
498

COMPILER WRITING IN FORTRAN ON A SMALL COMPUTER*

Susan T. Dean, Programmer/Analyst
Steven E. Wixson, Senior Systems Analyst

Clinical Cardiology Computer Center
University of Alabama in Birmingham

ABSTRACT

This paper shares the experience gained in writing a compiler using
FORTRAN on a relatively small computer. Technical details of the programs
which make up the compiler are given, rather than a general discussion of
practices of compiler writing. Practical suggestions to someone who might
undertake a similar project are emphasized.

The language for which this compiler was developed is oriented
toward interactive data entry from specialized terminals. An overview of
this language is provided to demonstrate the types of statements the compiler
must handle.

The compiler is a set of overlay programs ("links") which were or­
iginally required to fit into an 8K word (16 bit) batch partition. The
organization of these processing segments, and the communication of infor­
mation between them, are explained in detail. Key support subroutines are
described. The compiler's output is a set of dynamically relocatable coded
instructions and operand references which are stored on disk for later
execution by an interpreter.

*Supported in part by Specialized Center of Research for Ischemic Heart
Disease, Contract Number 1P17HL1766

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1795396.1795463&domain=pdf&date_stamp=1977-04-18

499
BACKGROUND

The environment of the Clinical Cardiology Computer Center (CCCC) at
the University of Alabama in Birmingham (UAB) requires programming of on-line
displays, such as figure 1, and logic for interactive communication between the
medical personnel and the computer. The CCCC computer is an IBM 1800 with
64K 16-bit words of memory. The languages available for use on this machine
are basic FORTRAN and an assembler language. In both of these languages, a
significant amount of programming effort is required to write terminal dis­
plays and the associated logic. Therefore, a special purpose language was
implemented to fill this need.

The interactive display oriented language (IDOL) supports pre-defined
interactions between a computer and a human via an on-line terminal. The
basic unit of the language is the display frame, which includes the information
to be displayed to the user and the logic for processing the user's response.
The sample of IDOL source code (figure 2) and the display produced by it
(figure 1) provide an example of the use of the language.

IDOL was designed in two versions. Based on a language, "Driver" (1),
developed at Massachusetts General Hospital, the preliminary versions of the
compiler and execution monitor (interpreter) were written entirely in FORTRAN.
This version was implemented quickly and, although not optimal either in exe­
cution time or expandability, provided an opportunity to "live with" the
language before proceeding with the final design.

The second version of IDOL (2) includes these features as improvements
and special-purpose aids:

. Interpreter is written entirely in assembler language for rapid
execution.

. Compiler and interpreter are both organized modularly to provide
ease in adding or modifying language functions.

. IDOL is considered to be the main program who occasionally "calls"
a portion of a companion FORTRAN program which provides graphic
display or calculations not supported by IDOL. In the first
version the display driver was a subroutine called for each new
frame by a main FORTRAN program. The new version requires less
user awareness of the transfer mechanism between frames.

. Source code for the frames may be on cards or disk.

. Variables defined to exist in standard system files or control
blocks are coded as simple variables by the user.

Constraints on the design of the language and its compiler include:

. Originally the compiler was required to fit into an 8K (now 16K)
batch partition.

. The interpreter was to fit into a 4K partition (now 8K).

. The display frame code is stored in disk files with fixed 320
word sectors.

500

THE COMPILER

The compiler is, of necessity due to computer'memory partition size
as well as through the desirability of this programming technique, a set of
modules which can be overlaid, communicating through COMMON.

Figure 3 shows the relationship between the major overlays (main
programs) which make up the compiler. As needed, each overlay is brought
in as the program currently executing in the partition ("linked") leaving
only the COMMON area undisturbed. Descriptions of these major programs
("links") are given in the following paragraphs. A list of the major var­
iables in COMMON which provide communication between modules is given in
figure 4.

The initial program (MLBLD) is the only compiler module the user is
aware of, since all the "links" are transparent to him. MLBLD performs the
setup functions described in figure 5.

The symbol table build module (MLSTB) shown in figure 6 became a sep­
arate "link" because of the original partition size. Conceptually it is part
of the initialization process and could be an activity of MLBLD. However,
since it is an easily separated function, it is an excellent break point be­
tween programs. MLSTB reads the data definition cards which are required to
come before all display frame source code and creates a symbol table entry for
each variable.

After all variables have been recorded in the symbol table, the dis­
play frame source code is processed. Each display frame is a self-contained
unit, therefore the compiler concerns itself with only one frame at a time in
a series of "links" which is repeated as many times as needed.

The first "link" for frame code processing is MLFIN (figure 7). To
avoid attempting to fit all the FORTRAN I/O routines in memory at the same
time with all the processing logic, MLFIN's primary purpose is to read the
source code from disk or cards, list the statements at the user's option,
and store the source statements into a work file on disk. All code process­
ing modules store error indicators on disk for later printing at the end of
the frame, considerably reducing the memory needed for the processing routines
since only disk I/O is performed.

MLCMP (figure 8) is the main "link" in that it controls the actual
frame code processing. It reads each source statement from disk, maintains
control information within the frame (count of statements, etc.), and gener­
ates any automatic function pertinent to the type of frame (automatic transfer
indexing, for example). The code for frame-to-frame transfer statements is
generated by MLCMP itself. MLQRP (figure 9) is called to process text-defining
statements, and MLHCS (figure 10) generates code for the logic-processing
statements. Both MLHCS and MLQRP terminate by returning control to MLCMP.
Figure 11 describes in detail the code generation process for a sample frame.

When all statements for the frame have been processed MLCMP calls
MLERP to print messages for any error records which have been detected

501

during generation of code for the frame. MLERP then calls MLFIN to repeat
the cycle for the next frame.

After code for all source frames has been generated and stored into
a disk work file, MLPCK determines optimum packing of the frames' code and
copies the code into the permanent disk file specified by the user.

The following subroutines support multiple compiler activities:

. The symbol table lookup routines.

. Expression parser (EXPR) - given an expression consisting of any
combination of variables, constants and operators, uses the oper­
ator precedence method (3) of parsing the expression and then
generates the appropriate code.

. Keyword recognizer - given a list of possible keywords and a
candidate keyword, checks to see if the candidate is a keyword
and, if so, returns the keyword number (its position on the list)
and the position within the given statement of the first character
after the keyword. This is used by the data definition processor
to recognize the specification of the various global locations.
Another use is by MLHCS to recognize keywords in statements (IF,
GO TO, PUT, etc.) and names of builtin functions (e.g. HEADING
for a standard set of information at the top of a display or
RTEXT to extract the display text associated with a particular
use response and assign it to a character variable.) The keyword
number is then used in a computed GO TO to indicate appropriate
processing logic.

. Source statement input routine - accesses the next source state­
ment.

. MLERR - stores error number and statement number on disk.

. Variable reference generator - EXPR has subroutines to handle code
generation for arithmetic operations, string operations, relational
operations, etc., and they all need to check for proper variable
type and generate the accessing code.

A variety of functions and subroutines permit one to think of a FORTRAN
array as a character string. These are used by many CCCC programs besides
the compiler.

MOVE - copy a specified number of words from one array to another.
INSTR - determine if a given word or array is matched in another

array, and if so beginning at what position.
LSTNB - determine the subscript of the last non-blank word in a

given array.
NONBL - determine the first non-blank word's position.
EBSC - convert EBCDIC representation of numbers to actual integer

representation. (Needed for handling numeric constants.)

The error printing routine MLERP includes the only assembler language
subroutine in the compiler. Defining the text of error messages in DATA
statements is cumbersome. Therefore, the text is defined in an assembler
subroutine which is given an error number and an array into which to store
the corresponding text to then be printed by MLERP.

502

THE INTERPRETER

The interpreter, or execution monitor, is activated at execution time
to execute the code stored in a frame file. This code consists of a stream
of operators and operands, and is executed by use of a software stack. Any
operands encountered in the input are "pushed" onto the stack by the execution
monitor and are "popped" as needed by the operators.

There are seventy-five operators. Some are simple operations, such
as addition, where two operands are popped, their values accessed and added,
and the result is then pushed onto the operand stack. A more complex operation
would be accessing a particular value from a system patient information block
and storing it into a specified variable.

Each operation is coded as a separate assembler language subroutine.
Advantages of this are:

. Modular organization made debugging easier.

. Modification of one operator does not affect others.

. Addition of new operations is easy, requiring only a new subroutine
and an addition to the execution monitor's table of operators.

. Seldom-used operations can be "localed" against each other. (Only
one of a set is in memory at any time, as a subroutine is brought in
only when it is to be used.)

SUMMARY

Implementation of IDOL has added a much needed tool at the Clinical
Cardiology Computer Center. Particularly important in developing this language
were: 1) The opportunity to live with the first "quick and dirty" version
and then from it design the version to be optimally implemented, and 2) The
modular approach to the implementation, thus providing for future expansion
of features and easier debugging.

The guidelines presented here are intended to make compiler writing
seem almost simple. Given a model, it is easy to implement a special-purpose
language designed to meet the needs of a particular installation. On a small
machine where FORTRAN is the only high level language, a special purpose
language can become so useful that the programming time it saves will easily
recover the cost of developing the compiler.

503

REFERENCES

1. Swedlow, D. B., Barnett, G. 0., Grossman, J. H., and Souder, D. E.: A
Simple Programming System ("Driver") for the Creation and Execution of
an Automated Medical History. Computer and Biomedical Research 5, 90-98,
1972.

2. Dean, S. T., Wixson, S. E., Garrett, H. M., and Harrell, F. E., Jr.: A
User-Oriented Language for Interactive Medical Programming. Proceedings of
the Southeast Regional ACM Conference, 122-139, 1975.

3. Gries, D.: Compiler Construction for Digital Computers (Wiley, New York,
1971), pp. 121-131.

4. Wixson, S. E., Strand, E. M., and Perl is, H. W.: A Computer System for
Bedside Medical Research. 1970 Spring Joint Computer Conference Proceed­
ings 36:475, 1970.

504

CDMP RDON T555555 TIME 1 4 1 1 . 2 / 1 0 / 7 7

CORONARY SINUS BLOOD FLOH

SET APPROXZNATE DIAL VALUES TO
SIMPLIFY LATER CALIBRATION

SET INDICATOR DIAL TO 439
BET DILUTION DIAL TO 5W
Figure 1. Display on Terminal Screen resulting from execution of frame

whose source code is in figure 2.

N: 3, IN

CALL PROG SETRATE;
HEADING
TITLE 5
PUT(10,23) INDIC
PUT(11,22) DILUTION

7,SET APPROXIMATE DIAL VALUES TO
SIMPLIFY LATER CALIBRATION
10, SET INDICATOR DIAL TO
SET DILUTION DIAL TO

END OF FRAME 3

Figure 2. Sample Display Frame Source Code.

This generates terminal display shown in figure 1.
The CALL PROG causes a transfer to a companion FORTRAN program
who uses the value of variable SETRATE in a computed GO TO to
determine what section of itself to execute, then transfers back
to the IDOL interpreter who resumes execution at the statement
following the CALL PROG.
INDIC and DILUTION are global variables which have been defined
by user as being in a portion of main memory which is accessible
to both IDOL and the companion program because of the transfer
mechanism (4).

505

START

MLBLD - fig.5
initializes compiler
status from options
card

MLSTB - fig. 6
reads definition card
for each variable to
be added to symbol
table

MLERP
prints a message for
each error and zeroes
error count

MLFIN - fig.7
reads and stores on
disk source code for
one frame, with an
optional listing.

-

MLCMP - fig.8
controls compilation
of one frame,
generates automatic
code as needed,
processes transfer
statements, calls in
modules for others

bad options J STOP)

>

^

MLUPK
in update run, reads
existing frame code
from permanent disk
file into work area
to preserve previ­
ously compiled code
for unchanged frames

$EKD
J

}

)
-̂ — .—

MLPGK
packs and stores
compiled code into -
permanent frame file

MLQRP - fig.9
generates code for
statements defining
display text

MLHCS - fig.10
generates code for
logic processing
statements and
builtin functions

Figure 3. Major Compiler Modules.

506

SYMBOL TABLE - One entry for each variable (name, type, dimension, location).
Also contains the frame file index, which gives the location of each
frame's code within the file.

FRAME CODE - All code generated so far for the frame currently being compiled
and the subscript of the next word to be used in this array,

SOURCE STATEMENT - The source code for the statement currently being compiled.

STATEMENT COUNT, TOTAL NUMBER OF STATEMENTS (current frame)

ERROR COUNT (current frame)

DISK ADDRESS OF PERMANENT FRAME CODE FILE

TABLE OF LABELS USED IN THIS FRAME and their ADDRESSES

TABLE OF UNRESOLVED LABEL REFERENCES THIS FRAME and FRAME CODE WORD where the
address is to be stored.

"GET" indicators - Source input from cards/disk, Update/create run, Address
of File for input from disk, and Other information needed by the "GET"
routine.

Figure 4. Communication via COMMON between Compiler Modules.

J. Read the options card and process as follows:

2. If the specified frame file (where compiled code is to be stored) has not
been allocated on disk, terminate with error message.

3. If "update" run,
read symbol table and existing frames code from frame file to disk work
area ;

Otherwise
If "create" run,

set up an initial-state symbol table containing only the automatic
special-purpose variables and an empty frame index;

Otherwise
terminate with message of invalid option.

4. Set source-of-input (cards or disk) indicator in COMMON for the "get"
routine.

5. Activate the symbol table builder (MLSTB).

Figure 5. Basic logic of MLBLD, the compiler initialization routine.

507

1. Repeat for each variable's definition card:

If this variable name is already in the symbol table,
record an error and ignore this definition.

Otherwise
Build symbol table entry (recording errors on any invalid specification)

Variable type - integer or character string of specified length,
Dimension for array or zero,
Location information for "global" variables. (This is the code

to be incorporated into the frame code at any point of
reference to this variable to activate the appropriate operator
to retrieve or store a value in a standard system file or
control block.)

2. Activate the error message routine (MLERP) to print a message for each
error that has been recorded on disk.

Figure 6. Basic logic of MLSTB, the symbol table builder.

1. Set up frame number and type from frame's "N" card (1st card).

2. Repeat for each statement until END (of frame) statement is encountered:

If the $END card is found, exit this routine and activate the frame
packer (MLPCK) to permanently store all frame code on disk.

Read ("GET") the next source statement.

Increment statement counter.

Print the statement unless printing is suppressed.

Write the statement to the disk working file.

3. Activate the frame compiler (MLCMP).

Figure 7. Basic logic of MLFIN, the routine to set up compilation of one frame.

508

1. Repeat varying N from 1 to number of statements in this frame:

Read Nth source statement from disk work file.

Generate statement's address into pointers section of frame code
and into label table, if statement is labeled.

Determine statement type and take appropriate action:

'H' statement (heading logic) -
Activate logic statement's code generator (MLHCS).

'Q' or 'R' statement (question or response) -
Activate display text code generator (MLQRR)•

'C' statement (control) -
Generate automatic operation code depending on frame type
(operators providing temporary exit for user response, numeric
input operator, etc.)
Activate logic statement's code generator (MLHCS).

'T' statement (frame transfer) -
If multiple choice frame type and first T statement, generate
automatic code to select proper transfer statement depending on
response by user.
Generates code defining number of next frame to execute, and
operation code for transfer.

2. MLHCS will have generated an entry in the Unresolved Label Table for any
forward-reference GO TO's. From the unresolved and statement label tables,
generate the proper addresses. Record errors for any which are still
unresolved.

3. Activate error messages printer (MLERP).

Figure 8. Basic logic of MLCMP, the frame compiler.

1. Generate code for display operation.

2. Build, edit for errors, and generate control word indicating line number,
character position in line, character size (normal, small, large), response
number to display (R statement only), and number of characters to display.

3. Copy display text into frame code.

4. Re-activate frame compiler (MLCMP) to process next statement.

Figure 9. Basic logic of MLQRP, the text code generator.

509

1. Call keyword recognizer to determine type of logic statement.
If no keyword, assume assignment (SET) statement.

2. Using a computed GO TO depending on keyword number, process one case as
follows (record errors as detected):

2.1 IF statement
Call EXPR to generate code for the relational expression.
Generate branch-around-next-statement-if-false operator.
Set up the "then" clause as a source statement and return to
level 1.

2.2 SET statement
Change = to = = representing assignment.
Call EXPR to generate expression code, target variable operand,
and assignment operator.

2.3 HEADING statement
Generate operation code for display of standard heading information
(patient I.D., date, time) at top of screen.

2.4 TITLE statement
Generate operand reference and opcode for generation of user
supplied title at top of screen.

2.5 STOP statement
Generate code for operator which erases the screen and terminates
execution.

2.6 CALL PROG Statement
Call EXPR to generate code for expression supplying a number to be
used as switch value in computed GO TO by a companion FORTRAN
program (TASK).
Generates code for operation which stores that value to be accessed
by TASK and activates the TASK transfer saving information
necessary to return to this frame.

2.7 (Other types of statements are processed similarly,
and new functions may be added here at a later time.)

3. Re-activate frame compiler (MLCMP) for processing of next statement.

Figure 10. Basic logic of MLHCS, the logic statement code generator.

510

N: 11,MC Compiler module MLFIN stores the frame
number 11 and frame type (multiple choice)
into the frame code.

H: HEADING MLHCS generates a one word operation code
which will at execution time cause execution
of standard routine HEADR to display room
number, patient's hospital I.D. and name,
current time and date.

Q: 6,SELECT DESIRED OPTION MLQRP generates an operation code for text
display onto the terminal. A portion of
this operation code indicates that the
display will be on line 6, with default
character position and size. The number
of characters to display and the line of
text are stored into the frame code.

R:
R:
R:

SETUP
SAMPLE TEMPERATURE
DISPLAY DATA

For R statements, which define the user's
possible responses, MLQRP generates, in
additional to the same information
generated in Q statements) a response
number to be displayed with the text.
For these R statements the terminal display
would be

1 - SETUP
2 - SAMPLE TEMPERATURE
3 - DISPLAY DATA

At this point, several operations are
automatically generated by MLCMP„ For
this multiple choice frame:
1. Exit to await user's entry of data.
2. Conversion of this entry to an integer

value assigned to keyword variable
REL1.

3. Range check to make sure that the
value of RELl corresponds to an R
statement

4. Automatic transfer indexing where
the value of RELl is used to determine
which of the three frame transfer
statements will be executed (similar
to the computed GO TO concept).

T:
T:
T:

END

3
10
20

For each of these statements MLCMP generates
a constant for the frame number and a
transfer operation*

MLCMP stores the frame size into the index
(to be used later by the packing routine)
and writes the frame code into the 11th
record of the disk work file.

Figure 11. Details of the Code Generation Process for a Sample Frame.

