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A new approach to ambiguity of context-free grammars M presented, and within this approach

the LL and LR techniques are generalized to solve the following problems for large classes of

ambiguous grammars:

—Construction of a parser that accepts all sentences generated by the grammar, and which

always terminates in linear time.

—Identification of the structural ambiguity: a finite set of pares of partial parse trees is

constructed; if for each pair the two partial parse trees are semantically equivalent, the

ambiguity of the grammar is semanti tally irrelevant.

The user may control the parser generation so as to get a parser which finds some specific parse

trees for the sentences, The generalized LL and LR techniques will still guarantee that the

resulting parser accepts all sentences and terminates in linear time on all input,
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1. INTRODUCTION

For unambiguous grammars we have the powerful LL and LR techniques

that for large classes can verify their unambiguity and construct complete

linear-time parsers, i.e., parsers that accept the full languages and terminate

in linear time on all inputs. With a new approach to ambiguity we generalize
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the LL and LR techniques to deal with large classes of ambiguous grammars

as well, thus characterizing the ambiguity and constructing complete linear-

time parsers.

Ambiguous grammars have long been considered relevant in connection

with programming languages, for as noticed by Aho et al. [1975] ambiguous

grammars are often simpler and more natural than their unambiguous

counterparts. Moreover, they can often be parsed more efficiently due to their

having smaller parse trees. In Aho et al., and independently in Earley [ 1975],

the now standard approach was developed for construction of linear-time

parsers for ambiguous grammars. The approach starts by applying an LL or

LR technique. Since the grammar is ambiguous the resulting parser will be

nondeterministic due to conflicts in the action table. A deterministic LL or LR

parser is then obtained by resolving these conflicts, possibly in a semiauto-

matic way using some disambiguating rules. As stated in Aho et al., the

problem with this approach is that the resolved parser might not be complete.

In fact, as noticed in Soisalon-Soininen and Tarhio [1988], it might not even

terminate on some input.

A simple example of a problematic grammar is

L4LL,L~I,L~111. (1)

The idea behind the last production is to reduce the number of productions in

large parse trees roughly by a factor of five. Applying any LR(l) technique to

the above grammar we get the following nondeterministic LR(l) parser:

STATE

o

1

2

3

4

5

ACTION

1

S3

S3

s3, rL+LL

rL+l, S4

S5

r L-+111

$

T

a

rL-LL

rL+l

7

rL+lll

Suppose we resolve the conflicts using the heuristic from the classic parser

generator Yacc [Johnson 1975] of choosing shifts over reductions. When

presented with a sentence like 111, the resolved parser will make two shifts

arriving at state 4 with input $, and then it is stuck. Thus the resulting
parser is not complete.
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1026 . Mlkkel Thorup

In this article we present some very general techniques for resolving the
conflicts in a nondeterministic LL or LR parser so that the resulting deter-

ministic parser is guaranteed to be complete and work in linear time. Even

for our problematic grammar (l), our techniques will find such a “good” LR( 1)

parser. For example this could be the parser ~(1) that for each entry selects

the first action. An alternative good resolution is if instead of shifting in state

2 on input 1, we choose to reduce L + LL. Despite the fact that the grammar

(1) is left-recursive, it is possible for us to find a good LL parser for it, but a

lookahead of length 2 is needed. Given the nondeterministic parser con-

structed by the canonical LL(2 ) technique for the grammar (1), our tech-

niques can find a good resolution which, in fact, selects exactly the same

parse tree as our LR( 1) parser 9(~).

The basic idea for testing if a resolved parser is good is to see if there is a

set of simple parse tree rewriting rules that rewrite any parse tree into a

parse tree for the same sentence but found by the parser. Trivially, the

existence of such rewriting rules implies that the resolved LL or LR parser is

complete. Moreover it turns out that in this case the resolved parser will

always terminate in linear time. The simple rewriting rules are pairs (u, u) of

partial parse trees where u and z] have the same root and the same frontier.

A parse tree t is rewritten by replacing an occurrence of u in t with u; if u

does not occur in t then (u, u ) does not rewrite t.Loosely speaking, we will

show that it is decidable if there exists a finite set of rewriting rules whose

embedding in the original nondeterministic parser implies that they can

rewrite any parse tree into a parse tree for the same sentence found by the

parser. In this case the parser is not only complete, it always terminates in

linear time.

Continuing our example (l), in connection with the resolved parser W, ~),

our techniques will construct the following set of rewriting rules:

L \

l\
\

,[

L L

LL L l\ l\

I l\ ~ l\\ ~ LLLL

lLL 111 l\ l\

II LL LL

11 /

Using these rewriting rules, the techniques will prove that 9( ~, is complete
and works in linear time.

It should be mentioned that other more specialized techniques have been

presented for recognition of resolved LL or LR parsers that are complete and

work in linear time. Aho et al. [1975] found a simple combinatorial test which
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works for classes of LL parsers, and Demers [1974] contains a test based on

merging nonterminals and removing trivial productions. Neither of these

techniques apply to our grammar (l).

By our test for good resolutions we have generalized the LL and LR

techniques to construct not only complete linear-time parsers for large classes

of ambiguous grammars, but also finite sets of rewriting rules characterizing

the structural ambiguity. When Knuth [1965] presented the canonical LR
technique, he described it as the most general-known technique for testing

unambiguity of grammars. Similarly, our techniques are the most general

known for characterizing finitely generated ambiguity.

An obvious application is as follows. Suppose we want to use an ambiguous

grammar in the semantic definition of a formal language, as, for example, a

programming language or a specification language. If we do not want to refer

to some specific parser, we need to ensure that the ambiguity of the grammar

is semantically irrelevant, i.e., that all parse trees for the same sentence are

semantically equivalent. For example, we need to avoid ambiguity based on a

dangling else while ambiguity based on algebraic identities like associativity

is perfectly okay. So far, proving that the ambiguity of an ambiguous gram-

mar is semantically irrelevant has been done by hand [Blikle 1989]. However,

with the above rewriting rules, we only need to verify for each of them that

the two partial parse trees are semantically equivalent. Then the rewriting

preserves semantics, and hence all the parse trees for any sentence must be

semantically equivalent. The advantages of semantically irrelevant ambigu-

ity are not only theoretical. Semantically irrelevant ambiguity exhibits real

freedom in parsing. This freedom is not exploited in this article, where only

the construction of deterministic parsers is considered. However, in the

technical report Thorup [1992], based on the results in this article, a theory is

developed for the construction of nondeterministic complete linear-time

parsers. The parsing freedom of these parsers can be used, for example, in

connection with incremental parsing and evaluation.

The set of rewriting rules provides an exact description of the “canonical”

parse trees selected by the parser for the sentences. First, the canonical parse

trees are exactly the parse trees that cannot be rewritten, i.e., the set of parse

trees that for no rewriting rule (u, u ) contains an occurrences of U. Second,

and more constructively, given any parse tree for a sentence, the correspond-

ing canonical parse tree can be found by repeated rewriting with the rewrit-

ing rules. Thus from %(1, we can read both that 9(1) is right-associative and

that it does not use L -+ 1I1.

Our techniques allow the user to state his “priorities” by supplying his own

rewriting rules, thereby controlling the parser generation toward any desired

set of canonical parse trees. As always, our techniques guarantee that the

generated parser is complete and works in linear time.

When comparing our ambiguity resolution based on priorities with the

traditional disambiguating rules facilitated by Yacc [Aho et al. 1986; Johnson

1975], one difference is, of course, the already mentioned guarantees of
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completeness and termination given by our techniques. On the other hand,

there are grammars for which our techniques report failure despite the

existence of good resolutions. This would never happen to Yacc, for Yacc takes

no responsibility for the generated parsers, Another difference is that our

rewriting rules are independent of the actual parsing technique. For example,

our set ~(1) can be used both with the LR(l) and the LL(2) techniques. This

independence makes our rewriting rules resemble more ambiguity resolu-

tions like those given in the syntactic metalanguage SDF [Heering et al.

1990]. There ambiguity resolution is achieved by discarding parse trees that

are nonminimal with respect to a fixed priority ordering on parse trees

parameterized, not by rewriting rules, but by a user-supplied partial ordering

of the productions. However, SDF does not guarantee that there is a unique

minimal parse. Also, besides the ordering of the productions, there is a

mechanism in SDF that allows certain parses to be disallowed outright

(“priority conflicts”). Consequently, the disambiguated “parser” may be both

incomplete and nondeterministic. Moreover, there are only exponential bounds

on its complexity.

This article is basically theoretical. The classes of grammars we can deal

with will be defined mathematically, but only future experience can tell how

well they cover practical applications. The examples are all very simple, just

showing that our techniques have enriched the class of grammars that can be

handled automatically with several nice ambiguous constructs. For each of

these examples it would be easy to identify by hand the ambiguity and

construct a complete linear-time parser, and, in fact, the same might be the

case for any single naturally occurring ambigaity. The problem in dealing

with ambiguous grammars does not lie in the deliberate use of ambiguous

constructs by the designer of the grammar. Rather, the problem is to ensure

that there is no hidden ambiguity. In real life, the problem could occur if, say,

a grammar was so big that it had to be written in parts by several different

authors. Even if the compiler experts claim that they can deal with all

grammars occurring in practice, the problem is still relevant for more dy-

namic systems like OBJ [Futatsugi et al. 1985] where compiler tyros may
define their own languages. The problem is solved by the LL and LR
techniques for large classes of unambiguous grammars, and with our general-

ization it is solved for large classes of ambiguous grammars as well.

For conciseness, the article will focus around the canonical LR(l) technique

[Knuth 1965] which is theoretically the most beautiful of the LL and LR

techniques. It is, however, not difficult to translate our results to any of the
other techniques. Moreover, we will only touch the semantic aspects peripher-

ally.

A key to our handling of ambiguity is to generalize the focus from sentences

to derived productions (if X is a grammar symbol deriving a string a of

grammar symbols, then X ~ * a is a derived production). Now, the article is

divided as follows: Section 2 describes the basic notion of grammars in terms

of derived productions, and Section 3 reviews parsing, modified to deal with

derived productions. After these two preliminary sections, Section 4 formal-
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izes the idea of rewriting rules rewriting all parse trees into the canonical

parse trees found by a parser. Section 5 contains the exact statement of the

main result. This includes a precise definition of what is meant by embedding

rewriting into the finite nondeterministic parsers constructed by the LL and

LR techniques. Section 6 discusses the relation between traditional disam-

biguating rules and priorities, and Section 7 discusses the problems with a

dangling else. Section 8 gives a general outline of the generalizations of the

LL and LR techniques. Moreover, it gives an overview of the appendices of

this article. These appendices contain the details of the generalization of the

canonical LR(l) technique.

The article is self-contained, but the preliminary definitions are rather

dense, so the reader is referred to Aho et al. [1986] or Sippu [ 1988] and Sippu

and Soisalon-Soininen [1990] for a standard text on grammars and parsing.

The article is a shortened version of Thorup [1994, Part I], to which the

reader is referred for more examples and discussions.

2. GRAMMARS IN TERMS OF DERIVED PRODUCTIONS

As was first noticed algebraically in Blikle and Torup [1990] and Blikle et al.

[1991] a key to working formally with the ambiguity of grammars is to focus

on “derived productions” which are natural generalizations of sentential

forms (which in turn are generalizations of sentences). Below, we will review

the basic concept of context-free grammars, but in terms of derived produc-

tions.

A grammar &’ consists of a finite set V of symbols together with a finite set

P of pairs (X, a) where X belongs to V and a is a, possibly empty, string of

symbols from V. We refer to the symbols in V as grammar symbols and to the

pairs in P as productions. A production (X, a) is written X - a. We refer to

X as the left side and to a the right side of the production. The grammar

symbols are divided into terminals and nonterminals. One of the latter is

distinguished as the start symbol. A grammar is well formed only if all the

left-side symbols of the productions are nonterminals.

We will always understand an underlying grammar when we talk about

grammar symbols, productions, etc. Moreover, we adopt the following nota-

tional convention from Aho et al. [1986]: A, B, C stand for nonterminals,

X, Y, Z for grammar symbols, and a, ~, y for possibly empty strings of

grammar symbols. The symbol ~ is generally reserved to denote an empty

string. Thus, for p = O we have Xl . . . XP = ~.
The following is a simple example of a grammar:

As in all later examples, only the productions of a grammar are given

explicitly. The grammar symbols are understood to be all symbols used in the

productions; the start symbol is the left side of the first production; and the

terminals are the grammar symbols in typewriter font. Thus in the gram-

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.



1030 . Mlkkel Thorup

mar (2) we have nonterminals S, A, B, C with S the start symbol, and we

have terminals b, c.

Definition 2.1. Derived productions are pairs (X, a) where X is a gram-
mar symbol, and a is a string of grammar symbols. A derived production

(X, a) is written X - * a. The set of derived productions is defined recur-

sively as follows:

—If X is a grammar symbol then X ~ * X is a derived production.

—If X - * a Yy is a derived production and Y + ~ is a production then
X + * a~Y is a derived production.

For example, we have that A + * bc is a derived production for grammar (2).

Notice that for derived productions, it is not required that the left side is a

nonterminal (as for productions, the left side and the right side refer to the

first and the second coordinate, respectively). This dropping of the distinction

between terminals and nonterminals turns out to be very convenient for the

following definitions, algorithms, and proofs, Besides having been used alge-

braically in Blikle and Thorup [1990] and Blikle et al. [1991], the concept of

derived productions has been used in Ballance et al. [1988] in connection with

“grammatical abstraction.” Often we will ignore the notational difference

between derived productions and productions when writing statements like

“all productions are derived productions” where formally we should have

written something like “for all productions X + a, we have that X - * a is a

derived production.”

In terms of derived productions, a sentential form is a string a of grammar

symbols such that with S denoting the start symbol, we have that S + * a

is a derived production. A sentence is then a sentential form consisting

of terminals only. Thus, as claimed, derived productions are more general

than both sentential forms and sentences.

As with sentences, we are interested in the way a derived production is

generated from its recursive definition. This is done in terms of parse trees.
Parse trees for derived productions form the base for all reasoning in the

remainder of this article. They are therefore introduced with more care and

terminology than usual. A parse tree is an ordered rooted tree where each

node is labeled either with a grammar symbol or with c. Since our parse tree

is ordered, the sons of a nonleaf node n are given as an ordered sequence.
Nodes labeled e play a special role, allowing us to have internal nodes with
an empty sequences of sons. More precisely, only a leaf may be labeled c, and

only if it is the single son of some node. If n has a single son labeled e, we

interpret this as its sequence of sons being empty. Concerning the general

labeling, it is required that if an internal node labeled X has its sons labeled

Xl, . . . . XP in this order, then X ~ Xl . XP is a production. By the root

symbol of a parse tree we refer to the label of the root, and by the frontier we

refer to the sequence of labels of the non-e leaves. Parse trees are depicted

with the root in the top and the sons ordered from the left to the right. Thus,

for grammar (2) we have the following parse trees with root symbol A and
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frontier B:

A

l\ A
t(2) : BC , ‘u(z) : I

IB

Clearly, X ~ * a is a derived production if and only if there is a parse tree t

with root symbol X and frontier a. In this case, we say that t is a parse tree

for X - * a, or that X - * a is the derived production generated by t. For

example, t(2)and u(z) both generate A + * B. Correspondingly, parse trees for

sentential forms are parse trees where the root symbol is the start symbol,

and parse trees for sentences are parse trees where, moreover, the frontier

consists of terminals.

If we have two parse trees, like t(2)and U(2~,generating the same derived
production, we say that they are equivalent, and then the underlying gram-

mar is said to be ambiguous. Thus grammar (2) is ambiguous. Traditionally,

one only says that a grammar is ambiguous if the grammar has two parse

trees for the same sentence. Clearly, our grammar (2) is ambiguous also with

respect to this notion of ambiguity. Notice, however, that the traditional

notion of ambiguity is strictly weaker, for it is possible for a grammar to be

ambiguous with respect to derived productions but not with respect to

sentences if there are grammar symbols that are not used in a parse tree for

any sentence.

The study of parse trees plays a major role in this article, so we need some

precise definitions of a few more parse tree-related concepts. A parse tree is

said to be trivial if it contains only one node. A subparse tree relation on

parse trees is defined to be the least partial ordering, i.e., the least reflexive

and transitive relation, with the following property: let t be a parse tree and

n be a non-~ node of t.Moreover, let t~ be the subtree of t excluding all nodes

strictly descending from n, and let t~ be the subtree of t containing all nodes

descending from n including n itself. Then t~ and t2 are subparse trees of t.

The construction is illustrated below with X being the label of the common

node n of tland t2.

t:

Atl

x

Atz
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Notice, that if n is a leaf of t,then t2 is trivial; and then tl= t.Similarly

t2= t if n is the root of t.With t,n, tl, and t2 as above, we say that t is

obtained by rooting t2 in the leaf n of tl.

It is important to notice that the subparse tree relation, in contrast to the

normal subtree relation, respects the production structure of parse trees. For

example, Utz) is a subtree but not a subparse tree of t(2).According to the

definition of the subparse tree relation, we say a parse tree t is minimal in a

set T of parse trees if t,but no proper subparse tree of t, is in T. Hence, for

example, if T is the set of all parse trees, then the minimal parse trees in T

are the trivial parse trees.

Finally, it is convenient to introduce a constructor p! for parse trees. If X is

a grammar symbol, by p~( X ) we denote the trivial parse tree whose single

node is labeled by X. Now, let X - Xl . . . XD be a production and t ~, . . . , tp

be parse trees with root symbols Xl,..., XP. Then by p~(X; tl,... , tP) we

denote the parse tree with root symbol X and with t~,...,tp being the

subparse trees descending from the sons of the root. Thus, continuing our

example with grammar (2), we have ttz~ = Pj(A; P!(B), p!(C; ●)) and u(z) =
pL(A; p~(~)).

3. PARSERS

In this section we review the concepts of parsing, but modified to deal with

derived productions. The modification itself is straightforward, using ideas

from incremental parsing and error recovery [Ghezzi and Mandrioli 1979;

Pennello and DeRemer 1979], However, knowing the exact way the modifica-

tion is done is crucial to the understanding of the rest of the article. Thus

parsing is the process of recognizing derived productions (not just sentences)

and selecting parse trees that generate them.

A parser is an automaton with takes as input an input production mean-

ing a pair (X, a), sometimes written X +“ a, where X is a grammar symbol

and a is a sequence of grammar symbols. There are now three possibilities:

(1) The parser successfully accepts the input production as a derived produc-
tion, and returns some parse tree generating X ~ * a.

(2) The parser terminates unsuccessfully. This might be the case even if the
input production is a derived production.

(3) The parser does not even terminate.

A parser is a linear-time parser if it terminates for all inputs in time linear in

the length of the input production. Moreover, a parser is complete if it

successfully finds a canonical parse tree for each derived production. We

always want parsers to be complete linear-time parsers, and we refer to such

parsers as implementations of a grammar,

Given some parser ~, we will refer to the parse trees it can return

successfully as @-canonical parse trees, possibly dropping the “9’ if some
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specific parser is understood. Thus completeness of @ means that any

derived production is generated by some ~-canonical parse tree.

The traditional LL and LR parsers can easily be modified to parse derived

productions instead of just sentences. In this article we focus on LR(l)

parsers. Below, we review the definition of LR( 1) parsers modified for derived

productions.

An LR(l) parser ~ for a grammar is characterized by the following

components:

—A finite set of states.

—A table INIT from grammar symbols to states.

—A partial table GOTO from states and grammar symbols to states.

—An action table ACTION from states and input symbols to actions,

Here, by the input symbols we mean all grammar symbols plus an extra

symbol $, and by actions we mean members of the set

{accept, shift, error} U {reduce X e a I X s a is a production}.

Notice, that relative to traditional LR(l) parsers for sentences we have

introduced the table INIT to take care of the left side which is no longer fixed

to some specific start symbol. Moreover, the tables GOTO and ACTION are

now defined for all grammar symbols regardless of whether they are termi-

nals or nonterminals.

A parsing with ~ proceeds through a series of configurations of the form

where XI, . . ..X n – I are grammar symbols, where XR = $, and where I., ...,
In are states. The first component of the configuration is called the stack, and

the second component is called the input buffer. The last state, 1~, in the

stack is referred to as the state, and first input symbol, Xm + ~, in the input

buffer is referred to as the input symbol. By the action we refer to

ACTION(I. , X ~, ~), i.e., the entry in the action table given by the state and
the input symbol.

Let X -? a be the input production. Then the initial configuration or

configuration O is

(E!EIla$)
The next configurations are determined by the action of the current configu-

ration. The effects of the different actions are as follows:

—Accept is only valid if the current configuration is of the form
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The parsing is then completed successfully, accepting the input production

as a derived production. The parse tree for the input production con-

structed by the parsing is described later.

—Shift is only valid if the current configuration is of the form

where X is a grammar symbol and GOTO( I, X) is defined. The next

configuration becomes (a~xpiiq,).

—Reduce X ~ Xl “”” XP is only valid if the current configuration iS Of the

form

FEIXEI””XJ’E14
with GOTO(I, X) defined. Then the subsequent configuration becomes

(a~x~l,p).
—Error simply means that we terminate unsuccessfully, giving up the input

production.

The parser @ is only well formed if there is no input production for which it

will ever try an invalid action. Notice that if in the parsing of an input

production with left side X, we encounter a configuration with state 1

and the sequence Xl, . . . . Xn of grammar symbols in the stack, then 1 =

GOTO( “““ GOTO(IIWT(X), Xl).. X~).

In order to define the parse tree constructed by an accepting parsing, we

associate a parse tree with each grammar symbol in the stack. If the

grammar symbol is X, the parse tree will always have X as root symbol.

Recall that in the initial configuration we have no grammar symbols in the

stack. When the parsing shifts a symbol X from the input buffer to the stack,

we associate pt(X ) with X. The interesting case is when the parser reduces

some production X ~ Xl “”” XP. Before the reduction, we have Xl, ..., XP as

a final segment of the sequence of grammar symbols in the stack, and the

reduction will replace them by X. If tl, . . . , tp are the parse trees associated

with Xl, ..., XP before the reduction, then after the reduction the parse tree
p~(x; tl, . . . . tp)is associated with X. When a parsing accepts, it returns the

parse tree associated with the single grammar symbol on the stack.
The definition of LR(l) parsers for derived productions is illustrated by an

example based on the grammar

B+ B* B, B+ O, B+l. (3)

Consider the following LR(l) parser for the grammar in (3): (a, s, and r

stand for accept, shift, and reduce, respectively).
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P(q :

ZNIT STATE

B 1

2

3

4

5

6

* 7

8

A C’TION

B* 01$

s+-

7- S

s+

.
7 s

.
T rB~()

T rB-i

-Y s

. .YT-

. . . . .. . . . .. . . . .

GO TO

B+ O I

2 +.56

+3++

4 +56

+3++

. . . .
TT7 T

... .
T-r T T

+8++

. . . .
TTY T

. . . .. . . .. . . .

Given the input production B +? 1 * B * B it will carry out the following

parsing:

STACK

❑AD1 lpqI) f5

❑ ❑1 Bpt(B;pt(I)) 2

•1‘ Bp~@wdzl*@(*ml
❑‘ ‘p~(~;p~(l))a*p~(*)mBpL(~)a
❑1 BP,(B,P,(l))~*P,(*) mBP,(B)m*P,(*)E

❑ cl-noon1 BPL(B;pA(I)) 2 *pt(*) z Bpi(B) 1 *pL(x) 3 Bpi(B) 4

0 1 ‘p@;p~(l))tl p~ 0 02 * (*) 3 BPL(B;PL(B)>PL( *), P!(B)) 4

‘P!(B;PL(B;PL( l)),PL(*) Pl(B;Pj(B)P~(*) ,PL(B)))

IN P-BUF

l*B*B$

*B*B$

+B*B$

B*B$

*B$

B$

$

$

%

ACTION

s

rB+l

s

s

s

s

rB+Bh B

rB+B+B

a

Thus the following parse tree is the w
I* B*B:

(3)-canOnical parse tree for B - *

B

l\\
PJ(B; PJ(B; P~(l)), P~(*)>Pj(B; P~(l?), P~(*), P~(l?))) = B*B

I l\\

1 B*B
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The traditional techniques for construction of LL and LR parsers only work
for classes of unambiguous grammars. However, in Section 8 and the appen-

dices they will be generalized so that they construct complete linear-time LL

and LR parsers for large classes of ambiguous grammars as well.

Notice that our generalization of parsers to work for derived productions

rather than just for sentences rightly can be viewed as a simplification. For
example, Knuth [1965] showed that if a grammar is unambiguous and all
grammar symbols are used in parse trees for sentences, then a complete

linear-time LR(l) parser for sentences can be constructed if it exists. In the

context of derived production, the statement simplifies to: if a grammar is
unambiguous, then a complete linear-time LR( 1) parser for derived produc-

tions can be constructed if it exists. In other words we get rid of the “no-junk”

requirement in the original formulation.

4. PRIORITIZED PARSING

We are now done with the preliminary sections, ready to introduce “priori-

tized parsing” which is a key concept for our automatic verification of the

completeness of parsers. It formalizes the rewritings discussed in the intro-

duction. A parse tree pair is an ordered pair of equivalent parse trees, i.e.,

parse trees with the same root and the same frontier. In general, a parse tree

pair (t~,t~)follows by substitution from a parse tree pair (t.,tl)if t~ results

from t! by replacing with to an occurrence of tl in t\.Formally, this is the
case if and only if there exists numbers k, p, and parse trees u, U1, . . . . UP

such that for i = O, 1, the parse tree t~ results from tzby first for i = 1, ..., p,

rooting u, in the ith non-c leaf of t,, and subsequently rooting the obtained

parse tree in the k th non-e leaf of u. The figure below illustrates the

construction. In the figure, X + *XI . . . XP is the derived production gener-

ated by to am-l tl,and 1’+ * ~-p ~ ~ ~p ~+ is the derived production

generated by t; and t;.Given a set K of parse tree pairs, by ~ < we denote
the closure of % under substitution and transitivity.

Definition 4,1. A set Z of parse tree pairs is prioritizing if ~ < is a
well-founded (no infinite descending sequence, i.e., no infinite sequence to “””
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tk ... of parse trees with (t,+~,t,)G %‘ for all i) strict partial ordering, and
no two g ~ -minimal parse trees are equivalent. If, moreover, w is a parser

and the ~-canonical parse trees coincide with the % < -minimal parse trees,

then z prioritizes P.

Thus, if we say that a parse tree t has higher priority than a parse tree u

whenever (t,u) G %” , then the =-canonical parse trees are exactly those

with the highest priority. The term is chosen because later the user will be

allowed to manipulate the set %’, thereby showing his priorities for the parser

9.

PROPOSITION 4.1. If a set % of parse tree pairs prioritizes a parser P, then

@ is complete.

PROOF. Let X + * a be a derived production. By definition, X - * CY is

generated by at least one parse tree u. Since % + is well founded, there is an

%’< -minimal, hence ~-canonical, parse tree t with (t,u) E % <. But 8‘ only
relates equivalent parse trees, so t is a ~-canonical parse tree for X - *a.

❑

Sometimes, we will think about the definition of prioritized parsers in

terms of rewriting. We say that the parse tree pair (t, u) rewrites the parse

tree u‘ to the parse tree t‘if (t’,u‘)follows from (t, u) by substitution. Notice,

that u‘ is not uniquely defined in terms of t,u, and t‘,for u might occur at

different positions in u‘. Now, let 8 be a set of parse tree pairs prioritizing a

parser Y. Then, the definition of prioritizing says that given any parse tree,

if, as long as possible, we rewrite with the parse tree pairs from S, then

eventually we will arrive at a ~-canonical equivalent to t.At the moment it

might seem most natural to think of” prioritizing” in this way. However, our

more algebraic description in terms of orderings forms a better base for the

rest of the article where, typically, we will be interested in expansions of ~ <

to orderings that are not expressible in terms of rewriting.

The techniques that will be presented in Section 8 and the appendices can

find prioritizing sets for large classes of grammars. For the grammar (3), they

could return

&(3) :

B B

l\\ I\\

B*B , B *B

N l\\ l\\
B*B B*B

which t.wioritizes the parser @(q, that we found in Section 3. Below are shown
two different maximal rewrit~ng sequences with =(a), starting in the same

parse tree (the indices indicate the subparse trees being replaced).
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B Bz Bz B

I \\ I “-%% l\\ l\\
BI *2B2 B2 *B2,3

I \\ *B + ‘i{\

B*B3

* I “N =$’ l\\
B1 XIB1 B1,2*I,2BI,2 B2,3 *2,3B2,3 B3*3B3

l\\ I\\ I\\ l\\

BI*IBI B1*l BI B3*3B3 B3*B3

BI B2

I \\ BI,2 l\\

BI XIB1 I \\ BJ*2B2

I\\ a B1,2 *1,2 B1,2 +’ I\\

B1 +lB1 I\\ I\\ B2*2B2

l\\ B2*zB2 BIxIB1 l\\

B*B B*B

Notice that the number of rewritings needed to transform a parse tree into its

canonical equivalent is not unique.

Observe that any prioritizing set characterizes the ambigaity completely.

Suppose, for example, that we want to show that the ambiguity of a grammar

is irrelevant with respect to some semantics. If a prioritizing set ~ is given, it

is sufficient to check for each parse tree pair in % that the two parse trees are

semantically equivalent, i.e., that rewriting with the pair preserves seman-

tics. This follows, for consider any two equivalent parse trees t and u. By the

definition of prioritizing, they can both be rewritten into their common

Y-canonical equivalent U. Hence they are both semantically equivalent to u,

and hence to each other. In connection with our grammar (3), we have the

prioritizing set ~(3), so its ambiguity is irrelevant with respect to some

semantics if and only if these semantics associate an associative operation

with the production E A E * E. This characterization of the ambiguity of a
grammar is somewhat related to the work in Tomita [1986], Rekers [1991],

and Billet and Lang [1989]. There they operate with the concepts of “shared
forests” and “local ambiguity,” both of which are subsumed by the concept of

substitution. With u, u 1, ..., UP as in the definition of substitution, shared
forests corresponds to the case where u is trivial, i.e., where u = p~(X ), and
local ambiguity corresponds to the case where UI, . . . . UP are trivial. In
Tomita [1986], Rekers [1991], and Billet and Lang [1989] these concepts are
used for a compact (cubic) representation of the different parse trees for a
given sentence while our prioritizing sets once and for all characterize the
ambiguity for the whole grammar. On the other hand, our techniques only
work for restricted classes of grammars, for which finite prioritizing sets can
be found.
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If a set of parse trees pairs prioritizes a parser, it implies that the set of

canonical parse trees is exactly the set of parse trees that does not have

subparse trees among the second coordinates in the prioritizing set. Thus,

from the fact that %{~~prioritizes ~(s), it follows that the set of @L~)-canonical

parse trees is exactly the set of parse trees not containing

B

I\\

B *B

l\\

B*B

as a subparse tree. Notice that such a concise characterization of right-as-
sociative parsing has not appeared previously in literature! However, a

somewhat related characterization has been proposed independently by W.

Maddox (personal communication, 1993). Our characterization is only possi-
ble due to our change in focus from sentences to derived productions.

By prioritizing the parsing of a grammar we mean: finding a finite set 20 of

parse tree pairs and a parser 9 such that % prioritizes ~. Thus by prioritiz-

ing the parsing of a grammar we both identify the ambiguity and character-
ize a complete parser. In the next section we will state precisely to what

extent the techniques to be presented in Section 8 and the appendices can

help us prioritize the parsing of grammars. In Section 7, we shall see that

there are grammars, like those containing a dangling else, which have no

finite prioritizing set. It is not claimed that our techniques can deal success-

fully with all natural grammars. The LL and LR techniques deal with limited

but important classes of unambiguous grammars, i.e., grammars with empty

prioritizing sets of parse tree pairs. The result of this article is that these

techniques can be generalized to deal safely with correspondingly limited but

important classes of ambiguous grammars with finite prioritizing sets of

parse tree pairs. The relevance of these new classes is indicated simply by
showing some concrete natural ambiguous grammars, like the one in (3), with

which they can deal.

5. THE MAIN RESULT

We assume that the LL and LR techniques have been modified to work with
derived productions instead of sentences. We will focus on the modified
version of the canonical LR( 1) technique [Knuth 1965], henceforth referred to
as the CLR(l) technique (we change name from “canonical LR to “CLR’ not

as much for brevity, but as to avoid confusion stemming from overloading of
the term “canonical”). The CLR(l) technique is formally described in Ap-
pendix B.

Given a grammar, the traditional LL and LR techniques (modified to deal

with derived production) will try to construct a complete linear-time LL or LR
parser. Unfortunately they can never be successful if the grammar is ambig-u-
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OUS. The techniques will always succeed in generating a generally nondeter-
ministic LL or LR parser, and they are successful exactly when this parser is

deterministic. Thus, failure shows up as conflicts in the generated action
table, i.e., as entries containing more than one action. The generated nonde-
terministic parser always has the property that, with an appropriate parsing,
it can construct any parse tree for any sentence. To emphasize this property
we will refer to the noncieterministic parsers generated by the LL and LR
techniques as aniversal parsers. Notice that universality implies complete-
ness in the case where the universal parser is deterministic.

Consider, for example, the grammar

Such a grammar could be relevant in connection with change in representa-

tion, i.e., if we wanted to use equations like x x y = exp(ln x + In y ) or

x A y = 7 ( - x V = y). However, it is chosen here because of its richness on

ambiguity. Applying the CLR( 1) technique, we get the following nondetermin-

istic LR(l) parser:

U(4, :

INIT STATE .4 CTIONS G’OTO

E F $ EF

E 1 s s T 2 :3

2 rF— E rF— E a,r F—E +-+

3 s,r E—F s,r E—F rE— F 4 .5

4 rF— E rF~E rF— E ++

5 s,r F--tFF, s,r F-FF, rF-FF, 4.5

rE— F rE-F rE— F

F 6 s s Y 47

7 s,r E-F s.r E~F a,r E-F 45

By a determinization of a universal LL or LR parser % we mean a determin-

istic LL or LR parser ~ obtained by resolving the conflicts in the action table,

i.e., for each entry e in the action table of 7?, we select a canonical action
q, = %., where %. denotes the set of actions in the entry e of the action table

of %. For our example (4), we let ~(1) denote the determinization Of %4)
derived by selecting the first action in each entry. Then 9(1) is a complete
linear-time parser. The universal parsers generated by most of the LL and
LR techniques, including the LL(k ), the LALR( k ), and the CLR( k ) technique,

satisfy the no-junk property that all actions in each entry of the action table
are used in the parsing corresponding to some parse tree. Hence, whenever

we resolve a conflict in the action table, we exclude some parse trees. Thus, if

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994
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for an unambiguous grammar, we get conflicts in the action table, there is no
hope of finding a complete determinization.

Let ‘Z be a universal LL or LR parser. Moreover, let (t, u) be a parse tree

pair with t # u. Consider the unique parsings constructing t and u. Let c be

the first configuration from which the two parsings carry out different actions

a and b, respectively. Let e be the entry in the action table corresponding to

c; then a, b ~ Z~. Now, the triple (e, a, b) is called the projection on z of the

parse tree pair (t, u). For parse tree pairs with two identical parse trees, the

projection is undefined, d~note
tree pair for grammar (4):

a(4) :

L . Take for

F

l\ i
FFFF

l\ldl\

[

FFE EFF

II

FF

ample, the following parse

The parse trees in a(~) are constructed by following parsings with ?~~):

STACK

Thus, the proje

BUFFER

FFF$

FF$

F$

F$

$

$

$

$

ACTION

s

g

r F*FF

s

r E-. F

rF-+E

r F-+FF

a

STACK

m
BUFFER

FFF$

FF$

FF$

FF$

F$

$

$

$

,
, - F)).

ACTION

s

rE— F

rF*E

s

s

r F~FF

r F-+FF

a

Lion of a(l) in %(1) is 7, F), shift, reduce

An ordering @ of a universal LL or LR parser % is represented by
associating with each entry e in the action table a strict partial ordering Be of

“Z,. Thereby & defines a strict partial ordering on parse trees. Fix two

equivalent but different parse trees t and u, and let (e, a, b) be the projection

of (t,u) in Z. Then (t, u) ~ & if and only if (a, b) = ~~. Notice that because it
is required that all the @cs are strict partial orderings, the definition guaran-

tees that in fact & is a strict partial ordering. Also notice that if % is a set of
parse tree pairs and there is an ordering of ~ that contains %, then there is a
unique least such ordering &’, namely, the “entry-wise” transitive closure of
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the projection of 8 in V. In this case we say that @ is the universal parser
ordering spanned by ~; otherwise 8 does not span a universal parser

ordering.
Given a universal LL or LR parser ‘~ with an ordering c? and a determina-

tion P, we say that 9 is minimal in @ if for each entry e we have that ~, is

minimal in ~,. Thus, if ~~ is minimal in ~, then all ~-canonical parse trees

are ~-minimal.

Definition 5.1. Let % be a set of parse tree pairs, 7/ be a universal LL or

LR parser, and 9 be a determinization of ?/. Then E V-prioritizes 9 if ~

prioritizes @, and 5< spans an ordering of ?1 in which 9 is minimal.

This definition is extremely important for the following. Generally, it says

that given a set S of parse tree pairs prioritizing a parser ~, then %
?/-prioritizes 9 if the finite universal parser ‘% can “see” that the rewritings

never loop and that no canonical parse tree can be written. Continuing our

example with grammar (4), set

f,,=~(E,~](Fj]~~Fjj]~

Moreover, denote by ~(~) the ordering of 7<1) obtained by ordering the actions
in the entries of the action table of ?Zl) in the order that they are already

listed. Notice, that the pair a(l) is in ~f~) but not in ~(~). The techniques ‘rem

Section 8 and the appendices can ascertain that 8(4) prioritizes S(L) and that

%(4) spans @t4). Moreover, it is clear that Y(4} is minimal in ~fl~. Thus it

follows that 8(4) 7~41-prioritizes ~(LV Also the techniques can verify that ~(1)

works in linear time, so W(4J is a complete linear-time parser. Finding such a
parser for grammar (4) is not completely trivial. Suppose, for example, we

apply Warton’s heuristic [Wharton 1976] for conflict resolution to ?<l). It

prefers reductions over shifts, so in state 7 = GOTO( IAVT(F), F)) on input
E, it will choose to reduce E + F instead of shifting. Hence the resulting

parser will never terminate for an input production like F +’ FF, which in

fact is a derived production.

TFI~o~~~ 5.1. Given a grammar %, a finite set %,. of parse tree pairs, and
the universal parser U obtained by any one of the various LL or LR tech-

niques, we can decide if there exists a determination ~ of YJ, and a finite set

%Out of parse tree pairs such that (E,. u ZOU~) “Y-prioritizes 9. In this case we
can find such a P and FOUt, where P is a linear-time parser, and ~UUt is

minimal given 9.

The role of ~1~ is to allow the user to impose his own priorities on the
parser construction. Continuing our example with grammar (4), if we set S,.
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to be the set of the first two parse tree pairs in %(1), we specify that the

generated parser should be “cycle free,” but leave it open whether it should be

left- or right-associative.

Admittedly, in order to keep down the size of the presentation, we will only

prove Theorem 5.1 in detail for the CLR(l) technique. This is done construc-

tively in Section 8 together with the appendices. In the following, when we

talk unspecified about our technique, it is understood that we are talking

about the generalization of the CLR(l) technique.

6. DISAMBIGUATING WITH PRIORITIES

In this section we will discuss in more detail how the priorities from 8,, in

Theorem 5.1 can be used like traditional rewriting rules. The discussion will

be based on an example stemming from Aho et al. [1986, pp. 251–254], and

which is taken from a real-world grammar for the equation-typesetting
language EQN [Kernighan and Cherry 1975]. We consider the following
grammar.

E* Esub Esup E, E- Esub E, E* EsuPE, E*{ E), E+c (5)

Our aim is to construct a (complete linear-time) parser that uses the

“special-case” production E ~ E sub E sup E in connection with any sub-

string c sub c sup c of the input, but in no other cases. This is specified by—
setting the following:

t,. =

E

E 1%

I \\\\ , E SU,E

EsubEsupE I\\
EsubE

[

E

I \\\\

*, EsubE supE

I\\

EsubE

E

E I\\
I\\\\ , EsubE

EsubEsupE PA
l?supE

E

I \\\\

~, EsubE sup E

[

I\\
EsupE

[1
E

I\\ \\

~, EsubE supE

I \\\\

EsupEsupE
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The last three pairs are * -priorities. The idea behind them is to set the

technique free in choosing the first coordinates. Hence the effect of a * -prior-

ity is to exclude its second coordinates from the canonical parse trees. Our

technique will successfully find a complete linear-time parser prioritized by

some superset of %,. (with some adequate first coordinates in place of the

* s). By looking at the priorities returned together with the parser, we can see
exactly how the technique resolved the various associativity and precedence

questions.

With Yacc [Johnson 1975], which is based on the LALR( 1) technique, it is

in some sense easier to construct a parser for grammar (5) satisfying the

specification. Yacc has a general heuristic which prefers shifts over reduc-

tions—the very same heuristic that led to an incomplete parser for grammar

(1) in the introduction. Thus, all we need to get a correct parser is to add a
disambiguating rule saying that we prefer to reduce with E + E sub E sup E
rather than with E ~ E sup E. Technically this is told to Yacc, by listing the

production E + E sub E sup E first in the declaration of the grammar—as

we already did.
It seems that one needs to be quite familiar with Yacc and the LR( 1)

techniques, in order to feel comfortable with the above conflict resolution. A

more serious complaint is if there is a risk that somebody else could have

worked on the grammar, adding some disambiguating rules. Suppose, for

example, that somebody had worked on the grammar before the special-case

production E + E sub E sup E was introduced. It would have made perfect

sense for her\him to decide that both sub and sup should be left-associative

and that they should be of the same precedence. Technically this is told to

Yacc via the declaration %1 e f t ‘sub f ‘sup ‘. Such a declaration overrules

the heuristic about preferring shifts over reductions. Without going into

details, when applied to the full grammar (5), this declaration implies that

any conflict between shifting and reducing will be settled in favor of reducing.

This does not contradict our preference of reducing with E + E sub E sup E
rather than with E ~ E sup E, but it implies that we will never get to a state

from which it is possible to reduce E + E sub E sup E. Consequently, our

special-case production will never be used.

7. THE DANGLING ELSE

Unfortunately there are grammars for which our approach cannot be success-
ful. The most prominent example is the dangling-else construction which is
commonly used despite it being semantically problematic (in order to get the
correct semantics of a sentence with a dangling else, one applies the ad hoc

rule that the “else” belongs to the nearest preceding “then”). The following

grammar represents the classic dangling-else construction:

S+t Se S, S+k S, S+s. (6)

Our techniques cannot handle this grammar, for it can be shown that it has

no finite prioritizing set. However, our techniques can offer to start listing the
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following infinite prioritizing set of parse tree pairs:

&(Q :

s

l\
ts

l\\\
\ ~sss

s

l\\\1tSeS ,. ...

l\

ts

s

l\
ts

l\\\

tSeS

l\\\
tSes

l\\\
tSeS

l\ \
t s eS

l\\\
t,5eS

l\\\
tSeS

l\
ts

,..

The universal CLR(l) parser for grammar (6) contains only one conflict, and—
it turns out that any resolution of this conflict gives a complete linear-time

parser (choosing shifting over reducing gives the parser with the intended

semantics). Unfortunately, our techniques cannot verify this completeness

due the lack of a finite prioritizing set. Hence, if we want the safety of our

techniques, we have to disambi~ate grammar (6). Using the technique from

Thorup [1994], this can be done automatically, the result being the grammar

S+ Sl, S- Sz, Sl-t S, Sl*t Sz eSl, Sg+t Sze Sz, Sz+s.

An even better solution would be to avoid the problem completely by chang-

ing the language to something more readable, as is done in Modula-2 [Wirth

1985].

Of course, the lack of safety is not a problem in connection with a single

small grammar like (6). As indicated in the last section, the problem arises if

we start using grammars like (6) in a larger context, say, where several
language designers are collaborating on the same grammar, or just with a

large grammar where checking against hidden ambiguity and incompleteness

of the generated parsers is cumbersome by hand.

In Appendix J we shall return to the possibility of generalizing our tech-
niques to deal directly with a dangling-else construction.

8. ALGORITHMIC OUTLINE

In this section we will give a general outline of the computation described in

Theorem 5.1. Also, we will give an introduction to the appendices which,

relative to the CLR(l) technique, contain all the details of the computation.

Initially, we assume that we have none of the * -priorities that we discussed

in Section 6. Thus, we are given a grammar 9, some universal LL or LR

parser % for 9, an a finite set %,. of parse tree pairs. Our goal is to find a

determinization 9 of %, and a finite set %OU~of parse tree pairs such that 9
and 80.~ match each other in the sense that (~, ~ u ~OU~) ‘%-prioritizes ~. If
such a matching pair exists we want 2?OU~ to be minimal given 9, and @ to

ACM TransactIons on Programmmg Languages and Systems, Vol. 16, No. 3, May 1994.



1046 . Mikkel Thorup

be a linear-time parser. The latter condition will be shown always to be

satisfied when ~ is matched. If there is no such matching pair, we want to be

able to report this.

Our key to searching matching pairs is to construct first a catalyst set J%’of

parse tree pairs defined as follows. The second coordinates in J? are the

minimal parse trees among the nontrivial parse trees having the root symbol

as a single symbol in the frontier. Let t be any second coordinate in 39, and
let X a * X be the derived production generated by t,then the corresponding
first coordinate is p~(X). For grammar (3) from Section 3, the set W is empty,

but for grammar (4) from Section 4, we have Q equal to

E F

n(q) :

1[ ) I 1

E, F, F,E.

E F

It is straightforward to see that f% is always finite, and to construct W. The

very special properties of 9 are described in the following theorem, the proof

of which is deferred to the appendices:

THEOREM 8.1. Let P be a determinization of a universal LL or LR parser

z?, and let E be a set of parse tree pairs. Then Z ~-prioritizes P if and only if

the following conditions are satisfied:

—All ~ < -minimal parse trees are P-canonical.

—(% v M)” spans an ordering of ‘Z in which @ is minimal.

From the theorem it follows that a determinization @ of our universal parser

% and a finite set 80. ~ of parse tree pairs match each other if and only if the
following conditions are satisfied:

(i) All (%,. U %OU,)” -minimal parse trees are ~-canonical.

(ii) (%,. U %OU,UW)” spans an ordering of z in which @ is minimal.

Notice that we have no explicit test for the well-foundedness of (%, ~ u %OU,)”

which is required for 8,. U %OU~to be prioritizing. From (%,. U %OU~u ~) <

spanning a universal parser ordering it follows directly that ( %,~ u %OU~ U W) <

is irreflexive. The strength of Theorem 8.1 is that this irreflexivety implies

the desired well-foundedness of (%,. u %.U, )‘ .
Trivially (ii) can only be satisfied if @’ is minimal in an ordering of ?Z

spanned by (%,. U=@)< . This restriction on the number of relevant deter-

minizations is crucial for the running time. Generally this number is expo-

nential, but if the user works modularly, introducing only a slight new

ambiguity in each step, then the set %,~ will largely determine the parsing,

keeping the number of relevant determinizations small. Thus we check that

(%,. U%) + spans an ordering @ of%. If not, we report that there cannot be a
matching pair.
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Now, choose some ~-minimal determinization ~. We are going to decide if

9 is matched by a set $70Uf, and, if so, construct a minimal such set to be

returned together with ~. If not, we will have to try another P-minimal

determinization. If no &’-minimal determinization 9 is matched, we will have

to report that there is no matching pair.

Denote by M the set of minimal noncanonical parse trees. By definition, if

(%,. u %OU,) prioritizes 9, the (%,. U %OUt)-minimal parse trees coincide with

the ~-canonical parse trees, but this can only be the case if all parse trees

from M are second coordinates in either Z,. or ZOU~. Suppose M is infinite.

Since %,,, is finite, there cannot be a finite set %OU~matching 9. Thus, if M is

infinite, we have to try another ~-minimal determinization.

Denote by M- the set M without the parse trees occurring as second

coordinates in %,.. Check that each parse tree in M- has a ~-canonical

equivalent. If not, 9 cannot be complete, so we have to try another ~-minimal

determinization.

Construct %OU~ such that M– coincides with the second coordinates, and

such that the first coordinates are their ~-canonical equivalents. Clearly we

thereby satisfy (i). Also it is clear that if (ii) is satisfied, then %Ou~ is a

minimal set matching Y, since all the second coordinates are forced. We

claim that (ii) is satisfied if @ is matched at all. Suppose that some set ~~U~

matches ~. Then %,. U %~U~ prioritizes ~, so any parse tree pair with a

canonical first coordinate is contained in (%, ~ u %~U~) < . Hence, in particular,

we have %OU~G (~,. u %,~U~)‘ . Thus, from the fact that %~U~ satisfies the

condition that (%,. U %~U~ U f%)’ spans an ordering of ?[ in which 9 is

minimal, we may conclude also that %OU~satisfies the condition. Hence (ii) is

satisfied, as claimed. Thus, our final step in the processing of ~ is to check if

(ii) is satisfied. If so, we return Y and %OU, successfully; otherwise, @ cannot

be matched, so we must try another ~-minimal determinization.

The above outlines an algorithm for the computation described in Theorem

5.1. In case our input contained some * -priorities, all we need to do is to

avoid determinizations in which some second coordinate is canonical. Then as

first coordinates, in place of the *s, we can just use their canonical equiva-

lents. Unfortunately, * -priorities do not speed up the search for an adequate

determinization as much as did the normal priorities. Essentially, the prob-

lem is that we do not know in advance which is the first noncanonical action

in a given second coordinate.

Our algorithmic outline assumes that we can solve the following problems:

(1) Given a finite set % of parse tree pairs how do we check that %+ spans

an ordering of Z? If it does, how do we construct this ordering? The

problem is to construct the projections in % of the possibly infinite set of

parse tree pairs in % <.

(2) Given a determinization 9, how do we construct the set M of minimal
noncanonical parse trees which constituted the necessary second coordi-
nates in =,. u EOU~?In particular, how do we decide if M is infinite,
implying that ~ cannot be matched?
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(3) Given a determinization Y and a parse tree t,how do we check that there
is a @-canonical equivalent to t? The problem is that @ might not be

terminating for all input.

(4) How do we prove that all matched determinizations are linear-time

parsers? The essential problem is that they might be nonterminating.

All these problems are sorted out in the appendices relative to the CLR(l)

technique (Knuth’s canonical LR(l) technique modified to deal with derived

productions). Not all of them are solved exactly as stated. In connection with

problems 2 and 3 we will not give an exact solution if for some other reason

we can infer that @ cannot be prioritized.

Now, the appendices are divided as follows. Appendix A proves Theorem

8.1. In Appendix B we formally describe the construction of universal CLR(l)

parsers, and in Appendix C we introduce some convenient notions concerning

such parsers. With the framework setup, Appendix D solves problem 1;

Appendix E addresses problem 2; Appendix F addresses problem 3; and

Appendix G deals with problem 4. Appendix H puts everything together in an

exact algorithm for the computation described in Theorem 5.1 for the CLR(l)

technique. The algorithm is followed by some examples in Appendix I. Fi-

nally, Appendix J contains some technical remarks about efficiency and

possible generalizations.

9. CONCLUSION

The theoretical result of this article is that the various LL and LR techniques

can be generalized to deal with classes of ambiguous grammars, characteriz-

ing their ambiguity and generating complete linear-time parsers.

The practical result is the guaranteed completeness and correctness of the

generated parsers with respect to explicitly declared user intent (the input

priorities). Unintentional ambiguity arising from grammar evolution or the

combination of reused grammar fragments originally developed in other

contexts will not slip by unnoticed. This contrasts the traditional approach

based on disambiguating rules which do not in general give warnings against
incompleteness or incorrectness.

Unfortunately there are interesting grammars like those based on a dan-

gling else for which the techniques presented in this article will report

failure. In that connection, it would be a significant improvement of our

techniques to generalize them to deal with parsers prioritized by no finite but

by infinite sets of parse tree pairs.

ACKNOWLEDGMENTS

Special thanks to William Maddox, Mark-Jan Nederhof, and Eljas Soisalon-

Soininen, all for having put a very large effort into helping with the presenta-

tion of this work. Many others have been helpful with suggestions, comments,

and encouragement during the years of my work on the theory and algo-

rithms just presented. Among these are Andrew Appel, Dines Bj@rner, An-

drezej Blikle, Alan Demers, Martin Farach, Tony Hoare, Neil Jones, Bernard

ACM Transactions on Programming Languages and Systems, Vol. 16, No 3, May 1994



Controlled Grammatic Ambiguity . 1049

Lang, Bill McCO1l, Colin McDiarmid, Hans Rischel, S@ren Riis, Mary Ryan,

Barbara Ryder, Vincent Sgro, Anders Thorup, and various anonymous refer-

ees.

APPENDIX

An appendix to this article is available in electronic form (Postscript ‘M). Any

of the following methods may be used to obtain it; or see the inside back cover

of a current issue for up-to-date instructions.

—By anonymous ftp from acm.erg, file [pubs.journals. toplas.append]p 1267.ps

—Send electronic mail to mailserve@acm.org containing the line

send [ anonymous .pubs.journals. toplas.append]p 1267 .ps

—By Gopher from acm.org

—By anonymous ftp from ftp.cs.princeton. edu, file pub/ toplas/ append/

p1267.ps

—Hardcopy from Article Express, for a fee: phone 800-238-3458, fax 201-216-

8526, or write P.O. Box 1801, Hoboken NJ 07030; and request ACM-

TOPLAS-APPENDIX- 1267.
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