
Performance and Energy Trade-offs Analysis of L2 on-Chip
Cache Architectures for Embedded MPSoCs

Mohamed M. Sabry†, Martino Ruggiero†‡ and Pablo G. Del Valle†§
† Embedded Systems Laboratory, EPFL, EPFL-STI-IEL-ESL, 1015 Lausanne, Switzerland

‡ University of Bologna, DEIS, Viale Risorgimento, 2 - Bologna 40136, Italy
§ DACYA, UCM, Avda. Complutense s/n - 28040 Madrid, Spain

mohamed.sabry@epfl.ch, martino.ruggiero@unibo.it, pgarciav@fdi.ucm.es

ABSTRACT
On-chip memory organization is one of the most important as-
pects that can influence the overall system behavior in multi-
processor systems. Following the trend set by high-performance
processors, high-end embedded cores are moving from single-
level on chip caches to a two-level on-chip cache hierarchy.
Whereas in the embedded world there is general consensus
on L1 private caches, for L2 there is still not a dominant ar-
chitectural paradigm. Cache architectures that work for high
performance computers turn out to be inefficient for embed-
ded systems (mainly due to power-efficiency issues). This pa-
per presents a virtual platform for design space exploration of
L2 cache architectures in low-power Multi-Processor-Systems-
on-Chip (MPSoCs). The tool contains several L2 caches tem-
plates, and new architectures can be easily added using our
flexible plug-in system. Given a set of constrains for a specific
system (power, area, performance), our tool will perform ex-
tensive exploration to find the cache organization that best
suits our needs. Through some practical experiments, we
show how it is possible to select the optimal L2 cache, and
how this kind of tool can help designers avoid some common
misconceptions. Benchmarking results in the experiments sec-
tion will show that for a case study with multiple processors
running communicating tasks allocated on different cores, the
private L2 cache organization still performs better than the
shared one.

Categories and Subject Descriptors: B.3 Memory Struc-
ture: Performance Analysis and Design Aids.

General Terms: Design, Performance.

Keywords: Virtual platform, Multi-core,L2 cache.

1. INTRODUCTION AND RELATED WORK
On-chip memory organization is one of the most important

aspects that can influence the overall system behavior in MP-
SoCs. The memory system must provide the required band-
width to the software tasks, complying with tight constraints
in terms of chip area, power consumption and cost. High-end

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’10, May 16–18, 2010, Providence, Rhode Island, USA.
Copyright 2010 ACM 978-1-4503-0012-4/10/06 ...$10.00.

embedded cores are moving from single-level on chip caches
to a two-level on-chip cache hierarchy. Several commercial
solutions matching this approach are already available on the
market. MPCore [1] and Cortex-A9 [2] from ARM, CELL BE
STI [3], or MIPS32 1004K [4] are just a few representative ex-
amples.

While there is general consensus on L1 private cache organi-
zation, for L2 there is still not a dominant paradigm unlike for
the high-performance general-purpose processors. [5] clearly
proves that trade-offs analysis of L2 on-chip cache architec-
tures for embedded MPSoCs is a hot topic in the computer
architecture community. In this paper, the authors perform a
complete study to try to determine the best L2 cache archi-
tecture in a multi-core system. However, they use a tool (i.e.
Heptane), that simulates only single-core processors, and at a
very high level of abstraction (i.e. given the C application, it
gives you I-cache misses). Later, they integrate the traces into
a multi-core simulation framework. Although interesting, the
accuracy of this simulator is very low.

Embedded MPSoC system architecture has always been
quite different from the general-purpose one. It usually uses
simpler processor micro-architectures, well-matched to the
characteristics of the targeted applications.

Cost and time-to-market are important design constraints
that dictate the use of conservative technologies and design
methodologies (reusability and modularity), implying lower
performance targets, instead of customized, high-performance,
general-purpose cores. Another main difference between high-
end embedded MPSoCs and high-performance general-purpose
systems is the speed gap between processor and on-chip mem-
ory, in the embedded case, a smaller (but still significant)
memory gap has non-negligible architectural implications.

Two other fundamental constraints for embedded designers
are area bounds and limited energy budgets. The available on-
chip area is always a limited resource that has to be shared by
several IPs. As a consequence, dedicating a huge percentage of
the chip to L2 cache, as commonly done for general purpose
multicores, is not anymore profitable. Application specific
accelerators and peripheral blocks, can be included instead,
which provide superior power-performance efficiency.

Developing the optimal L2 on-chip cache system for a MP-
SoC under all these constraints is not trivial, and requires
the use of advanced tools. A large number of architectural-
level multiprocessor simulators have been developed by the
computer architecture community. The SimpleScalar tool is
one of them [6]. Using SimpleScalar, users can simulate real
programs running on a range of modern processors and sys-
tems. Other virtual modeling environments are M5 [7] and

305

UNISIM [16]. Also, companies showed interest in such field:
Simics [14] and VaST [15] tools are just a few representative
examples. These simulators are very accurate in modeling the
processor core insights, but use high level models for describ-
ing the other IPs in the system, like communication inter-
connections, cache controllers or peripherals. Moreover, they
do not provide any statistics on power consumption and area
occupancy.

The literature also contains several works about architec-
tural and memory hierarchy explorations of L2 cache for MP-
SoCs. Some authors propose innovative solutions, such as
connecting a shared L2 cache to all the cores using a matrix
crossbar interconnect (see [22]), or using cooperative caching
and custom NoCs, as explained in [17] and [8, 9]. In [18]
and [21], authors compare the performance of shared and
separate L2 caches. However, the estimation of power con-
sumption and size cost of the proposal is missing. In addition
to this, existing simulation environments that perform whole
MPSoCs modeling, normally do it at a high-level of abstrac-
tion [10] which is not accurate enough to allow detailed ther-
mal studies. Conversely, MPARM simulator is particularly ef-
fective, especially in analyzing the communication infrastruc-
ture among computing nodes. Finally, several authors have
explored the way to optimize the utilization of MPSoC mem-
ory hierarchy by exploring software mapping techniques [11,
12, 13], which are complementary approaches to the ideas
proposed in this paper.

This paper introduces two main contributions. First, we
developed a set of parameterizable models for L2 caches. By
specifying the different parameters, our generic and modular
L2 cache architecture can be configured as private, shared
or hybrid. Furthermore, new architectures (e.g.: coherence
protocols, replacement policies) can be easily added using our
flexible plug-in system.

The second main contribution is a detailed analysis of how
micro-architectural differences in L2 cache architectures im-
pact the overall system behavior, as well as power consump-
tion and area occupancy. We model several L2 cache archi-
tecture solutions on a multi-processor system and test their
behaviors running various parallel kernels. Our experimental
results show that the selection of the optimal L2 cache organi-
zation is neither trivial, nor unique, and encourage designers
to abandon common misconceptions.

This paper is organized as follows. In Section 2, the pro-
posed virtual platform environment and the examined L2
cache architectures are described and elaborated. Section 3
presents and analyzes the experimental results of our design
space exploration. Finally, Section 4 presents conclusions and
future work.

2. VIRTUAL PLATFORM ENVIRONMENT

2.1 L2 Cache Architecture Templates
As described in the introduction, in order to help system

designers to model and easily explore several L2 cache archi-
tectures and variations, we have developed and implemented
a flexible L2 cache architecture system. The proposed tem-
plates, written in SystemC, can be used either in stand-alone
mode or plugged into any virtual platform tool. For com-
pleteness and demonstration purposes, we integrated them
in an accurate virtual platform environment specifically de-
signed for Embedded MPSoC design space explorations [19].
Similar tools can be found in literature [6, 7], but they model

the interaction between MPSoC components at a very high
level of abstraction. Our enhanced virtual platform is highly
modular and capable of simulating at cycle-accurate level an
entire MPSoC, including cores, L1 and L2 caches, L3 mem-
ories and system buses. Particular attention has been paid
to communication bus modeling. System bus performance is
indeed very critical for MPSoCs, since it can limit the overall
system performance much more than CPU or memory. More-
over, area and power models for on-chip memories [23] are
fully integrated in the platform, conforming an all-in-one tool
for MPSoC development.

Our versatile L2 cache module can be reached by cores
through a configurable number of ports, and it will request
accesses to external memory through a configurable number
of bus master ports. All the sub-modules in the L2 cache mod-
ule are arbitrated and managed by the cache controller logic.
It supports simultaneous accesses to internal memory from
several CPUs and, in case of not compatible accesses, they
are granted in a first-come-first-served fashion. A lot of effort
has been paid to modeling such kind of architecture, particu-
larly in the handshaking protocols among sub-modules.

Next figures represent the most representative system ar-
chitectures that we have modeled: three different L2 cache
templates (namely private, shared, or hybrid). In the pic-
tures, the storage modules are colored in gray. Light gray,
for these that contain only private data, and dark gray when
they include also shared data.

Figure. 1 shows the system with private L2 caches. These
caches do not contain any shared data (i.e. the shared data is
not cacheable). These caches are identical, i.e. they have the
same access time, power consumption, capacity, and number
of ways. They are configured with only one port to CPU and
one port to system bus.

Figure 1: System architecture with separate equiva-
lent L2 caches.

Figure 2: System architecture with multi-port shared
L2 cache.

Architectures in Figure 2 and Figure 3 use a unified shared

306

L2 cache, but with two different configurations. Figure 2
shows a multi-port shared cache where all the cores can read
data from the cache simultaneously, while in Figure 3 there is
a single-port cache where all the cores get the access to such
cache using a multiplexer and a round-robin based arbiter
that grants such ports to each core. These caches contain
both private and shared data.

Figure 3: System architecture with single-port shared
L2 cache.

Another methodology to make the shared data cacheable
is by using the hybrid architecture shown in Figure 4. This
cache is composed of several separated private caches that
store only private data, and a unified small shared cache that
is used to store only shared data. This small shared cache
could be either multi-port or single-port cache.

Figure 4: System architecture with hybrid L2 cache,
several separate L2 cache with a small shared L2
cache.

2.2 Simulator integration
Our simulation environment is based on the MPARM simu-

lator [19]. Due to the flexibility and accuracy of the MPARM
simulator for MPSoC modeling, we decided it was the perfect
candidate to incorporate our L2 cache model.

MPARM is a virtual SoC platform, written almost entirely
in SystemC, that accurately models both HW and SW parts
of a system. A typical MPSoC platform instantiated in such
simulator consists of a configurable number of 32-bit ARM
processors, with their L1 Data and Instruction caches, L3
memories and the system bus. The L3 memories are virtually
divided into private, which contain data strictly related to
only one core, and shared memories, containing shared data
between different cores. The cores are connected to the L3
memories through an on-chip interconnection bus. Several
bus protocols are available (such as AMBA AHB, AMBA
AXI, STBus), as well as several bus topologies (shared bus,
segmented bus, partial- and full-crossbar).

Regarding the software running on the simulated hardware

platform, it is possible to run stand alone (i.e. without the
support of an OS), RTEMS OS-based, or uClinux OS-based
applications.

In addition to including support for modeling different L2
cache architectures, we integrated an accurate profiling tool
that calculates power consumption and area occupancy of
memories.

2.3 Support for Power and Area Modeling
When coming to accurately calculate area and power num-

bers of the memory sub-system, CACTI 6.0 [23] is one of the
most used tools for such purposes. It is an integrated cache
and memory area and power model. Moreover, it is written
in C++ and open-source; thus, being the perfect candidate
to embedded its functionalities into our virtual platform. Its
main functions have been extracted and integrated into our
environment.

Once specified the set of memory architectural parameters
that define our experiment (like the size of the caches, the
number of their ports, the manufacturing technology, the as-
sociativity number, the tag size), our tool will report the area
occupied by the memories. At run time, simulation will pro-
duce information about every sub-module in L2 cache, such as
activity in the input and output ports, control logic, internal
interconnect and memory. These information is transparently
(without any user participation) fed into the ported CACTI-
functions at run-time to automatically calculate the dynamic
energy and leakage power consumed by each memory element
of the system.

3. DESIGN SPACE EXPLORATION
In section 2 we showed different system configurations using

various L2 cache architectures. In this section, we show the
effects of these cache configurations on area, speed, and en-
ergy of the whole system. The instantiated system contains 4
cores, with L1 caches separated into I-cache and D-cache, L2
cache(s), the interconnection bus, L3 memory, and peripherals
for synchronization (i.e. test-and-set HW semaphores, inter-
rupts support). The cache modules employ LRU replacement
algorithm, with write back and write allocation techniques.

Several benchmarks from the MiBench suit [20] have been
used to evaluate the system performance, with variations of
the software environment from stand alone applications, to
applications running under uClinux OS.

The workloads applied on various systems were classified
into:

• Multi-Processor Workload Scenario. Resembles an
heterogeneous system, where each core is performing in-
dependent tasks which do not require any resources from
the other cores.

• Parallel Workload Scenario. The application execu-
tion is split between the different cores. In such work-
load, a portion of data is shared between the cores, and
stored into shared memory. Each core performs its op-
erations on the shared data and, then, signals the pro-
ceeding core to work on the same shared data.

There are two different simulation scenarios have been used
in evaluating the cache performance.

• Fixed Cache Storage Capacity. This scenario con-
sidered a fixed storage capacity of the total L2 cache.

307

• Fixed Total Die Area. This scenario fixes the total
die area for the entire chip. the whole L2 cache archi-
tectures are designed (including their storage area and
internal interconnection) in order to fit in the remaining
area of the chip hosting also the other IPs of the system.

Please consider that all graphs in next sections will show
results in execution time and energy normalized to the sepa-
rated architecture ones. It is also important to notice that the
shared data is being allocated to a predefined address space
that is different from the private data address space.

3.1 Fixed Cache Storage Capacity Scenario
We have evaluated the performance of different L2 cache

architectures in a system with a total storage capacity of (S).
We will vary this parameter, starting from 256KB to 4M. Each
architecture is allocated an equivalent storage to S. S is used
as a single unified storage and is divided into a number of
equivalent separate portions for a system with the mentioned
4 cores. However, in the hybrid cache the shared portion has
half of the capacity allocated, while each separate portions is
given one quarter of the total allocated space. Each module
in each cache architecture is 8-way set-associative. With 32
bits address space used in this system. Performance evalua-
tion of various cache architectures has been done using both
parallelized and multi-processor workload. Two parallelized
benchmarks have been used: matrix multiplication and Jpeg
benchmarks. The parallelized Jpeg decoding code consists of,
a sequential part (entropy decoding) and in a parallel region
(dequantization and IDCT).

Please note that the following acronyms will be used to rep-
resent each of the cache architectures; Separate (Se), Single-
port shared (SPS), Multi-port shared (MPS), and Hybrid
(Hy). Sub-figures in Figure 5 show execution time, energy
consumption, and miss rates of the system executing the pre-
viously mentioned benchmarks, having each of the different
cache architectures.

Figures 5(a) and 5(b) show that the shared cache with its
both configurations has the highest energy consumption and
the slowest execution time. Having a larger storage capacity
implies that shared caches suffer a larger energy consumption
per access, regardless its division into a number of banks, be-
cause there will be an additional energy resulting from the
interconnection from such banks. Assuming that the total
number of access to the cache are equal regardless the archi-
tecture, the shared cache will experience higher energy con-
sumption. Despite the availability of large storage capacity
that could give an assumption of lower miss rates as shown
in Figure 5(c), sharing such resource between multiple cores
leads to longer execution time. The usage of write-allocate
and write back techniques would lead to higher probability of
sending an updated (dirty) data to L3 memory before filling
in that dirty location in case of write miss, since any cache
location is shared between the various cores. Thus, a rela-
tively long period will be consumed in case of a write miss, in
addition to the presence of higher write miss rates in shared
caches as shown in Figure 5(d).

The single-port L2 cache experiences a longer execution
time since there is only a single port to be used. Thus, the
access to the cache will be round-robin based access. This
type of access guarantees fair cache accessibility but, it leads
to longer execution time, since the access to the cache from
any core is arbitrary and is dependent on the used applica-
tion. On the other hand, the multi-port shared cache has

(a) Energy consumption

(b) Execution Time

(c) Read miss rate

(d) Write miss rate

Figure 5: Performance metrics of Jpeg benchmark
execution on different cache architectures.

faster execution time than that of the single-port, since any
core could perform a read from the cache, simultaneously.
However, this enhancement came with the penalty of larger
energy consumption since the multi-port shared cache expe-
rience larger energy consumption per access.

The only benefit of the shared cache over the private cache
is the cacheability of the shared data without the need of
a coherency control overhead. But, as it is shown from the
graphs, this benefit only worked for the hybrid cache. This is
because the amount of shared data is observed to be always a
small portion compared to the private data. Thus, the benefit
of the cacheable shared data is negated by the increased cache
refills and replacements in the shared cache.

Simulation results show that, the hybrid cache based system
achieved lower energy consumption and execution time of the
separate cache based system in Jpeg benchmark for all stor-
age capacities except for 1MB. These results occurred since
hybrid L2 cache combines between the cacheability of shared
data and smaller energy consumption per access. However,
at 1MB capacity the private cache surpasses the hybrid cache
performance. This is related to the ratio between the shared
data and private data in such benchmark. While in lower ca-
pacities, both private and hybrid cache suffered high private

308

data miss rates but the hybrid cache had the availability of
shared data cacheability, as shown in Figure 5(c). By increas-
ing the capacity, the private data miss rate decreased in both
cache sizes but with different rates since the equivalent private
data capacity of the hybrid is half of the separate cache. At
1MB separate cache, the miss rate reached the minimum value
and by that, the effect of private data cacheability reached its
maximum that surpassed the shared data cacheability effect
in the hybrid cache. Then, it was at 2MB capacity that the
private portion of the hybrid cache reached its minimum miss
rate. Thus, the shared data cacheability became into favor of
the hybrid cache to obtain lower energy and execution time.

It is also worth to study the die area occupied by each
cache configuration. Figure 6 shows the area consumed by
each cache configuration. The area of the multi-port cache is
the largest amongst the various architectures, since a multi-
port cell occupies a larger area than a single-port one due to
its wirings. The area of the single-port cache is split into:
the area of the storage and the area of buffers and the multi-
plexer connecting the multiple cores to the caches single port,
as shown in Figure 3. The area of such multiplexer and the
buffering were estimated by synthesis on 90nm technology.
Their total area was 0.7mm2. Although the figure shows that
the private cache, single-port shared cache, and the hybrid
cache have similar die areas, the private cache is the small-
est cache, followed by variations between the single-port and
hybrid caches orders that are related to the total capacity.
Despite the overhead in its area, having better execution time,

Figure 6: Die area of each cache configuration and
storage capacity.

energy consumption, the hybrid L2 cache has been shown that
it is the optimum choice in the case of parallel workload, where
the small shared case could be of effective usage. But, in the
case of multi-processor workload, the presence of the small
shared cache will be an obstacle due to the absence of shared
data between the cores. Thus, there will be a waste of area
associated to the cache. We Deployed MiBench benchmark
in such workload to elaborate the performance of each cache
architecture.

MiBench [20] contains a group of applications used in em-
bedded systems. A runtime environment has been created
based on such benchmark where a certain application has
been assigned to each core, to assure complete heterogene-
ity. Figure 7 shows the systems performance with selected
applications of MiBench benchmark. The applications are:
qsort, djpeg, fast Fourier transform and sha. These applica-
tions are different in execution times with qsort is the fastest
benchmark and djpeg is the longest application. This kind
of distribution has been done in order to bias the system to
make better use of the shared resources. Even with this kind
of biasing, shared caches continue to perform worse than the
private cache. Energy consumed in multi-port shared cache
is higher than other configurations because it experiences a

(a) Energy consumption

(b) Execution Time

(c) Read miss rate

(d) Write miss rate

Figure 7: Performance metrics of MiBench bench-
mark execution on different cache architectures.

higher energy consumption per access with respect to other
cache configurations, because it experiences a higher energy
consumption per access. The different execution times are in-
stead comparable because there is a duration dominant appli-
cation which biases different architecture performance results.

It is also worth noticing the performance of the hybrid cache
against the private cache. Figure 7(a) shows that the hybrid
cache consumes similar energy values to the private cache but,
with slight increase in the 1MB capacity. The execution time
is also similar to each other. This implies that the change of
the cache capacity does not have a significant effect on the
whole system energy consumption.

3.2 Fixed Total Die Area Scenario
In this scenario, the die area allocated to L2 cache is es-

timated to be 50% of a chip containing the L2 cache and
the core tiles. Based on 90nm technology, the estimated die
area for the L2 cache in a system with 4 ARM9E cores was
11.067mm2. Based on this size criteria, Table 1 shows the best
storage capacity allocated to each cache architecture. The
only restriction on the storage capacity was that it should be
a power of 2, in order to simplify the cache design.

From this table, it is shown that the total capacity of the

309

Cache Architecture Size
Separate 128KB per cache

Single-port shared 512KB
Multi-port shared 128KB

Hybrid 128KB per separate
128KB for the shared

Table 1: L2 cache capacities of different cache archi-
tectures.

separate and the single-port caches are the same. But, the
multi-port cache has much lower capacity since the wiring
required for each gate to be accessed concurrently from more
than one port causes a significant wiring overhead.

By comparing the allocated capacity to each architecture
in order to be best fit in the given area with the capacity
allocated in subsection 3.1, the multi-port cache is the only
architecture that is affected with the mentioned condition (the
fixed die area).

Figure 8: Energy consumption and execution time of
Jpeg benchmark applied to different cache architec-
tures.

Figure 8 shows the different caches performance with the
Jpeg benchmark. By reducing the cache capacity, the miss
rate becomes higher which implies the multi-port cache having
the slowest execution time. However, the differences in the
energy consumption are not much relevant since the increase
in the miss rate is disaffected by a reduced energy consumed
per access. Thus the energy consumption of both the multi-
port and single-port caches are relatively comparable. The
shrinking of multi-port cache capacity has the greatest effect
on MiBench, as shown in Figure 9. The execution time of the
multi-port cache based system is the highest among the other
systems. This is due to the massive augmentation in the miss
rates when the multi-port cache capacity is reduced in such
scenario (fixed area).

4. CONCLUSIONS
On-chip memory organization is one of the most impor-

tant aspects that can influence the overall system behavior
in multi-processor systems. For embedded MPSoCs L1 cache
has been deeply studied, but there is still not a dominant
architectural paradigm for the L2 caches. In this paper, we
developed a set of parameterizable models for L2 caches and
integrated them in an accurate virtual platform environment
specifically designed for Embedded MPSoC design space ex-
plorations.

In a real scenario we have evaluated private, shared, and
hybrid L2 caches according to area, energy consumption, and

Figure 9: Energy consumption and execution time of
MiBench benchmark applied to different cache archi-
tectures.

execution time metrics, employing various workloads. Simu-
lation results show that the private L2 cache achieves better
performance than the shared one when heterogeneous work-
load is deployed: 20% faster execution time, 60% less energy
consumption, and 400% better area utilization than multi-
ported cache, as well as 7% faster execution time, and 10%
less energy consumption than single ported cache. Whereas if
there is shared data in the runtime environment, the hybrid
cache achieves better results than the private one (10% faster
execution time and 10% less energy consumption).

5. ACKNOWLEDGMENT
The work described in this publication was partly supported

by the PREDATOR Project funded by the European Commu-
nity 7th Framework Programme, Contract FP7-ICT-216008,
EC-FP7 STREP Project nr. 248776-PRO3D STREP, and
the Spanish Government Research Grants TIN2008-00508 and
CSD00C-07-20811.

6. REFERENCES
[1] ARM11 MPCore. http://www.arm.com/products/DevTools/PB11MPCore.html.
[2] ARM Cortex-A9 MPCore.

http://www.arm.com/products/CPUs/ARMCortex-A9_MPCore.html.
[3] Cell Broadband Engine. http://www.ibm.com/developerworks/power/cell/.
[4] MIPS32 1004K.

http://www.mips.com/products/processors/32-64-bit-cores/mips32-1004k/.
[5] Abu Asaduzzaman, et al. Impact of level-2 cache sharing on the performance

and power requirements of homogeneous multicore embedded systems. In
Microprocess. Microsyst, Vol 33, 2009.

[6] The SimpleScalar tool set. http://www.simplescalar.com/.
[7] The M5 Simulator System. http://www.m5sim.org/wiki/index.php/Main_Page.
[8] S. Murali, et al. A Method for Routing Packets Across Multiple Paths in

NoCs with In-Order Delivery and Fault-Tolerance Guarantees. In Hindawi
VLSI Design Journal, Special Issue on Networks-on-Chip, Vol.2007, Article ID
37627, April 2007.

[9] D. Atienza, et al. Network-On-Chip Design and Synthesis Outlook. In
Integration-The VLSI journal, Elsevier Science, ISSN: 0167-9260, Vol.41, Nr.
3, pp. 340-359, March 2008.

[10] G. Braun, et al. Processor/memory co-exploration on multiple abstraction
levels. In Proeedings of DATE’03, 2003.

[11] M. Leeman, et al. Automated dynamic memory data type implementation
exploration and optimization. In Proceedings of Annual Symposium on VLSI,
Tampa, USA, pp. 222-224, February 2003.

[12] F. Catthoor, et al. Data access and storage management for embedded
programmable processors. Kluwer Academic Publishers, Boston, USA, 2002.

[13] D. Atienza, et al. Systematic Dynamic Memory Management Design
Methodology for Reduced Memory Footprint. In Proceeding of TODAES’06,
pp.465-489, April 2006.

[14] The Simics tool set. http://www.virtutech.com/.
[15] The VaST Systems. http://www.vastsystems.com/.
[16] UNISIM: UNIted SIMulation environment. http://unisim.org/site/.
[17] J. Chang, et al. Cooperative Caching for Chip Multiprocessors. In Proceedings

ISCA’06, June 2006.
[18] Z. Chishti, et al. Optimizing Replication, Communication, and Capacity

Allocation in CMPs. In Proceedings of ISCA’05, Jun 2005.
[19] The MPARM virtual platform.

http://www-micrel.deis.unibo.it/sitonew/research/mparm.html.
[20] M. Guthaus, et al. MiBench: A free, commercially representative embedded

benchmark suite. In Proceedings of WWC’01.
[21] R. Kumar, et al. Core Optimization for Heterogeneous Chip Multiprocessors.

In Proceedings of PACT’06.
[22] R. Kumar, et al. Single-ISA Heterogeneous Multi-Core Architectures for

Multithreaded Workload Performance. In Proceedings of ISCA’04.
[23] CACTI 6.0. http://www.cs.utah.edu/~rajeev/cacti6/.

310

