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The paper studies the incorporation of a fair nondetermmmtic choice operator into a generahzatlon

of Dijkstra’s calculus of guarded commands The generalization drops the law of the excluded

miracle to allow commands that correspond to partial relatlons Because of fau-ness, the new

operator is not monotonic for the orderings that are generally used for proving the existence of

least fixed points for recursive defimtlons To prove the existence of fixed points It is necessary to

consider several orderings at once, and to restrict the class of recursive defimtlons
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1. INTRODUCTION

The fixed-point method of denotational semantics for treating recursion is so successful that
it is a surprise to find a programming language construct for which it does not seem to work.
But this is the case for the dovetail operator, a simple construct that models the notion
of the fair scheduling of two activities. The name “dovetail” refers to the fair interleaving
of the parallel execution of the two arguments of the operation. The word is also used
informally in recursion theory. The operational definition of dovetail (which we shall write
V) is as follows:

AT7B

~ Execute the commands A and B fairly in parallel, on separate copies of the state, accepting
as an outcome any proper (i.e., nonlooping) outcome of either A or B.

By “fairly” it is meant that neither computation is permanently neglected in favor of the
othel.

As a hint at the power of the dovetail operator, we show how it immediately leads to

Authors’ addresses. IvI Bray, Techmsche Umversltaet Mueuchen, Institut fuer Informatlk, D 80290

Lfuenchen, Gernlany: G Nelson, System Research Center, Dlgltal Equipment Corporation, 130

Lytton Av. , Palo Alto, CA 94301

Permmsion to COPY without fee all or part of thw material is ganted prOvided that the cOpies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, reqmres a fee and/or
specific permission
c 1994 ACM 0164-0925/94/0500-0924 $03.50

ACM Transactmns on Programming Languages and Systems, Vol 16, NO 3, May 1994, Pages 924- 93S

http://crossmark.crossref.org/dialog/?doi=10.1145%2F177492.177727&domain=pdf&date_stamp=1994-05-01


Adding Fair Choice to Dijkstra’s Calculus . 925

unbounded nondeterminism. Operationally, a recursive call can be treated by replacing the
call with the right-hand side of the recursive definition whenever necessary. From this it
follows that the recursion

x = (n:== ov(x; n:=n+l))

has the solution X z “set n to any natural number.” This is in contrast to the recursion

Y E (n:= OB(Y; n:=~+l))

which has the solution Y E “set n to any natural number, or loop. ” (The semicolon
operator represents sequential composition, and the operator U represents nondeterministic
choice. The recursion with D can loop, since a recursive call is available at every choice.
The recursion with v cannot loop, since at each level of recursion—in particular, at the
outermost level—the n := O branch cannot be delayed indefinitely. )

Unbounded nondeterminism can be handled in Dijkstra’s calculus—for example, see Boom
[1982]. But the dovetail operator is more of a challenge.

The dovetail operator is the imperative counterpart of the ambiguity operator introduced
by McCarthy [1963]: “We define a basic ambiguity operator amb(x, y) whose possible values
are x or y when both are defined, otherwise, whichever is defined”. The ambiguity operator is
not monotonic in the orderings of either the Smyth or the Plotkin powerdomains. Therefore
its fixed-point theory, presented in Broy [1986], is far from straightforward. The dovetail
operation also is not monotonic, and to treat it by the fixed-point method requires some of
Broy’s techniques. But the presence of partial commands introduces additional difficulties.
In fact, we shall find that not all recursions involving dovetail have solutions.

We believe it would be straightforward to give operational semantics for dovetail using,
say, structured operational semantics in the Plotkin style, and to prove that the operational
semantics are consistent with the axiomatic semantics given in this paper. However, we
have not carried out this project.

When executing A V B it is obvious that A and B have to be evaluated in parallel, since
the undecidability of the halting problem implies that it cannot be decided in advance if A or
B diverges. Therefore choosing one of them to execute first might condemn the execution to
divergence although the termination of the other is possible, or even guaranteed. This is why
fair interleaved execution is the only way to deal operationally with dovetail. Furthermore,
if the fair interleaving is done by a fixed scheduling strategy, then certain results consistent
with the semantics of dovetail would be ruled out by the operational semantics. For example,
if both A and B terminate but 13 takes many more steps than A, a fixed scheduling strategy
could rule out the result computed by B. This is a well-known effect when dealing with

fairness assumptions. Fairness leads to unbounded nondeterminism (see for instance Apt and

Plotkin [1986]) and therefore leaves the classical framework of computability. Therefore one

might say that fairness cannot be implemented and is of only theoretical interest. However, if

one thinks about a fair program not as defining one algorithm, but as defining an algorithm

for every scheduler that is correct with respect to the fairness assumption, then fairness

becomes a realistic and practically meaningful concept. The same applies to the dovetail

operator.

We conclude this introduction by sketching how dovetail can be used to model classical

weak failrless.

Recall that Dijkstra’s repetitive construct do A D B od is executed by repeatedly selecting

and executing either A or B, subject only to the condition that the scheduled command’s
guard be true. Let us define fairdo (A, B) similarly, but with the additional scheduling
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926 . M. Broy and G. Nelson

requirement of weak fairness. This means that the scheduler must not permanently neglect
a command whose guard is permanently true.

To implement fairdo using dovetail, we first make three auxiliary definitions. Informally,
we are aiming for the following definitions:

Seq(X) = execute X a finite number of times, without getting stuck in an infinite loop
in X.

.Y+ = execute .Y a nonzero finite number of times.

X* = execute X a finite number of times

Here are the formal definitions:

Seq(X) = (X ; Seq(X)) V Skp

X+ = Seq(X) ; X

A-* = X+ nskap

Notice that Seq(.Y) cannot loop, even if X can, because the “V Skzp” will guarantee
termination. However, both X+ and .Y”* can loop if X can.

Now we define

fairdo(A, B) ~ do A+ ; (B ~ Skip) o B+ ; (A ~ Skip) od.

(The command A ~ B is read “A else B“; it is like A n B except that A is given precedence

over B. That is, it means to execute A if .4’s guard is true, else to execute B. The formal
definition is in the next section.)

It will be left to the reader to persuade himself of the appropriateness of the formula
above for fairdo, and to generalize to fairdo(A, B, C).

Finally, to connect dovetail to an existing formalism for reasoning about fairness, we
remark that the “leads-to” relation of the Unity system (Chandy and Misra [1988]) can
now be defined: P leads to Q with respect to a Unity program whose body consists of the
guarded commands A and B if

P a wp.fairdo(7Q ~ A, 7Q - l?). TRCTE

So much for the motivation of dovetail. Our goal is to reason abollt it in the same
compositional style as we reason about u, ;, or ~.

ACM Transactions on Programming Languages and Systems. Vol 16, No 3, May 1994
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2. PRELIMINARIES

Our framework is the generalization of Dijkstra’s calculus (Dijkstra [1976]; Dijkstra and
Scholten [1990]) described by Nelson [1989]. The definitions we need will be repeated in this
section.

We use a left-associative infix dot to denote function application, together with Curry’s
convention for reducing n-ary functions to unary functions. That is, we write f.x instead of

f(%), and g.x.g instead of g(x, y), and g.z instead of (Ay. g(z, y)).
A command A is defined to be a pair of predicate transformers, written wp.A and wlp.A,

satisfying the pairing condztzon, which is that for any predicate R,

wp.A. R = wp.fi.TRUE A w~p.A.R ,

and the conj’unctzuzty condition, which is that wlp .A distributes over any conjunction. It
follows that the predicate transformer wp.A distributes over any nonempty conjunction.

For any command A, we define two predicates, read guard of A and halt of A, as follows:

grd.A E -I Wp.A.FALSE,

hlt.A a WP.A.TRUE .

The predicate grd.A characterizes those states from which failure is impossible; the predi-
cate hlt.A characterizes those states from which termination is guaranteed. If grd.A = TRUE,
then A is a total command.

For commands A and B, we define

ALWPB: wp.A.R * wp.B.R for any R

A ~WIP B : wlp.B.R d wlp. A.R for any R

A~B: A ~WP B and A CWIP B .

The relation A ~ B is read A approximates B; it is a complete partial order on the set of
all commands. Informally, A approximates B if A can be obtained by substituting looping
outcomes for some of B’s outcomes. For example, executing a command for a limited
amount of time produces an approximation to the command, provided that computations
that exceed the time limit are classified as loops. Thus the always-diverging command Loop
approximates every command, and a command with no looping outcomes approximates no
command except itself.

We will use square brackets to denote the following drastic map on predicates: [TRUE] =

TRUE, and [P] = FALSE for all other P.

We will write

(operation dummies : range : term)

to denote the combination via the given operation of the values assumed by the given term
as the dummies vary over the given range. The operation must be commutative, associative,
and (if the range is empty) possess an identity. If the range is obvious from the context, it
will be omitted. For example, the greatest lower bound of the set S of predicates is denoted
by (A P : P 6 S : P), or by (A P :: P) if S is obvious from the context.

In order to express formulas involving the two operators wp and wlp compactly, the paren-
thesis convention will be used: a formula containing parenthesized expressions represents
two formulas, in one of which the parenthesized expressions are ignored, in the other of
which each parenthesized expression is either inserted, or substituted for the item to its left,
whichever is suggested by the context. For example, consider the following two formulas,
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928 . M. Broy and G. Nelson

proved in Nelson’s paper, in which A ranges over any C-chain and u denotes join (that is,
least upper bound) with respect to ~:

wlp. (u A :: A).R = (A A :: wlp..4.R)

wp. (U A :: .4).R = (V A :: WP.A.~)

Using the parenthesis convention, they are equivalent to the single formula

w(l) P.(IJ A :: ~).~ = (V(A) A :: W(l)P.~.~)

Here are the definitions of the basic commands and operators:

w(l)p. Fail.R E TRUE

w(l)p. Skip. R E R

w(l)p. Loop.R - FALSE (TRUE)

w(l)p. Havoc. R E [R]

w(l)p. (A D B).R = w(l)p.A.R A w(l)p.~.~

wO)p. (A ; B). R = w(l)p.A. (w(l) p.B.R)

w(l)p. (~ + A). R - 1P V w(l)p. A.~

w(l)p. [z I A].R = (Yz : w(l)p.A.R)

wO)p. (A ~l?).l? ~ w(l)p. A.R A (grd. A V w(l)p.13. R)

In the equation for w(l)p. [ z I A ].R we assume that ~ is not free in R; otherwise x must be
replaced by some fresh variable in R, then the precondition must be computed, and then in
the result the fresh variable must be replaced by x.

All of these operations are monotonic with respect to the approximation order z. Except
for Havoc and ~, they are likely to be familiar. The command Havoc relates each initial
state to every outcome except the looping outcome. The command .4 ~ B means “execute
.4 unless it fails, in which case execute B .“ Its precondition equation can be derived from
the formula

3. DEFINITION AND ELEMENTARY PROPERTIES OF DOVETAl L

The precondition equations for v are somewhat subtle:

wlp. (A ~ B).R = wlp. A.R A wlp. B.R

hit. (A v 13) s

(hit.A V hlt.B) A

(grd,,4 V hlt.B) A

(grcl.B V hlt..4)

That is, as far as wlp is concerned, v is the same as u. It differs by having a more liberal wp
equation: to ensure that A V B halts, it suffices to forbid .4 and B from both looping and to
forbid either from looping in a state where the other fails. The value of wp for postconditions
other than TRUE is determined by the pairing condition. To verify that .4 V B is a command
we must show that its wlp-transformer is conjunctive; but this is immediate.
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The hlt equation for dovetail has an alternative form:

hlt.(A 17 1?) ~

(hit.A A hlt.l?) V

(grd.A A hlt.A) V

(grd.B A hlt.11)

The alternative form is sometimes useful, although we will not use it in this paper. It can
be derived from the first form by distributing A over V and simplifying.

LEMMA A. For any A, B, we have grd. (A V B) z grd.A V grd.B.

PROOF. This is easy to see when A and B are viewed as relations, since a looping outcome
of (say) A from some initial state can be excluded from A V B only if B has a proper outcome
from that state. Thus, although A V B is smaller than the relational union, its domain is
equal to the domain of the relational union.

The axiomatic proof begins with the observation that for any command A,

Wlp.A.FALSE s (grdA = -- hlt.A) (*)

whose proof is as follows: in any state where WIP. A. FALSE holds,

grd.A
E 1 WP. A. FALSE

~ n (Wp. A.TRUE A Wlp. A. FALSE)

~ m wP. ~.TRUE

~ 1 hit. A

Armed with this observation, we prove Lemma A by deriving the complement of the right
side from the complement of the left side:

=grd. (A V B)

= wp. (A V B). FALSE—

~ hlt.(~ ~ B) A wlp. (A V B). FALSE

~ (hit.A V hlt.B) A (hit.A V grd.B) A (hit.B V grd.A)
A wlp..~.FALSl2 A w113.B.FALSE

~ { (*), twice }
(hit.A V hlt.B) A (hit.A V =hlt.B) A (hit.B V 1 hlt.A)
A wII).A.FALSE A WIP.~.FALSE

= { Distributivity on conjuncts 1 and 2; 1 and 3 }
hlt.A A hlt.~ A wIP.A.FALSE A wIP.~.FALSE

E WP. A. FALSE A WP. B. FALSE

c 1 grd.A A 1 grd.B

- T (grd.A V grd.B) ❑

LEMMA B. For an~ A, 1?, we have (AD B) E (A V B)

PROOF. This is also easy to sce when the cornmanda are viewed as relations, since A n B

can differ from A V B only by having extra looping outcomes from states where A V B has
at least one nonlooping outcome, and this is precisely the difference that is allowed by the
approximation relation.
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The axiomatic proof is as follows. The ~WIP part of the proof is trivial, since D and
V have the same wlp-equation. Because of the pairing condition and the fact that the
two sides are wlp-eq
hit. (A D13) + hit. (~

hit. (A D B)

~ hlt.A ~ hlt.13

a (hit.A V hlt.13) A

- hit. (.4 V B) El

livalent the Pwp part of the proof ~an be completed by showing that
V B). The proof of this is:

grd.A V hlt.B) A (grd.11 V hlt.A)

4. NON MONOTONICITY OF DOVETAl L

The reason that the classical fixed-point method does not work for dovetail is that dovetail
is not monotonic with respect to the approximation relation. For example,

Loop G Havoc

but

Loop V Sknp ~ Havoc V Skip

since Loop V Skzp z Skxp and Havoc V Skzp E Havoc, but S,ixp ~ Havoc.

5 TWO FIXED-POINT THEOREMS FOR DOVETAl L

The main results of this paper are two fixed-point theorems for dovetail. Because of dovetail’s
nonrnonotonicity, neither seems to be provable by the simple fixed-point method. In this
section we state the theorems and outline an alternative method of proof that works for
both of them.

We write A ~W1p B to mean that wlp.A = wlp,B,
Here is the first result:

~FIEOREM 1. Let f be a map from commands to commands defined by an expression of

the form f.X = &, where f is an expression built from the five operations

u+ ; [11 ~

as well m the command parameter .X and any number of fixed commands and predicates.

Then f has a least fixed potnt zn the order <, defined by:

A< B=(AQWIP B) A((A=W,PB)*(AE B)).

The approximation order ~ is the intersection of EWIP with ~WP; the new order ~ is a
sort of lexicographic combination of LWIP with EWP.

Theorem 1 cannot be proved as a simple application of the Knaster-Tarski Theorem, since
none of the operators are monotonic with respect to s. For example, consider sequential
composition: we have

J:=l<(Z:== lBT:== 2),

but with C’ given by (x = 1- Skip) I (x = 2 ~ Loop) we have

z:=l; cg(z:=l Dz:= 2); c

since x := 1 ~ z := 1 DLoop.
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A more complicated argument is required, which we now outline. First, we will change
the recursion f .X E & to the similar recursion j* .X ~ t’, where &* is obtained from &

by replacing all occurrences of T7 by a. Theorem 8 of Nelson [1989] shows that ~“ has

a fixed point, say X*. Operational intuition suggests that the only difference between

the two recursions is that 17 will exclude some looping outcomes that are included by n.

Therefore we expect ~ to have a fixed point that differs from X* only by having fewer

looping outcomes. Let S be the set of commands that differ from X* only by having fewer

looping outcomes. It turns out that v is monotonic with respect to approximation when it

is restricted to S. (More generally, it is monotonic when restricted to any equivalence class

of SWlp. ) Furthermore, S is closed with respect to joins. Thus the Knaster-Tarski theorem

can be applied, showing that S contains a fixed point of j. This proof will be completed in

Section 7.

For example, consider the recursion

The related recursion is

f’.x=x [skip.

The least fixed point of ~“ is Loop D Skip. The set S of commands that differ from Loop D Skip
only by having (possibly) fewer looping outcomes is the set of commands of the form

(p+ Loop) u Skip

for all predicates P. On this set j has an approximation-least fixed point, namely Skip. (In
fact, Skip is the unique fixed point on this set.)

Notice that the fixed point is not approximation-least: for example, Havoc is a fixed point
of (1), but Skip does not approximate Havoc. Indeed, the set of fixed points of (1) is the set
of commands that, viewed as relations, contain Skip and are contained by Havoc. This set
is completely flat with respect to the approximation relation.

Minimizing with respect to either < or c has the effect of excluding proper outcomes and
including looping outcomes; however, s gives precedence to the former, This is consistent
with the construction in the proof, which first uses a fixed-point construction to locate the

~~lP equivalence class of the fixed point (thus determining its set of proper outcomes) and
then uses a second fixed-point construction to maximize the number of looping outcomes
within this equivalence class.

The second result is that if semicolon is restricted so that its second argument is total,
then all recursions have solutions. To state this precisely, we introduce the operation ;; on
commands defined by

A;;B E A; (~~Loop).

Operationally, A; ;B loops whenever A; B would backtrack from B to A. If B is total, there
is no difference between A ; B and A; ;B.

If A and B are commands, we write A =g,d B to mean grd.A e grd.B, and we write

A =* B to mean A EWIP B and A ~g,d B.

THEOREM 2. Let f be a map from commands to commands defined by an expression of

the form j.X = &, where E is an expression budt from the szx operations

U4 ;; [11 ~ El
ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.
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as well as the command parameter X and any number of fixed commands and predicates.

Then f has aleastfixedpotnt m the order<, defined by:

A<B-(A~wlPB)A((AE*B)+(A LB)).

The proof of the second theorem is very similar to the proof of the first theorem. The
substitution of ,f* for f and the application of the Knaster-Tarski theorem within the set S
are the same; the difference is that in the definition of the set S, -. plays the role previously
played by -WIP. In order to avoid repeating the arguments that are common to both proofs,
we will present them as a separate theorem that applies to any “acceptable” equivalence
relation. Then Theorems 1 and 2 are proved by showing that -WIP and -~ are acceptable.
This program is carried out in the next two sections.

6. A FIXED-POINT THEOREM FOR ACCEPTABLE RELATIONS

An operation f on commands respects an equivalence relation N if for any commands A and
B,

A~B~f.A~f.B.

An operation with more than one argument respects N if it respects w in each argument.
An equivalence relation - on commands is acceptable it

(Al) H respects N.

(A2)AVB- ABB for all .4, B.

(A3) .4 w B implies A =~~, B for all A, B.

(A4) Join with respect to E preserves equivalence classes of -. That is, for any command B

and nonempty family of commands A,:

(’d’l :: A, NB) + (LIi::A,) -B.

LEMIVIA C. 1~ w M acceptable, then V M ~-mono tontc when the varyzng argument M
restricted to any equivalence class of -. That M, for any commands A, B, and C:

(A-l? )A(Ac B)~(Av C) G(BVC’).

PROOF. Since - is stronger than =WIP, it suffices to show that dovetail is ~-monotonic
when restricted to any equivalence class of =WIP. The EWIP part of the proof is trivial; in
fact A - B implies that A V C and B v C are wlp-equivalent. Because of this fact and

the pairing condition, the ~~p part of the proof can be completed by showing that

(A ~ B) a (hit.(A VG’) +-hlt.(B ‘V C)).

To prov~ this. assunl~ A ~ B, ancl compute

hit. (.-l v C)

= {Definition of V}

(hit.A V hlt.C’) A (grd.A V hlt.C) A (hit.A V grd.C)

+ {hit.A A grd.A + grd.El was shown in Nelson [1989] to be a consecluence of A c B (in

the proof of continuity of ~) }

(hit.A V hlt.C’) A (grd.B V hlt.~) A (hit.~ V grd.C)

= {hit.A + hlt.B is a consequence of A L B}
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(hit.B V hlt.C) A (grd.13 V hlt.C) A (hit.B V grd.C)

- {Definition of V}
hlt.(13 V C) ❑

If f is a function from commands to commands defined by an expression of the form
t .X = E, then by f* we denote the function defined by f* .X = &*, where f“ is E with all
occurrences of V replaced by n.

LEMMA D. If f is defined by an expression of the form f.X = &, and if every operator

in E respects the acceptable equivalence relation N, and if every operator occurring in & is
~-monotonic except for V, then for any commands A and B:

(Dl) AwB ~ f*.A~ f.B.

(D2) A EB ~ f“.A ~ f.B.

(D3)(A~B)A(A~B)+ f. AQf.B.

PROOF. The three proofs are all straightforward inductions on the size oft. In the base

case, where f is the identity or a constant function, the three claims can be verified by
inspection. Each of the three induction steps has two cases: the case where the outermost
operator of & is 7, in which f.X E g.X V h.X, for two functions g and h defined by
expressions smaller than E; and the case where the outermost operator of ~ is not V, in
which f .X = g. (h. X), where g is an operator other than V and h is defined by an expression
smaller than S. Here are the proofs of the two cases for each of the three steps:

Dl, ‘V case:

f“.A N f.B
s g*. AIh*.A~g.BVh.B

= { N is acceptable (A2) and transitive}
g*.A D h’.A N g.B u h.B

-+= { N is acceptable (Al) }
g“.A ~ g.B A h*.A - h.B

* { induction }
A-B

D 1, other case:

f*.A w f.B
- g.(h*.A) - g.(h.B)

~ { g respects N by hypothesis }
h*.A N h.B

< { induction }
A-B

D2, V case:

f*.A L f.B

z g%.AUh*.A C g.B V h.B

+= { Lemma B, transitivity of E }

g*.A n 11*.A ~ g.B D h.B

e { D is C-monotonic }
g*.A ~ g.B A h*.A C h.B

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3. May 1994
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-+ { induction }
A~B

D2, other case:

f*.A c f’.B

~ g.(h’.A) L g.(h.B)

+ { g is L-monotonic by hypothesis }
h*.A E h.B

= { induction }
A~B

D3, V case:

f.A ~ f.B
z g.A V h.A ~ g.B V h.B

~ { N is acceptable; Lemma C }
g.A ~ g.B A g.A C g.B

A h.A - h.B A h.A G h.B

+ { Every operator in & respects W, hence
by structural induction, h and g respect - }
g. A~g.BAh.Aqh.B AA-B

< { induction }
A~BAAw B

D3, other case:

f.A ~ f.B

~ g.(h.A) L g,(h.l?)

+ { g is L-monotonic by hypothesis }
h.A ~ h.B

e { induction }
AL BAAw B

This completes the proof of Lemma D. •l

THEOREM 3. Let f be a map jrom commands to commands defined by an expression of

the form f.X E E. Let N be an acceptable equivalence relation respected by each operation

occurring tn &. Suppose that every operatton occurring zn E is ~-monotonic except for U.

Then f has a least fixed potnt an the order <, defined by

A< B-( A~WIPB)A((AWB)~(A LB))

PROOF. The proof follows the outline sketched in the previous section. By Theorem 8

of Nelson [1989], ~“ has a ~-least fixed point, say .l-*. Let S be the set of all 1’ such that

X* _ Y ancl X* L Y. First, we show that f carries S into S:

YES
= (x* ‘--- Y) A (X* C Y)

+ { Lemma D }
(f”.x* N f.y) A (f ’..~” ~ f.y)

~ { f“fixes. y’ }

(~’ N f.]’) A (X* ~ f.y)
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❑ f.YGs

Second, we show that ~ has a ~-least fixed point on S, using the Knaster-Tarsl{i Theorem.
This theorem states that a function ~ has a C-1east fixed point if ~ is C-monotonic on S
and the ~-join of any L-chain in S lies in S. By Lemma C, the restriction of f to S is
L-monotonic. By acceptability (A4), the join of any nonempty chain in S lies in S. By
definition, S contains a ~-minimum element, namely X*, and therefore the empty chain
also has a join in S. Therefore the Knaster-Tarski Theorem applies, showing that ~ has a
~-least fixed point in S’, which we will call X.

It remains to show that X is ~-minimal among all fixed points of ~. Let Y be a fixed
point of ~. To show X ~ Y, we must show that X QWIPY and that X w Y implies X ~ Y.
As a stepping stone to these two goals, we first prove that X* c Y:

X“ ~ Y
{ By Knaster-Tarski, the least fixed point p~ecedes every prepoint }
f’.Y ~ Y

{ Y is a fixed point of f }
f*.Y Q f.Y
{ Lemma D }
TRUE

Next we show that X LWIP Y:

x ~wip Y
{X*N X, hence (A3) X* ~WIP X }
.x” ~,,,~pY
X*EY
{ Stepping stone }
TRUE

Finally we show that X w Y implies X c Y:

x~Y
{ X is the ~-least fixed point of ~ on S }
YES
(X* N Y) A (x* ~ Y)
{ Stepping stone }
x“ -1’
{x~x”}
X-J’

This completes the proof of Theorem 3. ❑

PROOFS OF THEOREMS 1 AND 2

In this section we deduce Theorems 1 and 2 from Theorem 3.

LEMMA E. The equivalence relat~ons -WIP and E* are acceptable.

PROOF. We must verify conditions (Al )–(A4). (lmdition (A3) is immediate, since both

HWIP ancl E* are as strong as -~lp. The other conditions will be verified for -~IP and for

~grd. This Suffices to prove the lemma, since these conditions have the property that if they
hold for two relations, then they also hold for the intersection of the two; and -x is the
intersection of EWIP and -g~d.
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Condition (Al), that u respects EWIPand ~grd, follows from the wlp and guard equations
for U:

wlp. (A u B).R G wlp. A.R A w~p.B.R

grd. (A U B) = grd.A V grd.B

For example, the only occurrence of A on the right-hand side of the first equation is in
wlp. A; thus wlp. (A O B) .R depends on A only insofar as it depends on the -~lP equivalence
class of A.

Condition (A2) is that .4 V B be equivalent to A D B. For ~~1,, this follows because D
and 17 have the same wlp-equation; for ~~,d, this follows from Lemma A.

Condition (A4) is a consequence of the formula from Nelson [1989] for the precondition
of the join of a chain that was presented in Section 2. Let A, be a non-empty family of
commands. If A, ~WIP B for all t, then

Wlp. (u t :: At).R
- (A i :: wlp.A,.R)
= (At:: wlp.B.R)
E wlp. B.R.

If A, ~gr,j B for all z, then

grd. (u z :: At)

~ ~wp. (u t :: A~). FALSE

s = (V L :: WP.A,.FALSE)

~ 7(V t :: =grd.A,)

- = (V t :: ~grd.B)

~ grd.B

This completes the proof of Lemma E. ❑

PROOF OF THEOREM 1. Inspection of the wlp-equations for the five operators

u~ ; [11 ~

shows that these operators respect ~WIP. Theorem 1 therefore follows from Theorem 3 and
Lemma E. ❑

PROOF OF THEOREM 2. Simple calculations, which will be left to the reader, show that

wlp. (.4; ;B).R = wlp. A.(wlp. B.R)
grd. (.4; ;B) ~ grd.A.

Thus ;; respects -~lP and =~,d, and therefore also respects ~+. Inspection of the WIP and
guard equations for the four operators

U+[l]v

shows that these operators respect =W]P and ~grd, and therefore also %.
To prove that ~ respects ~,, assume that A -x A’ and B =, B’, and compute:

WIP.(A EB).R

= wlp.A. R A (grd.A V wlp.B. R)
a wlp.A’.R A (grd. A’ V wlp.B’, R)

= WIP.(.4’ EB’),R
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grd. (A ~B)
s grd.A V grd.B
= grd,A’ V grd.B’
~ grd. (A’ ~B’) .

Theorem 2 therefore follows from Theorem 3 and Lemma E. ❑

Notice that ~ does not respect aWIP in its first argument, and ; does not respect =g,d in its
first argument. Thus Theorem 3, which is our only tool for constructing fixed points involv-
ing V, cannot accommodatee ~ and ; simultaneously. Thus any two of the three operators

H ; V can be handled together, but not all three.
In fact, using all three operators, there are recursions involving dovetail that have no

solutions. Consider

f.x E[b/((x Bb:=o)v b:=l); (b=o+ Loop)],

If X is defined by this recursion, and recursion is implemented by the usual unfolding, then
X will be equivalent operationally to Loop. The computation tree for X branches at V at
each level of recursion. Each b := 1 branch leads to a b = O guard, where it fails. The other
branch leads to a recursive call. Thus the computation will search an infinite tree, failing
to find any proper outcomes.

But Loop is not a fixed point of j. Since Loop ~ b := O is equal to Loop, and Loop v b := 1

is equal to b := 1, direct computation yields j .Loop = Fad.

In fact, f has no fixed point. The commands that f operates on are commands on a
zero-dimensional state space (that is, a point). There are only four such commands: Loop,

Fail, Skip, and Skip [ Loop. (On a zero-dimensional state space Skip and Havoc coincide. )

Computation yields:

f.Loop = Fail

f. Fad z Loop

f .Skxp = Loop

f (Sktp o Loop) = Loop.

In fact it is not difficult to prove that ~ has no fixed point at all, even among commands
with nontrivial state spaces.

We believe that if dovetail is given an operational semantics as sketched in the introduc-
tion, and if recursive calls are implemented in the standard way, then the resulting system
will agree with the axiomatic semantics for all recursions for which fixed points exist. Where
an axiomatic fixed point does not exist, the operational semantics will compute a fixed point
that does not agree with the axiomatic semantics. For example, in a simple operational se-
mantics that always unfolded any recursive call, the recursively defined X where X = f.X
would be equivalent to Loop. In a more sophisticated implementation that optimized the

computation of A V B by abandoning the computation of A whenever the computation was
stuck in a detectable loop, X would be equivalent to Fail.

8. CONCLUSIONS

The formal treatment of dovetail is somewhat curious: a function ~ is proved to have a least

fixed point with respect to an order s, although f is not monotonic with respect to ~. The
proof is based on an order c, with respect to which the function does not have a least fixed
point.
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It is obvious that the verification of programs that include dovetail can be based on the
theorems, provided that any recursions in the program obey the restrictions. In particular,
Theorem 1 justifies the recursive definition of Seq used in fairdo, making it possible to
compute the weakest preconditions of Unity programs.

Dovetail could be of practical importance in studying classes of implementations of loop-
avoiding operators. For example, it could be used to model loop-avoiding communication
when merging several communication lines.
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