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Logic-programming languages are based on a principle of separation of “logic” and “control.” This

means that they can be given simple model-theoretic semantics without regard to any particular

execution mechanism (or proof procedure, viewing execution as theorem proving). Although the

separation is desirable from a semantical point of view, it makes sound, efficient implementation
of logic-programming languages difficult. The lack of “control information” in programs calls for

complex data-flow analysis techniques to guide execution. Since data-flow analysis furthermore

finds extensive use in error-finding and transformation tools, there is a need for a simple and

powerful theory of data-flow analysis of logic programs.

This paper offers such a theory, based on F. Nielson’s extension of P. Cousot and R. Cousot’s

abstract interpretation. We present a denotational definition of the semantics of definite logic
programs. This definition is of interest in its own right because of its compactness. Stepwise we
develop the definition into a generic data-flow analysis that encompasses a large class of
data-flow analyses based on the SLD execution model. We exemplify one instance of the
definition by developing a provably correct groundless analysis to predict how variables may be
bound to ground terms during execution. We also discuss implementation issues and related
work.
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1. INTRODUCTION

Data-flow analysis is an essential component of many programming tools.

The main use of data-flow information is in compilers and other program

transformers, where the analysis may guide various improvements of the

generated code. Another use is to identify errors in a program, as done by

program “debuggers” and type checkers. Stated generally, the purpose of

program analysis is to decide whether some inuariant holds at some pro-

gram point. It may thereby be determined whether some transformation

scheme is applicable and possibly what the exact form of the synthesis should

be. The process of investigating such invariance is called data-flow analysis.

A fruitful way of viewing data-flow analysis was suggested some 30 years

ago, according to which data-flow analysis is “pseudoevaluation,” that is, a

process that somehow mimics the normal execution of a program. Naur put

this point of view to good use in explaining the type-checking component of

the Gier Algol compiler, and Sintzoff later provided further examples of its

usefulness (we give references later). P. Cousot and R. Cousot formalized the

idea in their influential theory of abstract interpretation.

We later discuss abstract interpretation in more detail, but the following

example conveys the basic idea: Rather than using integers as data objects, a

data-flow analysis may use neg, zero, and plus to describe negative integers,

O, and positive integers, respectively. Then by reinterpreting operations like

multiplication according to the “rules of signs,” the data-flow analysis may

establish certain properties of a program, such as “whenever control reaches
this loop, x is assigned a negative value.”

Abstract interpretation prescribes certain relations that should hold be-

tween a data-flow analysis and the semantics of the programming language

in question. If these relations hold, the data-flow analysis is guaranteed to be

correct. To formalize them, however, precise formal definitions of both seman-

tics and data-flow analysis are required. The analysis-as-pseudoevaluation
view is usually reified as a strong similarity between the two definitions, a

certain degree of congruence. This naturally leads to viewing data-flow

analysis simply as nonstandard semantics.

Abstract interpretation of logic programs has gained considerable currency

during the last 10 years. The major impetus has been the quest for data-flow

analyses that can improve code generation in Prolog compilers. Logic-pro-

gramming languages are based on a principle of “separation of logic and
control,” which is desirable from a semantical point of view, but which also

causes severe problems for implementation. The lack of “control information”
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in programs provides a wide scope for compiler optimizations and, hence,

data-flow analysis of these languages. This, and the simple semantics of logic

programs, explains the currency that abstract interpretation has gained in

logic programming. However, data-flow analysis of logic programs is in some

ways more complex than analysis of more traditional languages, since data-

flow is bidirectional (owing to unification) and control flow is in terms of

backtracking, at least for top-down sequential execution.

Much of the research into abstract interpretation of logic programs has

been devoted to designing abstract interpretation “frameworks” that consist

of a generic data-flow algorithm with a few basic operations as parameters. A

particular analysis is obtained by providing these parametric functions. An

important property of a framework is that correctness of the resultant

analysis is assured as long as the parametric functions correctly approximate

the standard interpretation of these parametric functions. Such frameworks

facilitate the development of structurally similar analyses and their proofs of

correctness, and also allow different analyses to be easily implemented by

means of a common “analysis engine.”

Frameworks, however, though generic in a certain sense, are implicitly

based on a single set of semantic equations that reflect the operational

semantics of the language being analyzed and the particular information

required. In fact, almost all existing frameworks model the SLD semantics of

definite logic programs and collect information about the calls occurring at

run time. A single framework is not suitable for all data-flow applications in

logic programming. For example, if the operational semantics is changed, say,

to a “bottom-up” evaluation or to allow dynamic atom scheduling, or if the

language is extended, say, to allow constraints or negation, then the underly-

ing semantic equations are changed, and so a new framework must be

designed and proved correct.

Here we give a general abstract interpretation theory in which to compare

and design these frameworks and their instances, that is, specific data-flow

analyses. The key idea, due to Nielson, is to express the underlying semantic

equations of each framework in a common metalanguage. The main prag-

matic advantage is that, by a careful choice of the metalanguage, properties

that are important for proving correctness of data-flow analysis can be

established at the level of the metalanguage once and for all, rather than

established for each framework or analysis. A “universal” metal anguage also

facilitates a stepwise, derivational approach to the development of data-flow

analyses. Note that these semantic equations can, with the right interpreter,

be directly executed, providing a prototype analysis engine that, in turn, can

be instantiated to perform various data-flow analyses.

We illustrate the use of our theory by defining an abstract interpretation

framework for definite logic programs that models the standard SLD opera-

tional semantics and collects information about a particular query’s answers.

The definition can be easily extended to collect information about calls. Our

semantic definition is considerably cleaner than previous definitions that
have been suggested for SLD-style semantics. Its simplicity is mainly due to

our use of constraints instead of classical substitutions, as this avoids tradi-
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tional problems with renaming and allows us to express unification and

composition as simple lattice operations. Finally, we use our abstract inter-

pretation framework to define a simple yet highly precise groundless analy-

sis. This analysis makes use of Boolean functions to trace the interrelation of

groundless among variables.

In Section 2 we recapitulate some basic notions. In Section 3 we present the

data-flow-analysis-as-approximate-computation view. Section 4 contains an

introduction to “language-independent” abstract interpretation. In Section 5

we develop a denotational definition that captures the essence of SLD resolu-

tion, as seen from the point of view of many data-flow analyses. This

definition is of some interest already because of its avoidance of substitutions

and standardizing apart. In Section 6 we turn the semantic definition into a

generic definition of a data-flow semantics, whose instances define a wide

class of useful data-flow analyses for logic programs. As an example we define

a groundless analysis in Section 7. In Section 8 we discuss the implementa-

tion of generic data-flow analyzers. In Section 9 we discuss related work, and

Section 10 contains a concluding discussion.

Much of the material in this paper was first presented as a tutorial on

abstract interpretation given at the North American Conference on Logic

Programming in Cleveland, Ohio, in 1989. The current exposition is an

extensively revised version of a paper presented at the Italian Logic Program-

ming Conference (GULP) in 1990.

Readers are expected to be familiar with the theory of logic programming,

and with denotational semantics at the level of the textbooks by Lloyd [1987]

and Schmidt [1986], for example. We have tried to comply with the terminol-

ogy of these two books. For a general introduction to abstract interpretation,

see Abramsky and Hankin [ 1987].

2. PRELIMINARIES

In this section we recapitulate some basic notions and facts from domain

theory and explain some notation that will be used through the paper.

A preordering on X is a binary relation that is reflexive and transitive. A

partial ordering is a preordering that is antisymmetric. A set equipped with a

partial ordering is a poset. Let (X, < ) be a poset. A (possibly empty) subset Y

of Xis a chain ifffor all y, y’ E Y, y < y’ vy’ <y.

Let (X, < ) be a poset, and let Y be a subset of X. An element x ● X is an

upper bound for Y iff y < x for all “v G Y. Dually, we maY define a lower

bound for Y. An upper bound x for Y is the least upper bound for Y iff, for

every upper bound x‘ for Y, x < x‘, and when it exists, we denote it by u Y.

Dually, a lower bound x for Y is the greatest lower bound for Y iff, for every

lower bound x‘ for Y, x‘ < x. When it exists, we denote the greatest lower

bound for Y by n Y.

A poset for which every subset possesses a least upper bound and a

greatest lower bound is a complete lattice. In particular, equipped with the

subset ordering, the powerset of X, denoted by YX, is a complete lattice. Let
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X be a complete lattice. We denote u ~ = nX by L * and n ~ = UX by Tx.

The complete lattice X is Noethericvz iff every ascending chain in X is finite.

Functions are generally used in their Curried form. Our notation for

function application uses parentheses sparingly. We use redundant parenthe-

ses only when they would seem to help the eye. As usual, function space

formation X ~ Z associates to the right, and function application to the left.

We occasionally use Church’s lambda notation for functions, and we use “o”

for composition of functions.
Let (X, < ) and (Z, <) be posets. A function F: X - Z is rnonotonic iff

x < x‘ - Fx < Fx’ for all x, x‘ ~ X. In what follows, monotonicit y of func-

tions is essential, so much that it is understood throughout this paper that
X e Z denotes the space of monotonic functions from X to Z. Furthermore,

the function space X ~ Z will always be ordered pointwise; that is, if F, G:
X ~ Z are functions and the Or&ringon Z k <, then the ordering G on

X + Z is defined by F c G iff Vx ● X.FX 5 Gx.

A function F: X ~ Z is injective iff Fx = Fx’ - x = x’ for all x, x’ ● X;

and F is bijective iff there is a function F‘: Z + X such that F o F’ and

F‘ o F are identity functions.

Let X and Z be complete lattices. A function F: X ~ Z is strict iff

FL ~ = L ~. Dually, F is costrict iff F Tx = Tz.

A fixpoint for a function F: X s X is an element x = X such that x = Fx.

If X is a complete lattice, then the set of fixpoints for (the monotonic)
F:X ~ X is itself a complete lattice. The least element of this lattice is the

least fixpoint for F, denoted by lfp F. Furthermore, defining

(u{ FTct’\a’ <a} if a is a limit ordinal,

‘Ta= F(FT(a– 1)) if a is a successor ordinal,

there is some ordinal a such that F ? a = lfp F.1 The sequence (F 7 O),

(F T 1),...,(lfp F) is the (completed) Kleene sequence for F. If a monotonic

function is defined on a Noetherian lattice, then it has a finite Kleene

sequence.

Let X be a complete lattice. A predicate Q is inclusive on X iff, for all

(possibly empty) chains Ys X, Q( u Y) holds whenever (QY) holds for every

y ● Y. Inclusive predicates are admissible in fixpoint induction: Assume that

F: X s X is monotonic and that Qx implies that Q(Fx) for all x E X. If Q is

inclusive, then Q( lfi F) holds.

Finally, a note about the “semantic brackets” ~ and ]: We use these for

quasi-quotation generally; that is, in this paper they are simply “Quine

corners.”

3. APPROXIMATE COMPUTATION

Abstract interpretation formalizes data-flow analysis by viewing it as approx-

imate computation, in which one manipulates descriptions of data rather

than the data themselves. In this section we detail this idea. In Section 4 we

‘ The origin of this assertion is in Kleene’s first recursion theorem [Kleene 1952].
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explain how it can be formalized in the theory of denotational abstract

interpretation.

In general, the disadvantage of an approximate computation is that the

result it yields is not as precise as that of a proper computation. But this is

compensated for by two important advantages: First, one approximate com-

putation may yield information about many proper computations at once.

Second, approximate computation is usually much faster than the proper

computation. In our case, where the concern is with the approximate compu-

tation of programs, the difference in speed between proper and approximate

computation may be extreme: nontermination versus termination.

The idea of performing program analysis by approximate computation

appeared very early in computer science. Naur identified the idea and applied

it in work on the Gier Algol compiler in the early 1960s [Naur 1963]. He

coined the term pseudoevaluation for what would later be described as “a

process which combines the operators and operands of the source text in the

manner in which an actual evaluation would have to do it, but which operates

on descriptions of the operands, not on their values” [Jensen 1965], The same

basic idea is found in work by Reynolds [ 1969] and by Sintzoff [ 1972]. Sintzoff

used it for proving a number of well-formedness aspects of programs in an

imperative language and for verifying termination properties.

By the mid-1970s, efficient data-flow analysis had been studied rather

extensively by researchers such as Kam, Kildall, Tarj an, Unman, and others

(for references, see Hecht [19771). As a powerful attempt to unify much of
that work, a precise framework for discussing approximate computation (of

imperative programs) was developed by P. Cousot and R. Cousot [1977; 1979].

The advantage of such a unifying framework is that it serves as a basis for

understanding various data-flow analyses better, including their interrela-

tion, and for discussing their correctness.

The overall idea of Cousot and Cousot was to define a “static” semantics

that associates with each program point the set of possible storage states that

may obtain at run time whenever execution reaches that point. A data-flow

analysis can then be construed as a finitely computable approximation to the

static semantics. The work of Cousot and Cousot later was extended to

declarative languages. Such extensions are not straightforward. For example,

there is no clear-cut notion of “program point” in functional or logic programs.

Also, data-flow analysis of programs written in a programming language such

as Prolog differs somewhat from the analysis of programs written in more

conventional programming languages, because the data-flow is bidirectional,

owing to uni flcation, and the control flow is more complex, owing to back-
tracking.

Of the applications of abstract interpretation in functional programming,

we mention work by Jones [1981] and by Jones and Muchnick [1981] on

termination analysis for lambda expressions and, in a LISP setting, improved

storage allocation schemes through reduced reference counting. The main

application, though, has been strictness analysis, which is concerned with the

problem of determining cases where applicative order may be safely used

instead of normal order execution. The study of strictness analysis was
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Table I. Multiplication of Parities

8 1 odd even T

L 1 L L 1

odd L odd even T
even L even even even
T L T even T

initiated by Mycroft [1981], and the literature on the subject is now quite

extensive; see, for example, Nielson [1988].

We can describe approximate computation as the evaluation of a formula or

a program, not over its standard domain, but over a nonstandard domain of

“descriptions.” The standard domain may consist of “states,” sets of terms,

atomic formulas, substitutions, or whatever, depending on how the semantics

is modeled; the nonstandard domain is determined by the kind of program

properties that we want to expose. Of course, when performing approximate

computations, one must reinterpret all operators so as to apply to descrip-

tions rather than to proper values.

Assume we have a data domain U and operators on U. In the example

below, U will be Z, the set of integers. We also assume we have a set X of

descriptions. To be precise about the relation between values and descrip-

tions, a concretization function y: X + ~U is de fined.z For every description

x ● X, (7x) is the set of objects that x describes. Thus, y is the semantic

function for descriptions.

Example 3.1. Let X be the set { ~ , even, odd, T}, ordered by x < x‘ iff

x = 1 V x = x‘ V x‘ = T . The denotation of description x = X is given by y:
x+gZby

yl ‘L
-yeven ={2 = Z I z is even},

yodd ={z ~Zlz is odd},

yT =Z.

Note that descriptions are ordered according to how large the set of objects

they apply to is: The more imprecise, the “higher” they sit in the structure.

The set {2, 4} is approximated by the description euen, the set {2, 3} by T ,

and multiplication of sets of integers by the operator @: X x X ~ X, given in

Table I. The example, incidentally, illustrates that application of an operator

to a description of “everything,” that is, T , need not involve loss of informa-

tion: The operator @ is not costrict since, for example, T 8 even = euen. Also

note that the ordering on descriptions is, in a sense, opposite to the ordering

used in domain theory: For descriptions, the top element corresponds to total

lack of information.

—
2 The terminology, including the use of the symbol y, is due to P. Cousot and R. Cousot [ 1977].
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Fig. 1. Flow diagram,

To see how a computation using the descriptions in Example 3.1 can

proceed, consider the flow diagram in Figure 1.3 Program points are num-

bered edges. Descriptions can be propagated in the graph by appropriately

interpreting the commands according to the “rules of parities.” For example,

the fact that n. is odd at program point 5 is used to conclude that n is even at

point 6. Such reasoning can easily be mechanized. Assuming that n is T at

point 1, we get the following descriptions of n at other points: At 2 it is T , at

3 it is even, at 4 it is T , at 5 it is odd, at 6 it is even, and at 7 it is odd. This

information justifies transformation of the program so as to avoid a number

of tests; for example, the statement n := 372 + 1 can be replaced by n := (3n

+ 1)/2.

The above example is a simple case of data-flow analysis viewed as

approximate computation. In general, there are three parameters in design-

ing objects that may serve as descriptions: (1) the program properties that we

want to expose, that is, adequacy of descriptions; (2) the precision that we

hope to obtain; and (3) the efficiency of the resulting data-flow analysis. Keep

in mind that we usually are interested in properties that are undecidable,

and so we cannot hope for optimal precision in a strong sense. This is

acceptable: A data-flow analysis need not tell the whole truth, although it

should, of course, not contradict truth. In this way, approximate computation

becomes to standard computation what numerical analysis is to mathemati-

cal analysis: Using numerical techniques, problems with no known analytic

solution can be “solved” numerically; that is, a solution can be estimated

within an interval of error.

It is clear that there is a trade-off between precision and efficiency. The

finer-g-rained descriptions we use, the better data-flow analysis can be per-
formed, but considerations of finite computability and efficiency put a limit

on granularity. To obtain termination it is common to use descriptions that

form Noetherian lattices. The reason is that if the analysis can be expressed

as least fixpoint of a monotonic function on such a lattice then this fixpoint

can be computed by means of the function’s completed Kleene sequence.

3 Collatz’s problem in number theory (also known as the 3n + 1 problem) amounts to determin-
ing whether thls program terminates for all n = N. This problem is still unsolved.
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Note that we are not primarily interested in the results of computations.

For program analysis purposes, our main concern is to extract information

about invariance at particular program points, such as “at this point, variable

x is always assigned positive values” or “this term becomes ground during

execution.”

4. A DENOTATIONAL APPROACH

Let us briefly recapitulate the advantages of abstract interpretation. First, it

is semantics-based, meaning that it forces data-flow analyses to be defined

with direct reference to a formal semantics of the given programming Ian-

guage. Although perhaps somewhat restrictive, this discipline is what facili-

tates the development of provably correct data-flow analyses. Second, it is a

unifjing theory. Often, many seemingly unrelated data-flow analyses can be

expressed as variants of a common form. Abstract interpretation tends to

emphasize the essential differences as well as what is common in analyses,

thus helping taxonomy.

The last point suggests that the design and implementation of a range of

data-flow analyses may often be simplified first by designing a framework

that is, essentially, a generic algorithm that captures the overall computation

regime common to a large class of analyses, and then by providing the

characteristic details of a given analysis in the form of various parametric

functions. Indeed, in the area of logic programming, such generic frameworks

and various implementations, called analysis engines, are now emerging.

However, abstract interpretation can be generalized even further so as to

provide a theory of data-flow analysis that is independent of any particular

programming language or operational semantics. We have in mind here

Nielson’s theory4 of denotational abstract interpretation [Nielson 1982; 1988;

1989].

This section is concerned with explaining and customizing Nielson’s theory

to better serve our needs. There are two or three revisions that prove useful

in the setting of logic programs. These revisions are necessary because

Nielson was concerned with deterministic langaages, but logic programs are

nondeterministic. Most importantly, we include a join operator in the meta-

langaage, as join is the natural operation for combining sets of possible

outcomes from a nondeterministic choice. Another difference is that we do not

require continuity of functions. We show that Nielson’s results still hold in

this revised setting, as long as approximation is formalized in terms of a

concretization function, rather than in terms of an abstraction function.

4.1 Language-Independent Abstract Interpretation

Assume we are given a language in which one can express the semantics of a

wide variety of programming languages. The theory of abstract interpretation

may then be developed in the framework of this metalanguage once and for

all. In this way, we need not invent (or reinvent) abstract interpretation for

4 Some of the ideas in Nielson’s treatment can be traced back to work by Donzeau-Gouge [ 1978].
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Standard
semantics

Fig. 2. Role of the metalanguage (after Nielson [1988]),

each new kind of programming language or operational semantics; each is

just a special instance of the general theory. With a careful choice of metalan-

guage, properties that are important for the correctness of data-flow analyses

can be established at the level of the metalanguage once and for all. They

need not be reproved for individual analyses or even for individual program-

ming languages. Figure 2 illustrates the point, which we push further in

Section 4.2.

Expressing standard and nonstandard semantics in the same metalan-

guage also supports a deriuational approach to the development of data-flow

analyses. The definition of a data-flow analysis should be easily derived from

that of the standard semantics. Only in a second stage should the analysis be

implemented from its definition. Such a stepwise approach may be preferable

to the task of proving some baroque data-flow procedure correct with respect

to a semantic definition (or an interpreter).

Figure 3 illustrates how the denotational approach allows the separation of

concerns. The two upper circles represent formal dei%itions in the met al an-

guage. The lower circles represent implementations of the semantic defini-

tions. The vertical arrows represent the relation “implements” (or “abstracts”

if read the other way). The point is that the relation (marked ? in the figure)

between a data-flow procedure and an operational semantics is usually very

complicated and that the problem of establishing the former’s correctness

with respect to the latter is difficult. In our approach it is broken up into two

orthogonal issues: that of implementation (of a formally defined data-flow

analysis) and that of correct approximation of one definition by another.
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(3”
Approximates

Standard

n

Non-standard

denotation denotation

L

Implements

A

Implements

n (3Dataflow
Interpreter

analyzer
?

Fig. 3. Separating two orthogonal aspects of the data-flow analyzer.

The notion of approximation is made precise in Section 4.2. Later, when we

give the formal semantic definitions (the two upper circles in Figure 3)

relevant to logic programs, the reader will realize that they are virtually

identical: A few “bricks” may differ, but the structure and mortar are

identical. This is very useful, since the approximation relation will be shown

to have the property that it will automatically hold at the top level if only it

holds at the level of the few selected “bricks.”

We stress that, to achieve this desirable situation, the exact choice of

metalanguage is important. It is not the case that any language will do. On

the one hand, the metalanguage must be sufficiently expressive to be useful,

and on the other hand, it must be sufficiently curtailed for the all-important

Theorem 4.4 below to hold.

The present treatment is similar to Nielson’s in his paper on strictness

analysis [Nielson 1988]. There are, however, important differences. We do not

formalize abstract interpretation in terms of an “abstraction function,” but

rather in terms of a “concretization function.” In the theory of Cousot and

Cousot [1977; 1979], this difference would be a matter of taste only, since the

two functions uniquely determine each other. Here, however, the difference is

important: We do not require the existence of an abstraction function, and

Nielson does not require the existence of a concretization function. The

reason for our choice is that we want our metalanguage to include a join

operator, something that Nielson does not need, as he is concerned with

deterministic programming languages only. In Nielson’s framework, the addi-

tion of a join operation would invalidate the all-important Theorem 4.4 below,

as shown in Example 4.1. In addition, we find it simpler to think in terms of

concretization functions, since they are in a sense “semantic functions” for
descriptions.

Like Nielson we use the formalism of denotational semantics. Although

this is not the only choice for a rnetalanguage, its usefulness and suitability
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should be apparent from the following sections: Both standard and nonstan-

dard semantics are easily presented in the metalanguage. By choosing the

right level of abstraction, they can be made highly congruent: If the standard

semantics employs a certain operator on the standard domain, the nonstan-

dard semantics should use a corresponding operator on the nonstandard

domain.

The metalanguage is one of typed lambda expressions, and the language of

type expressions is given by

T ● Type ::= S ~L,

L~Lat::=DIT+L,

where S E Stat, D = Dyn, Stat is a collection of static types, and Dyn is a

collection of dynamic types. The difference between the two kinds is that (the

interpretation of) a static type remains the same throughout all (standard

and nonstandard) semantics, whereas a dynamic type may change. We call

Stat U Dyn the collection of base types, and Lat the collection of lattice

types. When we give the semantics of these types shortly, it will become clear

why S, T - S, T _ T + S, and so on are excluded from the lattice types.

The syntax of the metalanguage is given by

e::=c (base functions)

I x’, (variables)

I Ax: T.e (function abstraction)

I ee’ (function application)

I if e then e’ else e“ (conditional)
I lfp e (least fixed point)

leUe’ (join).

We are generally concerned with expressions that are closed; that is, every

variable is bound by a lambda.

There is a notion of well typing for this language, which is explained

shortly. Static types are interpreted as posets (ordered by identity), and

dynamic types as complete lattices. A type interpretation I thus assigns a

structure (IT) to each base type T. By natural extension the semantics of

types is defined as follows:

I~S] =1S (a (fixed) poset, ordered by identity),

I~D] =ID (some complete lattice),

I~T + L] =IKT]~ I~L] (ordered pointwise).

Recall that - on the right-hand side denotes monotonic function space.
By this, I [L] is a complete lattice for every L = Lat, which is why dynamic

types are required to denote complete lattices. The semantic equations in the

following sections define least !ilxpoints of monotonic functional over do-

mains of type T + L, and the type discipline thus automatically guarantees
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well definedness of the semantics. We do not require that domains with static

types have excessive structure: Many domains that are to remain fixed

throughout all (interpretations of) semantic definitions, such as “the set of

programs,” are best thought of simply as sets.

We now explain the notion of well typedness. The denotation of an expres-

sion e is relative to a type environment ~ and a type T such that I- R e: T

(i.e., in environment ~, e has type T). The type rules are

~*c~:T iff T is the (fixed) type of c,, ~+xZ:T iff TX, = T,

T[7’/x] + e: T’ rFe:T-+T’ ~Fe’:T

I-F (Ax: T.e): T- T’ ‘ ~+ (ee’): T’ ‘

rFe:Bool r+e’:T rFe”:T rFe: L-L

~+ if e thene’ else e“: T ‘ rl--lfpe:L ‘

r+e:L ~+e’:L

~+e Ue’:L

Here ~[ T/x] is the type environment, which is identical to ~ except that x is

associated with type T. The type Bool is that of truth values, and L denotes

a lattice type.

We are now ready to explain the semantics of the metalanguage. An

interpretation I denotes a type interpretation (by an abuse of notation also

called I) together with an assignment of an element of I~T] to each base

function c of type T. By natural extension this gives the semantics of the

metalanguage. Let the domain of ~ be {xl, . . . . x~}, and let 7x, = T, for

i= {l,..., k}. Then I~e]: I~Tl] x . . . x I ~T~ ~ I~T] is defined as follows (we

let q abbreviate (VI,... , Vh)):

By varying the interpretation, one may obtain different semantics from the

same set of semantic equations. The standard interpretation gives the usual

input/output behavior of the program, while data-flow analyses may be

expressed as “nonstandard interpretations. The role of abstract interpreta-
tion is to give relationships between the standard and nonstandard interpre-

tations that guarantee that the data-flow analysis safely approximates the

standard semantics.
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4.2 A Theory of Approximation

To relate standard and nonstandard interpretations, one must first explain

what the descriptions in the nonstandard semantics mean in terms of the

standard semantics. This is done by means of “insertions,” where an insertion

consists of a function that maps descriptions to the largest object that they

describe.

Definition. An insertion is a triple (X, y, Y), where X and Y are complete

lattices and where the monotonic function y: X s Y is costrict. A concretiza -

tion family, I_ = {y~}, for interpretations I’ and I is an indexed family of

functions such that, for each D E Dyn, ((I’D), -y~, (ID)) is an insertion.

The motivation for the definition of insertion is that the domain X of

descriptions should “approximate” Y in the sense that the two have compati-

ble structures, so that y should be monotonic. Furthermore, every element in

Y should have a corresponding description, so that y should be costrict.

In Cousot and Cousot’s theory of abstract interpretation, the function y is

required to have an adjoined, so-called abstraction function a: Y j X.

Definition. Let X and Y be complete lattices. The (monotonic) functions

y: XAY and a: Y4Xareadjoined iff Vx~X. Vy~Y. ay<x~y< yx.

The abstraction function can be thought of as giving the best description of

an object. Cousot and Cousot [1977] demand that an abstraction function

exist. This they do on grounds that, otherwise, data-flow analyses may not

yield the best possible result, given the set of descriptions chosen; see also

Sondergaard [1989].

Like Bruynooghe [1991] and Bruynooghe and Janssens [1992], we do not

require the existence of an abstraction function. Note that when it exists, it is

uniquely defined by a y = n {x I y < yx}. The following definition allows us to

characterize when an abstraction function exists:

Definition. Let X be a lattice, and let Y c X. We say that Y is Moore-

closed (in X) iff

vY’c Y.n Y’e Y.

LEMMA 4.1 [COUSOT AND COUSOT 1979]. Let (X, y, Y ) be an insertion.

Then y has an adjoint iff {yx I x ● X} is Moore-closed.

Recalling our convention (Example 3.1) of ordering descriptions according

to how large a set of objects they apply to, we now define what it means for a

description to approximate another description safely.

Definition. Let r = {YD}D g DY~ be a concretization family for interpreta-
tions I’ and I, and let S ● Stat and D = Dyn be types. The relation appr[ r]T
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is defined by

u appr[r]~v ~ v = u

u appr[I’]~v ~ vs y~u

u appr[I’]~+~v e Vu ‘, v’. u’ appr[r]Tu’ ~ (u u’)c2ppr[r]L(vv’).

When the concretization family r and type T is clear from the context, we

shall write appr[ r ]~ simply as appr.

LEMMA 4.2. For all lattice types L and concretization families r, appr[ r]~

is inclusive.

PROOF. The proof is by structural induction on the types. Let Z c (IIL])

x (I’ [L]) be a chain such that x appr[ r ]~ y holds for all (x, y) c Z. Clearly,

LIZ= (MX, UY), where X={x\(x, y)~Z}and Y={yl(x, y)= Z}.

Consider the case L = Dyn. By monotonicity of YL, y < YL x < YL( UX) for

all (x, y) G Z. Thus, U Ys YL( UX), and so appr is inclusive for this case.
The other case is when L = ~T - LT. Let (x’, y’) ~ (IITI) X (1’ IITI) be

given. Then W = {(xx’, yy’)l(x, y) ● Z} is a chain, and UW = ((uX)X’,

(u Y)Y’). Assume that x’ appr[rl~y ’ holds. Then (xx’) appr[r]~ (YY’) holds
for all (x, y) ● Z, by the definition of appr. Since appr[ r]~ is inclusive,

(xx’) appr[rl~ (YY’) holds for (x, Y) = UZ = (UX, UY). Since ~’ and Y’
were arbitrary, ( uX) appr[ I’] L( U Y ) holds, so appr[ r ]~ is inclusive. ❑

Definition. A relation R ~ X x Y is order-preserving iff for all x, x‘ ● X

and y, y’ c Y, if xRy and x s x’ and y’ s y, then x’Ry ’. R is additive iff

for all x 6 X and y, y’ G Y, if xRy and xRY’, then xR(y U y’).

LEMMA 4.3. For all lattice types L and concretization families r, appr[ r]~

is order-preserving and additive.

PROOF. The proof is by straightforward structural induction on the types.

❑

These results lead to the following theorem, which extends an important

result by Nielson [1988]. It says that, if we are given base functions cl, ..., c~

andc~, ..., CL such that c; approximates CJ for every i e {1, . . , , n}, then the

closed expression e[ cj, ..., cj] approximates e[ cl, ..., c~ 1.

THEOREM 4.4. Let r be a concretization family for interpretations I and

I’. If (It) appr (1’c) holds for every base function c, then, for any closed

expression e, (Ie) appr (1’e ).

PROOF. The proof is by structural induction on the form of e. Most cases

are straightforward, and thus, we show only two: e = lllfi e ~ because fixpoint

induction is needed for that case; and e = [el u e2 ], since this is a construct

that is not in Nielson’s language.
Consider the case e = ~l~p e ~. Note that e‘ must be a closed expression.

Furthermore, the type discipline guarantees that I~e ~ ~ I~L] A I~L] for

some L G Lat, while I’~e~G I’~L]+ I’~L].
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Let g: ((IKL]) x (1’ KLI)) ~ ((IKLI) X (1’ KLI)) be defined by g(x, x‘) =

(IKe ‘k, I’Ke ‘k), and assume that x appr x‘ holds. By the induction hypothe-

sis, (I [e ‘B) appr (I’ Ke ‘Jx). We can interpret this as a statement Q( x,

x‘) ~ Q(g(x, x ‘)), where Q is inclusive by Lemma 4.2, and so Q(lfp g) holds;

that is, ( lfp(I[e ~)) appr (lfp (I’ [e T!)). Thus, (IKlfp e ~) appr (I’ Klfp e ~), as

desired.

Consider the case e = ~el D e~. Note that el and ez must be closed. The

type discipline guarantees that (I Kel]), (IKeJ) G (I E]) for some lattice type

L, while (1’~e~), (1’~eJ) e (1’KL]). Thus, IKel u e~ and I’Kel D e~ are well

defined.

By the induction hypothesis,

(IKe,l)appr[rl~ (I’Ke,l) and (IKeJ)appr[rl~(I’Ked).

From Lemma 4.3, appr[ r ] ~ is order-preserving, so

(I[e, u ed)appdrl~(I’Kell) and (IKe~ u WJ)wpr[rl~(I’[ei_l).

Thus, by additivity of appr[r]~, (IKel u eJl) appr[r]~ (l’Iel u e~). ❑

Note the generality of this result: It immediately allows us to argue

inductively the correctness of a whole data-flow analysis (i.e., nonstandard

semantics) once certain primitive base functions are shown to be in the

relation “safely approximate s.” This applies not only to logic-programming

languages as discussed in this paper, but to any language whose semantics

can be expressed in the metalanguage. (In fact, the metalanguage can be

further extended in various natural directions [Nielson 1988].)

Example 4.1. In Nielson’s theory of denotational abstract interpretation,

the approximation relation is defined in terms of an “abstraction function” a:

Y - X, which maps a data object y = Y to its best approximation x ● X.

Thus, x approximates y iff a y < x.

In this setting Theorem 4.4 does not hold, because of the join operator. To

see this consider the lattices in Figure 4. Clearly, a U ~.b = T , and a u ~ b =

c. With the abstraction function a: Y ~ X defined by a y = y, we have that a

approximates a and that b approximates b, but c does not approximate T .

Perhaps surprisingly, the relation appr[ r]~ is, in general, neither reflexive

nor transitive. For counterexamples, see Nielson’s [ 1989] Example 5.1.3 for

lack of reflexivity and Marriott’s [1993] Example 5.1 for lack of transitivity.
Reflexivity and transitivity would seem to be essential requirements to appr

if the relation is to be used as an ordering on analyses. This motivates the

following definition:

Definition. A lattice type T ● Type is first-order iff it can be generated by

the grammar

where S ● Stat and D = Dyn.
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For example, (S ~ D) ~ D is not first-order.

The following proposition says that approximation is transitive for first-

order types.

PROPOSITION 4.5. Let I, I’, and I“ be interpretations and let e be a closed

expression of first-order lattice type. Then (Ie) appr[r’] (1’e) and (Ire)

appr[ I’” ](1 e) implies (Ie) appr[ 17°0 r’](1 e), where lT’ o I“ stands for the

concretization family {y} 0 y; I D e Dyn, y; = r‘, y; = I’”}.

PROOF. The proof is by induction on types. In the case of D or S - T, itis

straightforward. So assume that the assertion holds for types D and T, and

we will show that it holds for types D - T. Assume that u appr[ r“ o r ‘]~ u“.

Then u appr[ r ‘]~ v’ and v’ appr[ r“ ]~ v“, where v’ = y~v. Assume that u

appr[r’]~+~ u’ and u’ appr[r’’]~+~ u“. Then (UV) appr[r’]~ (u’v’) and

(u’v’) appr[ r“ ]~ (u’’v” ). By the induction hypothesis, (u v) appr[ r“ o 17’]~

(u’’v”). It follows that u appr[ r“o r’]~ ~ ~ u“. ❑

This result is useful because it allows the stepwise development and proof

of approximations. At first sight, the restriction to first-order types looks

serious, since the proposition does not seem to offer any help if we are

working with continuation-based denotational definitions. However, one has

to remember that the proposition will only be applied to the semantic

functions for a program as a whole and that the restriction therefore has

little impact.

Approximation is also reflexive for first-order types, as there is a natural

“identity” approximation.

Definition. Let I be an interpretation. The identity concretization family

for I is the concretization family rId = {y~}, where, for each D ~ Dyn,

‘y~x =x.

PROPOSITION 4.6. Let I be an interpretation with an identity concretiza-

tion family rId, and let e be a closed expression of first-order lattice type. Then

(Ie) appr[rldl (Ie).

PROOF. We actually prove that for all first-order lattice types, L, u

appr[ rId ]~ v iff u < u. The proof is by induction on types.
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The base case when L = Dyn follows from the definition of rI~. Consider

the case when L is D + L’. Now u appr[I’I~]~_~ u iff, for all u’ and u’, u’

appr[ rl~lD U’- (u u’) appr[ r~dl~ (vv9. BY the induction hypothesis, u

appr[rI~]~+~, u iff, for all u’ and v’, v’ s u’ - (vu’) s (u u’), which by

monotonicity of u and u holds iff u < u. The case when L is S ~ L’ is similar.

❑

In this section we have introduced a general theory of abstract interpreta-

tion that is based on a simple metalanguage and formalized in terms of

concretization functions. The theory carefully separates the two concerns:

approximation and implementation. The metalanguage is a variant of the

typed lambda-calculus and has been carefully chosen so that correctness of

approximation lifts from basic expressions to all expressions in the language

(Theorem 4.4). This facilitates proofs of correctness.

In general, approximation in this theory is not transitive or reflexive, but

we have given a simple condition that ensures that approximation is transi-

tive and reflexive (Propositions 4.5 and 4.6). This allows us to develop

data-flow analyses in a stepwise, derivational manner. In the remainder of

the paper, we illustrate an application of the theory.

5. SLD RESOLUTION: A CONSTRAINT LOGIC PROGRAMMING VIEW

Interpreters and compilers for logic-programming languages are usually

based on SLD resolution. Therefore, it is reasonable to base the abstract

interpretation of such languages on some formalization of SLD resolution. We

demonstrate the utility of the language-independent theory of abstract inter-

pretation developed in the last section by using it to give a generic analysis

framework for logic programs that captures the SLD semantics.

In this paper we are only concerned with definite programs [Lloyd 1987]. A

definite program, or program, is a finite set of clauses. A clause is of the form
H e B, where H, the head, is an atom and B, the body, is a finite sequence

of atoms. We let Var denote the (countably infinite) set of variables, Term the

set of terms, Pred the set of predicate symbols, Atom the set of atoms, Clause

the set of clauses, and Prog the set of (definite) programs.

We assume that we are given a function vars: (Prog u Atom u Term) ~ @

Var, such that ( uars S) is the set of variables that occur in the syntactic

object S. A syntactic object S is ground iff it is constructed without variables;

that is, vars S = fl.

A substitution is an almost-identity mapping $ ● Sub G Var ~ Term. Sub-
stitutions are not distinguished from their natural extensions to other syntac-

tic categories. Our notation for substitutions is fairly standard. For instance,
{Z w a} denotes the substitution 8 such that (Ox) = a and ( OV ) = V for all

variables V # x. The restriction of a substitution 6 to a set of variables W,

written 6 Iw, is the substitution 6” defined by /3‘V is $ V if V = W; otherwise,

it is V. The domain of a substitution $, written dom 6, is the set of variables

{V C Var I OV # V}.

A unifier of A, H e Atom is a substitution 19 such that ( oA) = (@H). If

such a unifier exists, then A and H are unifiable. A unifier 6 of A and H is
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an (idempotent) most general unifier of A and H iff (3’ = o‘ 00 for every

unifier O‘ of A and H. Two atoms A and H have a most general unifier

whenever they are unifiable. The auxiliary function mgu: Atom - Atom + @

Sub is defined as follows: If A and H are unifiable, then (mgu A H) yields a

singleton set consisting of a most general unifier of A and H. Otherwise,

(mgu AH) = ~.

Let G=e Al,... , An be a query with selected atom A,, and let C = H ~

Al, . . . . A’k be a clause. If A, and H are unifiable, then

/31Al, . . .. A._l,l,l, A.. ,A’k, Ai+l, . . ..Afl

is a resolvent of G and C with unifier t?, where {O} = mgu A, H.

Let P be a definite program, and let G be a query. An SLD derivation of

P u {G} consists of

—a maximal sequence GO, GI, . . . of queries with Go = G,

—a sequence Co, Cl, . . . of fresh variants of clauses from P (i.e., the variables

in CL are consistently replaced by variables not in Co, ..., Cl_ ~, or G), and

—a sequence (30, 01 . . . of substitutions,

such that, for all i, G,+ ~ is a resolvent of G, and C, with unifier 0,. An SLD

derivation may be finite or infinite. Assume it is finite, with final elements

~+1, C., and ~~. Then, if G~+lG is empty, the derivation is successful;

otherwise, it is finitely failed. If it is successful, the computed answer is

ono ““” o (30, restricted to the set of variables occurring in G.

We will, in fact, not need substitutions and unification as defined above

until Section 7. Perhaps surprisingly, they play no role in the formal seman-

tics we are about to present. Inspired by constraint logic languages, we let the

role of substitutions be played by term equations, There are several reasons

for this, but most importantly, we have the following:

(1) It is simpler to think of term equations ordered by logical consequence
than substitutions ordered by some complicated “instantiation” ordering.

It also provides a pleasing uniformity in the present context, since in

Section 7, we “approximate” term equations by propositional formulas (or

Boolean functions), again ordered by logical implication.

(2) It does away with the awkward directionality of substitutions. Semanti-

cally, the distinction between {x - y} and {y + x} is unnecessary and

hampers full abstraction.

(3) Substitutions do not form a complete lattice, and it is common to restrict

attention to idempotent substitutions. That approach seems unnatural, in

particular, since the class of idempotent substitutions is not closed under

composition; witness {x ~ f(y)} o{y ~ x}.

The other characteristic of our definition is that unification is not only
performed when a clause is entered, but also when it is exited. This is to

enforce a regime in which “only local variables matter.” It reflects the fact

that a compiler, optimizing code for a given clause, will mainly need data-flow
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information expressed in terms of variables local to the clause. Finally, our

definition assumes the standard (left-to-right) computation rule.

5.1 Existentially Quantified Term Equations

We now describe the most important semantic domain involved in the

definitions to come.

Definition. An ex-equation is a possibly existentially quantified conjunc-

tion of basic equations TI = Tz. The conjunction maybe empty, in which case

we denote it by true. We call the set of ex-equations Eqn.

We consider ex-equations in the context of an alphabet given by some

program/query. The semantics of a basic ex-equation is given by the term

algebra over that alphabet. Ordering the elements by logical consequence and

considering equivalence classes in the usual way, we obtain a partially

ordered set with true as the greatest element and with false, the equivalence

class of unsatisfiable elements, as the smallest.

Example 5.1. The ex-equation 3 y. x = f(y) corresponds to the substitution

{x ~ f(y)}, and so does the ex-equation x = f( y). The difference between the

two is that the latter specifies a relation between two program variables, x

and -y, whereas the former merely states that x is constrained to take certain

forms. Said differently, the name y is significant in the latter, but not in the

former. We thus have two different kinds of placeholders in terms.

We can extend the definition of a “unifier” to ex-equations in a natural

way. This provides the link between our semantic definition and the more

usual definition using substitutions.

Definition. A unifier of ex-equation e is a substitution 6 such that

% ( t)e). We let unif e denote the set of unifiers of e.

Thus, 6 is a unifier of the atoms A and H iff it is a unifier of the ex-equation

A = H. Note that application of a substitution to an ex-equation requires that

the existentially quantified variables be renamed away from the variables in

the substitution, so as to avoid name clashes.

Example 5.2. The ex-equation 3 y.x = f(y) has unifiers {x ~ f( z)}, {x *

f(a)}, and so on. Unifiers for x = f(y) include {x ~ f(y)}, {.x ~ f(a), y H a},

and {x R f(z), y N z}, but not {x ~ f(z)} or {x ~ f(a)}. The ex-equation false

has no unifier.

5.2 The Base Semantics

We now make use of ex-equations to give a semantic definition that is

suitable as a basis for abstract interpretation and that captures SLD resolu-

5 Corresponds should be taken loosely: Comb, unlike composition, is commutate; and urufy is
noncommutative. The commutativity of comb restores the intuition of SLD resolution as con-

straint manipulation, an intuition that is lost with substitutions and their composition If e and

e‘ are constraints, then composmg them simply means forming their conjunction. The reason
why unify is noncommutative will become clear shortly.
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tion. The definition makes use of the auxiliary functions, comb, which corre-

sponds to composition, and unify, which corresponds to computing the most

general unifier.5

We shall need a particular kind of variable renaming: A name toggle is an

involution; that is, a bijection p = Ren c Var s Var, which satisfies p = p– 1.

We do not distinguish a name toggle from its natural extension to atoms and

clauses. The function ren: @ Var ~ Y Var ~ Ren generates name toggles:

(ren U W ) is some name toggle, such that, for all V in W, ren U W V @ U.
Note that this is renaming of variables in W “away from” U.

Definition. The function comb: 9 Eqn ~ P Eqn ~ 9 Eqn is defined by

comb EE’={e Ae’~e~EA e’~ E’}.

The function restrict: @ Var ~ 9 Eqn -~ Eqn is defined by

restrict UE = {~~.e I e ● E},

where ~ denotes ( uars E) \ U. The function unify: Atom -+ Atom - P Eqn

~ 9 Eqn is defined by

unify HAE = restrict( uars H)(comb{H = pA}( pE)),

where p = ren( uars H )(( uars A) U ( uars E)).

Notice that the calling atom A is renamed away from the clause head H.

The auxiliary functions are defined to operate on sets E of conjunctions,

rather than on single conjunctions, because in the next section it proves

useful to have the broader definitions.

Example 5.3. Let e be 3u.(y = u A z = f(u)), and let e’ be y = a. Then

comb{ e}{e’} is {y = a A z = f(a)}.

Let Al =p(a, x), Az =p(y, z), and let e be 3u.(y = u A z = f(u)). Then

we have that (unify Al Az{e}) = {x = f(a)}. Notice that this ex-equation does
not constrain y or z; only variables in Al may be constrained. On the other

hand, we have that (unify Az Al{e}) = {y = a}, in which both x and z are

unconstrained: With name toggle {y ~ y’, z _ z’, y’ H y, z’ _ z}, we get

unify AzAl{e} = {~y ’,z’.(y =a Az =x A EIu.(y ’ = u AZ( =f(u)))}

={y= a}.

Notice also that (unify AI Al{e}) = {true}, while (unify Az Az{e}) = {e}.

Let As = P( f( y), z). Then (unify As Az{true}) = {true}. There is no “occur

check problem” since variables in Az are renamed.

Finally, let AA = p( x, x). Then (unify AA Az{e}) = ~, corresponding to

failure of unification.

To summarize, unify HA {e} is the result of conjoining H = A with e and

then restricting the result to variables in H. As a first step of unification,

variables in A and e are consistently renamed so as to avoid collisions with
variables in 27. Unification can be done with respect to a set E, and unify

HA E is then {unify HA {e} I e G E}. Notice how the restriction to variables in

H means that unify is not symmetric with respect to H and A.
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The following definition captures the essence of an SLD refutation-based

interpreter using a standard computation rule and a parallel search rule. The

domain Atom is ordered by identity; Den is ordered pointwise:

Definition. The base semantics has the semantic domain

Den = Atom * @ Eqn ~ @ Eqn

and semantic functions

It is defined as follows.G

pba.D’n = lfp( u ~ . p(cba.Ken)),

Cba~Kll +BldAE = u~=~ comb {e} (unify AH(Bba. [B] d (unify HA {e}))),

Bba~~niln dE = E,

Bba,KA : BldE = Bba~l_IBld(dfle).

The statements we are interested in generating from a data-flow analysis are

of the form “whenever execution reaches this point, so-and-so holds.” In

saying so, we do not actually say that execution does reach the point. In

particular, “whenever the computation terminates, so-and-so holds” con-

cludes nothing about termination. As nontermination is not distinguished

from finite failure, we can assume a parallel search rule, rather than the

customary depth-first rule, thereby simplifying the semantic equations. Ow-

ing to the use of a parallel search rule, the execution of a program naturally

yields a set of answers, as opposed to a sequence.

Example 5.4. Consider the following list concatenation program P:

append(nil, y, y).

append( u : x, y, u : z] + append(x, y, z).

Let A = append( x, y, a : nil). Execution of P yields two instantiation of the

variables in A. We have that Bb.,~PIA {true} = {z = nil ~ y = a : nil, x = a
: nil ~ y = nil}.

A note about semantical modeling and data-flow analysis may be appropri-

ate at this point. We have defined B b., such that given a program P and a
query A it returns the set of computed answer constraints. That is, Bba~

6 Strictly speaking, the singleton set constructor {.}, as used m the definition, is not part of our
metalanguage and is commonly avoided in denotational definitions as it is not monotonic, Its use
here causes no problems: The semantic functions are well defined. Subsequent definitions will
avoid using {.} so as to utilize Theorem 4.4. Finally, u
repeated use of the metalanguage’s u.

c e P Is Just an abbreviation for the
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selects what is considered the relevant information from the SLD tree for

P u { + A}, namely, for each success leaf, the conjunction of the constraints

that decorate the path from the success leaf to the root. Other information is

“forgotten.” For example, (B~aS KP]A) contains no information about the

length of derivations, the constraints that decorate paths leading to failure

nodes, or how variables outside A become constrained during execution.

This is quite in accordance with the common understanding of SLD seman-

tics as the result of applying SLD resolution. However, data-flow analysis

aims at extracting information about a program’s execution, that is, about

some of the very details that our “SLD semantics” forgets. For example, a

data-flow analysis that aims at determining which calls may appear at run

time cannot afford to disregard those paths in the SLD tree that lead to

failure. For this reason we need a notion of “extended semantics,” in which

the calls to a clause (restricted to the local variables in the clause) are

collected. It is straightforward to modify the base semantics so that it collects

this information. To limit the number of semantic definitions, however, we

shall not do this and will ignore this issue for the remainder of this paper.

Readers should keep in mind, however, that ultimately the touchstone for the

correctness of a data-flow analysis returning information about calls to a

clause is its soundness with respect to this extended semantics.

At this stage we have given a very simple denotational definition of logic

programs that captures the SLD operational semantics. Its simplicity is due

to the use of existentially quantified term equations, rather than substitu-

tions, and of a parallel, rather than sequential, search rule.

6. DATA-FLOW ANALYSIS OF LOGIC PROGRAMS

The semantic definitions given in the previous section have been designed to

capture the essence of SLD resolution. In this section we develop a generic

data-flow analysis framework from these definitions by factoring out certain

operations.

First we introduce some imprecision in the semantics. So far, for all

ex-equations generated by a clause, track was kept of the particular ex-equa-

tion the clause was called with, so that the meet (conjunction) of generated

equations and corresponding call equations could be computed. We now

abandon this approach in order to get closer to a data-flow semantics. The

point is that, in a data-flow semantics, a “description” x will replace 13, the

set of “current” ex-equations, and since descriptions are generally atomic (in

the sense of nondecomposable), it makes little sense to refer to elements of x.

As a first step, we thus replace “ LJ. ~ ~ “”” e . . . “ in the definition of the base

semantics by “””” E . . . .“

Definition. The lax semantics has semantic functions

P lax: Prog * Den,
Cl~X: Clause * Den + Den,

B ,ax: Body * Den + (S Eqn) ~ (= Eqn).
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It is defined as follows:

Plaxlm = lfi( u (-J. P(qaxmal)l

Cl~X~H + B] dA E = comb E(unify A H (B1.XKB] d(u~ify HA ~))),

B1axKniD dE = E,

BlaxKA : BldE = B1.XKBld(dAE).

This semantics is only an approximation to P~,,, as the following example

shows. However, the lack of precision introduced with Plax is acceptable for

the purpose of data-flow analysis: It has no impact on applications of abstract

interpretation to programs.

Example 6.1. Consider the program P:

q(x, y, z) -p(x, y), 7“(X, y, z).

p(a, u).

p(zz, a).
r(u, u, u).

and the query A = - q(x, y, z). We have that

Pba, KPIA{ti-ue} = {false, x =a Ay =z, y =a Az =a}.

130wever,

Pl,X~P]A{true} ={ false, x=a Ay ‘z, y=a Az=a, x=a Ay=a~z =a}.

PROPOSITION 6.1. P lax appr ‘has.

PROOF. It is not hard to show that Clax appr Cba~. The assertion follows

by Theorem 4.4. ❑

To extract run-time properties of pure Prolog programs, one can develop a

variety of nonstandard interpretations of the preceding semantics. To clarify

the presentation, we extract from the lax semantics a data-flow semantics

that contains exactly those features that are common to all of the nonstan-

dard interpretations that we want. It leaves the interpretation of one domain

X and two base functions, c and u, unspecified. These missing details of the

data-flow semantics are to be filled in by interpretations. In the standard

(lax) interpretation of this semantics, I lax, X is P Eqn, c is comb, and u is

unify. In a nonstandard interpretation, X is assigned whatever set of “de-

scriptions” we choose for approximating sets of ex-equations. So X should be

a complete lattice that corresponds to @ Eqn in the standard semantics in a

way laid down by some insertion (X, y, (9 Eqn )). The interpretation of c and

u should approximate comb and unify, respectively, Prog, Clause, and Atom

are static and have the obvious fixed interpretation. They are ordered by

identity. As usual, Den is ordered pointwise.

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



Denotational Abstract Interpretation of Logic Programs . 631

Definition. The data-flow semantics has the domain

Den =Atom -X+X;

has semantic functions

P: Prog ~ Den,

C: Clause * Den * Den,

B: Body 4 Den ~ X * X;

and has base functions

C: X4X-X,

u: Atom jAtom *X*X.

It is defined as follows:

P[P] = lfp( u ~ . p(cKcn)),

C~H e B]dAx = cx (uAH(BKBld(u HAx))),

B~ni~dx = x,

BKA : Bldx = BKBld(dAx).

An interpretation Ix for the data-flow semantics is determined by the triple

((IX X), (Ixc), (Ix u)). We use the convention that the semantic function P as

determined by an interpretation Ix is denoted by Px. For example, the

standard interpretation I lax is ((9’ Eqn), comb, unify), and the corresponding

semantics is denoted by Plax.

Since CKCI is monotonic for every clause C and every interpretation, we

have the following proposition:

PROPOSITION 6.2. For every interpretation Ix, Px is well defined.

Definition. Let I = (X, c, u), and let I’ = (X’, c‘, u‘) be interpretations.

Then I’ is sound with respect to I iff for some insertion (X’, y, X), c‘ appr c

and u’ appr u.

The next result follows immediately from Theorem 4.4:

COROLLARY 6.3. If interpretation Ix is sound with respect to IY, then PX

appr PY.

By Propositions 4.5 and 6.1, we therefore have the following theorem:

THEOREM 6.4. If interpretation Ix is sound with respect to ll,X, then Px

appr ‘h.

Developing a data-flow analysis in this framework is therefore a matter of
choosing the description domain so that it captures the information required

from the analysis and then defining suitable functions to approximate comb
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and unify. Before giving example data-flow analyses, we identify two classes

of description domain and indicate how comb can be approximated for these

classes. This is useful because the descriptions used in most data-flow

analyses belong to one of the two classes or are an orthogonal mixture of such

descriptions. Thus, finding generic ways to approximate comb for these

classes will help to give some insight into the design of practical data-flow

analyses. We note that, once a suitable approximation for comb has been

found, then, by the definition of unity, it may be used as the basis for

developing an approximation to unify.

Definition. An insertion (X, y, (9 Eqn)) is downward closed iff, for all

x ● X and e, e’ = Eqn, (e = yx ~ e’ * e) implies that e’ ● yx. An insertion

(X, Y, (~ Eqn)) is upward closed iff, for all x = X and e, e’ c Eqn,

(e c (yx)\ {false} ~ e 1= e’) implies that e’ ● yx.

Examples of downward closed insertions are those typically used in ground-

less analysis, type analysis, definite aliasing, and definite sharing analysis.

Examples of upward closed insertions are those typically used in possible

sharing (independence) analysis, possible aliasing analysis, and freeness

analyses. Many complex analyses, such as for the determination of mode

statements or the detection of and-parallelism, can be expressed as a combi-

nation of simpler analyses based on insertions that are downward or upward

closed.

A notion of “substitution closure,” which is similar to, but more restrictive

than, downward closure, is identified by Debray [1988] as being the basis for

an important class of data-flow analyses. Substitution closure is motivated by

considerations of efficiency of data-flow analyses and effectively limits the

precision of analyses by barring the propagation of “aliasing” or “sharing”

information in analyses.

PROPOSITION 6.5. Let (X, y, (9 Eqn)) be a downward closed insertion,

and let comb’: X - X + X be given. Then comb’ appr comb i~f

Vx, x’ =X.(yx) n (yx’) G y(comb’ xx’).

PROOF. We have that

comb’ appr comb

~ Vx, x’ G X.VE, E’ ~Eqn.

E c (yx) ~ E’ c (yx’) ~ (comb EE’) c y(comb’ xx’)

~ Vx, x’ ~X.Ve = (yx).Ve’ = (yx’).(e m e’) E y(cornb’ xx’)

@ Vx, x’ EX.(yx) n (yx’) c y(comb’ xx’). ❑

Definition. An insertion (X, y, (9 Eqn)) is Moore-closed iff {yx I x G X} is

Moore-closed in 9 Eqn.

COROLLARY 6.6. Let (X, y, (9 Eqn)] be a downward closed, Moore-closed

insertion. Let m ~ be the meet operator on X. Then ~ ~ appr comb (and, in

fact, is the best approximation).

Let us sum up the results of this section. To define a data-flow analysis,

one needs to lay down a complete (for termination preferably Noetherian)
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lattice X of “descriptions.” These descriptions should be designed to convey

the desired kind of data-flow information. The information contents of a

description should be specified by a function y in such a way that (X, y, (9

Eqn)) is an “insertion. “ One should also define a function c: X ~ X a X that

correctly emulates conjunction of ex-equations (or composition of substitu-

tions) and a function u: Atom ~ Atom -+ X - X that correctly emulates

unification of atoms in the presence of an ex-equation (or current substitu-

tion). That is, one must provide an “interpretation” (X, c, u) that is “sound.”

The result is a definition of a data-flow analysis that is automatically correct.

As an example, we give in the following section a sound interpretation that

specifies a very precise, nontrivial “groundless” analysis.

7. GROUNDLESS ANALYSIS USING BOOLEAN FUNCTIONS

In this section we give an example data-flow analysis for groundless propa-

gation. This analysis is based on the scheme given in the previous section.

Certain Boolean functions are used as descriptions. Since the analysis is

intimately dependent on the nature of variables in a logic-programming

language, let us briefly consider the role of variables.

A variable in a logic-programming language is very different from a vari-

able in an imperative or functional programming language. It is sometimes

referred to as a “logical variable” and characterized as “constrain-only.” This

is because, as we have seen, execution of a logic program proceeds by steps

that continually narrow the set of possible values that a variable may take.

This characteristic of the execution of logic programs makes data-flow

analyses harder in some ways, but it also opens up new views of some

analysis problems. For example, it suggests the possibility of propagating

conditional invariants of the form “From this point on, if x has (ever gets)

property p, then y has (will have) property r.” Example 7.7 makes it clearer

what we mean by this “projecting into the future,” but first we need to

explain how dependency information can be represented. A statement such as

“x is ground” may be represented by a propositional variable x. Groundless

(or other) dependencies may then be represented by Boolean functions, such
as that denoted by y A x.

Since groundless and other interesting properties are not decidable, a

data-flow analysis that operates in finite time can only give approximate

information, in general. The statements that it produces carry a modality, as

in “x is inevitably ground” or “x is possibly ground.” For this reason, only the

positive Boolean functions are useful. It we associate the meaning “x is

inevitably ground” with the formula x, then m x would mean “x may not

always be ground,” and this conveys no information at all, that is, exactly the

information conveyed by the function true.

Definition. A Boolean function is a function F: Bool’ ~ Bool. We call the

set of all n-ary Boolean functions Bfun and let it be ordered by logical

consequence (s). The function F is posi&e iff F(true, ..., true) = trZLe. We

denote the set of positive Boolean functions of n variables by Pos..
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For simplicity we assume that we have some fixed number n of variables and

leave out subscripts and the phrase “of n variables.” The set of propositional

variables {xl, . . . , x.} is referred to as Puar. We also use propositional

formulas as representations of Boolean functions without worrying about the

distinction. Thus, we may speak of a formula as if it were a function and, in

any case, denote it by F. As a reminder of the fact that a propositional

formula is only one of a class that all represent a given Boolean function, we

put square brackets around propositional formulas and think of the result as

the class of equivalent formulas. By a slight abuse of notation, we sometimes

apply logical connective to these classes of equivalent formulas. We some-

times refer to the formulas as groundless dependency formulas.

It is well known that Bfun is a Boolean lattice, and in fact, Pos forms a

Boolean sublattice of Bfun. In terms of propositional formulas, meet and join

are given by conjunction and disjunction, respectively. In the context of a

finite set Pwar of propositional variables, the complementation operation on

Pos is given by + F = F + A Puar; see Cortesi et al. [1991]. (Here and in the

following, we use the notation A {41,..., on} for the formula 01 A ~”” A O.,

and similarly for V.)

Logicians have, of course, studied Pos under several different names.

However, the history of dependency clauses for data-flow analysis is rather

short. Dart used a class of dependency formulas in his work in the area of

deductive databases [Dart 1988; 1991]. Dart’s class is strictly less expressive

than Pos, which was suggested by Marriott and S@ndergaard [1989a] (under

the less suggestive name Prop) and further studied by Cortesi et al. [1991].

One can imagine many types of properties of data-flow information for

which the dependency formula is a useful formalism. Here we are concerned

with groundness. As an example, if the constraint x = f ( y, z) is generated

during query evaluation, the relationship x ~ (y A z) is deduced. Informally,

the formula says that if x is (becomes) ground then so is (does) both y and z,

and vice versa. Example 7.7 shows how this kind of information may be

useful.

Syntactically, Pos has several interesting characterizations. For example

(and surprisingly), it consists of exactly those Boolean functions that can be

represented by propositional formulas using only the connective ~ and A.

Example 7.1. The Boolean function [ ~ x] is not in Pos. The function

[x ~ y] is in Pos. In terms of A and ~ , we could write it as [x - (x A y)].
It is convenient to include the (nonpositive) Boolean function false as an

approximation to the empty set of ex-equations. So from here on we deal with

the domain Pos ~ = Pos u {false}, ordered by logical consequence. Figure 5

shows POS ~ in the dyadic case. The idea with using Pos ~ is that an

ex-equation e is described by ~ ● Pos ~ exactly in case that, for every uniiler

(3 of e, the truth assignment corresponding to the variables ground by 0

satisfies 6.

Definition. For a substitution 6’, let grounds 0 be the truth assignment

that maps a variable to true if 6’ grounds the variable and to false otherwise.
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That is, grounds: Sub + Var + Bool is defined by

grounds @V w vars(@V) = ~.

The concretization function y: Pas ~ ~ (W Eqn) is defined by

Y+ = {e ● Eqn l’v’0 ~ unife.(grounds O) K ~}.

This concretization function maps @ ~ POS ~ to the set of ex-equations e that

have the property that, no matter how they further become constrained to

some e‘, the groundless formula corresponding to e‘ satisfies ~,

Example 7.2. The Boolean function [ x e y] describes both of the ex-equa-

tions x = a A y = b and3u’.(x = u’ A y = u’ A u = u’), butnottheex-equa-

tion x ==a. However, [ x ~ y] is not the best description for x = a A y = b.

For this ex-equation, the best description is [ x A y], which in turn has

[ x ~ y] as a logical consequence. That is, [ x ~ y] is a less precise approxima-
tion than [x A y].

As a further example, let @ = [x A (y ~ z)]. Then (x = a A y = f(z)) is

approximated by +, but ( x = a ~ y = f(a)) is not.

LEMMA 7.1. The triple (Pos ~ , y, (~ Eqn)) is a downward closed, iWoore-
closed insertion.

PROOF. Clearly, y is monotonic and Coskrick, and ( pos ~ , -y, (9 Eqn)) is

downward closed. Let @ c Pos ~ . Then A @ ● Pos ~ and Y( A @) =

n ~e@(YO), so (POS. , y, (9 Eqn)) is Moore-closed. ❑

It follows from Corollary 6.6 that comb is best approximated by conjunc-

tion.

Definition. The function comb~rO: Pos ~ ~ Pos ~ - POS, is defined by
comb~,u ~~’ = @ A 4’.

LEMMA 7“2. Combgroappr comb.
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The function z@y is somewhat more complex to approximate. Its defini-

tion makes use of restrict~,O, a projection function on propositional formulas,

and mgu~~O, the analogue of mgu for propositional formulas. The motivation

for approximating unify in this way comes directly from its definition.

Because Pos ~ is downward closed, we can approximate existential quan-

tification of equations by existential quantification on Boolean functions.

Definition. The function restrict~,0: (@ Var) ~ Pos ~ ~ Pos ~ is defined

by

restrict~rO U$ = 30.$.

This is well defined because positive Boolean functions are closed under

existential quantification. In particular, 3X. @ = {X ~ true}d V {X @ false}o

(which also explains why Pos ~ is closed under existential quantification).

Example 7.3. We have

restrict~,O {X, Y, Z}[XA(Y -V) A(Z+U)I=[X AyAzlv[x A7y A7z]

=[x A(y -z)].

LEMMA 7.3. restrict~,O appr restrict.

PROOF. By the definition of restrict, we must show that if e ● -y@ then

(3 ~.e) ~ y (restrict~,O U@). This holds since

Definition. The function mgu~rO: Atom + Atom ~ Pos ~ is defined by

mgu~,0 AH= if ( mgu AH)= ~ then false else

let {w} = (mgu AH) in

[A{v - (Auars(vv))lv~dom. w}]

Example 7.4. Let A = p(x, y) and H = p(a, f(u, v)). Then mgu~ro AH =
[.ZA(Y-(UAV))I.

LEMMA 7.4. (mgu~,u AH’) appr {A = H}.

PROOF. The case when A and H are not unifiable is immediate. Other-

wise, consider some V G dom p, where p is a most general unifier of A and

H. Let T = I-LV. Now, (3 ● unif KA = HI implies that (3V = 0 T. Thus,

vars(OV) = ~ iff, for all V’ = (zxzrs T), uars(6V’) = ~. Thus, [V e

( A uars( pV ))] approximates ~. The result follows from the fact that Pos ~ is
Moore-closed. ❑

ACM Transactions on Programming Languages and Systems,Vol. 16. No 3, May 1994.



Denotatlonal Abstract Interpretation of Logic Programs . 637

Definition. The function unify~,O: Atom ~ Atom * POS, + P05 ~ is de.

fined by

uni~ygrO HA@ = let p = ren(uars H)((uars A) u (ucms ~)) in

restrict~TO (zmrs H)(( p+) A (mgu~,O H(pA))).

LEMMA 7.5. unifyg70 appr unify.

PROOF. This follows from the definition of unify, Theorem 4.4, and Lem-

mas 7.2–7.4 ❑

Example 7.5. Let A = append(x, y, z), H = append(nil, y, y), and H’ =

append(u : x, y, u : z). Then

unify~,O HA[ true] = [true],
unify~,O AH[true] = [x ~ (y + 2)1,

unify~ro II’A[true] = [true],

unify~,o AH’[false] = [false],

unify~,o AH’[x A (y ~ z)] = [(x A y) + z].

To see how the last result comes about, consider the most general unifier of

A and H’ (after application of a name toggle): {~ _ x#, y * yx, z - z#, u ~

u’ , x a x#,y# +y, Z# + Z, U# - u}. we have that

mgu~,O AH’ = [(x @ (ux Axx)) A (y -y#) A (z + (u# Az#))].

Conjoining the formula [ x A (y - z)] (after name toggling), we get

[(z+(u# Ax#))A(y~y#) A(z~(u# Az#))Ax# A(y#~z#)].

We need to restrict this to the set {x, y, z}. “Projecting away” x # yields

[(x - u#) A (y ‘Y#) A (2 ~ (U# Az#)) A (.Y# ~z#)].

Projecting y# away yields [(x - Ux) A (y * z#) A (z - (u# A z#))], and

projecting u# away then yields [(y ~ z #) A (z - (x A z ‘))]. Finally, project-

ing z# away yields [z ~ (x A y)].

Definition. The groundless analysis PWO is given by instantiating the

data-flow semantics with the interpretation (Pos ~ ~ comb~~~, )unify~~o .

THEOREM 7.6. PaO appr P~a,.

PROOF. This follows immediately from Lemmas 7.1, 7.2, and 7.5, and from

Theorem 6.4. ❑

Example 7.6. Let P be the append program

append(nil, y, y).

append(u : x, y, u : z) + append(x, y, z).
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Consider the query A = ~ append( x, y, z). To compute PWO KPll A[ true ], the

analysis proceeds as follows: Let dP = u ~. ~(Cgro KC]). We then have

(dP TO) A[true] = [ fake],

(dP ~l)A[true] = [x A (y ~ z)] V [false] =[x A(y~z)],

(dPT2)A[truel =[x A(y -z)] V[(XAY)+’Z] =[(x AY)+z],

and (dP ~ 3) = (dP ~2) = lfp dP. Thus, PgrO ~P]A[true] = [(z A y) + z]. Simi-

larly, one can show that P=O [P] A[ z ] = [ x ~ y A z]. In the “extended”

version of P=O, we find that, provided this holds in the initial call, all calls to

append have a third argument that is inevitably ground.

Example 7.7. Consider the following (naive) program R to reverse lists:

rev(nil, nil).

rev(x : y, z) - append(u, x : nil, z), @ rev(y, u).

Consider the query A’ = rev( x, y), and assume that we are interested in

queries of that form with x being ground. A first approximation, [ x A y], is

obtained by considering the fact rev(nil, nil):

(dRt O) A’[xl = [fake],

(d~~l)A’[x]=[x Ay].

That is, so far it looks as if the query will result only in answers with x and y

ground, but this may well be revised in a subsequent approximation step.

In processing the recursive clause, we use the approximation already

obtained for append. In terms of the variables in R, the approximation is

[(u A x) - z 1. Conjoining this with the “current constraint” [x A y], we
arrive (after simplification) at the formula

@:[x AYA(z++ u)]

as the approximation that holds at the program point marked @. It ex-

presses that x and y will be ground and that z is (or will become) ground iff

u is (will). This relation between z and u is what we had in mind when

saying that invariants may be “projected into the future.”

We now see the value of this: The (current) formula for the last atom in the

clause is [ y A u] (from d~ ~ 1),and conjoining this with ~, we get, after

simplification, [ x A y A z A u]. In terms of the variables in the query, this

translates (after restriction) to x A y; that is,

(dRT2)A’[X]=[XA Y].

We conclude that [ x A y] is a fixpoint; that is, y will indeed become ground
in every answer, assuming that x was. This information, in turn, can be

translated into information about calls. It says that if rev is queried with a

ground first argument, all of the generated calls to rev will have a ground

first argument.

The details of implementing the groundness analysis are beyond the scope

of this paper. The important choice is how to represent Boolean functions in a
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way that supports their efficient manipulation. Le Charlier and Van Henten-

ryck [1993] used ordered binary-decision diagrams [Bryant 1992] for this

purpose and reported very good results, in both precision and efficiency of the
analysis. Marriott and S@ndergaard [ 1993] showed that a groundless analy-

sis using Pos has the property that queries need only be analyzed in their

most general form; analysis of instances can be done simply by conjoining

elements in Pos, speeding up the analysis (this is related to Jacobs and

Langen’s “condensing” [Jacobs and Langen 1992]). Codish and Demoen [ 1993]

reported good results with their implementation of Pos, which is based on an

“abstract compilation” approach, that is, on the generation of a constraint

program whose execution, in turn, corresponds to the data-flow analysis.

8. IMPLEMENTATION ISSUES

The denotational equations given in this paper can be considered definitions

of logic-program semantics (Pb,~ ) and of data-flow analyses (the instances of

P), presented in the same formal language. What is being defined is orthogo-

nal to the ways in which it may be computed, and the equations themselves

contain little commitment as to how one could implement the data-flow

analyses. Indeed, one of the purposes of this paper is to show how the

orthogonal issues of approximation and implementation can (and should) be

kept separate, as depicted in Figure 3.

Read naively, the equations specify a highly redundant way of computing

certain mathematical objects. On the other hand, the denotational definitions

can be given a “call-by-need” reading that guarantees that the same partial

result is not repeatedly recomputed and only computed at all if it is needed

for the final result. Such readings are independent of what is being defined,

and a reader is free to choose whichever is desired. In fact, with such a

call-by-need reading the definition of P is, modulo syntactic rewriting, a

working implementation of a generic data-flow analyzer written in a func-

tional programming language [Errington and S@ndergaard 1992]. In pro-

gramming languages that do not support a call-by-need semantics, implemen-

tation is somewhat harder.

The direct implementation obtained from “running the definition” is inter-

pretive and not very efficient. Hermenegildo et al. [1992] suggested that

analysis can be sped up by specializing an abstract interpreter to a given

source program, thus in effect performing “abstract compilation.” The same

idea is implicit in earlier work on abstract interpretation. For example,

Mycroft [1981] performed strictness analysis by generating functional pro-

grams that compute Boolean values that, in turn, provide the desired strict-

ness information.

In the remainder of this section, we sketch a traditional interpretive

implementation.7 This is instructive because it shows the close relationship

7 Since it is really the collecting semantics that must be approximated, a data-flow analysis is
seen as a fixpoint computation over a domain of annotations of a given program. An annotation

is a mapping from the set of program points to the lattice of descriptions used, and the

computation continues as long as a new description is found to obtain at some program point.
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between our semantic definition and other generic analyzers (written in C or

PROLOG) based on the AND/OR tree framework of Bruynooghe et al.

[Bruynooghe 1987; Bruynooghe et al. 1987].

To avoid redundant computations, the result of invoking atom A in the

context of description x should be recorded. Such memoing can be imple-

mented using function graphs. The function graph for a function f is the set

of pairs {(x, ~(x)) I x = dom f}, where dom f denotes the domain for f. The
computation of a function graph is best done in a demand-driven fashion: We

only compute as much of it as is necessary to answer a given query. This

corresponds to the “minimal function graph” semantics used by Jones and

Mycroft [1986].

However, matters are complicated by the fact that we are performing a

fixpoint computation. Recall that we want to compute a partial function d:

Atom - X ~ X. Thus, for each atom A in the program or query, we must

keep a function graph mapping each “input” description x to the correspond-

ing “output” description x‘ = dAx. However, as the function definition is

recursive, we must compute the result by means of the function’s Kleene

sequence. This means that the (partial) function graph that we compute does

not simply correspond to a function that becomes more and more defined; the

result corresponding to input x may well be revised several times as we go.

An example is given by the computation of dAx in Example 7.6, where

A = append( x, y, z) and x = true: At one stage the value is assumed to be

[X A (Y ~ z)], but later this is revised to [(x A y) - z].
This means that the function graph cannot be used (as might have been

hoped) to simply look up values dAx. Rather, we must organize the computa-

tion such that a request for dAx is always taken as a request to recompute

this value, and only if that computation leads to a recursive request for dAx

will the current value be used; that is, a simple lookup is performed.

Another, less important, way to improve efficiency is only to compute the

function graph “modulo variable renaming.” The reason we can do this is that

the meaning of a program is independent of variable names in the following

sense:

PROPOSITION 8.1. Let p be a name toggle. Then p(Pb~~~P] A E) =

‘b,~~p]( PA)( @).

Thus, in an implementation we do not want to distinguish, for example, the

calls (p(x, fly, x)), {x - y}) and (p(z~, ~(v, u)), {u ~ v}). The simplest

solution is to annotate variables with numbers as they are met, starting from
1, and to refer to them through these numbers. For example, the two calls

above are both referred to as ( p(l, j12, l)), {1 ~ 2}).

Other avenues are open for improving the efficiency of a generic data-flow

analyzer:

—A certain amount of partial evaluation can be performed to speed up the

fixpoint computation. For example, a given body atom will be unifiable

with a fixed set of clause heads, and the relevant clauses should not be

looked up repeatedly. Rather, each atom should be annotated with the
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clauses it may successfully call and the corresponding most general uni-

fiers.

—Le Charlier et al. [ 1990] suggest maintaining a (dynamic) dependency

graph for the following reason: Updating an entry in the function graph
will not necessarily mean that every other entry has to be recomputed, and

it is, in fact, possible to keep track of which other entries will be affected. If

a functional programming language is used, the graph need not even be

explicit; proper use of continuations can achieve the same effect with less

effort on the implementor’s part, though possibly less efficiently [Errington

and S@ndergaard 1992]. More specifically, rather than yielding a result

description x‘ only, dAx should return a pair ( x‘, k), where k is a

continuation. The idea is that k is invoked whenever x‘ is revised, auto-

matically causing entries that depend on & to be recomputed.

—The monotonicity of the mapping dA can be utilized in the following way:

Whenever the value of dfi gets updated to x‘, we know that the values of

dfi” for x E x“ must be at least x‘, and we can therefore update each

such entry to x‘ u y, where y is its current value. Similarly, when it is

discovered that a new entry dAx is needed (i.e., its value is not L), we

may look up all of the values of dAx’ for x‘ c x and use their least upper

bound as the initial value for dAx. To make these kinds of consequential

updates fast, Le Charlier et al. arrange input descriptions as a Hasse

graph, that is, a structure that directly reflects the partial ordering of the

descriptions.

9. RELATED WORK

An indication of the usefulness and wide applicability of abstract interpreta-

tion for logic programming is the amount of work published on the topic in

recent years. A recent special issue of Journal of Logic Programming (1992)

has been devoted to the topic, and we refer readers to the extensive bibliogra-

phy of Cousot and Cousot [1992].

In particular, obtaining information about calls to clauses by approximat-

ing the SLD semantics (as studied in this paper) seems useful, as many kinds

of code improvement that can be performed automatically by a compiler

depend on information about calls that may take place at run time, and other

kinds of program transformation make use of that information as well.

A number of papers have been concerned with generic frameworks for

abstract interpretation of logic programs. By this is usually meant a general

setting that allows one to express a number of data-flow analyses in a

uniform way, just as we have done in the present paper through our “data-flow

semantics.” Almost all of these frameworks approximate the SLD semantics.

We now compare our semantic definitions to other denotational SLD-based

definitions and our framework to other generic analysis frameworks.

Early work on SLD-based semantic definitions for logic programs was done

by Jones and Mycroft [ 1984], who addressed both operational and denota-
tional semantics. Debray and Mishra [1988] gave a thorough exposition of a

denotational definition, including a proof of its correctness with respect to
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SLD. Both Jones and Mycroft and Debray and Mishra assumed a left-to-right

computation rule and a depth-first search of SLD trees (as in Prolog), and

both definitions captured nontermination (unlike ours). Both used sequences

of substitutions as denotations, rather than sets, which gave the definitions a

rather different flavor. The definition used by Jones and S@ndergaard [1987]

achieves certain simplifications by assuming a parallel search rule and,

consequently, manipulates sets of substitutions. The use of substitutions

forces it to employ an elaborate renaming technique that complicates seman-

tic definitions somewhat. Winsborough [ 1988a; 1988b] and Jacobs and Lan-

gen [1992] suggested denotational definitions along similar lines. Marriott

and S@ndergaard [ 1989b] gave a uniform presentation of both “bottom-up”

(i.e., 7’P-style [Apt and van Emden 1982]) and “top-down” (SLD-based) defini-

tions by expressing both in terms of operations on lattices of substitutions, as

far as this is possible. In particular, they showed that operations such as

unification and composition of substitutions can be adequately dissolved into

lattice operations to simplify definitions, an idea that has formed the point of

departure for the definitions presented here.

Abstract interpretation of logic programs was first mentioned by Mellish

[1981], who suggested it as a way to formalize mode analysis. An occur check

analysis that was formalized as a nonstandard semantics was given by

SOndergaard [1986]. Some of the techniques used in the present paper can be

traced back to that work. This is the case with the principle of performing

unification both on call and return so as to facilitate that only local variables

need be manipulated at any stage (this was referred to as a principle of

“locality”). The work also established the principle of binding information to

uariables in a program throughout computations, rather than to argument

positions, as is more usual in other frameworks [Bruynooghe 1987; Mannila

and Ukkonen 1987; Mellish 1987].

Other things being equal, this improves precision. For example, consider a

mode analysis of the program

+ p(f(x)).

P(f(u)).

using the two modes “free” (unbound or bound to a variable) and “any.” The

“argument position” methods will funnel mode information about the vari-

ables x and u through the argument position of p and assign x the mode

“any,” while clearly x could be more precisely deemed “free.” To counteract

such behavior, an “argument position” method must use more fine-g-rained

descriptions and pay the price of more expensive “abstract operations.”

A framework for the abstract interpretation of logic programs was first

given by Mellish [1987]. Mellish’s semantics is an operational parallel to our

“lax” semantics with the imprecision that this implies: Success patterns are

not associated with their corresponding call patterns, so success information

is propagated back, not only to the atom that actually called the clause, but to

all atoms that unify with the clause’s head. The application that had Mellish’s

interest in particular was mode analysis. Debray [1986] subsequently investi-

gated this application in more detail and pointed to a problem in Mellish’s
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application (the so-called aliasing problem, which may manifest itself as

either a soundness or a completeness problem, depending on the particular

data-flow analysis).

A framework for the abstract interpretation of logic programs based on a

denotational definition of SLD was given by Jones and S@ndergaard [1987].

This was the first denotational approach to abstract interpretation of logic

programs, and the first paper in the area to apply the idea of a generic

data-flow algorithm with a few basic operations being parameters. The

framework allowed even the base (or standard) semantics to be expressed as

an instance of the data-flow semantics. This has the advantage of providing a

very clean cut between a semantic definition that is precise (unlike our lax

and data-flow semantics) and interpretations in which all introduced impre-

cision resides. In the present paper, we have abandoned this approach only to

simplify our presentation. Jones and S@ndergaard used operations “call” and

“return,” which in the present approach have been replaced by “unify” and

“comb.” We find this conceptually cleaner.

Kanamori and Kawamura [1993] suggested a framework based on OLDT

resolution [Tamaki and Sato 1986], which essentially is SLD resolution

extended with memoing, so as to avoid redundant computation. Bruynooghe

et al. [Bruynooghe 1987; Bruynooghe et al. 1987] suggested an AND/OR

tree-based framework that expresses the ideas behind the Jones–S@ndergaard

scheme at a lower level of abstraction. Efficient implementation of data-flow

analysis engines based on the AND/OR tree framework are described in Le

Charlier et al. [1990].

The framework used by Winsborough [1988a; 1988b] is rather close to ours.

In particular, one semantic definition (Winsborough’s “total function graph

semantics” [Winsborough 1988b]) is almost identical to our base semantics,

the difference being that, where we employ ex-equations, it works with

substitutions that are “canonized” to bar variants of a substitution from

introducing redundancy. (Mellish [1987] used the same idea.)

Debray [1988] studied a framework for data-flow analysis with the point of

departure that analyses must be efficient. He identified a property of descrip-

tion domains (“substitution closure”) and gave a complexity analysis to

support the claim that the corresponding class of data-flow analyses can be

implemented efficiently. Our groundless analysis falls outside Debray’s class,

as does any data-flow analysis that attempts to maintain information about

possible aliasing (see also below).
In other studies of logic program analysis [Marriott and S@ndergaard

1989b], we have found it useful to distinguish between “bottom-up” and

“top-down” analysis. This distinction is not clear-cut, but we think of a

top-down semantics as one that allows for extraction of information about the

SLD tree that corresponds to the execution of a program given some query.

Bottom-up analysis is not based on such a semantics to begin with, but on a

TP-style semantics [Apt and van Emden 1982], and therefore, it cannot
provide information about calls that will take place at run time. Bottom-up

analysis suffices for several applications, though. It is not only the conceptu-
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ally simplest of the two, it also allows for efficient derivation of query-inde-

pendent information about a program.

It has been suggested that top-down analysis can be done by first applying

the so-called magic set transformation to the source program/query pair and

then computing call patterns in a bottom-up fashion from the transformed

program. See, for example, Debray and Ramakrishnan [1991] and Nilsson

[1991], and the closely related Alexander template approach [Kanamori

1993].

For instance, assume that we are given the append program from before:

append(nil, y, y).

append(u : x, y, u : z) + append(x, y, z).

and the query - append( x, y, z). The program/query combination is trans-

formed to the following:

append( nil, y, y) G call–append(nil, y, y).

append(u : x, y, u : z) G call–append(u : x, Y, u : z), append(x, y, z).

call–append( x, y, z) - call–append(u : x, y, u : z).

call–append( x, y, z).

A bottom-up evaluation of the transformed program reflects what happens in

a top-down evaluation of the original program. In our example, the unit

clause call–append( x, y, z ) expresses that append will be called with

arguments (x, y, z). The first clause in the transformed program says that if

an instance of append( nil, y, y ) is called then it will succeed, and so on.

In general, each clause H * Al,.. ., A. (n > O) in P gives rise to n + 1

clauses, namely,

HGcall-H, Al,..., A~

and, for i ● {l, ..., n},

call LA, F call_H, Al, . . . . Al. ~

Aquery -Al,. ... Am is replaced by m clauses (i ●

calll, -Al, . . .. Al_l.

1 ,.. ., m}):

Applying bottom-up abstract interpretation to the transformed program then

yields call pattern information about the original program. However, whether

this approach is better than what we have suggested in this paper is not

clear, as the magic set transformation is not free and the resulting program is

typically much larger than the original.

10. CONCLUSION

One contribution of this paper is a new framework for the abstract interpre-

tation of definite logic programs based on SLD resolution. It captures the

essence of a major class of data-flow analyses used in many different logic-

programming tools, in particular, compilers. It is based on simple semantic

definitions for logic programs and data-flow analyses. The simplicity is partly

due to the use of sets of existentially quantified equations, rather than
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sequences of substitutions. There is a high degree of congruence between the

standard semantics and the data-flow analyses, emphasizing their close

relationship.

We have demonstrated the usefulness of our framework by developing a

nontrivial groundless analysis and proving its correctness. The groundless

analysis uses positive Boolean functions to capture groundless dependencies

among variables in a program. This results in a simple and clean, yet highly

precise, data-flow analysis.

However, we feel that the most important contribution of our paper is a

theory of “language-independent abstract interpretation,” which is suitable

for logic-programming-style languages and other nondeterministic program-

ming languages. Our theory is a modification of the denotational approach

developed by Nielson in the context of deterministic programming languages.

The key is to formalize abstract interpretation in terms of a powerful meta-

language such as that of denotational semantics. This allows for generality at

different levels. First, it allows for comfortable reasoning at exactly the level

of abstraction called for by any particular class of applications or data-flow

analyses. Second, the proof of correctness of a particular data-flow analysis

becomes simpler, since parts of it can be conducted at the level of the

metalanguage once and for all. Finally, most of the theory is independent of

any particular programming language, since it is expressed in terms of the

metalanguage only.

Our theory facilitates development of analyses in other related program-

ming-language paradigms. It has been applied successfully to develop a

generic framework for the analysis of logic programs where the semantics is

based on a fixpoint characterization of the least model [Marriott and

S@ndergaard 1992], rather than the SLD-based semantics considered here.

Our theory has also been used to formalize data-flow analysis for constraint

logic-programming languages [Marriott and S@ndergaard 1990; Marriott and

Stuckey 1993], logic-programming languages that allow the use of “safe”

negation [Marriott et al. 1990], and even concurrent constraint programming

languages [Falaschi et al. 1993]. Other related languages in which our theory

should be useful include logic-programming languages with delay mecha-

nisms (“freeze,” “wait,” “ when,” etc.), as well as deductive databases.
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