
Lazy Functional State Threads

John Launchbury and Simon L Peyton Jones

University of Glasgow

Email: {simonpj, jl}@dcs .glasgow. ac. uk. Phone: +44-41-330-4500

Abstract

Some algorithms make critical internal use of updat-

able state, even though their external specification is

purely functional. Based on earlier work on monads, we

present a way of securely encapsulating stateful compu-

tations that manipulate multiple, named, mutable ob-

jects, in the context of a non-strict, purely-functional

language.

The security of the encapsulation is assured by the

type system, using parametricity. Intriguingly, this

parametricity requires the provision of a (single) con-

stant with a rank-2 polymorphic type.

1 Introduction

Purely functional programming languages allow many

algorithms to be expressed very concisely, but there

are a few algorithms in which in-place updatable

state seems to play a crucial role. For these algo-

rithms, purely-functional languages, which lack updat-

able state, appear to be inherently inefficient (Ponder,

McGeer & Ng [1988]).

Take, for example, algorithms based on the use of

incrementally-modified hash tables, where lookups are

interleaved with the insertion of new items. Similarly,

the union/find algorithm relies for its efficiency on the

set representations being simplified each time the struc-

ture is examined. Likewise, many graph algorithms re-

quire a dynamically changing structure in which shar-

ing is explicit, so that changes are visible non-locally.

There is, furthermore, one absolutely unavoidable

use of state in every functional program: input/output.

The plain fact of the matter is that the whole pur-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

pose of running a program, functional or otherwise, is

to make some side effect on the world — an update-

in-place, if you please. In many programs these 1/0

effects are rather complex, involving interleaved reads

from and writes to the world state.

We use the term “stateful” to describe computations

or algorithms in which the programmer really does

want to manipulate (updatable) state. What has been

lacking until now is a clean way of describing such al-

gorithms in a functional language — especially a non-

strict one — without throwing away the main virtues

of functional languages: independence of order of eval-

uation (the Church-Rosser property), referential trans-

parency, non-strict semantics, and so on.

In this paper we describe a way to express stateful

algorithms in non-strict, purely-functional languages.

The approach is a development of our earlier work

on monadic 1/0 and state encapsulation (Launchbury

[1993]; Peyton Jones& Wadler [1993]), but with an im-

portant technical innovation: we use parametric poly-

morphism to achieve safe encapsulation of state. It

turns out that this allows mutable objects to be named

without losing safety, and it also allows input/output

to be smoothly integrated with other state mainpula-

tion.

The other important feature of this paper is that

it describes a complete system, and one that is im-

plemented in the Glasgow Haskell compiler and freely

available. The system has the following properties:

● Complete referential transparency is maintained.

At first it is not clear what this statement means:

how can a stateful computation be said to be refer-

entially transparent? To be more precise, a state-

ful computation is a state transformer, that is, a

function from an initial state to a final state. It

is like a “script”, detailing the actions to be per-

formed on its input state. Like any other function,

it is quite possible to apply a single stateful com-

putation to more than one input state.

So, a state transformer is a pure function. But,

because we guarantee that the state is used in a

SIGPLAN 94-6/94 Orlando, Florida USA
@ 1994 ACM 0-89791 -662-x19410006 ..$3.5O

24

http://crossmark.crossref.org/dialog/?doi=10.1145%2F773473.178246&domain=pdf&date_stamp=1994-06-01

single-threaded way, the final state can be con-

structed by modifying the input state in-place.

This efficient implementation respects the purely-

functional semantics of the state-transformer func-

tion, so all the usual techniques for reasoning

about functional programs continue to work. Sim-

ilarly, stateful programs can be exposed to the

full range of program transformations applied by a

compiler, with no special cases or side conditions.

● The programmer has complete control over where

in-place updates are used and where they are not.

For example, there is no complex analysis to de-

termine when an array is used in a single-threaded

way. Since the viability of the entire program may

be predicated on the use of in-place updates, the

programmer must be confident in, and be able to

reason about, the outcome.

● Mutable objects can be named. This ability

sounds innocuous enough, but once an object can

be named its use cannot be controlled as readily.

Yet naming is important. For example, it gives us

the ability to manipulate multiple mutable objects

simultaneously.

. Input/output takes its place as a specialised form

of stateful computation. Indeed, the type of I/O-

performing computations is an instance of the

(more polymorphic) type of stateful computations.

Along with 1/0 comes the ability to call impera-

tive procedures written in other languages.

. It is possible to encapsulate stateful computations

so that they appear to the rest of the program

as pure (stateless) functions which are guaranteed

by the type system to have no interactions what-

ever with other computations, whether stateful or

otherwise (except via the values of arguments and

results, of course).

Complete safety is maintained by this encapsula-

tion. A program may contain an arbitrary number

of stateful sub-computations, each simultaneously

active, without concern that a mutable object from

one might be mutated by another.

● Stateful computations can even be performed

lazily without losing safety. For example, suppose

that stateful depth-first search of a graph returns a

list of vertices in depth-first order. If the consumer

of this list only evaluates the first few elementfi of

the list, then only enough of the stateful compu-

tation is executed to produce those elements.

2 Overview

This section introduces the key ideas of our ap-

proach to stateful computation. We begin with the

programmer’s-eye-view.

2.1 State transformers

A value of type (ST s a) is a computation which trans-

forms a state indexed by type s, and delivers a value

of type a. You can think of it as a box, like this:

Result

I if

I r
>

State in State out

Notice that this is a purely-functional account of state.

The “ST” stands for “a state transformer”, which we

take to be synonymous with “a stateful computation”:

the computation is seen as transforming one state into

another. (Of course, it is our intention that the new

state will actually be constructed by modifying the old

one in place, a matter to which we return in Section 6.)

A state transformer is a first-class value: it can be

passed to a function, returned as a result, stored in

a data structure, duplicated freely, and so on.

A state transformer can have other inputs besides

the state; if so, it will have a functional type. It can

also have many results, by returning them in a tuple.

For example, a state transformer with two inputs of

type Int, and two results of type Int and Boo1, would

have the type:

Int -> Int -> ST s (Int ,Bool)

Its picture might look like this:

Inputs Results

D

State in State out

The simplest state transformer, returnST, simply de-

livers a value without affecting the state at all:

returnST : : a -> ST s a

The picture for returnST is like this:

I I D

State in State out

25

2.2 References

What, then, is a “state”? Part of every state is a finite

mapping from references to values. (A state may also

have other components, as we will see in Section 4.)

A reference can be thought of as the name of (or ad-

dress of) a variable, an updatable location in the state

capable of holding a value. The following primitive op-

erations are provided:

newVar :: a –> ST s (MutVar s a)

readVar :: MutVar s a -> ST s a

writeVar : : MutVar s a -> a -> ST s ()

The function newVar takes an initial value, of

type a, say, and delivers a state transformer of type

ST s (MutVar s a), When this is applied to a state,

it allocates a fresh reference — that is, one currently

not used in the state. It augments the state with a

mapping from this reference to the supplied value, and

returns the reference along with the modified state.

The type MutVar s a is the type of references allo-

cated from a store of type s, containing a value of type

a. Notice that, unlike SML’S Ref types, for example,

MutVars are parameterised over the type of the state as

well as over the type of the value to which the reference

is mapped by the state. (We use the name MutVar for

the type of references, rather than Ref, specifically to

avoid confusion with SML.)

Given a reference v, readVar v is a state transformer

which leaves the state unchanged, but uses the state to

map the reference to its value.

The function writevar transforms the state so that

it maps the given reference to a new value. Notice

that the reference itself does not change; it is the state

which is modified. writeVar delivers a result of the

unit type (), a type which only has one value (apart

from bottom), also written (). A state transformer of

type ST s () is useful only for its effect on the state.

2.3 Composing state transformers

State transformers can be composed in sequence, to

form a larger state transformer, using thenST, which

has type

thenST :: STsa->(a -> STsb)->ST sb

The picture for (s i ‘ thenST’ s2) is like thisl:

stateT-lm=mL
Notice that the two computations must manipulate

state indexed by the same type, s. Notice also that

thenST is inherently sequential, because the state con-

sumed by the second computation is that produced by

the first. Indeed, we often refer to a state transformer

as a thread, invoking the picture of a series of primi-

tive stateful operations “threaded together” by a state

passed from one to the next.

Putting together what we have so far, here is a “pro-

cedure” which swaps the contents of two variables:

swap : : MutVar s a -> MutVar s a -> ST s ()

swap v w = readVar v ‘ thenST’ (\a ->

readVar w ‘ thenST’ (\b ->

writeVar v b ‘ thenST((\- ->

writeVar w a)))

The syntax needs a little explanation. The form

‘(\a->e” is Haskell’s syntax for a lambda abstraction.

The body of the lambda abstraction, e, extends as far

to the right as possible. So in the code for swap, the

second argument of the first thenST extends all the way

from the \a to the end of the function. That’s just as

you would expect: the second argument of a thenST

is meant to be a function. The “_” in the second-last

line is a wild-card pattern, which matches any value.

We use it here because the writeVar does not return

a value of interest.

The parentheses can be omitted, since infix oper-

ations bind less tightly than the lambda abstraction

operator. Furthermore, we provide a special form of

thenST, called thenST_, with the following type signa-

ture:

thenST_ :: STso->STsb->STsb

Unlike thenST its second argument is not a function,

so the lambda isn’t required. So we can rewite swap as

follows:

swap :: MutVar s a -> MutVar s a -> ST s ()

swap v w = readVar v ‘thenST’ \a -~

readVar w ‘thenST’ \b ->

writeVar v b ‘ thenST_’

writeVar w a

When swap v w is executed in a state thread (that

is, when given a state), v is dereferenced, returning a

value which is bound to a. Similarly the value of w

is bound to b. New values are then written into the

state at these locations, these values being b and a

respectively.

In addition to thenST and returnST, we have found

it useful to introduce one other “plumbing” combina-

tor, fixST, It has the type

fixST:: (a–>STsa) –> STsa

and the usual knot-tying semantics, which we depict

thus:

, t I

statF’4EmA%1Backquotes are Haskell’s notation for an infix operator.

26

This is the only point that relies on laziness. Every-

thing else in the paper is directly applicable to strict

languages.

2.4 Encapsulation

So far we have been able to combine state transform-

ers to make larger state transformers, but how can

we make a state transformer part of a larger program

which does not manipulate state at all? What we need

is a function, runST, with a type something like the

following:

runST :: STsa->a

The idea is that runST takes a state transformer as

its argument, conjures up an initial empty state, ap-

plies the state transformer to it, and returns the result

while discarding the final state. The initial state is

“empty” in the sense that no references have been al-

located in it by newvar; it is the empty mapping.

But there seems to be a terrible flaw: what is to pre-

vent a reference from one thread being used in another?

For example:

let v = runST (newVar True)

in

runST (readVar v)

Here, the reference allocated in the first runST’s

thread is used inside the second runST. Doing so would

be a great mistake, because reads in one thread are

not sequenced with respect to writes in the other, and

hence the result of the program would depend on the

evaluation order used to execute it. It seems at first

that a runtime check might be required to ensure that

references are only dereferenced in the thread which al-

located them. Unfortunately this would be expensive.

Even worse, our experience suggests that it is surpris-

ingly tricky to implement such a check — the obvious

ideas fail as it then becomes possible to test the identity

of a thread so losing referential transparency — and we

still do not know a straightforward way to do so.

This problem brings us to the main technical contri-

bution of the paper: the difficulties with runST can all

-..be solved by giving it a more specific type. The type

given for runST above is”implicitly universally quantif-

ied over both .s and a. If we put in the quantification

explicitly, the type might be written:

runST :: Vs, a. (ST s a -> a)

Now, what we really want to say is that runST should

only be applied to a state transformer which uses

newvar to create any references which are used in that

thread. To put it another way, the argument of runST

should not make any assumptions about what has al-

ready been allocated in the initial state. That is, runST

should work regardless of what a’nttzal state zt is given.

So the type of xunST should be:

runST : : ~a. (~s. ST s a) -> a

This is not a Hindley-Milner type, because the quan-

tifiers are not all at the top level; it is an example of

rank-2 polymorphism (McCracken [1984]).

Why does this type prevent the “capture” of ref-

erences from one thread into another? Consider our

example again

let v = runST (newVar True)

in

runST (readVar v)

In the last line a reference v is used in a stateful

thread (readVar v), even though the latter is suppos-

edly encapsulated by runST. This is where the type

checker comes into its own. During typechecking, the

type of readVar v will depend on the type of v so, for

example, the type derivation will contain a judgement

of the form:

{.. ., v : MutVar s Bool} l-- readVar v : ST s Bool

Now in order to apply runST we have to be able to

generalise the type of readVar v with respect to s,

but we cannot as s is free in the type environment:

readVar v simply does not have type Vs. ST s Bool.

What about the other way round? Let’s check that

the type of runST prevents the “escape” of references

from a thread. Consider the definition of v above:

v = runST (newVar True)

Here, v is a reference that is allocated within

the thread, but then released to the outside world.

Again, consider what happens during typecheck-

ing. The expression (newVar True) has type

ST s (MutVar s Bool), which will generalise nicely

to Vs .ST s (MutVar s Bool). However, this still

does not match the type of runST. To see this, con-

sider the instance of runST with a instantiated to

MutVar s Bool:

runST :: (’ds’ . ST s’ (MutVar s Bool))

-> MutVar s Bool

We have had to rename the bound variable s in the

type of runST to avoid it erroneously capturing the s

in the type MutVar s Bool. The argument type now

doesn’t match v’s type. Indeed there is no instance of

runST which can be applied to v.

Just to demonstrate that the type of runST does al-

low some nice examples here is one that is fine:

f :: MutVar s a -> MutVar s a

f v = runST (newVar v ‘ thenST’ \w–>

readVar w)

27

where v is a reference from some arbitrary state thread.

Because v is not accessed, its state type does not af-

fect the local state type of the short thread (which is

in fact totally polymorphic in v). Thus it is fine for

an encapsulated state thread to manipulate references

from other threads so long as no attempt is made to

dereference them.

In short, by the expedient of giving runST a rank-2

polymorphic type we can enforce the safe encapsulation

of state transformers. More details on this are given in

Section 5.2, where we show that runST’s type can be

accommodated with only a minor

type checker.

3 Array references

enhancement to the

So far we have introduced the idea of references (Sec-

tion 2.2), which can be thought of as a single mutable

“box”. Sometimes, though we want to update an array

which should be thought of as many “boxes”, each in-

dependently mutable. For that we provide primitives

to allocate, read and write elements of arrays. They

have the following typesz:

newArr :: Ix i => (i, i) -> elt

-> ST s (NutArr s i elt)

readArr :: Ix i => MutArr s i elt -> i

–> ST s elt

wrlteArr :: Ix i => MutArr s 1 elt -> i -> elt

-> ST S ()

freezeArr :: Ix i => MutArr s 1 elt

-> ST s (Array i elt)

Like references, newArr allocates anew array whose

bounds are given by its first argument. The second ar-

gument is a value to which each location is initialised.

The state transformer returns a reference to the ar-

ray, which we call an array reference. The functions

readArr and writ eArr do what their names suggest.

The result is undefined if the index is out of bounds.

The interesting function is freezeArr which turns a

llutArr into a standard Haskell array. The latter is an

immutable value, which can certainly be returned from

a stateful thread, and hence lacks the parameterisation

on the state s. Operationally speaking, f reezeArr

takes the name of an array as its argument, looks it

up in the state, and returns a copy of what it finds,

along with the unaltered state. The copy is required in

case a subsequent writeArr changes the value of the

array in the state, but it is sometimes possible to avoid

the overhead of making the copy (see Section 6.2.3).

2The “IX i =>” part of the type is just Haskell’s way of saying

that the type a must be an index type; that is, there must be

a mapping of a value of type a to an offset in a linear array.

Integers, characters and tuples are automatically in the Ix class,

but array indexing is not restricted to these. Any type for which

a mapping to Int is provided (via an instance declaration for

the class Ix at that type) will do.

3.1 Haskell Arrays

Using mutable arrays, we shall define the Haskell

“primitive” accumArray, a high level array operation

with the type3:

accumArray : : Ix i => (a->b->a) -> a -> (i, i)

–> [(i, b)l -> Array 1 a

The result of a call (accumArray f x bnds ivs) is

an array whose size is determined by bnds, and whose

values are defined by separating all the values in the

list ivs according to their index, and then performing a

left-fold operation, using f, on each collection, starting

with the value x.

Typical uses of accumArray might be a histogram,

for example:

hist :: Ix i => (i, i) -> [i] -> Array i Int

hist bnds is = accumArray (+) O bnds

[(i,l)li<-is, inRange bnds iI

which counts the occurrences of each element of the

list is that falls within the range given by the bounds

bnds. Another example is bin sort:

blnSort :: Ix i => (i, i) -> (a->i)

-> [a] -> Array i a

binSort bnds key vs

= accuntArray (flip (:)) [1 bnds [(key V,V) I V<–VSI

where the value in vs are placed in bins according to

their key value as defined by the function key (whose

results are assumed to lie in the range specified by the

bounds bnds). Each bin — that is, each element of the

array — will contain a list of the values with the same

key value. The lists start empty, and new elements

are added using a version of cons in which the order of

arguments is reversed. In both examples, the array is

built by a single pass along the input list.

The implementation of accumArray is as follows.

accumArray bnds f z ivs = runST

(newArr bnds z ‘thenST’ \a ->

fill a f ivs ‘ thenST_’

freezeArr a)

fill a f [] = returnST ()

fill a f ((i, v) :ivs)

= readArr a i <thenST’ \x ->

writeArr a i (f x v) ‘ thenST_’

fill a f ivs)

@ evaluating a call to accumArray, a new state

thread is generated. Within this thread an array is al-

located, each element of which is initialised to z. The

reference to the array is named a. This is passed to the

fill procedure, together with the accumulator func-

tion f, and the list of index/value pairs.

When this list is exhausted, fill simply returns. If

there is at least one element in the list, it will be a pair

3Technically the (i ,b) should be Assoc i b

28

(1, v). The array a is accessed at location i, the value

obtained being bound to x, and a new value, namely

(f x v), is written into the array, again at location i.

Then fill is called recursively on the rest of the list.

Once fill has finished, the array is frozen into an

immutable Haskell array which is returned from the

thread.

Using mutable-array operations has enabled us to

describe a complex array “primitive” in terms of much

simpler operations. Not only does this make the

compiler-writer’s job easier, but it also allows program-

mers to define their own variants for, say, the cases

when accumArray does not match their application

precisely.

The example is also interesting because of its use of

encapsulated state. The tmplementatton (or internal

details) of accumArray is imperative, but its external

behaznour is purely functional. Even the presence of the

state cannot be detected from outside the definition of

accumArray,

3.1.1 Combining State Transformers

Because state transformers are first class values, we

can use the power of the functional language to define

new combining forms. One that would be useful in the

example above is for sequencing a list of “procedures”:

seqST :: [ST S ()] -> ST S ()

seqST = foldr thenST- (returnST ())

Using this the example above can be rewritten:

accumArray bnds f z ivs = runST

(neWArr bnds z ‘ thenST< \a ->

seqST (map (update a f) ivs) ‘ thenST- (

freezeArr a)

update a f (i ,v) = readArr a i ‘thenST (\x->

writeArr a i (f x v)

The local function update takes an index/value pair

and evaluates to a state transformer which updates the

array referenced by a. Mapping this function down

the list of index/value pairs ivs produces a list of

stat e transformers, and these are sequenced together

by seqST.

4 Input/output

Now that we have the state-transformer framew-

ork in place, we can give a new account of in-

put /output. An I/O-performing computation is of

type ST RealWorld a; that is, it is a state transformer

transforming a state of type RealWorld, and delivering

a value of type a. The only thing which makes it special
is the type of the state it transforms, an abstract type

whose values represent the real world. It is convenient

to use a type synonym to express this specialisation:

type IO a = ST RealWorld a

since IO a is an instance of ST s a, it follows that

all the state-transformer primitives concerning refer-

ences and arrays work equally well when mixed with

1/0 operations. More than that, the same “plumbing”

combinators, thenST, returnST and so on, work for

1/0 as for other state transformers. In addition, how-

ever, we provide a variety of 1/0 operations that work

only on the IO instance of state (that is, they are not

polymorphic in the state), such as:

put Char :: Char -> IO ()

.getChar :: IO Char

It is easy to build more sophisticated 1/0 operations

on top of these. For example:

putString :: [Char] -> IO ()

put String [1 = returnST ()

put String (c: CS) = putChar c ‘ thenST-’

putString cs

or, equivalent ly,

putString cs = seqST (map putChar CS)

There is no way for a caller to tell whether

putstring is “primitive” or “programmed”. Indeed,

putChar and getChar are not primitive either. There

is actually only one primitive 1/0 operation, called

ccall, which allows the Haskell programmer to call

any C procedure. For example, putChar is defined like

this:

put Char :: Char -> IO ()

put Char c = ccall putchar c ‘thenST’ _ ->

returnST ()

That is, the state transformer (put Char c) trans-

forms the real world by calling the C function put char,

passing it the character c. The value returned by the

call is ignored, as indicated by the “_” wild card. Sim-
ilarly, get Char is implemented like this:

getChar :: IO Char

getChar = ccall getchar

ccall is actually implemented as a new language

construct, rather than as an ordinary function, because

we want it to work regardless of the number and type

of its arguments. The restrictions placed on its use are:

All the arguments, and the result, must be types

which C understands: Int, Float, Double, Bool,

or Array. There is no automatic conversion of

more complex structured types, such as lists or

trees.

The first “argument” of ccall, which is the name

of the C function to be called, must appear liter-

ally. It is really part of the construct.

29

4,1 Running IO

The IO type is a particular instance of state transform-

ers so, in particular, 1/0 operations are not polymor-

phic in the state. An immediate consequence of this is

that IO operat~ons cannot be encapsulated ustng runST.

Why not? Again, because of runsST’s type. It de-

mands that its state transformer argument be univer-

sally quantified over the state, but that is exactly what

IO is not!

Fortunately, this is exactly what we want. If IO op-

erations could be encapsulated then it would be possi-

ble to write apparently pure functions, but whose be-

haviour depended on external factors, the contents of a

file, user input, a shared C variable etc. The language

would no longer exhibit referential transparency.

However, this does leave us with a problem: how are

IO operations executed? The answer is to provide a

top level identifier,

mainIO : : IO ()

and to define the meaning of a program in terms of

it. When a program is executed, mai.nIO is applied to

the true external world state, and the meaning of the

program is given by the final world state returned by

the program (including, of course, all the incremental

changes en route).

By this means it is possible to give a full definition of

Haskell’s standard input/output behaviour (involving

lists of requests and responses) as well as much more.

Indeed, the Glasgow implementation of the Haskell 1/0

system is itself now written entirely in Haskell, using

ccall to invoke Unix 1/0 primitives directly. The same

techniques have been &ed

for calling X, etc.

5 Type Rules

to write libraries of routines

Having given the programmer’s eye view, it is time now

to be more formal, In this paper we simply present the

necessary typing judgments to achieve our goal. In

the full version of the paper we present a denotational

semantics and an outlined proof of safety for the en-

capsulation (Launchbury & Peyton Jones [1994]).

Up to now, we have presented state transformers

in the context of the full-sized programming language

Haskell, since that is where we have implemented the

ideas. Here, however, it is convenient to restrict our-

selves to the essentials.

5.1 A Language

We focus on lambda calculus extended with the state

transformer operations. The syntax of the language is

given by:

e .._..—

k ::==

%Iklelezlk.el

let x = el in ez I runST e I

ccall z el .em

. . . I thenST I returnST I fixST I

newVar I readVar I writeVar I

newArr I readArr I wri.teArr I

freezeArr

5.2 Types

Most of the type rules are the usual Hindley-Milner

rules. The most interesting addition is the typing

judgement for runST. Treating it as a language con-

struct avoids the need to go beyond Hindley-Milner

types. So rather than actually give runST the type

runST :: Va. (b’s. ST s a) -> a

as suggested in the introduction, we ensure that its

typing judgment has the same effect. So because it is

consistent with the rank-2 type, our previous intuition

still applies.

As usual, we talk both of types and type schemes

(that is, types possibly with universal quantifiers on

the outside). We use T for types, S for type schemes,

and K for type constants such as Int and Bool. In

addition we use C to range over the subset of 1< that

correspond to the ‘(C-types” described in Section 4.

T ::= t11{lTl+~21STTl~21

MutVar T1 T2 I MutArr T1 T2

S ::= T 1 Vt.S

Note that the MutArr type constructor has only two

arguments here. The missing one is the index type.

For the purposes of the semantics we shall assume that

arrays are always indexed by naturals, starting at O.

The type rules are given in Figure 1. r ranges over type

environments (that is, partial functions from references

to types), and we write FV(T) for the free variables of

type T and likewise for type environments.

6 Implementation

The whole point of expressing stateful computations in

the framework that we have described is that opera-

tions which modify the state can update the state zn

place. The implementation is therefore crucial to the

whole enterprise, rather than being a peripheral issue.

We have in mind the following implementation

framework:

● The state of each encapsulated state thread is

represented by a collection of objects in heap-

allocated storage.

30

● A reference is represented by the address of an

object in heap-allocated store.

APP

LAM

LET

VAR

SPEC

GEN

CCALL

RUN

I’t-el:Tl+T2 I’1-e2:Tl

I’l-(el e2):T2

r,x:Tlke:T2

I’1-Ax.e:T1+T2

I’l-el:S I’, x: Ste2:T

I’\(letz=elinez):T

r,x:sbx:s

17Fe: Qt.S

r E e : S[T/t]
t $2 F’V(T)

I’te:S

17t-e:W.S
t ‘@Fv(r)

l?t-el:C’l .I’t-en:Cn

I’F(ccall xel. ..en):C

l?l--e:W.s’rt T

r t- (runST e) : T
t(j/W(T)

Figure 1: Type rules
.

. A read operation returns the current contents of

the object whose reference is given.

● A write operation overwrites the contents of the

specified object or, in the case of mutable arrays,

part of the contents,

. The 1/0 thread is a little different because its

state also includes the actual state of the real

world. 1/0 operations are carried out directly on

the real world (updating it in place, as it were).

As the previous section outlined, the correctness of this

implement ation relies totally on the type system. such

a reliance is quite familiar: for example, the implemen-

tation of addition makes no attempt to check that its

arguments are indeed integers, because the type sys-

tem ensures it. In the same way, the implementation

of state transformers makes no attempt to ensure, for

example, that references are only used in the same state

thread in which they were created; the type system en-

sures that this is so.

6.1 Update in place

The most critical correctness issue concerns the

update-in-place behaviour of write operations. Why

is update-in-place safe? It is safe because all the com-

binators (thenST, returnST, f ixST) use the state only

in a single-threaded manner (Schmidt [1985]); that is,

they each use the incoming state exactly once, and none

duplicates it. Furthermore, all the primitive operations

on the state are strict in it. A write operation can mod-

ify the state in place, because (a) it has the only copy

of the incoming state, and (b) since it is strict in the in-

coming state, there can be no as-yet-unevaluated read

operations pending on that state.

Can the programmer somehow duplicate the state?

No: since the ST type is opaque, the only way the pro-

grammer can manipulate the state is via the combina-

tors thenST, returnST and f ixST, On the other hand,

the programmer certainly does have access to named

references into the state. However, it is perfectly OK

for these to be duplicated, stored in data structures

and so on. Variables are zmmutable; it is only the state

to which they refer that is altered by a write operation.

We find these arguments convincing, but they are

cert airily not formal. A formal proof would necessarily

involve some operational semantics, and a proof that

no evaluation order could change the behaviour of the

program. We have not yet undertaken such a proof.

6.2 Efficiency considerations

Itwould be possible to implement state transformers

by providing the combinators (thenST, returnST, etc)

and primitive operations (readVar, writeVar etc) as

library functions. But this would impose a very heavy

overhead on each operation and (worse still) on com-

position. For example, a use of thenST would entail

the construction of two function-valued arguments, fol-

lowed by a procedure call to thenST. This compares

very poorly with simple juxtaposition of code, which is

how sequential composition is implemented in conven-

tional languages!

A better way would be to treat state-transformer

operations specially in the code generator. But that

risks complicating an already complex part of the com-

piler. Instead we implement state transformers in a

way which is both direct and efficient: we simply give

Haskell definitions for the combinators.

type ST s a = State s -> (a, State s)

returnST x s = (x, s)

thenSTmk s = k x s’ where (x, s’) =111 s

fixST k s = (r, s’) where (r, s’) = k r s

runST m = r where (r ,s) = m current State

Rather than provide ST as a built-in type, opaque

to the compiler, we give its representation with an ex-

plicit Haskell type definition. (The representation of

ST is not, of course, exposed to the programmer, lest

he or she write functions which duplicate or discard the

state.) It is then easy to give Haskell definitions for the

combinators.

The implementation of runST is intriguing. Since its

argument, m, works regardless of what state is passed to

it, we simply pass a value representing the current state

of the heap. As we will see shortly (Section 6.2.2), this

value is never actually looked at, so a constant value

will do.

The code generator must, of course, remain respon-

sible for producing the appropriate code for each prim-

itive operation, such as readVar, ccall, and so on.

In our implementation we actually provide a Haskell

“wrapper” for each primitive which makes explicit the

evaluation of their arguments, using so-called “unboxed

values”. Both the motivation for and the implementa-

tion of our approach to unboxed values is detailed in

Peyton Jones & Launchbury [1991], and we do not re-

hearse it here.

6.2.1 Transformation

The beauty of this approach is

tors can then be inlined at their

removing the “plumbing” costs.

pression

that all the combina-

call sites, thus largely

For example, the ex-

ml ‘thenST’ \vl ->

m2 ‘thenST < \v2 ->

returnST e

becomes, after inlining thenST and returnST,

\s -> let (vi, sl) = ml s

(v2, s2) = m2 SI

in (e, s3)

Furthermore, the resulting code is now exposed to

the full range of analyses and program transformations

implemented by the compiler, For example, if the com-

piler can spot that the above code will be used in a con-

text which is strict in either component of the result

tuple, it will be transformed to

\s -> case ml s of

(vi, s2) -> case m2 S1 of

(v2, s2) -> (e, s2)

In the let version, heap-allocated thunks are created

for ml s and m2 s 1; the case version avoids this cost.

These sorts of optimisations could not be performed if

the ST type and its combinators were opaque to the

compiler.

6.2.2 Passing the state around

The implementation of the ST type, given above, passes

around an explicit state. Yet, we said earlier that state-

manipulating operations are implemented by perform-

ing side effects on the common, global heap. What,

then, is the role of the explicit state values which are

passed around by the above code? It plays two impor-

tant roles.

Firstly, the compiler “shakes the code around” quite

considerably: is it possible that it might somehow end

up changing the order in which the primitive opera-

tions are performed? No, it is not. The input state of

each primitive operation is produced by the preceding

operation, so the ordering between them is maintained

by simple data dependencies of the explicit state, which

are certainly preserved by every correct program trans-

formation.

Secondly, the explicit state allows us to express to

the compiler the strictness of the primitive operations

ir. ‘“e state. The State type is defined like this:

aaca State s = MkState (State# s)

That is, a state is represented by a single-constructor

algebraic data type, whose only contents is a value of

type State# s, the (finally!) primitive type of states.

The lifting implied by the MkState constructor corre-

sponds exactly to the lifting in the semantics. Using

this definition of State we can now define newVar, for

example, like this:

newVar init (MkState s#)

= case newVar# init s# of

(v, t#) -> (v, MkState t#)

32

This definition makes absolutely explicit the evalua-

tion of the strictness of newvar in its state argument,

finally calling the truly primitive newVar# to perform

the allocation.

We think of a primitive state — that is, a value of

type Stat e# s, for some type s — as a “token” which

stands for the state of the heap and (in the case of

the 1/0 thread) the real world. The implementation

never actually inspects a primitive state value, but it is

faithfully passed to, and returned from every primitive

state-transformer operation, By the time the program

reaches the code generator, the role of these state values

is over, and the code generator arranges to generate

no code at all to move around values of type State#

(assuming an underlying RAM architecture of course).

6.2.3 Arrays

The implementation of arrays is straightforward. The

only complication lies with freezeArray, which takes

a mutable array and returns a frozen, immutable copy.

Often, though, we want to construct an array incremen-

tally, and then freeze it, performing no further muta-

tion on the mutable array. In this case it seems rather

a waste to copy the entire array, only to discard the

mutable version immediately thereafter.

The right solution is to do a good enough job in

the compiler to spot this special case. What we ac-

tually do at the moment is to provide a highly dan-

gerous operation dangerousFreezeArray, whose type

is the same as freezeArray, but which works with-

out copying the mutable array. Frankly this is a hack,

but since we only expect to use it in one or two crit-

ical pieces of the standard library, we couldn’t work

up enough steam to do the job properly just to handle

these few occasions. We do not provide general access

to dangerousFreezeArray,

6.2.4 More efficient 1/0

The 1/0 state transformer is a little special, because

of the following observation: the final state of the 1/0

thread wdl certainly be demanded. Why? Because the

whole point in running the program in the first place

is to cause some side effect on the real world!

We can exploit this property to gain a little extra

efficiency. Since the final state of the 1/0 thread will

be demanded, so will every intermediate thread. So we

can safely use a strict, and hence more efficient, version

of thenST:

thenIO :: IO a -> (a->10 b) -> IO b

thenIO m k s = case n s of

(r, s’) ->krs’

By using case instead of the let which appears in

thenST, we avoid the construction of a heap-allocated

thunk for m s.

7 Other useful combinators

We have found it useful to expand the range of combi-

nators and primitives beyond the minimal set presented

so far, This section presents the ones we have found

most useful.

7.1 Equality

The references we have correspond very closely to

“pointers to variables”. One useful additional opera-

tion on references is to determine whether two refer-

ences are aliases for the same variable (so writes to the

one will affect reads from the other). It turns out to be

quite straightforward to add an additional constant,

eqMutVar :: MutVar s a -> MutVar s a -> Bool

eqMutArr :: Ix i =>

MutArr s i a -> MutArr s i a -> Bool

Notice that the result does not depend on the state—

it is simply a boolean. Notice also that we only pro-

vide a test on references which exist in the same state

thread. References from different state threads cannot

be aliases for one another.

7.2 Interleaved and parallel operations

The state-transformer composition combinator defined

so far, thenST, is strictly sequential: the state is passed

from the first state transformer on to the second. But

sometimes that is not what is wanted. Consider, for

example, the operation of reading a file. We may not

want to specify the precise relative ordering of the in-

dividual ;haracter-by-character reads from the file and

other 1/0 operations. Rather, we may want the file to

be read lazily, as its contents is demanded.

We can provide this ability with a new combinator,

int erleaveST:

interleaves :: STsa->STsa

Unlike every other state transformer so far,

lnterleaveST actually duplicates the state! The

“plumbing diagram” for (interleaves s) is like this:

Result

I I

L-J s

State in ~ State out

More precisely, lnterleaveST splits the state into two

parts, which should be disjoint. In the lazy-file-read

example, the state of the file is passed into one branch,

and the rest of the state of the world is passed into

the other. Since these states are disjoint, an arbitrary

interleaving of operations in each branch of the fork is

legitimate.

33

To make all this concrete, here is an implementation

of lazy file read:

readFile : : String -> IO [Char]

readFile filename

= openFile filename ‘thenST’ \f ->

readCts f

readCts : : FileDescriptor -> ID [char]

readCts f = interleaves

(readChf ‘thenST’ \c ->

if c == eofChar

then returnST [1

else readCts f ‘thenST’ \cs ->

returnST (c:cs))

A parallel version of interleaveST, which startsup

a concurrent task to perform the forked 1/0 thread,

seems as though it would be useful in building respon-

sive graphical user interfaces. The idea is that forkIO

wouldbeused tocreate anew widget, orwindow, which

wouldbe capable of independent 1/0 through its part

of the screen.

The only unsatisfactory feature of all this is that we

see absolutely no way to guarantee that the side effects

performed in the two branches of the fork are indeed

independent. That has to be left as a proof obliga-

tionfor the programmer; the only consolation is that

at least the location of these proof obligations is ex-

plicit. We fear that there may be no absolutely secure

system which is also expressive enough to describe the

programs which real programmers want to write.

8 Related work

Several other languages from the functional stable pro-

vide some kind of state.

Forexample, Standard ML provides reference types,

which maybe updated (Paulson [1991]). The resulting

system hasserious shortcomings, though. The meaning

of programs which use references depends on a com-

plete specification of the order of evaluation of the pro-

gram. Since SML is strict this is an acceptable price

to pay, but it would become unworkable in a non-strict

language where the exact order of evaluation is hard

to figure out, What is worse, however, is that referen-

tial transparency is lost. Because an arbitrary function

may rely on state accesses, its result need not depend

purely on the values of its arguments. This has ad-

ditional implications for polymorphism, leading to a

weakened form in order to maintain type safety (Tofte

[1990]). We have none of these problems here,

The dataflow language Id provides I-structures and

M-structures as mutable datatypes (Nikhil [1988]).

Within a stateful program referential transparency is

lost . For I-structures, the result is independent of

evaluation order, provided that all sub-expressions are

eventually evaluated (in case they side-effect an I-

structure). For M-structures, the result of a program

can depend on evaluation order. Compared with I-

structures and M-structures, our approach permits lazy

evaluation (where values are evaluated on demand, and

may never be evaluated if they are not required), and

supports a much stronger notion of encapsulation. The

big advantage of I-structures and M-structures is that

they are better suited to parallel programming than is

our method.

The Clean language takes a different approach

(Barendsen & Smetsers [1993]). The Clean type system

supports a form of linear types, called “unique types”.

A value whose type is unique can safely be updated

in place, because the type system ensures that the up-

dating operation has the sole reference to the value,

The contrast with our work is interesting. We separate

references from the state to which they refer, and do

not permit explicit manipulation of the state. Clean

identifies the two, and in consequence requires state to

be manipulated explicitly. We allow references to be

duplicated, stored in data structures and so on, while

Clean does not. Clean requires a new type system to

be explained to the programmer, while our system does

not. On the other hand, the separation between refer-

ences and state is sometimes tiresome. For example,

while both systems can express the idea of a mutable

list, Clean does so more neatly because there is less

explicit de-referencing, The tradeoff between implicit

and explicit state in purely-functional languages is far

from clear.

There are significant similarities with Gifford and

Lucassen’s effect system which uses types to record side

effects performed by a program (Gifford & Lucassen

[1986]), However, the effects system is designed to de-

limit the effect of side effects which may occur as a

result of evaluation. Thus the semantic setting is still

one which relies on a predictable order of evaluation.

Our work also has strong similarities with Odersky,

Rabin and Hudak’s Aoar (Odersky, Rabin & Hudak

[1993]), which itself was influenced by the Imperative

Lambda Calculus (ILC) of Swarup, Reddy & Ireland

[1991]. ILC imposed a rigid stratification of applica-

tive, state reading, and imperative operations. The

type of runST makes this stratification unnecessary:

state operations can be encapsulated and appear purely

functional. This was also true of A.ar but there it was

achieved only through run-time checking which, as a

direct consequence, precludes the style of lazy state

given here.

In two earlier papers, we describe an approach to

these issues based on monads, in the context of non-

strict, purely-functional languages. The first, Pey-

ton Jones & Wadler [1993], focusses mainly on in-

put/output, while the second, Launchbury [1993], deals

with stateful computation within a program. The ap-

34

preach taken by these papers has two major shortcom-

ings:

State and input/output existed in separate frame-

works. The same general approach can handle

both but, for example, different combinators were

required to compose stateful computations from

those required for I/O-performing computation.

State could only safely be handled if it was anony-

mous. Consequently, it was difficult to write pro-

grams which manipulate more than one piece of

state at once. Hence, programs became rather

“brittle”: an apparently innocuous change (adding

an extra updatable array) became difficult or im-

possible.

Separate state threads required expensive run-

tirne checks to keep them apart. Without this,

there was the possibility that a reference might

be created in one stateful thread, and used asyn-

chronously in another, which would destroy the

Church- Rosser property.

Acknowledgements

The idea of adding an extra type variable to state

threads arose in discussion with John Hughes, and was

presented briefly at the 1993 Copenhagen workshop on

State in Programming Languages, though at that time

we suggested using an existential quantification in the

type of runST. In addition, all these ideas have ben-

efited from discussions amongst the Functional Pro-

gramming Group at Glasgow.

References

E Barendsen & JEW Smetsers [Dee 1993], “Conven-

tional and uniqueness typing in graph rewrite

systemsl” in Proc 13th Conference on the

Foundations of Software Technology and The-

oretical Computer Science, Springer Velrlag

LNCS.

DK Gifford & JM Lucassen [Aug 1986], “Integrating

functional and imperative programming,’” in

ACM Conference on Lisp and Functional Pro-

gramming, MIT, ACM, 28-38.

J Launchbury [June 1993], “Lazy imperative pro-

gramming,” in Proc ACM Sigplan Work-

shop on State in Programming Languages,

Copenhagen (available as YALEU/DCS/RR-

968, Yale University), PP46-56.

J Launchbury & SL Peyton Jones [Feb 1994], “Lazy

functional state threads,” Technical report FP-

94-05, Department of Computing Science, Uni-

versit y

of Glasgow (FTP:ftp. dcs .glasgow. ac .uk:

pub[glasgow-f p/tech-reports/

FP-94-05: state. ps. Z).

NJ McCracken [June 1984], “The typechecking of pro-

grams with implicit type structure,” in Seman-

tics of data types, Springer Verlag LNCS 173,

301-315.

JC Mitchell & AR Meyer [1985], ‘(Second-order logical

relations, “ in Logics of Programs, R Parikh,

cd., Springer Verlag LNCS 193.

Rishiyur Nikhil [March 1988], “Id Reference Manual,”

Lab for Computer Sci, MIT.

M Odersky, D Rabin & P Hudak [Jan 1993], “Call by

name, assignment, and the lambda calculus,”

in 20th ACM Symposium on Principles of Pro-

gramming Languages, Charleston, ACM, 43-

56.

LC Paulson [1991], ML for the working programmer,

Cambridge University Press.

SL Peyton Jones & J Launchbury [Sept 1991], “Un-

boxed values as first class citizens,” in Func-

tional Programming Languages and Computer

Architecture, Boston, Hughes, ed., LNCS 523,

Springer Verlag, 636-666.

SL Peyton Jones & PL Wadler [Jan 1993], “Imperative

functional programming,” in 20th ACM Sym-

posium on Principles of Programming Lan-

guages, Charleston, ACM, 71-84.

CG Ponder, PC McGeer & A P-C Ng [June 1988], “Are

applicative languages inefficient ? ,“ SIGPLAiV

Notices 23, 135-139.

DA Schmidt [Apr 1985], “Detecting global variables in

denotational specifications,” TOPLAS 7, 299–
310.

V Swarup, US Reddy & E Ireland [Sept 1991], “As-

signments for applicative languages,” in Func-

tional Programming Languages and Computer

Architecture, Boston, Hughes, ed., LNCS 523,

Springer Verlag, 192-214.

M Tofte [Nov 1990], “Type inference for polymorphic

references,” Information and Computation 89.

35

