both ends of the

ACM Transactions on Programmmg Languages and Systems, Vol 16, No 3, May 1994



Parallel Programming with Control AbstractIon . 571

1024

512

Seconds

256

128

64

--

original Natasha program

with simple optimizations

eliminating induction variables

removing redundant copies

in-lining user constructs

passing sub-arrays

existing hand-turned C program

8 12 16 24 32 48

Processors

Fig. 7. Performance of Natasha implementation of Gaussian elimination on an 800 X 800

matrix on the BBN Butterfly.

queue is more than compensated by the efficiency of executing larger sub-

trees of tasks locally.

5.3 Performance Evaluation

To evaluate the effectiveness of our parallel implementation of Natasha, we

compared the performance of the Natasha program for Gaussian elimination

against an existing hand-tuned parallel program written in C [Le131anc 1988].

As seen in Figure 7, the unoptimized Natasha program executes between

three and four times slower than the hand-tuned C program.

To obtain a more realistic estimate of the performance of production quality

implementations, we applied a set of optimizations to the Natasha program,

each well within present compiler technology, but beyond the scope of our

prototype compiler. We first applied the optimizations described at the end of

Section 5.1 to the inner loop. Since the lack of these optimizations in the code

inhibits induction variable elimination, we also manually applied induction

variable elimination. These optimizations had some effect for a small number

of processors, but were of no help on the maximum number of processors,

where communication dominates.
An examination of the C code produced by the Natasha compiler showed

that the translation to C introduces two unnecessary copies of the pivot row

when reducing an equation; one from the parameter to the activation record

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No. 3, May 1994.



572 . L. A. Crowl and T, J, LeBlanc

and another from the activation record to the argument list of the reduction

operation. We removed these redundant copy operations. Since our prototype

compiler does not propagate closure parameters through to their use during

in-line substitution of user-defined control constructs, we applied this opti-

mization manually to t r i angu 1 at e. Finally, we modified the code to copy

only the nonzero portion of the pivot row; this optimization requires a

language that can pass subarrays as parameters. The execution time of the

resulting hand-optimized Natasha program is within 4970of the time required

by the original C program.

Since all of the optimizations we applied by hand are well within current

compiler technology, we would expect a production quality implementation of

Natasha to be competitive with hand-tuned C programs for parallel program-

ming.

6. CONCLUSIONS

In this article we have demonstrated the benefits of using control abstraction

for parallel programming. These benefits include the following:

—Programmers are not limited to a fixed set of control constructs. New

constructs can be created and stored in a library for use by others.

—Programmers can use constructs that reflect the potential parallelism of an

algorithm, isolating final decisions on parallelism and synchronization

within the implementation of constructs, and away from the rest of the

algorithm.

—Programmers can use control abstraction to define operations on abstract

data types, facilitating representation-dependent parallelism.

—Each control construct can have multiple implementations, corresponding

to different parallelizations. In tuning a program for a specific architecture,

or in porting a program to a new architecture, programmers can experi-

ment with alternative parallelizations by selecting implementations from a

library of control constructs.

We introduced a small set of primitive mechanisms for control abstraction

and defined a notation for specifying control flow in control constructs in

terms of those mechanisms. We showed how to define and implement new

control constructs, verifying that the implementations meet the definitions.

We used a number of concrete example programs to illustrate the issues that

arise when writing parallel programs with control abstraction and showed
how control abstraction makes it easy to tune programs for a specific archi-
tecture. We also described the implementation of a programming language

based on our primitive mechanisms for control abstraction and outlined a

number of optimizations that allow an implementation of these mechanisms

to be competitive with procedural languages.

When properly employed, control abstraction can greatly reduce the effort

needed to make changes to the source code, whether debugging, tuning,

porting, or otherwise modifying parallel programs. However, programmers
with little or no experience using control abstraction are likely to be unaware

ACM Transactions on PrOgrammlng Languages and Systems, Vol 16, No 3, May 1994



Parallel Programming with Control Abstraction . 573

of the costs and benefits of control abstraction. Just as data abstraction

requires a change in programming methodology, so does the introduction of

control abstraction. Our experience with parallel programming using control

abstraction has led to the following insights.

Use Control Abstraction Early in the Programming Process. In principle,

abstraction is always good because it delays commitment [Thimbleby 1988],

which localizes the program’s assumptions and reduces the effort needed to

change a program. In practice, abstraction mechanisms have a cost, and

delayed commitment may not be worth this cost if there is an obvious best

implementation. Since most sequential machines share the same von Neu-

mann type architecture, there often is a best implementation. In contrast,

there are several common type architectures for parallel machines [Snyder

1986], and the performance of a given exploitation of parallelism may vary

widely among these type architectures. When employed early in the design of

a program, control abstraction simplifies the process of adapting programs

among different type architectures.

Use Precise Control Constructs. When the control constructs used to spec-

ify parallelism do not precisely express the parallelism appropriate to an

algorithm, we must either introduce explicit synchronization to restrict exces-

sive parallelism or use control constructs that admit less parallelism than the

algorithm permits. The definition of a control construct should admit the

widest possible range of parallelizations, while each implementation strikes a

different balance between the overhead of explicit synchronization and the

potential performance benefits of parallelism.

Embed Synchronization in Control Constructs. The need for explicit syn-

chronization depends on the degree of parallelism in the implementation. By

embedding synchronization within a control construct, we can select the

appropriate synchronization in tandem with the parallelism. If, in the devel-

opment of a program, it becomes necessary to introduce synchronization into

the body of work passed to a control construct, the construct should be

redesigned to expose any dependence, so that synchronization can be embed-

ded in the implementation of the construct.

Integrate Control and Data Abstractions. Where appropriate, program-

mers should use data abstraction and control abstraction together. The

designer of a data abstraction should provide a rich set of control abstractions

that operate on the data, so as to allow the implementor of the abstraction

sufficient latitude to exploit the parallelism inherent in the representation.

Reuse Code. A library of correctly implemented and well-understood data

and control abstractions is the programmer’s most effective productivity tool.

Although we may require an application-specific control construct now and

then, we only need to build implementations for the architecture at hand,
ignoring many pomible sources of parallelism. The set of implementations

will naturally expand during program tuning and porting, and each imple-

mentation remains available for use in the future. A program’s investment in

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



574 . L. A. Crowl and T. J. LeBlanc

architectural adaptability is primarily in the constructs it uses and secondar-

ily in the set of implementations for those constructs, since changing a

control construct is a serious undertaking, whereas using an alternative

implementation of a construct is not.

Experiment with Alternative Parallelizations. It maybe difficult to predict

the performance implications of each implementation of a control construct in

an application. Fortunately, it is easy to experiment with alternative paral-

lelizations simply by changing the annotations on each construct. In our

experiments, we fh-st examined the performance implications of each source

of parallelism in isolation (starting with coarse-grain parallelism and then

moving toward fine-grain parallelism), so as to understand the tradeoffs

involved in each potential source of parallelism. Based on our understanding

of these tradeoffs, we examined reasonable combinations of implementations

so as to develop a performance model of the interactions between different

sources of parallelism. Control abstraction greatly facilitates our ability to

conduct the numerous experiments needed to understand the performance

implications of all possible implementations over a wide range of machines.

Based on our experiences in implementing a language with control abstrac-

tion, and developing a range of application programs on a wide variety of

shared-memory multiprocessors, we conclude that the large benefits and

modest costs of control abstraction argue for its inclusion in explicitly parallel

programming languages.

ACKNOWLEDGMENTS

Mark Crovella implemented subgraph isomorphism on the KSR-1 and, to-

gether with Michael Scott, was instrumental in the analysis of this applica-

tion. The authors would like to thank Mark, Michael, Ricardo Bianchini,

Timothy Budd, Margaret Burnett, Alan Cox, Robert Fowler, Michael Quinn,

C6sar Quiroz, and Jack Veenstra for their many helpful comments on this

article. We would also like to thank Argonne National Laboratories for the

use of their TC2000, International Business Machines for providing the 8CE,

Sequent Computer Systems for providing the Balance and Symmetry, and

Donna Bergmark and the Cornell Theory Center for their assistance and the

use of their KSR- 1. We are also indebted to the anonymous referees, whose

many suggestions substantially improved the article.

REFERENCES

ALBERT, E., KNOBE, K., Luws, J. D., AND STEELE, G. L., JR. 1988. Compiling Fortran 8x array
features for the Connection Machine computer system. In Proceedings of the ACM/SIGPLN

PPEALS 1988. ACM, New York, 42–56.

ALVERSON, G. A. 1990. Abstraction for effectively portable shared memory parallel programs.
Ph.D dissertation, Tech Rep 90-10-09, Dept. of Computer Science and Engineering, Univ. of
Washington, Seattle, Wash.

ALVRRSON, G. A., AND NOTKIN, D. 1993. Program structuring for effective parallel portablhty.
IEEE Trans. Parall. Dlstrib. Syst, 4, 9, 1041–1059.

ACM Transactions on Programmmg Languages and Systems, Vol 16, No, 3, May 1994



Parallel Programming with Control Abstraction . 575

ANDREWS, G. R., OLSSON, R. A., COFFIN, M. H., ELSHOFF, I. J. P., NILSEN, K., PURDIN, T., AND

TOWNSEND, G. 1988. An overview of the SR language and implementation. ACM Trans.

Program. Lang. Syst. 10, 1,51-86.

AMERICAN NATIONAL STANDARDSINSTITUTE. 1990. American Natzonal Standard Programmmg

Language: Fortran 90, X3J3/s8. 115. ANSI, Washington, D.C.

BLACK, A. P., HUTCHINSON, N,, JUL, E., LEVY, H., AND CARTER, L. 1987. Distribution and

abstract types in Emerald. IEEE Trans. Softw. Eng. 13, 1,65–76.

BUDD, T. A. 1984. An APL compiler for a vector processor. ACM Trans. Program. Lang. Syst.

6, 3, 297-313.

BURTON, F. W. 1984. Annotations to control parallelism and reduction order in the distributed

evaluation of functional programs. ACM Trans. Program. Lang. Syst. 6, 2, 159– 174.

COFFIN, M. H. 1992. Parallel Programming; A New Approach, Silicon Press, Summit, N.J.

COFFIN, M. H. 1990. Par: An approach to architecture-independent parallel programming,

Ph.D. thesis, Univ. of Arizona, Tucson, Ariz.

COFFIN, M. H., AND ANDREWS, G. R. 1989. Towards architecture-independent parallel program-

ming. Tech. Rep. 89–2 la, Dept. of Computer Science, Univ. of Arizona, Tucson, Ariz.

CROVELLA, M., AND LEBLANC, T. 1993. Performance debugging using parallel performance

predicates. In Proceedings of the 3rd ACM/ONR Workshop on Parallel and Distributed

Debugging. ACM, New York, 140-150.
CROWL,L. A. 1991. Architectural adaptability in parallel programming. Ph.D. dissertation,

Tech. Rep. 381, Computer Science Dept., Univ. of Rochester, Rochester, N.Y.

CROWL, L. A., AND LEBLANC, T. J. 1992. Control abstraction in parallel programming lan-

guages. In Proceedings of the 1992 International Conference on Computer Languages. IEEE,
New York, 44-53.

CROWL, L., CROVELLA, M., LEBLANC, T., AND SCOTT, M. 1994. The advantages of multiple
parallelizations in combinatorial search. J. Parall. Distrib. Comput. (Apr.). To be published.

GOLDBERG, A., AND ROBSON, D. 1983. Smalltalk-80, The Language and Its Implementation.

Addison-Wesley, Reading, Mass.

GOLDMAN, R., GABRIEL, R. P., AND SEXTON, C. 1990. Qlisp: An interim report. In Parallel Lisp:

Languages and Systems. Lecture Notes in Computer Science, vol. 441. Springer-Verlag, New

York, 161-181.
HALSTEAD, R. H., JR. 1990. New ideas in parallel Lisp: Language design, implementation, and

programming tools. In Parallel Lisp: Languages and Systems. Lecture Notes in Computer

Science, vol. 441. Springer-Verlagj New York, 2-57.
HALSTEAD, R. H., JR. 1985. Multilisp: A language for concurrent symbolic computation. ACM

Trans. Program. Lang. Syst. 7, 4, 501-538.

HEWITT, C. E., AND ATKINSON, R. R. 1979. Specification and proof techniques for serializes.
IEEE Trans. Softw. Eng. SE-5, 1,10-23.

HILFINGER, P. N. 1982. Abstraction mechanisms and language design. ACM Distinguished
Dissertation. MIT Press, Cambridgej Mass.

HUDAK, P. 1988. Exploring para-functional programming: Separating the what from the how.
ZEEE Softw. 5, 1,54-61.

HUDAK, P. 1986. Para-functional programming. Computer 19, 8, 60-70.

KRANZ, D., KELSEY, R., REES, J., HUDAK, P., PHILBIN, J., AND ADAMS, N. 1986. ORBIT: An

optimizing compiler for Scheme. In Proceedings of the SIGPLAN ’86 Symposium on Compiler

Construction. ACM, New York, 219–233.

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system. Cornmun.

ACM 21, 7, 558-565.

LEASURE, B. 1990. PCF Fortran: Language Definition 3.1. Parallel Computing Forum, Cham-
pagne, 111.

LEBLANC, T. J. 1988. Problem decomposition and communication tradeoffs in a shared-mem-
ory multiprocessor. In Numerical Algorithms for Modern Parallel Computer Architectures.

IMA Volumes in Mathematics and its Applications, vol. 13. Springer-Verlag, New York,
145–163.

LHKOV, B. H., HERLIHY, M. P., AND GILBERT, L. 1986. Limitations of synchronous communica-
tion with static process structure in languages for distributed computing. In Conference Record

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



576 . L, A, Crowl and T. J. LeBlanc

of the 13th Annual ACM SymposLum on Prwwiples of Programm mg Languages. ACM, New
York, 150–159.

LISKOV, B. H., SNYDER, A., ATKINSON, R. R., AND SCHAFFERT, J. C. 1977. Abstraction mecha-
nisms in CLU, Commun. ACM 20, 8, 564–576.

METCALF, M., AND REID, J. 1990. Fortran 90 Explained. Oxford University Press, New York.
MILLER, R., AND STOUT, Q. F, 1989. An introduction to the portable parallel programming

language Seymor. In Proceedings of the 13th Annual ZnternatLonal Computer Software and

Applications Conference. IEEE Computer Society, Washington, D.C. 94-101.
MOHR, E. 1991. Dynamic partitioning of parallel Lisp programs. Ph.D. dissertation, Tech. Rep.

YALEU/DCS/RR-869, Dept. of Computer Science, Yale Univ., New Haven, Corm.

POLYCHRONOPOLTLOS,C. D., AND KCTCIi,D J. 1987. Guided self-scheduhng: A practical schedul-
ing scheme for parallel supercomputers. IEEE Trans. Softzo. Eng. C-36, 12.

SABOT, G. W. 1988. The Paralatlon Model: Architecture-Independent Parallel Programmmg.

MIT Press, Cambridge, Mass.
SCOTT, M. L. 1987. Language support for loosely-coupled distributed programs. IEEE Trans.

Softw. Eng. SE-13, 1,88-103.
SNYDER,L. 1986. Type architectures, shared memory, and the corollary of modest potential. In

Annual Reuiew of Computer Sctence.

SNYDER, L. 1984. Parallel programming and the Poker programming environment. Computer

17, 7, 27-36.

STEELE, G. L., JR., AND HILLIS, W. D. 1986. Connection Machine Lisp: Fme-grained parallel
symbolic processing. In Proceedings of the 1986 ACM Conference on LLSp and Functional

Programmmg. ACM, New York, 279-297.

THIMBLEBY, H. 1988. Delaying commitment. IEEE Softw. 5, 3, 78-86,

THOMAS, R. H., AND CROWTHER, W. 1988. The Uniform System: An approach to runtime

support for large scale shared memory parallel processors. In Proceedings of the 1988 In tern a-

tional Conference on Parallel Processing. Pennsylvania State Univ., University Park, Pa.,
245-254.

ULLMAN, J. R. 1976. An algorithm for subgraph isomorphism, J. ACM 23, 1,31-42.

Received February 1991: revised June 1993; accepted September 1993

ACM Transactions on Pro~amming Languages and Systems, VO1 16, No. 3, May 1994


