
11

AN EXPERIMENT IN THE DESIGN OF
A BASIC INTERPRETER

Hal Pitts
Graduate Student

Department of Information Systems
Georgia State University
Atlanta, GA 30 30 3

Abstract:

This paper describes the author's experience on the design and
implementation of a BASIC interpretive compiler written in
Algol W programming language. The experiment was initiated
to gain full control of an executing BASIC program for run time
debugging and automating the grading of students programs in
beginning BASIC programming classes. The interpreter is
implemented in Algol W programming language. The block
structure and the control structures of Algol W provided a
convenient environment for designing a truely structured
program. The powerful data structures facilities available
in Algol W gave the author better control of the program.
The input/output facilities of the Algol W version at Georgia
State University simplified the task of internal/external
numerical conversions. In the opinion of this author, Algol W
is an excellent language for debugging and writing interpretive
compilers. The BASIC interpreter operates in two loosely
connected phases: a parsing phase and an interpretive phase.
The parsing phase analyzes the complete source program and
translates the input program into pseudo machine-like code.
Major tasks of this phase are: Allocation of memory locations
to variables and constants, conversion of expressions into
Reverse Polish form, and the generation of pseudo machine
code. The interpretive phase executes the pseudo code
simulating a BASIC machine. The pseudo machine code was
designed to minimize the time needed to decode and execute it.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1795396.1795399&domain=pdf&date_stamp=1977-04-18

1. Introduction

In a University teaching environment there is a need to alleviate
the routine work associated with teaching introductory pro
gramming classes. With an enrollment of approximately 300
students each quarter in the introductory programming courses
in BASIC at Georgia State University (GSU), a method of
grading students programs was sought to relieve the instructors
of this task. It was also felt that some form of run-time
debugging would be helpful to students in debugging their
programming assignments. The first component to meet these
goals was the author's experiment in the design of a BASIC
interpretive compiler written in the Algol W programming
language. With this interpretive compiler it was felt that
we could gain full control of an executing BASIC program for
run-time debugging and automating the grading of students'
programs at a later time.

Inspite of renewed interest in interpretive compilers, triggered
by microprocessor technology, this author discovered that very
little has been reported in the literature concerning the
construction of interpretive compilers. The author used the
University of Washington BASIC Interpretive Compiler [l]
and Gauthier and Ponto's [2] description of interpreters as
a guide to his design. The BASIC language implemented is
similar to Lee's [3] formal description of BASIC.

2. Salient features of Algol W programming language:

The Algol W programming language was chosen for implementing
our BASIC interpretive compiler because of the ease of program
formulation. The Algol type block and control structures
made the task almost elementary in that the logical divisions
could be separated without the use of numerous program
branches. This created a convenient environment for desinging
a truely structured program. Recursion was helpful in that
some of the interpreter's modules were easily implemented as
recursive routines. Algol W's numerous data types also gave
flexibility to the resulting BASIC interpretive compiler
since data types could be transformed into a different
representation for variable translation and the indexing
into arrays. The input/output facilities of the Algol W
version at Georgia State made the messy task of numerical
conversion almost trivial. These features make Algol W
an excellent choice as a designing language for writing
interpretive compilers.

3. The Interpretive Compiler

The BASIC interpreter operates in two loosely connected phases:
a parsing phase and an interpretive phase. The parsing phase

13

analyzes the complete source orocrram and translates the input
program into pseudo machine-like code. Major functions of
this phase are: 1) Allocation of memory locations to variables
and constants, 2) Conversion of expressions into Reverse Polish
form, and 3) The generation of pseudo machine code. The inter
pretive phase executes the pseudocode simulating a BASIC
machine. The pseudo machine code was designed to minimize the
time to decode and execute it.

An essential part of this interpretive compiler are the tables
which are used in the parsing phase. Rome of these are also
used during interpretation of the pseudo machine code. The
most important table is a 8192-member array (Figure 1) which
contains variables, constants, pseudo machine code and a run
time stack. Locations of simple variables are statically lo
cated from location 0 through 285. The variables A-Z are
located in 0-25 and A0-Z9 are located in locations 26 through
285. This makes it convenient to access the locations of simple
variables during parsing. Of course memory locations are wasted
if all the simple variables are not used. mhe constant number
one is kept at location 286 and is used at the assumed step
size in a FOR-NEXT statement if not given. A run-time stack
takes up the next 100 locations. After the stack constants,
array allocation takes place which are inter-mixed and are
allocated upon their occurence in the source program. Every
constant is allocated a separate location so no time will be
lost in a search for the desired constant. Starting at location
8195 the pseudo machine code is placed in descending order.
Memory is full when the allocation of variables and code start
overlapping. This means that programs with large arrays can
not be run with this interpreter but this is not expected to
be a real hindrance in beginning programming classes. The
allocation scheme makes effective use of memory since more
memory than required for pseudocode and variable allocations
need not be used, as would be the case if seoarate arrays were
used for code and variables.

Other tables which are used are: a table made up of line numbers
and pointers to the pseudocode for the line number, an array of
data values from DATA statements, a table of parameter counts
and pointers to user defined function definitions, a table of
index variable names and return points for FOR-NEXT statements,
a table of character literals for use in PRINT statements, and
an array table with the number of subscripts, second dimension,
and pointers to the arrays location in memory.

Variables and constants are mapped into memory as follows
(see figure 2):

Single letter variables are translated into a numerical
equivalent with 0 corresponding to A and 25 to Z with the
other letters falling inbetween. This number corresponds
to the variable's location in memory.

Single letter and digit variables are translated in the
following way:
(1) The letter is translated as before. (I)
(2) The digit is converted into internal form, (d)

location = 26 + (l * 10) + d
Example: location B 6 = 2 6 + (l * 1 0) + 6 = 4 2

If the simple variable (A, Z8) is a parameter in a user defined
function, it can be located in the stack relative to a stack
pointer.

Array variables are located in memory after the stack and
are intermixed with constants allocation. The location of
a newly allocated array would be in the next available
locations in memory. The format of the array when in
memory is as follows:
(1) The content of the first allocated location is the
number of elements in the second dimension of the array.
(2) The content of the second allocated location is a
pointer to the last element in the array.
(3) The remaining locations contain the array elements

To find an array element in memory the following formula is
used:

Let P = pointer to array location in memory from array table;
location of X(I,J) = (l*MEMORY(P)) + J + P + 3
location of X(I) = I + P + 3

Constants are located in memory locations following the stack
and are intermixed with array allocation. The constant is
converted into internal floating point and placed into the
next available location in memory. This location will be
used in the pseudo machine code as the constants location.
Every constant encountered is given a separate location
to minimize the time needed to locate the constant.

15

3.1 Parsing Phase:

Consideration of the overall efficiency of the interpretive
compiler dictates that the BASIC source statements should be
parsed to a form which is suitable for efficient interrelation.
This parsed form or pseudo machine code will in all probability
be interpreted many times while the parser only parses each
statement once. This implies that as much preprocessing of
the source statements should be accomplished during the parsing
phase as possible and thus increase the overall system efficiency.

The parsing module is always in one of two states, viz. the
proqram state or the function state. These states are differ
entiated by the first parameter of the parser module call which
when TRUE is in the function state and a function definition
body is to be parsed or when FALSE all other statements are to
be parsed. The format of the parser module call is:

PARSER (FUNCTION STATE(Boolean); Beginning of the parameter
list, End of the parameter list, Function name (Integer));

An example of each call:
Program: PARSER(FALSE,-,-,-);

Function: PARSEP(TRUE,0,5,0) - This would be the call if
function A's parameter list starts at paramater table (0)
and there are six parameters to the function.

The parsing phase is divided into three major modules: POLISH,
VARIABLE, and STATEMENT. POLISH accepts an infix expression
string and outputs pseudo machine code in Polish form. VARIABLE
allocates and locates memory space for sinple and array variables.
Also function and parameter identifiers are resolved in this
module. STATEMENT meanwhile locates the correct Algol W
code which contains the statement's syntax equation and controls
the parsing of the source statement.

The first step in the parsinq phase is to read in a source state
ment as a character string and remove all blanks. A delimiter
is placed at the end of the source statement and parsinq of the
statement ends when the delimiter is encountered. The state
ments line number is placed in the line number table along with
the location of the starting address of that statements code.
Next the statement module is invoked and its syntax equation is
followed to produce pseudo machine code for the source statement.
If the statement does not fit it's syntax equation exactly an
error message is produced. Parsing continues until the state
ment delimiter is reached. This process continues until an
END statement is encountered or an end of file occurs in which
case the code for the END statement is produced.

Basic Modules:

The Polish module transforms an expression string into pseudo
machine code in reverse Polish form. The order in which ex
pression elements are looked for is as follows:

(1) A unary operator - code is only produced for the negate
operator.
(2) A parenthesies expression in which case Polish is in
voked again recursively.
(3) Variables, constants, or function calls
(4) Binary operators (**, *, /, +, -)
(5) Go back to (1)

This process is stopped when a statement element is found which
does not correspond to one of the above expression elements.

The VARIABLE module is invoked when a letter is found in the
statement string which is not a part of a key word (TO, THEN,
GO, etc). The variable type is then located and memory space
is allocated as stated before. If a variable does not corre
spond exactly to its variable type format an error message is
produced. This location and other identifing codes are out
put to the statements code stream. Control them passes to the
calling module.

When a label is encountered in one of the branch statements
(GO TO, GO SUB, IF, etc) one of the two things take place.
The label is converted into internal floating point and
compared with the last line in the line number table. If the
label is less than that value a binary search is made of the
line number table and the location of that statements code is
used as part of the pseudocode for a direct branch. If it was
greater an indirect branch code will be produced and the search
will take place when the instruction is interpreted.

FOR-NEXT Statement

The processing of the FOR-NEXT loop is interesting in the way
that loop control is set up. Processing of the FOR statement
preceeds as follows: (See figure 3)

(1) Op-code for FOR is outputted to code stream
(2) The index variable is transformed (A-0, Z9-285) and
placed in the loop stack. Also it is placed in the code
stream.
(3) The "=" is passed by and POLISH is called for the
initial value expression.
(4) The "TO" is passed by and Polish is called for the
final value expression.

17

(5) If the statement delimiter is the next character then
the constant number one located in location 286 is output
as the step size; otherwise "STFP" is passed by and POLISH
is called for the step size expression.
(6) Two locations are set aside for use in interpreting
the FOR-NEXT loop.
(7) Code for a FOR loop compare is produced and an extra
location is saved to contain the location of the next
statement after the loop's range.
(8) The location of the FOR compare code is kept in the
for-compare stack for branching back after the NEXT state
ment is encountered.
(9) When the NEXT is encountered the index of the NEXT
is checked to see if it corresoonds to the last FOR
index encountered. If not an error exists.
(10) Code is produced to increment the index variable and
branching code to the FOR compare whose location is con
tained in the FOR compare stack.
(11) The next location is placed into the FOR-compare code.

18

Function Definitions

This BASIC interpreter supports two types of function definitions
multiple and single line definition. Single line definitions
are straight forward and parsed as follows:

(1) Locate the function name and place it in temporary
storage.
(2) Check for prior definition of the function and if
defined before, produce an error message
(3) Produce code to jump around the function definition -
this will be completed when the end of the definition is
encountered.
(4) Store the parameters in the parameter table in trans
lated form (A-0, Z9-286) while keeping the beginning and
ending locations for use in the PARSER Call.
(5) Store the beginning location of the function expression
or body definition in the function pointer table.
(6) Check the number of parameters against the number in
the parameter count table if the function was previously
encountered, and if unequal an error exists.
(7) Check for "=" and if found the function is a single
line definition.
(8) Save the parsing call parameters
(9) Load parsing parameters with new values
(10) Call Polish
(11) Replace the saved parameters

Multiple line definitions are parsed as follows:
(1) Steps 1-6 are the same as above
(2) Check for statement delimiter and if not found error
occurs
(3) Call the parsing module with the following parameters

(a) TRUE - function state
(b) beginning of parameter list
(c) end of parameter list
(d) The name of the function (FNA=0, FNZ=25)

(4) The parsing module is exited when a FNEND statement
is encountered. Code for this statement is output to the
code stream and control returns to the point of the call

Illegal branches out of the function body are not checked until
the function is executed during interpretation.

19

3.2 Interpretive Phase

The interpretive phase is divided into three major modules
which executes the pseudo machine code produced during the
parsing phase. These modules are: the expression module,
array variable module, and the instruction decode module.
The expression module executes all expression instructions and
leaves the expression value on top of the stack. The array-
variable module located an array element in memory and checks
for an out of bounds condition. The instruction decode module
locates that section of Algol W code which will interpret the
statements pseudo instructions specified by its op-code.

The interpretive phase operates in one of two states - the
run state or the function state. These states are differentiated
by the first parameter of the interpretation module call which
when has the value TRUE is in the function state otherwise
it will be in the run state. The form of the call is as follows:

Interpret (Function state (boolean), function code location,
function name, stack pointer (Integer), End of function,
Function value returned (Boolean), Function return value
(Real))
An example of each!
Run: Interpret (FALSE,-,-,-,-,-,-)
Function: interpret (TRUE,6217, 1, TRUE,-, FALSE, 15)
This would be the call for the function FNB whose code
begins at location 6217, and whose parameter list begins
at stack location 15).

Basic Modules

The instruction decode module locates the Algol w code which
interprets a given statements pseudo machine code. The section
of code is located by using an Algol w CASE statement which
branches on the op-code of the BASIC statement's instruction
code. The interpretation of each statement is confined to a
section of Algol W code, with calls to the array variable module
and expression. This process of interpreting one statement as
a complete variable length instruction continues until the
code for a STOP or FVD statement is encountered, or an error
occurs in the interpretation process.

The expression module is called when an expression needs to
be evaluated. The expression will be evaluated until an
expression stop code is executed which means expressions could
be of any length. This module works as follows:

(1) load the stack with the contents of the memory locations
prescribed in the expression code until an operator code
is located.

(a) load function values
(b) load array element value

20

(c) load simple variahle value
(d) load function parameter value

(2) execute the required operation on the top of the
stack for unary operator code or on the top and top-1
of the stack for binary operation code
(3) repeat (1) and (2) until the stop expression code is
the expressions value

The array variable module locates the specified array element
in memory and checks for the out of bounds condition. The
location of an array element is interpreted in the following
way.

(1) Find the location of the array in memory from the
array table. Call this location L.
(2) If Memory (1)>0 the a two dimensional array. Call
EXPRESSION TWICE otherwise for one dimensional array
called EXPRESSION once.
(3) The subscript values are now on top of the stack
(4) The elements location is given by the following
formula:
two dimensional = Memory (L+l) * STACK (TOP-1)

+ STACK (TOP) + 2 + L
one dimensional = STACK (TOP) + 2 + L
(5) This location is checked for subscript error by com
paring with Memory (L+l) which is the last array element's
location

21

FOR-NEXT loop Interpretation

The FOR loop is another interesting feature of this BASIC
interpretive compiler in how it is encountered. When the FOR
statement op-code is encountered control passes to the Algol W
code which executes the FOR statement. Expression is then
called three times to evaluate the initial, final, and step
values. The initial value is loaded into the index variables
location. The final value and step size are loaded into the
next two locations in the code stream. Control passes now to
the instructor decode module for the next statement in the FOR
loops range. The next statement will be a FOR-loop compare
instruction which compares the index value with the final loop
value and branches past the loops range if less than, for a
negative increment or greater than for a positive increment.
Statements in the FOR-ioop range are executed until the index
value is out of range. When a NEXT statement is encountered
the index variable is incremented and a branch to the FOR-
compare code is initiated.

User defined function interpretation

The evaluation of user defined functions is interesting in the
way the interpretation phase handles them. When the op-code
for a user defined function is encountered, the EXPRESSION
module is called until all the parameter expressions have been
evaluation. If the function is a single line type the function
expression is evaluated by a call on the interpretation module
in the function state. For a multiple line definition the
interpretive module is called in the function state and the
function body statements are interpreted until the code for a
FNEND statement is encountered. At which time control passes
back to the point where the interpretive module was invoked.
If the function was not given a value ot an illegal exit from
the interpretive module was taken as error condition exists
and processing is stopped. The stacking of function parameters
on the stack give this BASIC the ability to have recursively
defined function definitions.

Conclusion

In practice this BASIC interpretive compiler works very well.
The execution speed is somewhat slower than a compiler would
be, but I feel the added flexibility and control which an
interpretive compiler gives more than makes up for the loss of
execution speed, especially in an educational environment.
With the added features of run time debugging and the automation
of BASIC programming assignment grading the interpreter will
become a useful and much used learning tool.

22

REFERENCES

[l] W. F. Sharpe, "University of Washington BASIC Interpretive
Compiler", UWBIC (1967).

[2] R. L. Gauthier and S. D. Ponto, "Desiqning Systems Programs",
(1970).

[3] J. A. N. Lee, "The Formal Definition of the BASIC Language",
The Computer Journal, Vol. 15, No. 1, February 1972.

23

0
1

25
26

i

285
286

&7

8W

A
&

I
Ao

11
to

•

SjMplt VcMJUskltA

OmpJjjed Joop jUioummvt

100 member Stock

(jtLAiani* mud AjumgA

fjeudo-mackuit code,

Table 1

24

AJUUcatJum

mm
AAJUUJ. Table.

1

\

*

i
A

2

0

\ ,
10

MOO

(

jto

\

k 603

wow f^mjm

f»M2,U5,5)

2 U 0 + STAQPm
U5U1 + ST^pm
5L62 + STtQ&Tk

T

S7/IQ(

Figure 2

25

FOfUtffl STAJtfflT

Fotmtxr imi
8

10
6<m
478

M&L m

3
K

73m

RMS* 1 ID 10 STff 2
mK* 2*)6

• • •

H&JK
H(P3

6800

6802

6978

6990

r*^978\

7000

~ESBk
V7W

**&TJ

17W

-20

#&7M

4ta£*mmjU in.
ike. l—p

286
-2®

M.
-20
390

10

im

*
-20

-3£

i

foncpWAitt
uAtd. ia httJd
vtCAJtmeBJ.,At*p

jjapJiitd Mxp

Jae #6

Uc*2

WflM

fD8~(M?Af£

iLoed jfe hold.
iACJumeuLfMep

I*c§2

Uc §10

Uc#1

was

Figure 3

26

fM53HC,fUASt
wn mmo mows

mQWH imt

7&t2

_ — . . . —

3

UXA730H HUmft OF

0
1
2

Off FM0Ot}tK)

• • •

L£TFm* 0 + J -K
FH&Q

QU fm£fCmj{j),2,3)

1
2
3

T

10

3

K

f, >/W&7£fl

7595

7&t2 I

7
J±
-20

-2L

*12
-2k

-12

-12

^12-

7595
11

FH£ND 0

K

1

L£TFMD

Fwtdiam. body.

Jump OAffund
ftatctian. bedf

Figure 4

27

SteUmmt: 25 & 5*C * *f * Hi) W1 &

i ^^^A^^^^^W^^^^ \

33

n
ir

v
EXT

ST*?

.£

3Z

Xiae number
* op-atdjt

»c
3F tp-code

M&OW

(lj ¥mdu.c*. mp-c0tU {OM. 3F
(2) QUI WL3SM
(3) Save a>de. {OM. ***
(k) t*U WL3SH
(5) Simju. *MU (*JL '=*
(6) QHLVVU "JO" JmJ» MUuiuU {»A

Figure 5

28

?s&w-wm
SjnftmmU vp-wd&d

i l£7
2 WNT
3 STOP
k %M
5 FH&B
6 fOt
7 fOZQWflt
8 M&T
9 &

to ww$yjp&
11 myjym
12 (jmi%fig)X)
13 WGE
1k f£TLm,
15 9) SIS
16 US& FlMiQ79M~ *n* lute

1 «
2>«
3>
k<>
5 < «
6<

(Mhex
-20 *Aop code.

im..
FiMcttimt*

-1 m
-2 m
-J (fiS
jt m
-5 AIM

-6 m
-7 Of
-8 MT
-9 m

.10 U$&WH(J30li

AjLUtm&tLc Ope*****

-23 -
-2k +
-26 /

„ m Jfc

-27 *
-29 **
-30 - (tmxuuj)

Va*balhU
0-285 S90Li
-11 may
-12 smtf
-13 Mk

Figure 6

29

MTfmfWt ?MS£

LlTX*FN0l2>3tl,6*m)

(ALL 3#7£ffi£7(7W£,76*2t3,0,FALS£,4j

Stackpfc- k
&£*=.

10

60

S7AQ(

fttMuut r-
Vmlmt L Ji8\

8

9

27

k01
k02

#97

igure 7

i
2

10

2
6

-20
-20
-27
27

wte -20

1
-20
-2b

&

Lift
3

-11

h 1

^fOW

3

7

A1

atop

6*A1

g
e

2 + 2

FHO

117X

