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Abstract: 
The SpiNNaker machine is a massively parallel computing system, consisting of 1,000,000 cores. From one 
perspective, it has a place in Flynns' taxonomy: it is a straightforward MIMD machine. However, there is no 
interconnecting bus structure, and there is no attempt to maintain coherency between any of the memory 
banks. Inter-core communication is implemented by means of chip-to-chip packet transfer. Unlike 
conventional parallel machines, where packet-based communication is supported by a software layer, in 
SpiNNaker, the packet communication fabric is built in at the hardware level, and is the only mechanism 
whereby an arbitrary pair of cores can communicate. There is no unifying synchronisation system, and the 
packet delivery infrastructure is non-deterministic. 
In a number of application arenas - most notably neural simulation - this architecture is remarkably 
powerful, and supports techniques that can only be clumsily realised in conventional machines. 
In order to realise these advantages, a software layer - the routing system - is necessary to facilitate and 
choreograph the movement of the packets throughout the machine. The sheer size of the SpiNNaker machine 
makes conventional techniques difficult or impossible; the machine has to be largely self-organising. The 
routing tables that underpin the communication infrastructure can therefore be derived dynamically as a 
prologue processing phase. This paper describes the low-level software packet management system 
embodied in SpiNNaker. 
 

I. Introduction 

SpiNNaker is a massively parallel computing machine, consisting principally of a million ARM 9 cores, 

configured as 20 cores/die on 50,000 chips. Detailed architectural descriptions and discussions may be found 

in [1-7], and - referees willing - elsewhere in this conference. Whilst the engineering of a million processors 

is no mean feat, in order that this (or any large multi-core) ensemble functions in a meaningful and efficient 

manner, it is necessary to provide some mechanism for these processors to communicate, both between 

themselves and to the outside world. The scale of the machine demands novel approaches to many aspects of 

these problems, and here we allow the machine to derive the routing tables (the core elements of the 

communications subsystem) for itself, without reference to any guiding input from outside. This paper 

describes the large-scale software communications infrastructure employed in the SpiNNaker machine. 

I. 1 SpiNNaker - what is it for? 

From one perspective, SpiNNaker is a parallel computing engine, containing a million cores, and is as 

programmable as any other parallel machine. However, it has been designed with one very specific goal in 

mind: the simulation of extremely large neural circuits, in real time. This goal has driven almost all of the 

major design decisions. 
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Each core has associated with it a small amount of program and data memory (the ARMs are configured in a 

Harvard architecture), and each chip also has a much larger tranche of memory to be shared amongst the 

twenty cores. Each chip communicates to the others via six high-speed bidirectional IO ports, which 

communicate with the processors via the routing infrastructure described in this paper. The chips are 

nominally phase-locked by a relatively low frequency clock, but no attempt is made to enforce any further 

coherency on the memory or cores on each chip. The rationale for this is simple: the overarching goal of the 

SpiNNaker system is the simulation of large aggregates of biological neurones in real time. The biological 

system being simulated is demonstrably (a) viable and stable, and (b) non-deterministic, so the value of the 

simulation is not affected if the machine itself introduces - within limits - some non-determinism. Removing 

the constraint of determinism makes the design (from the computer architect perspective) around an order of 

magnitude simpler. The impact on the efficiency of the simulation process has yet to be studied in detail. 

Each ARM core hosts the state of around 1000 neurons, making the SpiNNaker machine capable of 

simulating aggregates of around a billion neurones - in real time, assuming a real neurone has a peak firing 
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Figure 1: The internal architecture of a SpiNNaker node 
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rate of around 1 kHz. 

We note in passing that the self-organising techniques described here open the door to an implementation of 

real-time plasticity, a long-standing drawback of most neural simulation systems. Whether this will be useful 

in practise remains to be seen; we estimate that the computational cost of deriving the routing tables 

dynamically to be comparable with a bootup. 

Before moving on to the detailed body of the paper, we note that (a) the architecture is also extremely well 

suited to a large body of computational problems that have nothing to do with neural simulation, and (b) the 

problems of obtaining and manipulating a meaningful (neural) netlist of a billion elements are significant. 

I. 2 SpiNNaker - what is it? 

The internal structure of each SpiNNaker chip is shown in figure 1. The chip contains twenty ARM 9 cores, 

ostensibly identical, except that one of these cores is arbitrarily designated as a 'monitor' processor (the 

designation is soft and may change in real time). The monitor processor is intended to play no part in the 

simulation activities; it is there to provide 'local overseer' capabilities. The other processors are called 

'fascicle processors'. Communication between cores is brokered by a packet-passing mechanism, described 

in detail in the next section. Note that cores on the same chip and different chips all communicate via the 

same mechanism - packets issued by a core go into the chip packet router, where they may be forwarded to 

cores on the same chip, any adjacent chip, or both. 

 
 

Figure 2: Low level link fault recovery 
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The six bi-directional links allow the 50,000 chips to be interconnected as a hexagonal mesh. Mesh edge 

effects are avoided by mapping the mesh onto the surface of a toroid, so that the environment as seen from 

any individual chip is isotropic and homogeneous, and all the chip environments are identical. The choice of 

a two-dimensional hexagonal mesh is pragmatic: it facilitates a rudimentary automatic low-level link fault 

recovery process (see figure 2), but aside from that, any connectivity is possible (limited, of course, by the 

constraint of six ports per chip). The infrastructure development described here does not assume or require 

any specific physical connectivity between the chips. 

I. 3 The communication perspective 

The chain of reasoning that drove the high-level design is derived from the quantitative characteristics of the 

biological neural systems it is designed to model. The human brain comprises in the region of 1011 neurons; 

the objective of the SpiNNaker work is to model 1% of this scale, which amounts to a billion neurons. Each 

neuron in the brain connects to thousands of other neurons. The mean firing rate of neurons is below 10 Hz, 

with the peak rate being 100s of Hz. These numerical points of reference can be summarized in the following 

deductions: 

● 109 neurons with a mean fan in/out 103  ==> 1012 synapses. 
● 1012 synapses with ~4 bytes/synapse  ==> 4.106 Mbytes total memory. 
● 1012 synapses switching at ~10Hz mean  ==> 1013 connections/s. 
● 1013 connections/s, 10 instr/connection  ==> 108 MIPS. 
● 108 MIPS using ~100MHz ARM  ==> 106 ARMs. 
 
So 109 neurons need 106 ARMs, whence: 

● 1 ARM at ~100MHz    ==> 103 neurons. 
● 1 node with 20 ARM968 + 80MB  ==> 2.104 neurons. 
● 5.104 nodes with 2.104 neurons/node  ==> 109 neurons. 
 

The above numbers all assume each neuron has 1,000 inputs. In practice this number will vary, and it is 

probably most useful to think of each ARM being able to model 1M synapses, so it can model 100 neurons 

each with 10,000 inputs, and so on. 

The system will be inefficient unless there is some commonality across the inputs to the set of neurons 

modelled on a processor, so that each input event typically connects to tens or hundreds of neurons modelled 

by a processor. In biology connections tend to be sparse, so, for example, a processor could model 1,000 
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neurons, each of which connects to a random 10% of the 10,000 inputs that are routed to the processor. The 

standard model assumes sparse connectivity. 

All the cores communicate via packets, and all the port connections are 1-to-1 - there are no busses. This is 

idealised in figure 3. 

II The communication infrastructure 

II. 1 Requirements 

The communication infrastructure must be scalable and fast. The latter requirement comes directly from the 

previous section, and the former from our ambition to push past the million core processor level at some 

point in the future. 

A further problem that we have to acknowledge is that in a system of a million cores and 300,000 interchip 

links, faults and failures will occur, both dead on arrival and lifetime. Like the biological counterpart, the 

aim (hope?) is that the performance of the system will degrade gracefully as failures occur. 

Biological neurons communicate via electrochemical impulses travelling along nerve fibres (action 

potentials). We idealise these to individual events, with a single element state vector, their launch time. 

Having made this idealisation, we push even further and discard the time, because the simulation system is 

operating in real time. We represent the neural action potential as a packet called multicast (MC). These 

packets are lightweight, and will provide the bulk of the system traffic during a simulation. For 

housekeeping, we provide two other packet types: nearest neighbour (NN) and point-to-point (P2P). The 

chip router can distinguish between these three types, and handles the packets accordingly.  
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What are these packet types, and why is there a communication infrastructure problem? 

II. 2 Nearest neighbour packets 

The nearest neighbour packet type is handled entirely by hardware, and requires no infrastructure 

programming; it is the bootstrap communication mechanism. It is intended to allow monitor processes to 

communicate - the receiving router will always direct the packet to its monitor processor, and the sending 

router has no interest in the exact origin of the packet (there is nothing to stop a fascicle processor sending a 

NN packet, but it hard to see the value of this). Packets may be addressed to a specific output port, or all six 

simultaneously. The internal structure of the packet is shown in figure 4. 

II. 3 Point-to-point packets 

The point-to-point packet internal structure is shown in figure 5. It allows monitor processors to 

communicate directly with each other, irrespective of where they lie in the machine. (These packets are the 

intended mechanism whereby a fascicle processor can communicate with its monitor. Communication in the 

opposite direction - monitor to fascicle processor - is achieved by the monitor writing to the shared chip 

memory, and then forcing an interrupt in the fascicle processor to go and look at the message.) 

This brings us to our first communication infrastructure problem: packets in transit are passed from router to 

router via the inter-chip links. How does an individual router know what to do with a P2P packet? At the 
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hardware level, each router is provided with a 64k x 3 bit RAM, the contents of which dictate what the router 

does with a P2P packet: that packet may need to be forwarded (to which port?) or this chip may contain the 

destination monitor. This RAM needs to be defined. 

II. 4 Multicast packets 

The internal structure of the multicast packet is shown in figure 6. Like the P2P packets, these packets have a 

routing table, although this is somewhat more sophisticated than the P2P table. MC packets allow neuron to 

communicate with neuron. (Recall each core plays host to around 1000 neuron models, and the neural fan-

in/out for biological systems can vary from 1 to 105.) The MC routing table is capable of carrying a single 

event through the network until such time as it is necessary to physically split it; see figure 7. 
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This brings us to the second and third infrastructure problems: 

How do we decide which neuron model to map to which core, and, having done that, how do we derive the 

MC routing table entries? 

III The need for self-organisation 

All three problems are closely related to the electronic design automation Automatic Place & Route (APR) 

problem. This involves the physical placement and interconnection of components onto a silicon substrate or 

printed circuit board. The area first became important in the early 1980s, when circuit complexities became 

intractable to humans. It is generally considered to be a solved problem. Why, then, can we simply not 

borrow and adapt these techniques for use here? The answer, in general, is scale and real-time adaptability. 

Conventional APR requires a host machine to have a complete overview of the system it is solving. Where 

this is not feasible, hierarchical decomposition allows us to reason about parts of a circuit in isolation, and 

then stitch these solutions together. The loss of quality of solution as a consequence is not considered 

important in the silicon industry. 

For the P2P route structure, we have 50,000 tables, each containing 64k entries (of which only 50k are used). 

Thus we need to compute 2.5 GByte of data (and then load it into the SpiNNaker machine). By the standards 

of today, this is far from impossible, but equally it is not a trivial task. 

For the MC problem, we have to map 109 neurons to 106 cores, and (taking the average neural fan-in to be 

104), establish 1013 neural interconnects, which then need to be loaded into 50,000 MC route tables. These 

numbers indicate we cannot even hold the data in a 32-bit offline machine; and any place/route mapping 

algorithm we use cannot be more than linear in both time and memory footprint. 

Hierarchy could possibly deliver success for the 106 core machine, but probably not beyond. 

Fortunately, we have an alternative: a million core parallel processing machine, and with careful 

choreography, we can actually generate the results where they need to be. 

IV The P2P network structure 

The SpiNNaker machine comes with a hardware NN packet communication system built in. We can use this 

to build up the P2P routine table entries dynamically. Further, the process is sufficiently computationally 

cheap that the tables can be redefined 'on the fly' if a fault occurs. (Note that, in general, a partial rebuild is 

not safe; it is rarely possible to guarantee the absence of loops.) 
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Preconditions: we assume 

● Each chip has a unique ID. 

● Each chip 'knows' it has a known, arbitrary number of named ports available. 

● The entire system is configured as a simply connected random graph. 

The 'knowledge horizon' of each chip is illustrated in figure 8. Our specific embodiment (6 links/chip, a 

regular hexagonal layout) is just one such system. 

IV. 1. The algorithm 

Each node executes the following pseudocode: 

 Clear_P2P_route_table(); 
 NN_send(myID,allPorts); 
 while (forever) { 
   NN_recv(fromID,myIPport); 
   if (route_table[fromID] != 0) continue; 
   route_table[fromID] = myIPport; 
   NN_send(fromID,all o/p ports except myIPport); 
   if (routetable full) break; 
 } 
 Kill_outstanding_message_Q(); 
 
A series of snapshots depicting the execution of this code are shown in figure 9, for the route table entries for 

just two nodes, N2 and N6. 

Each initial post by a node initiates a 'search wavefront' spreading out through the graph, with each node 

encountered by the ever-expanding wavefront storing the 'way back' to the source node. The process stops 

when all the nodes have all their tables full. The figure assumes that all the cores are executing in lockstep, 

for the sake of clarity - obviously this will not be the case in reality.
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Figure 9: Building up the P2P route table 
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IV. 2. Quality of solution 

The processors in the SpiNNaker machine are not synchronised; an optimal (minimum hop length) route set 

will only be generated if the loops on each processor execute at the same rate. While this may be true 

initially, the forking control flow contained in the loop body means that the search wavefronts will propagate 

at different rates - the effect is illustrated in figure 10. Nominal isochrones show node 3 taking as long to 

complete as node 5 + node 6 + node 7 + node 8; consequently the table entry for node 5 gives a route with a  

 hop length of 5 to get to node 1, where the obvious shortest route has a hop length of 4 (via nodes 4-3-2). 

However, the algorithm will always produce a correct answer, even if it is not necessarily the shortest route. 

In the worst case (when N nodes are strung together in a single line), the entire process will terminate in the 

time taken for the slowest processor to execute the loop N times. 

V. The MC network structure 

The MC routing structure is designed to facilitate the communication of 109 neuron models. This is achieved 

by distributing the definition of the neural interconnect network throughout the system (in the MC routing 

tables) so that the data carried by the MC packet can be as compact as possible. The packet itself contains the 

source address only; each individual route table knows what to do with packets emanating from that address 

 
 

Figure 10: Timing effects in the construction of the P2P route tables 
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(i.e. forward to another port and/or deliver to a local fascicle processor), and the 'data' carried by the packet 

is, in effect, the existence of the packet itself. 

V. 1 The MC routing table. 

The structure of the MC route table is shown in figure 11. The 32-bit source key is input to a 1024 x 32 bit 

ternary content addressable (or associative) memory (CAM). As it is a ternary (0, 1, X) CAM, in general, 

multiple hits will be both possible and common. These hits are written to a 1024 x 1 bit hit register. All but 

the most significant single bit in this register are discarded, and this single remaining bit treated as a 1024 bit 

1-hot and passed into an address encoder. This generates a 10 bit binary equivalent, which drives a 1024 x 26 

bit lookup RAM. The 26 bit word so generated consists of a 6-bit nibble and a 20-bit nibble: the 6-bit nibble 

represents an n-hot external link indicator (0-5) to which the packet is forwarded (for example 010110 would 
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cause the packet to be routed to external links 1, 2 and 4), and the 20-bit nibble represents an n-hot internal 

fascicle processor address (0-19) to which the packet will be forwarded, triggering an interrupt as it arrives. 

(For example, 00001000100100000000 will cause packets to go to fascicle processors 8, 11 and 15 on the 

current chip. It is easy to see how packets may be duplicated by this mechanism. 

Having described the physical embodiment of the route table, we have to address the issue of the origin of 

the RAM contents. 

V. 2 Place and route 

SpiNNaker - in its primary application space - is a distributed parallel simulation system, tuned to the real-

time simulation of extremely large neural networks. Sidestepping the issue of where these network 

definitions may be found, we are faced with the problem of mapping a network of around 109 neurons onto a 

network of 106 processors - see figure 12. Conventional automatic place/route/mapping techniques (requiring 

significant hierarchical definition to make the problem size tractable) can, of course, be applied to this, but 

even so, this pre-processing cost will be significant. Task separation like this also renders dynamic circuit 

 

Figure 12: Mapping the neural network to the processor mesh 
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topology reconfiguration in real time a complete impossibility. Better, then, is to find some way of exploiting 

the power of the SpiNNaker machine itself to perform the mapping. 

V. 2.1 Distributed placement on SpiNNaker 

The SpiNNaker placement problem is similar to the problem of minimising the overall energy of a set of 

mutually repulsive bodies, subject to various constraints. A cloud of electrons in vacuo, for example, will 

simply fly apart. A group of electrons in a closed box will distribute themselves around the perimeter of the 

box. In a two-dimensional system, where the edges of the geometry identify such that the two-dimensional 

plane becomes a three-dimensional toroid, the configuration of minimum energy corresponds to the particles 

being distributed uniformly over the surface. It is this kind of solution we seek for the distributed placement 

system in SpiNNaker. Note that although our solution technique may be inspired by field theory, we are in 

no way attempting to solve a physical field problem, and the laws of physics may be perverted or ignored 

completely to suit our purposes. 

The computational and algorithmic constraints include: 

● The SpiNNaker nodes are interconnected to a few local neighbours only; as the overall node 

topology may not be regular and certainly will not be known to each node, the 'knowledge horizon' 

of each node is deemed to be its immediate neighbours. 

● The n-body distribution problem in physics relies for its solution upon the notion of a conservative 

vector field. Whilst an arbitrary discrete network (of processors) can support the concept of a scalar 

field, and even distance -at a push (hop length) - the notion of field slope cannot be usefully defined 

● Asymptotic solutions do not sit easily in distributed discrete networks - they can oscillate. Whilst 

this in itself is not a problem (we are attempting to solve a discrete placement/mapping problem, not 

a problem in field mechanics), the detection of this oscillation and the realisation that we have a 

solution is non-trivial. 

In outline, the algorithm may be explained by considering the extremely simple system of figure 13. The 

SpiNNaker machine is configured as a single loop of ten, 2-port nodes, P0..P9. Without loss of generality, 

two bodies are initially randomly mapped to nodes P1 and P2. The goal is to get the system to self-organise, 

such that the bodies end up as far away from each other as possible, subject to the constraints/comments 

above. 
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The first step is to establish a 'field' throughout the entire processor mesh, consisting of the scalar sum of the 

contributions from each body in the system. This field 

● must decrease monotonically with distance (hop count) from its source 

● must be non-linear with hop length. 

Such a field may be quickly established using the NN packet infrastructure. Calling the field due to A FA and 

so on, figure 12 (the rows labelled 'iteration 0') show how the total field (∑F) at each processing node may be 

built up. 

 

Figure 13: Self-organising placement 

0 1 2 3 4 5 6 7 8 9 0 9 

6 10 6 3 1 0 0 0 1 3 
3 6 10 6 3 1 0 0 0 1 
9 16 16 9 4 1 0 0 1 4 ∑F 

FB 
FA 

10 6 3 1 0 0 0 1 3 6 
1 3 6 10 6 3 1 0 0 0 
11 9 9 11 6 3 1 1 3 6 ∑F 

FB 
FA 

6 3 1 0 0 0 1 3 6 10 
0 1 3 6 10 6 3 1 0 0 
6 4 4 6 10 6 4 4 6 10 ∑F 

FB 
FA 

Iteration 0 

Iteration 1 

Iteration 2 

A B 

  

 

  

 

A B

A B



 16

Looking now at each node in turn: 

The lowest neighbour field value of node A(:processor P1) is 9(P0), and the lowest neighbour field value of 

node B(:processor P2) is also 9(P3). Thus we allow A and B to migrate to processors P0 and P3 respectively. 

Repeating the process (iteration 1) shows that the lowest neighbour field value of node A(:processor P0) is 

6(P9), and the lowest neighbour field value of node B(:processor P3) is 9(P4). Thus we allow A and B to 

migrate once more. 

By iteration 2, the immediate neighbours of each node indicate no route by which they can reduce their 

ambient field value, and the system is stable. 

Note that the algorithm 

● only uses the scalar value of field values at adjacent nodes - there is no necessity for the notion of 

slope 

● is appropriate for graphs of arbitrary topology: the migration path is simply the one with the lowest 

absolute field value. 

 -- If all paths have the same field value, the node does not migrate 

 -- If the lowest field value is shared between more than one path, the decision is resolved by 

resort to the neural topology. 

The big advantages are (a) when the algorithm terminates, all the necessary data is actually resident in the 

processing node that will ultimately require it, and (b) all the placements are occurring simultaneously. 

V. 2.2 MC routing 

Once the neural model : SpiNNaker node mapping is in place, the establishment of the MC routes 

themselves come down to a question of realising the inflection points on each MC route; this may be 

achieved by a mechanism similar to that outlined in section IV. 

VI. The way forward 

The SpiNNaker machine is a major undertaking, from the perspectives of both hardware and software. Its 

massively parallel asynchronous nature will produce unique strengths for certain classes of computations, 

and the aspiration to model nervous system function has driven the fundamental hardware design decisions 

which, in turn, demand novel solutions to the problems of configuring and programming such a machine. We 

are now in unmapped territory, without the huge body of expertise that can be applied to conventional 
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systems; however, we believe that taking inspiration from the self-organising principles of biological 

systems will guide us toward effective solutions in the future. 
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