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Abstract

Optimizing compileTs (particularly parallel compileTs)

are constrained by theiT ability to pTedict peTfoTmance

consequences of the transformations they apply. Many

facioTs, such as unknowns in coniTolstwctur’es, dy-

namic behavioT ofprogTams, and complexity of the un-

dedying haTdwar’e, make it very dificult for’ compiiem

to estimate iheperfor’mance of the transformations ac-

cuTatelg and efficiently. In this paper, we pTesent a

performance prediction framework that combines sev-

eral innovative approaches to solve this pToblem. First,

the framework employs a detailed, architectur’e-spec ific,

but portable, cost model that can be used to estimate the

cost of straight line code efficiently. Second, aggregated

costs of loops and conditional statements aTe computed

and r’epresenied symbolically. This avoids unnecessary,

premature guesses and pTeserves the pTecision of the

prediction. Third, symbolic comparison a!lows compil-

em to choose the best transformation dynamically and

systematically. Some methodologies for applying the

framework to optimizing parallel compilers to support

automatic, performance-guided program TestrwctuTing

aTe discussed.

1 Introduction

Compiler optimization is ad hoc. Optimizing parallel

compilers improve the performance of user programs by

applying a sequence of restructuring transformations

to uncover parallelism provided by the underlying ar-

chitecture. Many restructuring techniques may signifi-

cantly change the program performance. Performance
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trade-offs among applicable restructuring transforma-

tions have to be evaluated carefully. Unfortunately,

most optimizing parallel compilers do not have the per-

formance estimation capability to match their sophisti-

cated program restructuring capability. As a result, it

is not uncommon for an optimizing compiler to apply a

sequence of complicated program restructuring trans-

formations and yield only modest performance gains or

even performance losses.

1.1 Difficulties of Static Performance

Prediction

The problem of predicting program performance at

compile time is inherently difficult. First, some critical

information needed by the compiler may not be avail-

able at compile time. Often, such information depends

on the input data of the program. Second, detailed

knowledge of architecture features need to be incorpo-

rated into the cost model to estimate the performance

of programs on the target machine. This often leads to

a non-portable system that only works for a particular

type of machines. Multiprocessor machines add an-

other dimension of complexity to the performance pre-

diction. Third, the optimization unit of the compiler

has to take into consideration the low-level optimiza-

tion done by the compiler back-end. This is particu-

larly true for superscalar architectures since they rely

heavily on low-level compiler optimization to achieve

their potential performance. Fourth, due to the large

number of decision points in a compiler, estimations

of program performance have to be done repeatedly in

the decision making process. Therefore, the compiler

is severely constrained as to how much computing re-

sources it can spend on performance estimation. Fi-

nally, effects of compounding estimations may magnify

errors significantly when estimations for multiple pro-

gram pieces are combined.

Prior researchers [1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 15,

16, 17, 18, 19] attempted to solve the above problems

by using heuristics, profiling, run-time tests, querying
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users, analytical models, or combinations of the above.

So far, the results have been mixed. The fundamental

problems of efficiency, accuracy and portability of per-

formance estimation are still the weak points of state-

of-the-art optimizing compilers.

1.2 Low Level Parallelism in Super-

scalar Architectures

A recent trend in parallel computer architect~re is

to use superscalar processors to exploit the low level

parallelism (such as the IBM SPIS that use RS 6000

chips or Cray T3Ds that use Alpha Chips), Super-

scalar architectures have multiple instruction execution

units that can operate concurrently. Other features

such as instruction pipelines, operation overlapping,

cache prefetching, and powerful instructions (such as

multiply-and-adds) are also incorporated into the ar-

chitecture. This can significantly decrease the program

execution time but also greatly increases the complex-

ity for the compiler to estimate the performance of the

program. If not applied carefully, a conventional cost

estimation model may be off by a factor of ten or more!

Estimating the execution time of assembly code on

superscalar architectures is already complicated. Es-

timating the performance of high level language pro-

grams, such as Fortran and its variants, is even more

challenging. The back-end code generator may perform

a sequence of low-level optimization that are aimed

at increasing low-level parallelism or locality. If the

cost estimate fails to take these factors into consid-

eration, the resulting estimate may be seriously dis-

torted. We do not know any compiler that currently

utilizes compile-time performance predictions of super-

scalar architectures in program restructuring.

1.3 Requirements

A good performance prediction framework for paral-

lel and sequential compilers has to meet the following

requirements:

Precision: The prediction has to be accurate for the

compiler to make correct decisions.

Efficiency: The performance prediction needs to be

very efficient to make repeated calls practical dur-

ing the program optimization process.

Robustness: The framework should be able to han-

dle programs with unknowns in control structures,

unknown branching probabilities, etc.

Portability: Given the complexity and cost of par-

allel compilers and shortened hardware product

cycle time, port ability across multiple hardware

platforms is ever more important for parallel com-

pilers.

1.4 Problem Statement

The major focus of this paper is a framework that

can estimate performance of user programs efficiently

and accurately across different architecture platforms.

Algorithms and methodologies for estimating perfor-

mance of programs on superscalar-based architectures

efficiently will be presented.

1.5 Our Approach

We designed a performance prediction framework that

attempts to fulfill the requirements discussed in Sec-

tion refrequire by integrating several approaches into

a unified framework. The key ideas behind our de-

sign are: 1. Estimate the cost of straight line code

(code without branches and iterations) as accurately

and efficiently as possible. 2. When aggregating perfor-

mance data, estimates of values of unknowns in control

structures are delayed as long as possible. This is ac-

complished by representing the performance data as a

symbolic expression of polynomials whose variables are

unknown values in program constructs. 3. Recognize

situations where the estimates of values of unknowns

can be eliminated. 4. Methodologies for comparing

performance symbolically are introduced.

1.6 Organization of the Paper

The remaining sections of the paper are organized as

follows. In Section 2, we introduce a performance pre-

diction framework and present its components, data

structures and algorithms for estimating program per-

formance efficiently and accurately, In Section 3, pro-

gram optimization using performance prediction is dis-

cussed. We discuss methodologies for comparing effects

of different transformations using the symbolic perfor-

mance expressions. Situations when performance pre-

diction can be avoided or simplified are also discussed.

In Section 4, we summarize our work and present future

research directions for optimizing parallel compilers.

2 A Precise Performance Pre-

diction Framework

In this section, we present a performance prediction

framework that can be used in optimizing compilers.

The structure of the framework is shown in Figure 1.

Expressions from a sequence of statements are sent to

the instmtction translation module which translates op-

erations of the high level language into low level in-

structions. The generated instruction stream is then

fed into the instmction, memory, and communication

cost models The instruction cost model estimates the

cost of executing the instructions by taking the low
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System

the wrocessor architecture. Each atomic operation has

level parallelism of the architecture and data depen-

dencies of he program into account. The memory
i

cost model estimates the cost related to cache accesses

and page faults. For distributed memory machines,

message passing instructions are sent along with the

sequential cost estimation to the communication cost

module to get cost of moving data among processors.

The cost estimations of the program fragments are

then combined through the performance aggregation

model. Unknowns in control statements and array sub-

scripts are treated as variables in the performance ex-

pressions. The performance of a compound statement

is computed symbolically to avoid error magnification

when estimations are combined, Symbolic comparison

of the performance expressions is supported. It can

be applied to guide program restructuring or choose

run-time tests based on sensitivity analysis (see Sec-

tion 3.4).

2.1 A Cost Model for Modeling Paral-

lelism in Superscalar Architectures

To account for the low level parallelism present in mod-

ern CPUS, a cost model for straight line code based

on detailed architecture features is defined. The cost

model that we designed can be applied to both tradi-

tional processors and modern superscalar architectures.

For the latter case, it captures the overlapping effects

and honors data dependencies.

Cost of operations is assigned based on operation

units that we called atomic operations. Atomic oper-

ations are specific low level instructions supported by

.
a cost associated with it. Unlike previous cost models,

the cost of operations is divided into two components:

●

●

noncoverable cost: The time that a functional unit

actually dedicates to the operation.

coverable cost: The time when the next operation

that does not depend on the result of the current

operation can be started. Instructions that use

the result of the operation have to wait until the

current operation is completed.

For example, with the IBM Power architecture, each

floating-point add operation has one cycle of noncover-

able cost and one cycle of coverable cost on the floating

point unit. If the compiler can schedule another oper-

ation on the same functional unit, the cost of the op-

eration can be thought of as one cycle, but if no other

executable operations can be found to fill the coverable

cycle, then the operation will cost two cycles.

An operation can have costs on multiple functional

units. For example a floating point store operation will

occupy one floating point unit for two cycles with one

cycle being coverable and will occupy one integer unit

for one cycle on the IBM Power architecture.

A conceptual view of our cost model of superscalar

architecture is a two dimensional unit with multiple

functional bins in one dimension and time slots in an-

other dimension (see Figure 3). Operations are repre-

sented as a two dimension objects which have costs on

each functional unit being chained together (Figure 2).

Noncoverable costs of an operation are represented as

solid objects that cannot coexist with other objects in
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Figure 3: An example of dropping operations into time

slots of the bins,

the same time slot, and coverable costs are represented

as transparent objects which can share the time slots

with a noncoverable object of another operation. Fur-

thermore, the top of an operation object can be viewed

as a filter which can blocks operations that depend on

the result of the operation. Operations that do not

use the result of another operation can pass through

its filter if there are open time slots below it that the

operations can fit in. All costs of an operation have

to fit in all functional units at the same time for it

to occupy the time slots. For architectures with mul-

tiple operation pipes, more bins can be added. .The

bins are flushed before being used for another block of

statements.

Estimating the cost of executing a sequence of op-

erations can be viewed as finding a way to drop all

operation objects into the virtual architecture bin with

the goal of minimizing the unfilled slots (see the exam-

ple in Figure 3). 1 The total cost of the operations is

the time difference between the highest time slot and

the lowest time slot occupied by the operations.

Under our cost model, we assume that operations can

be reordered based on mathematical rules and depen-

dence relations, and the compiler is intelligent enough

to order instructions so that full overlapping is possible.

Since the cost model is supposed to model the combi-

nation of the compiler and the architecture, it should

try to imitate the compiler, not to outperform it.

By taking multiple functional units and dependency

1 I hope this reminds you the computer game Tetris.

into account, our approach is much more precise than

operation-count based cost models. On the other hand,

the key factor in deciding whether this approach is use-

ful or not lies in the efficiency of the implementation.

A!gorithm For Estimating Operation Cost

The problem of scheduling a list of operations with

constraints is an NP complete problem. Translating

the problem from finding the schedule and cost of the

operations into a “block matching problem” of mini-

mizing the time-span in completing the operations led

us to efficient algorithms of finding approximated solu-

tions.

Below we describe an efficient way of estimating the

cost of operations. Our approximate solution for the

scheduling problem is to place the cost object of each

operation into the lowest time slots that all cost com-

ponents of the operation can fit simultaneously. 2 We

derived a linear time algorithm to solve this modified

problem. Before we describe the algorithm, we will first

discuss some observations that can greatly simplify the

solution.

First, only the overall cost of the operations in the

basic block is of interest; there is no need to keep track

of the actual order or schedule of the operations. Sec-

ond, since the mission of the algorithm is to find the

lowest time slots for an operation in t+e functional

units, the data structure that represents the time slots

needs to allow the cost model to search through or up-

date the time slots quickly. Third, only a certain num-

ber of slots (called ~ocus span) under the highest occu-

pied time slot need to be considered. This can greatly

reduce the complexity of the problem when reordering

of operations is considered. It also minimizes the space

requirement for storing information about time slots.

Furthermore, the ~oczu span is an adjustable parame-

ter, thus allowing more flexible allocation of computing

resources based on accuracy and efficiency considera-

tions,

Based on the above observations, the time slots of

instruction execution units are decomposed into lists

of alternating filled and empty blocks that are repre-

sented by a two-dimensional array. The first and last

slots of a block are used to record the size of the block.

If the block is empty, we record the negative value of

the block size (see Figure 4). The array representation

has the advantages of double linked lists since reaching

the adjacent blocks is only one operation. It also allows

corresponding time slots in other bins be found quickly.

By looking at blocks instead of individual array ele-

ments, simultaneously searching for empty spaces in

multiple bins can be done much more efficiently with

our data structure than regular array or list represen-

tations.

2This cost model can be used as a base for a full feature

scheduling algorithm by allowing reordering of operations that

are already scheduled.
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Figure 4: Data structure used for representing a list of

time slots for a functional unit.

2.2 The Instruction Translation Mod-

ule

The instruction translation module has two responsi-

bilities, First, it converts expressions in a high level

language (such as HPF) into machine level instructions.

Second, it imitates the compiler back-end to perform

common optimizations so that the cost estimate will

match the cost of code that will eventually be gener-

ated.

It is possible that one can use an existing module in

the compiler – the back-end code generator - to gen-

erate low level code for performance estimation pur-

poses. In fact, the IBM x{f and Z?C compilers provide

such a facility for estimating the cost of assembly in-

structions [3]. However, since the compiler needs the

cost estimate during the program restructuring process

(before back-end is invoked); it is impractical at this

stage to do code generation for every intermediate step.

Therefore, an efficient substitute is needed. The in-

struction translation module utilizes information made

available by the program analysis module and a de-

tailed knowledge about language and machines to gen-

erate a stream of operations based on the input pro-

gram.

2.2.1 Adapting to Languages and Target Ma-

chines

The instruction translation module uses four table~ to

perform the instruction translation: the high-level op-

eration tabie which represents operations in the high

level languages; the basic operation table, which is a

table of predefine operations that are type-specific,
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Figure .5: Adding an atomic operation to time slots of

a functional unit.

is capable of representing operations in different lan-

guages; the atomic opeTation table which contains pre-

define atomic operations that represent low level ma-

chine operations; and the atomic operation cost table,

which stores the costs of each atomic operation.

The actual operation translation is done in a two

level translation process (as shown in Figure 6). In the

first level, the operation specialization mapping trans-

lates language specific expressions into language inde-

pendent basic operations such as integer-add operation,

floating-point multiply-add operation, etc.

The second level translation, called at omit opera-

tion mapping, translates the basic operations into a

list of atomic operations. The cost model then uses

the atomic opeTation cost table to access costs of each

operation (different atomic operations may have the

same costs),

OpeTation specialization mapping is language depen-

dent but architecture independent, while atomic opeT-

ation mapping is architecture dependent but language

independent. This simple arrangement has many ad-

vantages. First, different opeTation specialization map-

pings can be defined for different high level languages;

and different atomic operation mappings and atomic

opepation cost tables can be defined for different archi-

tectures. This allows the cost model be used for multi-

ple languages and architectures. Since the cost model

operates at the machine level, the atomic operation

cost table can be easily set up based on manufactur-

er’s specifications. When low level cost information is

not available, a training-set like approach can be used
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Figure 6: Tables used for translating high level opera-

tions into atomic operations.

with some loss of precision. Adding a new architecture

to the cost model is a matter of defining the atomic

operation mapping and the atomic operation cost table.

Some architectures have operations that take vari-

able time to execute. For example, on IBM RS 6000,

the integer multiply takes three cycles when the multi-

plier has a value between -128 and 127, but takes five

cycles for general values. For this case, multiple basic

operations are used to represent the integer-multiply

operation , and the operation specialization mapping

can map different cases to different basic operations.

Architecture specific operations such as the multiply-

and-add operations are recognized by the compiler and

represented in the high level operation table. They are

mapped to low level atomic operations if the architec-

t ure supports them. The effect oft he limited number of

registers on performance is simulated by using a heuris-

tic that forces a store after certain number of loads.

2.2.2 Specialization for Compilers

There many some optimization that are routinely ap-

plied by compilers. These transformations include op-

eration overlapping (see Section 2.1)} code motion to

move loop invariant or inductive expressions out of

loops, common sub-expression optimization, dead code

elimination, branch predict ion, speculative scheduling,

etc. Most of these optimizations are done by the com-

piler back end [4] (or are more convenient to be left to

the back-end to do). However, the performance estima-

tion is

phases

used by program restructurer which is several

before the code generation phase. This implies

that the cost model needs to imitate these optimiza-

tion to get accurate estimates. The following is a list

of low-level compiler optimizations that our cost model

can estimate their effects:3

e

e

e

o

●

Speculative scheduling and code motion. Specula-

tive scheduling and code motion are handled nat-

urally by the base model.

Branch optimization. IBM xlf and XIC compilers

are capable of branch optimizations, such as code

replication, gluing, branch swapping, etc. to mini-

mize the cost of branches [3]. The cost model han-

dles the branch optimization by matching shapes

of the cost blocks to decide whether the branching

cost needs to be included.

Loop unrolling. If the compiler does not unroll the

loop in the transformation phase, it might unroll

the loop in the code generation phase. For a loop

with a small basic block, unrolling the loop a few

times is usually enough to enlarge the innermost

simple basic block so that sufficient overlapping is

possible. Our model provides two ways for esti-

mating cost saving of unrolling a loop: examining

the shape of the cost block or dropping the inner-

most basic block into the functional bins multiple

times.

Sum-reduction operations, etc. The cost model

can use pattern matching techniques to recog-

nize some commonly used operations such as sum-

reductions for which all but one store instruction

can be eliminated by using registers. The same

technique can be applied to other operations such

as inner products, array-constant multiply, or ar-

ray multiplications, etc.

Common sub- expressions, loop inyariant or in-

ductive expressions. Evaluating common sub-

expression only once and moving loop invariant or

loop inductive expressions outside loops are done

in the operation specialization phase. Two func-

tional bins are used to count the one-time and it-

erative costs separately.

Porting the cost model to a new compiler is more in-

volved because the cost model needs to be tuned based

on the low level optimization capability of the compiler.

To ease this process, flags representing the optimiza-

tion capabilities of the back-end are defined and used

for tuning the cost model.

3 the cost model does not need to do most of the analysis

needed for these tasks since program analyzer can provide these

information.
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Figure 7: Results of straight line code examples.

2.2.3 Preliminary Results

Figure 7 shows some preliminary data of our system.

Our result is obtained by applying the ptran2 compiler

on some small F90 programs. It is compared against

the estimation provided by IBM xlf compiler. 4 Since

the cycle counts provided by xlf does not include func-

tion call and memory costs, they are excluded from our

results for comparison purpose.

For the table in Figure 7, F 1-F7 are innermost ba-

sic blocks taken from Purdue benchmarks in the HPF

Benchmark suite. Matmul is the innermost basic block

of a matrix-multiply loop which is blocked and unrolled

4 times in both dimensions (a total of 16 FMA opera-

tions in the basic block). Jacobi is the innermost basic

block of Jacobi loops. And RB is the innermost basic

block of the red-black loops. This comparison is prelim-

inary and only covers the straight-line cost estimation.

A more thorough performance comparison needs to be

done to access the overall performance of the predict-

ion. We plan to compare the estimated performance of

the HPF benchmark programs to the actual run-time.

This will be done when the communication cost and

symbolic manipulation modules are completed.

2.3 The Memory Access Cost

The memory access cost (cache misses, TLB misses and

page faults) is computed independent from the straight

line code estimation because the former is a more global

matter. Many methodologies for estimating cache cost

were proposed [8, 14, 10]. We adopt an algorithm that

was int reduced in [8]. The total number of cache line

accesses is counted and the cost of filling these cache

lines is used to approximate the memory cost.

2.4 Cost Aggregation of Compound

Statements

We will first discuss a cost aggregation model for gen-

eral architectures and then present a cost aggregation

~The IBM xlf compiler prints out a listing of assembly code

with a cycle count for each assembly instruction when the flags

- qdebug=cycles - qlisting are specified. We identified the basic
blocks and added up the cycle counts by hand to get the reference

data.

model for superscalar architectures using cost blocks.

2.4.1 Symbolic Cost Aggregation

At the simple basic block level, the counters for each

basic operation contain integer values. At the com-

pound statement level, we use symbolic expressions

that we call performance expressions to represent the

estimated performance.

The cost of executing a sequential loop is the cost of

running all iterations plus the cost of computing upper

and lower bounds:

C(do Zk = lbk, ubk, step {B}) =

C(lbk) + C(dk) + C(s@) + XkeIfer C(B1 ~)

For conditional statements, the cost of the condi-

tional statement is the sum of the follows: the cost

of the conditional expression, the cost of the true

branch (C(Bt)) times the branching probability of the

true branch (pt (cond)), the cost of the false branch

(C(l?f )) times the branching probability of the false

branch (pf (cond)), and the estimated branching cost

cbr (which may be zero, see Section 2.2):

C(zf (cod) Bt else Bf eno?if) =

C(cond) + p~(cond) * C(Bt) + P$(cond) * C(Bj) + cb,

The major difference between our cost aggregation

model and previous work is that we compute and rep-

resent performance expressions symbolically when con-

trol structures contain unknowns. This preserve the

precision of the estimates and has a profound affect on

the way the estimates are used in optimization.

2.4.2 Cost Blocks and Their Uses in Cost Ag-

gregation

The first and last occupied time slots in functional

units define the actual cost of a basic block and the

area they enclosed is called the cost block (as shown

in Figure 8) of the basic block. Using our data struc-

ture, the shape of the cost block is defined by the first

and last rows and the height of the block. The shape

of the cost block reveals many useful information that

can be used to combine costs of adjacent basic blocks

or aggregate costs of compound statements. For exam-

ple, overlapping between basic blocks or iterations of a

loop can be estimated by matching the top and bottom

of the geometry shape of the cost block (see example

in Figure 9). By checking the ratio of the occupied and

empty slots in the critical functional bin(s), the com-

piler can decide whether statement reordering and loop

unrolling are beneficial. The shapes of the cost blocks

can be used to decide the order of statement blocks or

the rough estimation of the loop unrolling factor.
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Figure 9: An example of overlapping between basic

blocks.

The cost of branch operations can be estimated by

checking the number of load instructions before opera-

tions in other units started (this can be approximated

as the difference between the bottom of FXU and other

units).

3 Performance-Guided Program

Optimization

The compiler is interested in both comparing the effects

of different transformations and in choosing the best

parameters in a selected transformation. Basing these

decisions on performance estimation allows the com-

piler to make better decisions. In traditional compil-

ers, when there are unknowns in the control structures,

the compilers guess the values of the unknowns (or the

reaching probabilities). Although this makes the per-

formance comparison simple (comparing two numbers),

the results are highly unreliable. Our idea is to delay

the guesses by incorporating these unknowns into the

performance expressions. There are many situations

where it is possible to determine whether the expres-

sion is positive or negative based on bounds on the

variables. In these cases, the compiler may not have to

guess values of the unknowns.

3.1 Symbolic Comparison of Perfor-

mance Expressions

The solution of the problem of symbolic comparison

of performance expressions is the subject of another

paper, but we discuss a few examples here.

For example, if the difference in the performance ex-

pressions is a polynomial of one variable, 5 then it is

simple to find the roots of the equations for polyno-

mials of up to degree of 4. And since polynomials are

continuous, it is usually straight forward to determine

the range(s) where the expression is positive. Assum-

ing performance changes of transformations f and g

are C(j) and C(g), and let P = C(f) – C(g), and P+

and P– be the positive and negative functions of P

then f is better than g on regions where P-! = 0. The

function P can be used to find regions where f perfor-

mance better than g. Either the value of the function,

size of the area where P+ and P– are noruzero, or in-

tegral values of P+ and P– can be used to compare

the transformations f and g. Figure 10 shows regions

of a general cubical function for which the value of the

function is negative.

For cases where the bounds on the related variables

are not enough to decide whether the value of the ex-

pression is positive, the compiler can compute the con-

dition when the value is positive (this can be used in

5since loop transformations modify only one structure at a
time, this is likely to happen.
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Figure 10: A cubical polynomial and its values

generating run-time tests), or guess the values of the

unknowns that are involved.

It is also possible for the compiler to change expres-

sions to simpler expressions by dropping some terms.

For example, if the range of z is [3, 100], then the

equation 4X4 + 2X3 – 4X + l/x3 can be changed into

4x4 + 2x3 – 4x.

3.2 Automatic Program Transforma-

tion Based on Performance Estinna-

tion

One importance feature of the proposed framework

is that it supports automatic program optimization.

Based on the symbolic performance comparison, the

compiler can utilize graph search algorithms, such as

the A* algorithm, to choose program transformation

sequence systematically.

3.3 Minimizing Cost in Estimating Per-

formance

In addition to the use of efficient algorithms in com-

puting the cost estimations, the cost of performance

prediction can be reduced by updating the prediction

incrementally and avoiding unnecessary computations

whenever possible.

3.3.1 Incremental Update of Predictions

The performance prediction framework needs to sup-

port incremental update so that cost of maintaining

up-to-date performance during the program optimiza-

tion process is as small as possible.

To avoid unnecessary recomputing, each transforma-

tion defines an aflected region of performance based on

the structure it changes. The affected region is defined

for each category of the estimation. For example, when

a loop is blocked, the execution time for the straight

line code inside the loop is not changed, but the ex-

pression that computes the number of iterations should

be changed. The cache access cost for the loop is also

changed and we can either substitute the bounds of the

new inner loop into the expression (if they are repre-

sented symbolically – another advantage for symbolic

processing) or recompute the cache cost.

When choosing among two transformations, only the

changes that the transformations have on the perfor-

mance expressions need to be computed. This usually

allows cheaper evaluation before the transformations

are actually carried out.

3.3.2 Avoid Unnecessary Performance Com-

putations

There are many cases when detailed performance data

is not needed, or the performance computation or rep-

resentation can be simplified to improve efficiency. The

following heuristics can be used to minimize the cost

of static performance prediction.

If the two branches of a conditional statement have

performance estimations that are very close, the

reaching probability of the two branches can be

ignored and the performance of the conditional

statement can be simplified.

Some simple conditional expressions whose reach-

ing probabilities can be guessed should be recog-

nized whenever possible. For example, when a

variable in the conditional expression is a loop in-

dex, we may assume equal probability for each it-

eration of the loop (i.e. for a loop with loop bounds

in [lb, ub] and step step, the probability that the

index has a particular value is step/(ub – lb).

If the cost of one branch of a conditional statement

is small and the iteration set that falls into that

branch is also small compared to the other branch,

then the cost of that branch may be ignored.

For example, consider the loop statement that has a

nest ed conditional statement (where k is unknown):

doi=l, n,l

if (i le. k) then Bt

else lilf

endif

enddo

the cost of the conditional statement inside loop is:

C(L) = k*c(B,) + (n– k) *c(Bf)
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and if C(Bt) N C(Bj ) then the cost expression can be

further simplified to be:

C(L) = n * C(l?$)

3.4 Profiling and Run-Time Tests

Profiling [15] can be used to eliminate some variables

that result from unknown values in the control struc-

tures (such as the branching probabilities of conditional

statements). This is useful when the program behavior

is relatively independent of the input data.

Multiple branches of instructions guided by well-

chosen run-time tests can be effective for programs

whose performances depend on input data. However,

deciding when and how to generate effective run-time

tests is an open problem. Usually only a few run-time

tests can be afforded to maximize the benefit of multi-

ple branches of control. Excessive run-time tests may

lead to negative effects on performance. Our use of per-

formance expressions provides a foundation for solving

this problem.

After the performance expression is found for a pro-

gram fragment, sensitivity analysis can be applied to

find the top few variables that produce the most pertur-

bations to the performance. (Sensitivity analysis varies

the values of the variables for small amounts and mea-

sures the resulting perturbations to the values of the

function). Run-time tests can be formulated based on

the most sensitive variables. Furthermore, the condi-

tions on the performance expressions can be used to

formulate the run-times tests.

3.5 Procedure and Library Routine In-

terface.

Table look-up of the performance expression can be

used to find the cost of external function calls or li-

brary routines. If the source code of a library is not

available, approaches such as the training-sets can be

used to get run-time measurements to build the perfor-

mance table. However, this usually results in estimates

that are only good for certain function arguments. If

source code is available, the performance expressions

of the external library routines can be computed and

stored in an external libraTy cost table. The perfor-

mance expressions are parameterized with the formal

parameters. Actual parameters are substituted at the

call site to get more specific performance expressions.

4 Related Work

The “load/store” modeling method used in [9, 5] char-

acterizes the performance of shared memory architec-

tures by a set of templates of vector load, store, and

“nop” instructions. This works at the assembly level

and only reflects the cost of memory hierarchy. D. At-

apattu and D. Gannon [AtGa89] built an interactive

tool that used a similar analytical machine model to

predict performance for Alliant FX/8.

V. Sarkar [15] computes at compile time a set of

performance parameters and estimates execution time

based on profiling data for single assignment languages.

The symbolic performance analysis we introduced here

allows the compiler to rely less on profiling and, at the

mean time, preserves the accuracy of the estimation.

V. Balasundaram et al. [2] presented a performance

estimator for evaluating the relative efficiency of data

partitioning schemes by computing cost of message

passing statically. They assumed constant loop bounds

and guessed for values of unknowns in programs.

T. Fahringer and H. Zima [7] discussed a static per-

formance prediction tool which uses a combination of

a parameter-based performance tool and a profiler.

Their system attempts to correlate statically computed

parameters and the actual measurements, while our

model actually derives a precise mathematical expres-

sion based on a set of implicit parameters to represent

the run-time cost of the program. A. Gemund [17] de-

fines a modeling language to model the serialization

effects of parallel computer systems.

Our code-model for message-passing is based on [19]

which is a parameterized, static, performance predic-

tion tool that supports different types of architectures.

This tools characterized program performance into a

set of cost categories that includes instructions, cache,

message passing, synchronization, and hot spot con-

tentions, etc.

To summarize, the work reported in this paper dis-

tinct from previous work in the following areas.

1.

2.

3.

4.

The framework we presented in this paper is com-

prehensive. Different categories of program costs

are unified into a single, comparable performance

expression.

Our cost model for superscalar architecture is the

first cost model that can estimate performance

of high level programs accurately. The two-level

translation approach makes it portable across dif-

ferent architecture platforms.

Low level compiler optimizations that are usually

done at compiler back-end are imitated in the op-

eration translation process. This allows the cost

model to accurately model the program perfor-

mance at the source language level.

Through the symbolic manipulation of perfor-

mance data, the compiler delays or avoids having

to guess values of unknowns in control structures.

This not only preserves the accuracy of the perfor-

mance prediction, but also enables the compiler to
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use symbolic comparison to make optimization de-

cisions that are not otherwise possible.

5 Conclusion

In this paper, we have described a framework for per-

formance prediction for superscalar-based parallel com-

puters. The framework is implemented and is an inte-

grated module of the PTRAN II compiler which is a

prototype HPF compiler [12]. Preliminary results show

that the predictions are fairly accurate for straight-line

code on the RS6000 based machines. Work is underway

on communication cost for distributed memory com-

puters.

The framework combines four innovative ideas: an

efficient but detailed cost model for modeling super-

scalar architectures, the idea of delaying or avoiding

compiler-time guesses to preserve precision by sym-

bolic manipulation, the two level operation transla-

tion mapping that makes performance prediction at the

source level possible and maintains portability, and the

use of symbolic comparison to select transformations.

This research can be applied to other optimizing com-

pilers and may enhance their optimization capability

significantly, Many techniques, such as evaluating the

effects of transformations symbolically, efficient compu-

tation and manipulation of performance data, and sys-

tematic graphic search algorithms for guiding program

transformation based on performance prediction need

to be further developed to make automatic program

optimization feasible. Nevertheless, the work reported

in this paper paves a foundat ion for a new generation of

parallel compilers that employ performance prediction

to aggressively optimize program automatically.
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