
http://crossmark.crossref.org/dialog/?doi=10.1145%2F1795396.1795458&domain=pdf&date_stamp=1977-04-18

452

7. Background

After working in several different organizations over the past eleven
years, it became commonplace to refer to maintenance as "fighting fires"
or "working in the trenches" as if we were at war with the user. The
somewhat haphazard or unscientific ways of developing and maintaining
automated data systems was a way of life. I wasn't really taught to
document my code. Even if I had been schooled on the subject, document
ing would have come after strong protest.

After being promoted to a systems analyst position, I saw a need to
communicate with something besides the computer and sometimes my wife.
In most cases, however, the system which I developed I also maintained.
The result was that even at this point documenting and representing the
system on paper came slowly to me. Only after being transferred to a
function which I knew little about and being required to bring to opera
tional readiness a set of half programs with n£ legible documentation
did I start to understand the problem.

Structured Programming and Structured Design are. great tools as far
as they go; however, they are of little help in the conceptual and analy
sis phases of the Systems Life Cycle (Figure 1, line A & B). At last
year's Software Engineering Conference, a number of case studies pointed
out the tremendous cost of maintaining ill defined systems. For example,
one case study pointed out that correcting a .5 manday design error in
the early stages (Figure 1, point A' & B') would cost from 20 to 50
mandays in operation (Figure 1, line F). This was substantiated by two
other studies resulting in somewhat higher cost comparisons. Of equal
importance and contrary to common belief was the "discovery" that most
program changes were a result of systems design errors and not program
ming errors. Examples of fault correction ranged from a 70%-30% mix to
a 60%-40% mix in two studies (Ref IEEE-76-1). Indeed, our early quan
titative description of systems capabilities is mandatory. The documen
tation should include how and under what circumstances a decision was
made as well as the what and why (Ref IEEE-76-2).

FIGURE 1

A=Concept; B=Analysis; C=Design; D=Programming; E=Quality Control;
F=Maintenance; G=Management & Audit; H=Development Curve
A'=Concept Review; B'=Analysis Rev; C'=Design Review; D'Internal Delivery
Review; E'=Customer Acceptance; F'=Field Audit

(Ref IEEE-76-3)

453

R. L. Patrick (Ref Data-76-1) explains that many people look at costs
from the "design", "code", and "test" activities with the old 40%-20%-40%
ideas. However, in real life the charts must show "maintenance" as well.5

This cuts the pie chart into 70%-12%-6%-12% proportions. 1 believe that
we must look at the Systems Life Cycle from the "new" angle. That speci
fically is looking from the Maintenance point of view.

1. MalntznancQ Policy

In researching the problem of Maintenance, I found that W. M. Lindhorst
(Ref Data-73-1) got the idea of scheduled maintenance. J. W. Mooney (Ref
Data-75-1) has expanded the topic to include "repair", "revisions" and
"enhancements". We have a need to perform a further abstraction on the
subject. To do that I studied our friends in heavy industry.

Maintenance Engineering has become recognized in industry as a pro
fession since about 1950. I assert that we should use their many years of
experience in resolving our problem. They view Maintenance as being a
three-pronged problem including "Preventive Maintenance", "Corrective
Maintenance", and "Maintenance Prevention" (Ref BK-1). Using B. W. Boehm's
cost trends chart (Ref IEEE-76-2) and information from case studies, our
1985 software cost goals should reflect 30% Maintenance Prevention, 47%
Preventive Maintenance, and 23% Corrective Maintenance (Ref Fig 2).

FIGURE 2

H
</s
O

u

<
O
H
o
H

pi
W

80

60

40

20

HARDWARE

i 1

S*^ MAINTENANCE
S PREVENTION

>^C0RRECTIVE ^ ^ ^
' MAINTENANCE ^ ^

^ T PREVENTIVE
^ ^ MAINTENANCE

^-<^***1 i i

1955 60 65 70 75 80 1985

3. WuYitQ.na.ncn ?n.Qvo,ntA.on

Maintenance Prevention is simply generating the correct system in the
first place. It requires the proper degree of abstraction in the early
phases (Fig 1, Line A & B). Maintenance prevention requires modularity
in systems design as well as the programming phase (Fig 1, Line C & D).
Environmental systems testing of the programs, users and operations manual!

WuYitQ.na.ncn

454

is critical (Figure 1, Line E). However, the prime factor in Maintenance Pre
vention is proper management (Figure 1, Line G).

i

3.7. VKopen. Management '

Proper management starts at the top with the Vice President for Data
Processing. This individual leavies overall (long range) goals regarding data
automation concepts, objectives, policies and plans. The individual systems
managers must insure that his short range goals and plans are in accord with
the corporate goals. Otherwise his system is doomed ultimately to failure-

We have three basic types of plans which must be generated for good
Maintenance Prevention. They are the Configuration Management Plan, the Data
Project Plans and Resource Plans. All planning must follow corporate.guide
lines; however, all three plans must be generated in a bottom-up form. The
Software Manager, or line management generates information for the next higher
level and that level for the next level. Ultimately all plans are consolidated
by the appropriate management office to be included at the macro level in over
all corporate plans. The resource plan includes projecting both personnel
and hardware acquisition. However, those activities are not addressed in this
paper.

The Configuration Management Plan should have basic outlines or goals
levied by the Vice President for Data Processing. However, for the Configura
tion Management Plan to operate effectively, it must be generated by the Soft
ware Manager for the specific system in question. The consolidated Configura
tion Management Plan for one set of hardware would insure that all systems
plans are compatible, and would result in easier control by top management.

Software Data Project Plans should be generated/updated at each review
"check point" within each phase of development activity (Ref Figure 1, Point
A' B' C D' E' F'). That is, the Data Project plans would be developed at
the start of any project and reviewed/updated at the termination of each phase.
Also, a plan would have to be generated for each individual phase.

3.2. So^tuiaAe Engine&iing

Good Engineering needs u p - t o - d a t e t o o l s and t echn iques . Examples a re
SADT, PSA/PSL, PARNAS, the Jackson Design Method, TRW's BMD System, S t ruc tured
Design, S t ruc tu red Programming and the Chief Programmer Team (Ref IEEE-76-2).
F ranc i s Kelly the noted a r t r e s t o r e r summed i t up wel l for h i s p ro fess ion
and h i s words apply he re a l s o .

"EveAy wohk htxvitk o^{ on a pn.ogh.et> hive path to
dei>txactton fafiom the moment It iA cueated. One can
only hope to delay tkit> time ai> long a* poi>i>ible by
the judicicuA choice ofa mate>vial& and thein. applica
tion with a ioand technique."

The professional art restorer and the Software Engineer interested in main
tenance have numerous simularities. (1) Both are charged with the continu
ation of a specific item. (2) Both use scientific methods and tools to filter
out the problems and in the correction of problems. (3) Both work to prevent
the items destruction in time. (4) Both have goals of making the deliverable

pn.ogh.et

455

as friendly to the end user as possible. The restorer, however, is charged
with bringing the work of art back to the original condition. Conversely, the
Software Engineer is charged with insuring that the system is not brought back
to its original condition.

3.3- The AlteAnative System.

Our goal in Software Engineering should be to generate a dynamic system
with: a high maintainability ratio, several capability levels, and measurable
availability/reliability. The alternative system should be more than just
friendly to developer, user and maintainer. It should be convivial. Joseph
E. Worcester's New Dictionary of 1888 defines convivial as follows:

"Convivial ikon-viv'e-al) SVN.--The leading idea oh
Convivial is that o$ sensual indulgence, {e&tivity, OK
the, pleasuKcs oh the table, that o{\ social, the enjoy
ment &Kom an inteKcouKse with society, £̂6£cve OK
jovial, company."

Yes, our alternative to chaos is a friend that makes play out of work. Our
friend should be user oriented. Our friend should consider the maintenance
team as one of the three users. Our friend must be capable, available, reli
able, and maintainable.

The best example of capability is a system which gives you numerous
alternatives for performing a task. If, for example, the prompting features
of the on-line system went down, then you could fall back to the data name/
date type entry. If that set of code failed, then fall-back could go to
strict formatting over the remote. If the remote lost power, then entries
could be put in at the end of day and beginning of day. If all else fails,
the convivial system would play chess with you until Corrective Maintenance
was completed.

For our system to be available, it must be operable and in a committable
state whenever we need it. Our systems reliability is the probability that a
svstems configuration item would perform its intended function for a specified
period of time. (Ref DMJ-75-2, Data 73-2, COMP-74-1).

Our convivial systems Maintainability is directly related to the wisdom
of its creator. It should have modular design and structured programming
attributes, but more important is its solution to the problem. If the solu
tion is cast in concrete or is in fact a solution to the wrong problem, then
it cannot be convivial. The system must be documented and even that documen
tation must be maintainable (i.e., modular, understandable). Feedback loops
must exist between the user, maintainer and developer.

3.4. Swmmasiy o{\ Maintenance PKevention

Maintenance Prevention is in reality an honest attempt at deleting the
other two aspects of maintenance. In short, you try your best to get rid of
your own job. This insane act requires a judicious choice of materials and

456

their sound application. Maintenance Prevention can have the latest in tech
nology and employees who know how to use it, but without proper management
the system will fail. Finally, the Software Engineer must look at the Systems
Life Cycle with several alternatives in mind. He must consider availability,
reliability, capability and maintainability. For other articles on tools,
configuration management, Software Management in general and software engineer
ing reference DMJ 75-1, IEEE-76-4, and ACM-72-1.

4. Preventive. Maintenance.

Preventive Maintenance comes about when the user or maintenance staff
realizes that the existing system will soon be in error. This could happen
as a result in changed laws or changes in corporate goals requiring a systems
upgrade (Ref Data-75-L).

This activity should be conducted as if it were a m-ini. systems development.
Hopefully the Maintenance Prevention team has: (1) generated sufficient infor
mation to ease the reserach time, and (2) created a friend that likes change
opposed to the dumb beast that fights tooth and nail. Regardless, the Preven
tive Maintenance activity must start at concept and walk through each phase,
changing affected documentation, configuration items, and programs until the
new version of the system is released (Ref Figure 1, Point E').

This type of activity may happen numerous times and in fact several could
be going on at the same time, resulting in a single release. Mike Lindhorst
in his article on scheduled maintenance gives good advice in this area (Ref
Data-73-1).

5. ConAectlve M&Lntenancz

Corrective Maintenance is usually associated with the crisis or emergency
(Ref Data-76-2). It can happen in one of three ways: the system was designed
in error, the coding was in error, or Preventive Maintenance was now performed.

The emergency problem must go through a micro development effort just as
the other two except that normally it would not alter in-house documentation.
Special care must be given to this activity including all tools and techniques
available (Ref Data-76-3).

6. ZancA.ixh.lon

We must change lest we bury ourselves in our own creation. We must gen
erate more available and reliable software that performs the same day after
day. We must generate: maintainable systems that will roll with the punches
of changing environment. We must also generate several levels of capability
without redundancy. One step in the right direction is viewing the problem
from the maintenance ooint of view. A second step is good old fashioned
professionalism in the choice and application of materials, management theory
and technology'.

ZancA.ixh.lon

457

References

Books

The Encyclopedia of Management, Van Nostrand Reinhold Co., 1973.

Articles and Periodicals

ACM 72-1, Parnas, D. C. "On the Criteria to be used in Decomposing Systems
into Modules", Communications of the ACM, Dec 72.

COMP-74-1, Anderson, P. G., Crandon, L. H. "Computer Program Reliability",
Computers and People, July 1974.

DATA-73-1, Lindhorst, W. M. "Scheduled Maintenance of Applications Software",
Datamation, Feb 75.

DATA-73-2, Carey, L. J. "IEEE Symposium on Software Reliability", Datamation.

DATA-75-1, Mooney, J. W. "Organized Program Maintenance", Datamation, Feb 72.

DATA-76-1, Patrick, R. L. "Software Engineering and Life Cycle Planning",
Datamation, Dec 76.

DATA-76-2, Liu, C. C. "A Look at Software Maintenance", Datamation, Nov 76.

DATA-76-3, Shaw, D. C. "Managing a Software Emergency", Datamation, Nov 76.

DMJ-75-1, Defence Management Journal, Oct 75.

DMJ-72-2, Manley, J. H. "Embedded Computer System Software Reliability",
Defense Management Journal, Oct 75.

IEEE-76-1, Proceedings of the 2nd International Conference on Software Engi
neering, IEEE Catalogue No. 76CH1125-4C.

IEEE-76-2, Tutorial on Software Design Techniques, IEEE Catalogue No. 76CH1145-
2C.

IEEE-76-3, Designing with Microprocessors, Fall COMPCON-76.

IEEE-76-4, Hamilton, M. and Zeldin, S. "Higher Order Software—A Methodology
for Defining Software", IEEE Transactions on Software Engineering.

