
217

TITLE: ELECTRONIC FUNDS TRANSFER LANGUAGE

AUTHORS: GERALDINE CHASE
NOSRATOLLAH KHALILI
NORMAN ELDRIDGE

AUTHORS' POSITION: STUDENTS

ORGANIZATION: MISSISSIPPI STATE
COMPUTER SCIENCE DEPARTMENT

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1795396.1795425&domain=pdf&date_stamp=1977-04-18

218

This paper discusses a programing language designed as a
result of a group terra project in an undergraduate Senior level
Computer Science course. The course emphasized the study of
language concepts such as syntax, semantics, data structures,
and language structures rather than language implementation.
The task for the project was to design a small special-purpose,
application language which would utilize some of the language
concepts discussed in the course.

A Business oriented language was chosen as opposed to a
scientific language because of the group's background in busi­
ness related courses and knowledge of business related program­
ming problems. A need was seen for a programming language
which could handle the programming problems of banking more
efficiently than the general purpose programming languages
used by the Banking Industries. The language to be discussed
can be used as a general purpose language but has special
features designed to solve the various programming problems
of Banking. Beause of its special features in the Banking
area, the name Electronic Funds Transfer Language was chosen.
The EFTL structure is Independent Routine structure. The Data
structures are arrays and scalars and statements are symbolic
in format.

GENERAL INFORMATION

Variable names in EFTL have a maximum length of nine
characters and can contain data of flexible lengths. File
names and subroutine names have a maximum length of five char­
acters. All labeled statements must have a sequence number in
columns one through five in chronological order. Comment
statements may be inserted in the source program for reference
purposes by use of the REFERENCE function. These comments
are to be printed out, but will have no affect on the object
program. Its format is:

***REF.character string

The three asteriks are in columns one through three, REF. is
in columns four thi'ough seven and tho character string starts
in eoiunr. eight u..\& rnay cr.i i.:. co^nr eighty. in .cB'TL, in­
structors dall i.; ';o tv/c categories, general ins true ticis and
speeie.1 instruction tyj.Pc»

GENERAL INSTRUCTION TYPES

General instruction types are instructions that are not
unique to EFTL only. Instructions included in this type are
arithmetic instructions, comparison test instructions, transfer
instructions and subroutine call instructions.

219

The Arithmetic instructions include the following operators:

+ , addition
*, multiplication
-, subtraction
/, division
**, exponent

The foi'mcib fox tho Arithmetic instructions is:
operator,operand,operand,...,operand: variable names

Comparison test instructions include the following operators:

=, equal
, less than
, greater than

= , less than or equal to
= , greater than or equal to

The format for the Comparison t e s t operators i s :
opera tor , ident i f ie r , ident i f ie r ; options

Options include the arithmetic statements and TRANSFER
statement. The TRANSFER verb is another general instruction
type and has the following format:

TRANSFER sequence #

Its function is to permit a departure from the normal
sequence of procedures by•specifying a transfer of control to
another point in the program.

A subroutine is invoked by the sUB verb, which has the
format:

SUB Subroutine name (ARC.,, ARG2 ...)

SPECIAL INSTRUCTION TYPES

The special instruction types in EFT1 are instructions
which are unique to this language only. The instructions are
distinguished from the general instructions by a reserved label
name which causes that instruction to be executed according to
its form. There are five form types which include FRM, IN, RES
OUT and BAL label names which accomplish the special instructions
of EFTL.

/

Mo.

\b

FRiA

1

File

V4

A/ame.

J3

A,.

a?

£W

32.

Tkc,

•

is

/{cu}

|&

&l.

\3-7 &

(cmmeAj/ J5

220

The first form is the i'RM which describes an input or
output file format. The file names entered here must also be
entered on the IN or OUT form. All reserved label names begin
in column six. Column thirty-two is requiered for numeric field
names only.

iL

XAJ

L (±. U2. M

0~PTI&AJ 3

The second form is the IN form which makes available the
next record from the specified input file and allows the execution
of a specified imperative statement when the end of file is detected,
Column seventeen includes the option LAST which transfer control
to a sequence number when the last record on the file is read.

f—'
.AJd.

i : ?

t(\ltULf{TlOA)$

yo

The specification form called RES causes one or more numeric
data items to assume a new value derived from a named or literal
data item or an arithmetic expression. It is used only in cal­
culations concerning mixed operators. The order of priority in
operators is: exponents, multiplication, division, addition, and
subtraction.

/

S'e£,

&.

OUT
Bit
AJOnae

UL JJL

OPTXO AJ S

The OUT form releases a unit record to an output and _
allows vertical positioning if the output medium is an on-line
printer. If a # appears in column nine, the character string
following the # will be printed in the program as a quote.

221

/Do,
-ML

tiL

kt.MC

i^i

Ace J d.

22*- id

/J/l/lduAli

An added form which will be used to handle monetary trans­
actions by the computer is the BAL for.n. This special instruction
will greatly reduce the time involved in the clearing of checks
and will be useful in implementing a complete turnover of bank­
ing procedures to the computer.

SAMPLE PROGRAM
In this program, a master file is being updated. The

accounts of persons who have made withdrawals are being adjusted
according to amounts read into the computer. The master file is
on tape and the transaction file comes in from the card-reader.
After the master file has been updated, it will be printed out
as the new master file.

10

20

30

40

50

60

70

80

90

100

110

Program:

FRM DEPOS ACCNO

* BALD

FRM CARD ACCN

* BAL

2

14

2

14

11

20

11

20

OUT # This is the updated file

IN CARD C LAST 120

IN DEPOST LAST 120

=, ACCN, ACCNO, TRANSFER

OUT DEPOS P

TRANSFER 50

-, BALD, BAS: BALD

OUT DEPOS P

TRANSFER 40

90

120 STOP

SUMMARY

The goal of this project was to demonstrate the design of
a special purpose language. An Independent Routine structure
was chosen for EFTL because it fits the need of this language
better than Block structures. Arrays were chosen as the most
complex data structure since most structures can be built from
arrays.

21"'TL applies common language concepts to define a language
to serve the needs of a specified user group.

