
ATOM

A System for Building Customized

Program Analysis Tools

Amitabh Srivastava and Alan Eustace

Digital Equipment Western Research Laboratory
250 University Ave., Palo Alto, CA 94301

{amitabh, eustace}(!decwrl .pa. dec. com

Abstract

ATOM (Analysis Tools with OM) is a single framework for

building a wide range of customized program analysis tools.

It provides the common infrastructure present in all code-

instrumenting tools; this is the difficult and time-consuming

part. The user simply defines the tool-specific details in

instrumentation and analysis routines. Building a basic block

counting tool like Pixie with ATOM requires only a page of

code.

ATOM, using OM link-time technology, organizes the fi-

nal executable such that the application program and user’s

analysis routines run in the same address space. Informa-

tion is directly passed from the application program to the

analysis routines through simple procedure calls instead of

inter-process communication or files on disk. ATOM takes

care that anatysis routines do not interfere with the program’s

execution, and precise information about the program is pre-

sented to the analysis routines at all times. ATOM uses no

simulation or interpretation.

ATOM has been implemented on the Alpha AXP under

OSF/1. It is efficient and has been used to build a diverse

set of tools for basic block counting, profiling, dynamic

memory recording, instruction and data cache simulation,

pipeline simulation, evaluating branch prediction, and in-

struction scheduling.

Permission to cop without fee all or part of this material is
{granted provided t at the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

SIGPLAN 94-6/94 Orlando, Florida USA
Q 1994 ACM 0-89791 -662-xJ9410006..$3.5O

1 Introduction

Program analysis tools are extremely important for under-

standing program behavior. Computer architects need such

tools to evaluate how well programs will perform on new

architectures. Software writers need tools to analyze their

programs and identify critical pieces of code. Compiler writ-

ers often use such tools to find out how well their instruction

scheduling or branch prediction atgorithm is performing or

to provide input for profile-driven optimizations.

Over the past decade three classes of tools for different

machines and applications have been developed. The tirst

class consists of basic block counting tools like Pixie[9],

Epoxie[14] and QPT[8] that count the number of times each

basic block is executed. The second class consists of ad-

dress tracing tools that generate data and instruction traces.

Pixie and QPT also generate address traces and commu-

nicate trace data to analysis routines through inter-process

communication. Tracing and analysis on the WRL Titan [3]

communicated via shared memory but required operating

system modifications. MPTRACE [6] is also similar to Pixie

but it collects traces for multiprocessors by instrumenting

assembly code. ATUM [1] generates address traces by mod-

ifying microcode and saves a compressed trace in a file that

is analyzed offline. The third class of tools consists of sim-

ulators. Tango Lite[7] supports multiprocessor simulation

by instrumenting assembly language code. PROTEUS [4]

also supports multiprocessor simulation but instrumentation

is done by the compiler. g88[2] simulates Motorola 88000

using threaded interpreter techniques. Shade[5] attempts to

address the problem of large address traces by allowing selec-

tive generation of traces but has to resort to instruction-level

simulation.

These existing tools have several limitations.

First, most tools are designed to perform a single specific

type of instrumentation, typically block counting or address

tracing. Modifying these tools to produce more detailed

196

http://crossmark.crossref.org/dialog/?doi=10.1145%2F773473.178260&domain=pdf&date_stamp=1994-06-01

or less detailed information is difficult. A tool generating

insufficient information is of no use to the user.

Second, most address tracing tools compute detailed ad-

dress information. However, too much computed informa-

tion renders the tool inefficient for the user. For example, a

user interested in branch behavior has to sift through the en-

tire instruction trace, even though only conditional branches

need to be examined. The instruction and address traces are

extremely large even for small programs and typically run

into gigabytes.

Third, tools based on instruction-level simulation add large

overheads to the processing time. Several techniques have

been used to make the simulation faster, such as in the Shade

system, but simulation nevertheless makes the programs run

many times slower.

Fourth, tools such as Tango Lite, which instrument assem-

bly language code, change the application program’s heap

addresses. Instrumenting library routines is inconvenient as

all libraries have to be available in assembly language form.

Finally, most address tracing tools provide trace data col-

lection mechanisms. Data in form of address traces is com-

municated to the data analysis routines through inter-process

communication, or files on disk, Both are expensive, and the

large size of address traces further aggravates this problem.

Using a shared buffer reduces this expense but still requires a

lot of process switching and sometimes can be implemented

efficiently only with changes to the operating system.

ATOM overcomes these limitations by providing the prin-

cipal ingredient in building performance tools. The important

features that distinguish it from previous systems are listed

below.

ATOM is a tool-building system. A diverse set of tools

ranging from basic block counting to cache modeling

can be easily built.

ATOM provides the common infrastructure in all code-

instrumenting tools, which is the cumbersome part. The

user simply specifies the tool details.

ATOM allows selective instrumentation. The user spec-

ifies the points in the application program to be irMru-

mented, the procedure calls to be made, and the argu-

ments to be passed.

The communication of data is through procedure calls.

Information is directly passed from the application pro-

gram to the specified analysis routine with a procedure

call instead of through interprocess communication,

files on disk, or a shared buffer with central dispatch

mechanism.

Even though the anatysis routines run in the same ad-

dress space as the application, precise information about

●

the application program is presented to analysis routines

at all times.

As ATOM works on object modules, it is independent

of compiler and language systems.

In this paper, we describe the design and implementation

of ATOM. We show through a real example how to build

tools. Finally, we evaluate the system’s performance.

2 Design of ATOM

The design of ATOM is based on the observation that al-

though tasks like basic block counting and cache simulation

appear vastly different, all can be accomplished by instru-

menting a program at a few selected points. For example,

basic block counting tools instrument the beginning of each

basic block, data cache simulators instrument each load and

store instruction, and branch prediction analyzers instrument

each conditional branch instruction. Therefore, ATOM al-

lows a procedure call to be inserted before or after any pro-

gram, procedure, basic block, or instruction. A program is

viewed as a linear collection of procedures, procedures as a

collection of basic blocks, and basic blocks as a collection of

instructions.

Furthermore, ATOM separates the tool-specific part from

the common infrastructure needed in all tools. It provides

the infrastructure for object-code manipulation and a high-

level view of the program in object-module form. The user

defines the tool-specific part in instrumentation routines by

indicating the points in the application program to be instru-

mented, the procedure calls to be made, and the arguments

to be passed. The user also provides code for these proce-

dures in the analysis routines. The analysis routines do not

share any procedures or data with the application program; if

both the application program and the analysis routines use the

same library procedure, like print f, there are two copies

of print f in the final executable, one in the application

program and the other in the analysis routines.

ATOM1 internally works in two steps, as shown in

Figure 1.

In the first step, common machinery is combined with

the user’s instrumentation routines to build a custom tool.

This tool will instrument an application program at points

specified by the user’s instrumentation routines.

In the second step, this custom tool is applied to the appli-

cation program to build an instrumented application program

executable. The instrumented executable is organized so

that information from application program is communicated

1ExtemaUy, the user specifies: atomprog in.rt.c ard.c -o Prog.atom

to produce dre instrumented program prog.atom.

197

nuser
application

applia2a3ion
generic

object moditier

analysis
output

n

user
instruouenting user

a~:~is
application

output

Figure 1: The ATOM Process

directly to procedures in the analysis routines through proce-

dure calls. The data is passed as arguments to the handling

routine in the requested form, and does not have to go through

a central dispatch mechanism.

To reduce the communication to a procedure call, the ap-

plication program and the analysis routines run in the same

address space. ATOM partitions the symbol name space and

places the application and analysis routines in the executable

such that they do not interfere with each other’s execution.

More importantly, the analysis routine is always presented

with the information (data and text addresses) about the ap-

plication program as if it was executing uninstrumented.

Section 4 describes how the system guarantees the precise

information.

ATOM, built using OM[l 1], is independent of any com-

piler and language system because it operates on object-

modules. Since OM is designed to work with different

architectures, ATOM can be applied to other architectures.

3 Building Customized Tools:
An Example

In this section we show how to build a simple tool that counts

how many times each conditional branch in the program is

taken and how many times it is not taken. The final results

are written to a file.

zoM ~a~inltiauy implemented on the DECStations running under UL-

TRIX and was ported to Alpha AXP running under OSF/1. UL~IX, DEC-
Statlon and Alpha AXP are trademarks of Digital Equipment Corporation.

The user provides three files to ATOM: the application

program object module that is to be instrumented, a file con-

taining the instrumentation routines, and a file containing

the analysis routines. The instrumentation routines spec-

ify where the application program is to be instrumented and

what procedure calls are to be made. The user provides code

for these procedures in the analysis routines. The next two

sections show how to write the instrumentation and analysis

routines for our example tool.

Defhing Instrumentation Routines

Our branch counting tool needs to examine all the conditional

branches in the program. We traverse the program a proce-

dure at a time, and examine each basic block in the proce-

dure. If the last instruction in the basic block is a conditional

branch, we instrument the instruction. The instrumentation

routines are given in Figure 2.

ATOM starts the instrumentation process by invoking the

Instrument prOCedure3. All instrumentation modules

contain the Ins t rument procedure. The instrumentation

process begins by defining the prototype of each procedure

in the analysis routine that will be called from the application

program. This enables ATOM to correctly interpret the ar-

guments. The AddCal 1P rot o primitive is used to define

the prototypes. In our example, prototypes of four analysis

procedures OpenFi.le, CondBranch, PrintBranch,

and Cl o seFile are defined. Besides the standard C data

s~e Instmment procedure takes argc and argv as arguments which can

be optionally passedfrom the atom command line.

198

Instrument(int iargc, char **iargv)

{
Proc *p;

Block *b;

Inst *insq

int nbranch = O;

AddCaBProto(’’OpenFile(int)”);

AddCaBProto(’’CondBranch(int, VALUE)”);

AddCalWroto(’’PrintBranch(int, long)”);

AddCallProto(’’CloseFileo”);

for(p=GetFirstProco; p!=NULL;p=GetNextProc(p)){

for(b=GetFirstBlock(p) ;b!=NULL;b=GetNextBlock(b)){

inst = GetLastInst(b);

if(IsInstType(inst, InstTypeCondBr)){

AddCallInst(inst, InstBefore, “CondBrattch”,

nbranch,BrCondValue);

AddCallProgram(ProgramAfter, “PrintBranch”,

nbranch, InstPC(inst));

nbranch++;

)
}

}

AddCallProgram(ProgramBefore, “OpenFile”, nbranch);

AddCallProgram(ProgramAfter, “CloseFile”);

}

Figure 2: Instrumentation Routines: Branch Counting Tool

types as arguments, A’IXIM supports additional types such

as REGV and VALUE. If the argument type is REGV, the ac-

tual argument is not an integer but a register number, and

the run-time contents of the specified register are passed.

For the VALUE argument type, the actual argument may

be Ef fAddrValue or BrCondValue. Ef fAddrValue

passes the memory address being referenced by load and

store instructions. BrCondValue k used for conditional

branches and passes zero if the run-time branch condition

evatttates to a false and a non-zero value if the condition

evaluates to true. CondBranch uses the argument type

VALUE.

ATOM atlows the user to traverse the whole program by

modeling a program as consisting of a sequence of proce-

dures, basic blocks and instructions. Get First P roc re-

turns the first procedure in the program, and Get Next P roc

returns the next procedure. The outermost for loop tra-

verses the program a procedure at a time. In each proce-

dure, Get First Block returns the first basic block and

GetNext Block returns the next basic block. Using these

primitives the inner loop traverses all the basic blocks of a

procedure.

In this example, we are interested only in conditional

branch instructions. We find the last instruction in the ba-

sic block using the Get Last I nst primitive and check if

it is a conditional branch using the Is I nst Type pl’im-

itive. All other instructions are ignored. With the

AddCall Inst primitive, a call to the analysis procedure

CondBranch is added at the conditional branch instruction.

The Inst Bef ore argument specifies that the call is to be

made before the instruction is executed. The two arguments

to be passed to CondBranch are the linear number of the

branch and its condition value. The condition vatue specifies

whether the branch will be taken.

The AddCallP rogram k used to insert calls before

(programBef ore) the application program starts execut-

ing aud after (P rog ramAf t e r) the application program

finishes executing. These calls are generally used to initial-

ize analysis routine data and print results at the end, respec-

tively. A catl to OpenFi le before the application program

starts executing creates the branch statistics array and opens

the output file. We insert calls for each branch to print its

PC (program counter) and its accumulated count at the end.

Note that these calls are made only once for each conditional

branch after the application program has finished executing.

Finally, the CloseFile procedure is executed which closes

the output file. If more than one procedure is to be called at

a point, the calls are made in the order in which they were

added by the instrumentation routines.

Defining Analysis Routines

The anatysis routines contain code and data for all procedures

needed to analyze information that is passed from the applica-

tion program. These include procedures that were specified

in the instrumentation routines but may contain other proce-

dures that these procedures may call. The analysis routines

do not share the code for any procedure with the application

program, including library routines.

Code for procedures OpenFi le, CondBranch,

PrintBranch, and CloseFile whose prototypes were

defined in instrumentation routines are given in Figure 3.

The OpenFile uses its argument containing the number

of branches to atlocate the branch statistics array. It also

opens a file to print results. The CondBranch routine in-

dArl~t,fterme~od would be to store the PC of each branch in ~ arraY

and pass the array at the end to be printed along wittr ttre counts. ATOM
allows passing of arrays as arguments.

199

#include <stdio.h>

File Wile

struct BranchInfo{

long taken;

long notTaken;

} *bstats;

void OpenFile(int n){

bstats = (strttctBrrmchInfo *)

malloc (n * sizeof(struct BranchInfo));

file = fopen(’’btaken.out”, “w”);

fprintf(file, “PC \t Taken \t Not Taken \n”);

}

void CondBranch(int n, long taken){

if (taken)

bstats[n] taken++;

else

bstats[n] .notTaken++;

}

void PrintBranch(int n, long pc){

fprintf(file, “OX%lX \t %d \t %d\n”,

PC, bstats[n].taken, bstats[n].notTaken);

}

void CloseFileo{

fclose(file);

}

Figure 3: Analysis Routines: Branch Counting Tool

crements the branch taken or branch not taken counters for

the specified branch by examining the condition value ar-

gument. Print Branch prints the PC of the branch, the

number of times the branch is taken and number of times it

is not taken. CloseFi.le closes the output file.

Collecting Program Statistics

To find the branch statistics, ATOM is given as input the

fully linked application program in object-module format,

the instrumentation routines, and the analysis routines. The

output is the instrumented program executable. When this

instrumented program is executed, the branch statistics are

produced as a side effect of the normal program execution.

4 Implementation of ATOM

ATOM is built using OM[l 1], a link-time code modifica-

tion system. OM takes as input a collection of object files

and libraries that make up a complete program, builds a

symbolic intermediate representation, applies instrumenta-

tion and optimizations[12, 13] to the intermediate represen-

tation, and finally outputs an executable.

ATOM starts by linking the user’s instrumentation rou-

tines with OM using the standard linker to produce a custom

tool. This tool is given as input the application program and

the analysis routines. It uses OM’S infrastructure to build

symbolic representations of the application program and the

analysis routines. The traversal and query primitives inter-

face with the intermediate representation of the program to

provide the information requested. More details of OM’S

intermediate representation and how it is built are described

in [11]. We extended the OM’S representation so it can be

conveniently annotated for procedure call insertions.

OM’S code generation pass builds the instrumented exe-

cutable from the intermediate representation. This pass is

modified to organize the data and text sections in a specific

order because ATOM has to ensure that precise information

about the application is presented to the analysis routines at

all times.

In this section, we first describe the extensions to the inter-

mediate representation and the insertion of procedure calls.

Next, we discuss how we minimize the number of registers

that need to be saved and restored. Finally, we describe how

ATOM organizes the final executable.

Inserting Procedure Calls

We extended the intermediate representation of OM to have a

slot for actions that may be performed before or after the en-

tity is executed. The entity maybe a procedure, basic block,

ittSttWCtiOtt or an edges. The AddCal 1 primitives annotate

the intermediate representation by adding a structure to the

action slot describing the call to be inserted, arguments to

be passed, and indicating when the call is to be made. Cur-

rently, adding calls to edges is not implemented. The proto-

type of the procedure must already have been added with the

AddCa 11P rot o primitive, and ATOM VtXifi(X that. The

action slot contains a linked list of all such actions to be per-

formed as multiple calls can be added at a point. The order

in which they are added is maintained so that calls will be

made in the order they were specified.

After the intermediate representation has been fully anno-

tated, the procedure calls are inserted. This process is easy

5An edge ~onnect~two basic blocks and representsthe transfer of control

between them.

200

because all insertion is done on OM’S intermediate represen-

tation and no address tixups are needed. ATOM, like QPT,

does not steal any registers from the application programb.

It allocates space on the stack before the call, saves regis-

ters that may be modified during the call, restores the saved

registers after the call and deallocates the stack space. This

enables a number of mechanisms such as signals, setjmp and

vfork to work correctly without needing any special attention.

The calling conventions are followed in setting up calls

to analysis routines. The first six arguments are passed in

registers and the rest are passed on the stack. The number of

instructions needed to setup an argument depends on the type

of the argument. For example, a 16-bit integer constant can

be built in 1 instruction, a 32-bit constant in two instructions,

a 64-bit program counter in 3 instructions and so on. Passing

contents of a register takes 1 instruction.

To make the call, a pc-relative subroutine branch

instruction is used if the analysis routine is within range,

otherwise, the value of the procedure is loaded in a register

and a js r instruction is used for the procedure call. There-

turn address register is always modified when a call is made

so we always save the return address register. This register

becomes a scratch registeq it is used for holding the proce-

dure’s address for the js r instruction.

Reducing Procedure Call Overhead

The application program may have been compiled with in-

terprocedural optimization and may contain routines that do

not follow the catling conventions 8. Therefore, all regis-

ters that may be modified in the call to the analysis routines

need to be saved, The analysis routines, on the other hand,

have to follow the calling conventions as they have to allow

arbitrary procedures to be linked in. The calling conven-

tions define some registers as callee-save registers that are

preserved across procedure calls, and others as caller-save

registers that are not preserved across procedure calls. All

the caller-save registers need to be saved before the call to

the analysis routine and restored on return from the analysis

routines. This is necessary to maintain the execution state

of the application program. The callee-save registers would

automatically be saved and restored in analysis routines if

they are used by them. ‘Iivo issues need to be addressed

Gpixie ~te~s three registers away from the application program for its

own use. Pixie maintains three memory locations that have the values of
these three registers, and replaces the use of dtese registers by uses of the
memory locations.

7~pha[10] ha5a signed 21-bit pc-relative subroutine branch ~stm~tion.

‘The application may contain hand-crafted assembly language code

that often does not follow standard conventions. All)M can handle such
programs.

$’AnalYsis routines are analogous to standard library routines hat have

to follow calling conventions so they can be linked wirb progrants.

here where to save these caller-save registers, and which

caller-save registers to save.

Saving registers in the application code, where the call is

being inserted, is not a good idea if there are more than a few

registers to be saved, as it may cause code explosion. We

create a wrapper routine for each analysis procedure. The

wrapper routine saves and restores the necessary registers,

and makes the call to the analysis routine. The application

program now calls the wrapper routine instead of the analysis

routine. Unfortunately, this creates an indirection in calls to

analysis routines. However, this has the advantage that it

makes no changes to the analysis code so it works well with

a debugger like dbx. This is the default mechanism.

ATOM provides an additional facility in which the saves

and restores of caller-save registers are added to the analysis

routines. No wrapper routines are created in this case. The

extra space is allocated in the anrttysis routine’s stack frame.

This requires bumping the stack frame and fixing stack refer-

ences in the analysis routines as needed. This is more work

but is more efficient as analysis routines are called directly.

Since this modifies the analysis routines, it hampers source-

level debugging. This mechanism is available as a higher

optimization option.

The number of registers that need to be saved and restored

is reduced by examining the analysis routines. The data flow

summary information of the analysis routines determines all

the registers that may be modified when the control reaches a

particular analysis procedure. Only these registers need to be

saved and restored. We use register renaming to minimize the

number of different caller-save registers used in the analysis

routines.

Moreover, if an analysis routine contains procedure calls

to other analysis routines, we save only the registers directly

used in this analysis routine and delay the saves of other

registers to procedures that maybe called. We only do this if

none of theprocedttrecalls occur in a loop. Thus we distribute

the cost of saving registers; the overhead now depends on the

path the program takes. This helps analysis routines that

normally return if their argument is valid but otherwise raise

an error. Raising an error typically involves printing art error

message and touching a lot more registers. For such routines,

the common case of a vatid argument has low overhead as

few registers are saved. This optimization is available in the

current implementation.

The number of registers that need to be saved may be

further reduced by computing live registers in the appli-

cation program. OM can do interprocehral live variable

anatysis[l 1] and compute all registers live at a point. Only

the live registers need to be saved and restored to preserve

the state of the program execution. Optimization such as

inlining further reduce the overhead of procedure calls at the

201

A

Stack I

cad-only data

~xcedion data

program text

program data
initialized

program data
uninitialized

Uninstrumented
Proaram
LayZut

- textstart ~

new datastart
\

old datastart

/\

ta
Program

instrumented Text

program text Addresses
Changed

program data
initialized Inprogram data
uninitialized

Heap I

Instrumented
Program
Layout

Figure 4: Memory layout

cost of increasing the code size. These refinements have not

been added to the current system.

Keeping Pristine Behavior

One major goal of ATOM is to avoid perturbing the addresses

in the application program. Therefore, the analysis routines

are put in the space between the application program’s text

and data segments. Analysis routines do not share any pro-

cedures or data with the application program; they contain

data and code for all procedures including library routines

that they may need.

The data sections of the application program are not

moved, so the data addresses in the application program are

unchanged. The initialized and uninitialized data of analysis

routines is put in the space between the application program’s

text and data segments. In an executable, all initialized data

must be located before all uninitialized data, so the uninitial-

ized data of the analysis routines is converted to initialized

data by initializing it with zero. The start of the stack and

heap10 are unchanged, so all stack and heap addresses are

lo~ the MPha Am Mder OSF/1 stack begins at start of text S9gItIetIt

t

analysis gp

~a::ram

Addresses
Unchanged

same as before. This is shown in Figure 4.

The text addresses of the application program have

changed because of the addition of instrumented code. How-

ever, we statically know the map from the new to original

addresses. If an analysis routine asks for the PC of an in-

struction in the application program, the original PC is simply

supplied. This works well for most of the tools.

However, if the address of a procedure in the application

program is taken, its address may exist in a register. If the

analysis routine asks for the contents of such a register, the

value supplied is not the original text address. We have

not implemented in our current system the ability to return

original text address in such cases.

Analysis routines may dynamically allocate data on heap.

Since analysis routines and the application program do not

share any procedures, there are two sbrkl 1 routines, one in

the application program and the other in the analysis routines

that atlocate space on the same heap. ATOM provides two

options for tools that must allocate dynamic memory.

and grows towards low memory, and heap starts at end of uninitialized data
and grows towards high memory.

11sbrk routines ~ocate more data spacefor tie program.

202

The first method links the variables of the two sbrks,

so both allocate space on the same heap without stepping

on each other. Each starts where the other left off. This

method is useful for tools that are not concerned with the

heap addresses being same as in the uninstrumented version

of the program. Such tools include basic block counting,

branch analysis, inline analysis and so on. This method is

also sufficient for tools such as cache modeling that require

precise heap addresses but do not allocate dynamic memory

in analysis routines. This is the default behavior.

The second method is for tools that allocate dynamic mem-

ory and also require heap addresses to be same as in the tmin-

strumented version of the application program. To keep the

application heap addresses as before, the heap is partitioned

between the application and the analysis routines. The appli-

cation heap starts at the same address but the analysis heap is

now made to start at a higher address. The user supplies the

offset by which the start of analysis heap is changed. ATOM

modifies the sbrk in analysis routines to start at the new

address; the two sbrks are not linked this time. The disad-

vantage of this method is that there is no runtime check if the

application heap grows and enters into the analysis heap.

5 Performance

To find how well ATOM performs, two measurements are of

interest how long ATOM takes to instrument a program, and

how the instrumented program’s execution time compares to

the uninstrumented program’s execution time.

We used ATOM to instrument 20 SPEC92 progr~s with

11 tools, The tools are briefly described in Figure 5. The time

taken to instrument a program is the sum of the ATOM’s pro-

cessing time and the time taken by the user’s instrumentation

routines. The time taken by a tool varies as each tool does

different amounts of processing. For example, the malfoc

tool simply asks for the malloc procedure and instruments i~

the processing time is very small. The pipe tool does static

CPU pipeline scheduling for each basic block at instrttmen-

tation time and takes more time to instrument an application.

The time taken to instrument 20 SPEC92 programs with each

tool is also shown in Figure 5.

The execution time of the instrumented program is the

sum of the execution time of the uninstrumented application

program, the procedure call setup, and the time spent in the

analysis routines. This total time represents the time needed

by the user to get the final answers. Many systems process

the collected data offline and do not include those numbers

as part of data collecting statistics. The time spent in analysis

routines is analogous to the postprocessing time required by

other systems.

We compared each instrumented program’s execution time

20

to the uninstrumented program’s execution time for each

tool. Figure 6 shows the ratios for the SPEC92 programs.

The procedure call overhead is dependent on the code in the

analysis routines, and the number and type of arguments that

are passed. ATOM uses the data flow summary information

along with register renaming to find the necessary registers

to save. The contribution of procedure call overhead in the

instrumented program execution time is also dependent on

the number of times the procedure calls take place. The inline

tool instruments only procedure call sites; the total overhead

is much less than the cache tool, which instruments each

memory reference. The amount of work the analysis routines

do when the control reaches them is totally dependent on

information the user is trying to compute. Although the

communication overhead is small, we expect it to decrease

further when we implement live register analysis and inlining.

All measurements were done on Digital Alpha AXP 3000

Model 400 with 128 Mb memory.

6 Status

ATOM is built using OM and currently runs on Alpha AXP

under OSF/1. It has been used with programs compiled with

Fortrart, C++ and two different C compilers. The system

currently works on non-shared library modules. Work is in

progress for adding support for shared libraries.

ATOM has been used both in hardware and software

projects. Besides the SPEC92 benchmarks, it has success-

fully instrumented real applications of up to 96 Megabytes.

The system is being used extensively inside Digital and at a

few universities12.

Our focus until now has mainly been on functionality. Few

optimization have been added to reduce the procedure call

overhead. Currently, reduction in register saves has been

obtained by computing data flow summary information of

analysis routines. We plan to implement live register analysis

along with inlining to further improve the performance. We

are just starting to instrument the operating system.

12A~M is available to external users. If you would like a copY. Please

contact the authors.

3

Analysis Tool Tool Description Time to instrument Average
SPEC92 suite Time

branch prediction using 2-bit history table 110.46 WCS 5.52 WCS

cache model direct mapped 8k byte cache 120.58 SCXX 6.03 WX

dyninst computes dynamic instruction counts 126.31 WCS 6.32 St%X

gprof call graph based profiling tool 113.24 SeCS 5.66 S(3(3

inline finds potential inlining call sites 146.50 S(XS 7.33 Sees

io inpui/output summary tool 121.60 WCS 6.08 sees
malloc histogam of dynamic memory 97.93 Sees 4.90 sees

pipe pipeline stall tool 257.48 SCXX 12.87 WCS

prof Instruction profiling tool 122.53 WCS 6.13 WCS

Syscall system call summary tool 120.53 St?CS 6.03 WCS

unalign unalign access tool 135.61 S(?CS 6.78 WCS

Figure 5: Time taken by ATOM to instrument 20 SPEC92 benchmark programs

Analysis Tool Instrumentation Number of Time taken by
points Arguments Instrumented Program

branch each conditional branch 3 3.03X

cache each memory reference 1 11.84x

dyninst eaeh basic block 3 2.91x

gprof each procedure/each basic block 2 2.70x

inline each call site 1 1.03X

io before/after write procedure 4 1.OIX

malloc before/after malloc procedure 1 1.02X

pipe each basic block 2 1.80x

prof each procedure/each basic block 2 2.33x

Syseall before/after each system call 2 1.OIX

unalign each basic block 3 2.93x

Figure 6: Execution time of instrumented SPEC92 Programs as compared to uninstrumented SPEC92 programs

7 Conclusion

By separating object-module modification details from tool

details and by presenting a high-level view of the program,

ATOM has transferred the power of building tools to hard-

ware and software designers. A tool designer concentrates

only on what information is to be collected and how to pro-

cess it. Tools can be built with few pages of code and they

compute only what the user asks for. ATOM’s fast commu-

nication between application and analysis means that there

is no need to record traces as all data is immediately pro-

cessed, and final results are computed in one execution of the

instrumented program. Thus, one can process long-running

programs. It has already been used to build a wide variety

of tools to solve hardware and software problems. We hope

ATOM will continue to be an effective platform for studies

in software and architectural design.

Acknowledgements

Great many people have helped us bring ATOM to its current

form. Jim Keller, Mike Burrows, Roger Cruz, John Edmond-

son, Mike McCallig, Dirk Meyer, Richard Swan and Mike

Uhler were ottrtirst users and they braved through amine field

of bugs and instability during the early development process.

Jeremy Dion, Ramsey Haddad, Russel Kao, Greg Lueck and

Louis Monier built popular tools with ATOM. Many peo-

ple, too many to name, gave comments, reported bugs, and

provided encouragement. Roger Cruz, Jeremy Dion, Ramsey

Haddad, Russell Kao, Jeff Mogul, Louis Monier, David Wall,

Linda Wilson and anonymous PLDI reviewers gave useful

comments on the earlier drafts of this paper. Our thanks to

atl.

204

References

[1] Anant Agarwal, Richard Sites, and Mark Horwitz,

ATUM A New Technique for Capturing Address

Traces Using Microcode. Proceedings of the 13th

International Symposium on Computer Architec-

ture, June 1986.

[2] Robert Bedichek. Some Efficient Architectures

Simulation Techniques. Winter 1990 USENIX Con-

ference, January 1990.

[3] Anita Borg, R.E. Kessler, Georgia Lazana, and

David Wall. Long Address Traces from RISC Ma-

chines: Generation and Analysis, Proceedings of

the 17th Annual Symposium on ComputerArchitec-

ture, May 1990, also available as WRL Reseasch

Report 89/14, Sep 1989.

[4] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian

Colbrook, and William E. Weihl. PROTEUS: A

High-Performance Parallel-Architecture Simula-

tor. MIT/LCS/l_’R-5 16, MIT, 1991.

[51 RobertF.Cmelikand David Keppel, Shade A Fast

Instruction-Set Simulator for Execution Profiling.

Technical Report UWCSE 93-06-06, University of

Washington.

[6] Susan J. Eggers, David R. Keppel, Eric J.

Koldinger, and Henry M. Levy. T&hniques for Ef-

ficient Inline Tracing on a Shared-Memory Multi-

processor. SIGMETRICS Conference on A4eastwe-

ment and Modeling of Computer Systems,VOI8, no

1, May 1990.

[7] Stephen R. Goldschmidt and John L. Hennessy,

The Accuracy of Trace-Driven Simulations of Mul-

tiprocessors. CSL-TR-92-546, Computer Systems

Laboratory, Stanford University, September 1992.

[8] James R. Larus and Thomas Ball. Rewriting ex-

ecutable files to measure program behavior. Soft-

ware, Practice and Experience, vol 24, no. 2, pp

197-218, February 1994.

[9] MIPS Computer Systems, Inc. Assembly Language

Programmer’s Guide, 1986.

[10] Richard L, Sites, ed. Alpha Architecture Reference
Manual Digital Press, 1992.

l(l), pp 1-18, March 1993. Also available as WRL

Research Report 92/6, December 1992.

[12] Amitabh Srivastava and David W. Wall. Link-

Time Optimization of Address Calculation on a 64-

bit Architecture. Proceedings of the SIGPLAN’94

Conference on Programming Language Design

and Implementation, to appear. Also available as

WRL Research Report 94/1, February 1994.

[13] Amitabh Srivastava. Unreachable procedures in

object-oriented programming, ACM LOPLAS, Vol

1, #4, pp 355-364, December 1992. Also available

as WRL Research Report 93/4, August 1993.

[14] David W. Wall. Systems for late code modification.

In Robert Giegerich and Susan L. Graham, eds,

Code Generation - Concepts, Tals, Techniques,

pp. 275-293, Springer-Verlag, 1992. Also available

as WRL Research Report 92/3, May 1992.

[11] Amitabh Srivastava and David W. Wall. A Prac-

tical System for Intermodule Code Optimization

at Link-Time. Journal of Programming Language,

205

