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Finding heaviest H-subgraphs in real weighted graphs, with

applications ∗

Virginia Vassilevska † Ryan Williams ‡ Raphael Yuster §

Abstract

For a graph G with real weights assigned to the vertices (edges), the MAX H-SUBGRAPH

problem is to find an H-subgraph of G with maximum total weight, if one exists. Our main

results are new strongly polynomial algorithms for the MAX H-SUBGRAPH problem. Some

of our algorithms are based, in part, on fast matrix multiplication.

For vertex-weighted graphs with n vertices we solve a more general problem – the all pairs

MAX H-SUBGRAPH problem, where the task is to find for every pair of vertices u, v, a maxi-

mum H-subgraph containing both u and v, if one exists. We obtain an O(nt(ω,h)) time algorithm

for the all pairs MAX H-SUBGRAPH problem in the case where H is a fixed graph with h

vertices and ω < 2.376 is the exponent of matrix multiplication. The value of t(ω, h) is de-

termined by solving a small integer program. In particular, heaviest triangles for all pairs can

be found in O(n2+1/(4−ω)) ≤ o(n2.616) time. For h = 4, 5, 8 the running time of our algorithm

essentially matches that of the (unweighted) H-subgraph detection problem. Using rectangu-

lar matrix multiplication, the value of t(ω, h) can be improved; for example, the runtime for

triangles becomes O(n2.575).

We also present improved algorithms for the MAX H-SUBGRAPH problem in the edge-

weighted case. In particular, we obtain an O(m2−1/k logn) time algorithm for the heaviest

cycle of length 2k or 2k − 1 in a graph with m edges and an O(n3/ logn) time randomized

algorithm for finding the heaviest cycle of any fixed length.

Our methods also yield efficient algorithms for several related problems that are faster than

any previously existing algorithms. For example, we show how to find chromatic H-subgraphs

in edge-colored graphs, and how to compute the most significant bits of the distance product of

two real matrices, in truly sub-cubic time.
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1 Introduction

Finding cliques or other types of subgraphs in a larger graph are classical problems in complexity

theory and algorithmic combinatorics. Finding a maximum clique is NP-Hard, and also hard to

approximate [Ha98]. This problem is also conjectured to be not fixed parameter tractable [DF95].

The problem of finding (induced) subgraphs on k vertices in an n-vertex graph has been studied

extensively (see, e.g., [AYZ95, AYZ97, CN85, EG04, KKM00, NP85, PY81, YZ04]). All known

algorithms for finding an induced subgraph on k vertices have running time nΘ(k). Many of these

algorithms use fast matrix multiplication to obtain improved exponents.

The main contribution of this paper is a set of improved algorithms for finding (induced) k-vertex

subgraphs in a real vertex-weighted or edge-weighted graph. More formally, let G be a graph with

real weights assigned to the vertices (edges). The weight of a subgraph of G is the sum of the weights

of its vertices (edges). The MAX H-SUBGRAPH problem is to find an H-subgraph of maximum

weight, if one exists. Some of our algorithms are based, in part, on fast matrix multiplication.

In several cases, our algorithms use fast rectangular matrix multiplication algorithms. However,

for simplicity reasons, we express most of our time bounds in terms of ω, the exponent of fast

square matrix multiplications. The best bound currently available on ω is ω < 2.376, obtained by

Coppersmith and Winograd [CW90]. This is done by reducing each rectangular matrix product to

a collection of smaller square matrix products. Slightly improved bounds can be obtained by using

the best available rectangular matrix multiplication algorithms of Coppersmith [Cop97] and Huang

and Pan [HP98]. In all of our algorithms we assume that the graphs are undirected, for simplicity.

All of our results are applicable to directed graphs as well. Likewise, all of our results on the MAX

H-SUBGRAPH problem hold for the analogous MIN H-SUBGRAPH problem. As usual, we use

the addition-comparison model for handling real numbers. That is, real numbers are only allowed

to be compared or added. In particular, our algorithms are strongly polynomial.

Our first algorithm applies to vertex-weighted graphs. In order to describe its complexity we

need to define a small (constant size) integer optimization problem. Let h ≥ 3 be a positive integer.

The function t(ω, h) is defined by the following optimization program.

Definition 1.1

b1 = max{b ∈ N :
b

4− ω
≤ ⌊

h− b

2
⌋}. (1)

s1 = h− b1 +
b1

4− ω
. (2)

s2(b) = max{h− b+ ⌊
h− b

2
⌋ , h− (3− ω)⌊

h− b

2
⌋}. (3)

s2 = min{s2(b) : ⌊
h− b

2
⌋ ≤ b ≤ h− 2}. (4)

t(ω, h) = min{s1, s2}. (5)
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By using fast rectangular matrix multiplication, an alternative definition for t(ω, h), resulting in

slightly smaller values, can be obtained (note that if ω = 2, as conjectured by many researchers,

fast rectangular matrix multiplication has no advantage over fast square matrix multiplication).

Theorem 1.2 Let H be a fixed graph with h vertices. Let G = (V,E) be a graph with n vertices,

and w : V → ℜ a weight function. For every pair of vertices u, v ∈ V , an induced H-subgraph

of G containing u and v of maximum weight (if one exists), can be found in O(nt(ω,h)) time. In

particular, the MAX H-subgraph problem can be solved in O(nt(ω,h)) time.

Notice that Theorem 1.2 solves, in fact, a more general problem, the All-Pairs MAX H-Subgraph

problem. It is easy to establish some small values of t(ω, h) directly. For h = 3 we have t(ω, 3) =

2 + 1/(4 − ω) < 2.616 by taking b1 = 1 in (1). Using fast rectangular matrix multiplication this

can be improved to 2.575. In particular, for each pair of vertices, a triangle of maximum weight

containing them (if one exists) can be found in o(n2.575) time. This should be compared to the well-

known O(nω) ≤ o(n2.376) time algorithm for detecting a triangle in an unweighted graph [IR78].

For h = 4 we have t(ω, 4) = ω + 1 < 3.376 by taking b = 2 in (4). Interestingly, the fastest

algorithm for detecting a K4, that uses square matrix multiplication, also runs in O(nω+1) time

[NP85]. The same phenomena also occurs for h = 5 where t(ω, 5) = ω + 2 < 4.376 and for h = 8

where t(ω, 8) = 2ω + 2 < 6.752. We also note that t(ω, 6) = 4 + 2/(4− ω), t(ω, 7) = 4 + 3/(4− ω),

t(ω, 9) = 2ω + 3 and t(ω, 10) = 6 + 4/(4 − ω). However, a closed formula for t(ω, h) cannot be

given. Already for h = 11, and for infinitely many values thereafter, t(ω, h) is only piecewise

linear in ω. For example, if 7/3 ≤ ω < 2.376 then t(ω, 11) = 3ω + 2, and if 2 ≤ ω ≤ 7/3 then

t(ω, 11) = 6 + 5/(4 − ω). Finally, it is easy to verify that both s1 in (2) and s2 in (4) converge to

3h/(6 − ω) as h increases. Thus, t(ω, h) converges to 3h/(6 − ω) < 0.828h as h increases.

Prior to this work, the only known algorithm for MAX H-SUBGRAPH in the vertex-weighted

case (moreover, the All-Pairs version of the problem) was the näıve O(nh) algorithm. In general,

reductions to fast matrix multiplication tend to fail miserably in the case of real-weighted graph

problems. The most prominent example of this is the famous All-Pairs Shortest Paths (APSP)

problem. Seidel [Sei95] and Galil and Margalit [GM97] developed Õ(nω) algorithms for undirected

unweighted graphs. However, for arbitrary edge weights, the best published algorithm known

is a recent O(n3/ log n) by Chan [Ch05]. When the edge weights are integers in [−M,M ], the

problem is solvable in Õ(Mnω) by Shoshan and Zwick [SZ99], and Õ(M0.681n2.575) by Zwick [Zw02],

respectively. Earlier, a series of papers in the 70’s and 80’s starting with Yuval [Yu76] attempted

to speed up APSP directly using fast matrix multiplication. Unfortunately, these works require a

model that allows infinite-precision operations in constant time.

A slight modification in the algorithm of Theorem 1.2, without increasing its running time by

more than a logarithmic factor, can also answer the decision problem: “for every pair of vertices

u, v, is there an H-subgraph containing u and v, whose weight is in the interval [w1, w2] where

w1 ≤ w2 are two given reals?” Another feature of Theorem 1.2 is that it makes a relatively small

number of comparisons. For example, a heaviest triangle can be found by the algorithm using only

O(m+ n log n) comparisons, where m is the number of edges of G.
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Since Theorem 1.2 is stated for inducedH-subgraphs, it obviously also applies to not-necessarily

induced H-subgraphs. However, the latter problem can, in some cases, be solved faster. For

example, we show that the o(n2.616) time bound for finding a heaviest triangle also holds if one

searches for a heaviest H-subgraph in the case when H is the complete bipartite graph K2,k.

Several H-subgraph detection algorithms take advantage of the fact that G may be sparse.

Improving a result of Itai and Rodeh [IR78], Alon, Yuster and Zwick obtained an algorithm for

detecting a triangle, expressed in terms of m [AYZ97]. The running time of their algorithm is

O(m2ω/(ω+1)) ≤ o(m1.41). This is faster than the O(nω) algorithm when m = o(n(ω+1)/2). The best

known running times in terms of m for H = Kk when k ≥ 4 are given in [EG04]. Sparseness can

also be used to obtain faster algorithms for the vertex-weighted MAX H-SUBGRAPH problem.

We prove:

Theorem 1.3 If G = (V,E) is a graph with m edges and no isolated vertices, and w : V → ℜ

is a weight function, then a triangle of G with maximum weight (if one exists) can be found in

O(m(18−4ω)/(13−3ω)) ≤ o(m1.45) time.

The proofs of Theorems 1.2 and 1.3, and some of their consequences, appear in Section 3.

In Section 2 we first introduce a general method called dominance computation, motivated by a

problem in computational geometry and introduced by Matousek in [Ma91], and show how it can

be used to obtain a truly sub-cubic algorithm for the MAX K3-SUBGRAPH problem. Although

the running time we obtain using this method is slightly inferior to that of Theorem 1.2, we show

that this method has other very interesting applications. In fact, we will show how to use it in

order to efficiently solve a general buyer-seller problem from computational economics. Another

interesting application of the method is the ability to compute the the most significant bits of the

distance product A ⋆ B of two real matrices, in truly sub-cubic time (see the definition of distance

products in the next section). Computing the distance product quickly has long been considered as

the key to a truly sub-cubic APSP algorithm, since it is known that the time complexity of APSP

is no worse than that of the distance product of two arbitrary n× n matrices.

We now turn to edge-weighted graphs. An O(m2−1/⌈k/2⌉) time algorithm for detecting the

existence of a cycle of length k is given in [AYZ97]. A small improvement was obtained later

in [YZ04]. However, the algorithms in both papers fail when applied to edge-weighted graphs.

Using the color coding method, together with several additional ideas, we obtain a randomized

O(m2−1/⌈k/2⌉) time algorithm in the edge-weighted case, and an O(m2−1/⌈k/2⌉ log n) deterministic

algorithm.

Theorem 1.4 Let k ≥ 3 be a fixed integer. If G = (V,E) is a graph with m edges and no

isolated vertices, and w : E → ℜ is a weight function, then a maximum weight cycle of length k,

if one exists, can be found with high probability in O(m2−1/⌈k/2⌉) time, and deterministically in

O(m2−1/⌈k/2⌉ log n) time.

In a recent result of Chan [Ch05] it is shown that the distance product of two n×n matrices with

real entries can be computed in O(n3/ log n) time (again, reals are only allowed to be compared
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or added; more recently, Y. Han announced an O(n3(log log n/ log n)5/4) time algorithm). We

show how to reduce the MAX H-SUBGRAPH problem in edge-weighted graphs to the problem of

computing a distance product.

Theorem 1.5 Let H be a fixed graph with h vertices. If G = (V,E) is a graph with n vertices,

and w : E → ℜ is a weight function, then an induced H-subgraph of G (if one exists) of maximum

weight can be found in O(nh/ log n) time.

We can strengthen the above result considerably, in the case where H is a cycle. For (not-

necessarily induced) cycles of fixed length we can combine distance products with the color coding

method and obtain:

Theorem 1.6 Let k be a fixed positive integer. If G = (V,E) is a graph with n vertices, and

w : E → ℜ is a weight function, a maximum weight cycle with k vertices (if exist) can be found,

with high probability, in O(n3/ log n) time.

In fact, the proof of Theorem 1.6 shows that a maximum weight cycle with k = o(log log n) ver-

tices can be found in (randomized) sub-cubic time. Section 4 considers edge-weighted graphs and

contains the algorithms proving Theorems 1.4, 1.5 and 1.6.

Finally, we consider the related problem of finding a certain chromatic H-subgraph in an edge-

colored graph. We consider the two extremal chromatic cases. An H-subgraph of an edge-colored

graph is called rainbow if all the edges have distinct colors. It is called monochromatic if all the edges

have the same color. Many combinatorial problems are concerned with the existence of rainbow

and/or monochromatic subgraphs.

We obtain a new algorithm that finds a rainbow H-subgraph, if one exists.

Theorem 1.7 Let H be a fixed graph with 3k + j vertices, j ∈ {0, 1, 2}. If G = (V,E) is a graph

with n vertices, and c : E → C is an edge-coloring, then a rainbow H-subgraph of G (if one exists)

can be found in O(nωk+j log n) time.

The running time in Theorem 1.7 matches, up to a logarithmic factor, the running time of the

induced H-subgraph detection problem in (uncolored) graphs.

We obtain a new algorithm that finds a monochromatic H-subgraph, if one exists. For fixed

H, the running time of our algorithm matches the running time of the (uncolored) H-subgraph

detection problem, except for the case H = K3.

Theorem 1.8 Let H be a fixed connected graph with 3k+ j vertices, j ∈ {0, 1, 2}. If G = (V,E) is

a graph with n vertices, and c : E → C is an edge-coloring, then a monochromatic H-subgraph of

G (if one exists) can be found in O(nωk+j) time, unless H = K3. A monochromatic triangle can

be found in O(n(3+ω)/2) ≤ o(n2.688) time.

The algorithms for edge-colored graphs yielding Theorems 1.7 and 1.8 appear in Section 5. The

final section contains some concluding remarks and open problems.
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2 Dominance computations

Given a set of points {v1, . . . , vn} in R
d, the dominating pairs problem is to find all pairs of points

(vi, vj) such that for all k = 1, . . . , d, vi[k] ≤ vj[k]. The key insight to our method is a connection

between the problem of finding triangles and the well-known problem of computing dominating

pairs in computational geometry. This connection was inspired by recent work of Chan [Ch05], who

demonstrated how a O(cdn1+ε+n2) algorithm for computing dominating pairs in d dimensions can

be used to solve the arbitrary APSP problem in O(n3/ log n) time.

In particular, we use an elegant algorithm by Matousek for computing dominating pairs in n

dimensions [Ma91]. Matousek’s algorithm does a bit more than determine dominances — it actually

computes a matrix D such that

D[i, j] = |{k | vi[k] ≤ vj[k]}|.

We will call D the dominance matrix in the following.

Theorem 2.1 (Matousek [Ma91]) Given a set S of n points in R
n, the dominance matrix for

S can be computed in O
(

n
3+ω
2

)

time.

We outline Matousek’s approach in the following paragraphs. For each coordinate j = 1, . . . , n,

sort the n points by coordinate j. This takes O(n2 log n) time. Define the jth rank of point vi,

denoted as rj(vi), to be the position of vi in the sorted list for coordinate j.

For a parameter s ∈ [log n, n], make n/s pairs of Boolean matrices (A1, B1) . . . , (An/s, Bn/s)

defined as follows:

Ak[i, j] = 1 ⇐⇒ rj(vi) ∈ [ks, ks+ s),

Bk[i, j] = 1 ⇐⇒ rj(vi) ≥ ks+ s.

Now, multiply Ak with BT
k , obtaining a matrix Ck. Then Ck[i, j] equals the number of coordi-

nates c such that vi[c] ≤ vj[c], rc(vi) ∈ [ks, ks+ s), and rj(vi) ≥ ks+ s.

Therefore, letting

C =

n/s
∑

k=1

Ck,

we have that C[i, j] is the number of coordinates c such that ⌊rc(vi)/s⌋ < ⌊rc(vj)/s⌋.

Suppose we compute a matrix E such that E[i, j] is the number of c such that vi[c] ≤ vj [c] and

⌊rc(vi)/s⌋ = ⌊rc(vj)/s⌋. Then, defining D := C + E, we have the desired matrix

D[i, j] = |{k | vi[k] ≤ vj[k]}|.

To compute E, we use the n sorted lists. For an integer n, define [n] = {1, . . . , n}. Then, for

each pair (i, j) ∈ [n]× [n], we look up vi’s position p in the sorted list for coordinate j. By reading

off the adjacent points less than vi in this sorted list (i.e. the points at positions p − 1, p − 2,

etc.), and stopping when we reach a point vk such that ⌊rj(vk)/s⌋ < ⌊rj(vi)/s⌋, we obtain the list

6



vi1 , . . . , viℓ of ℓ ≤ s points such that, for all x = 1, . . . , ℓ, vix [j] ≤ vi[j] and ⌊rj(vi)/s⌋ = ⌊rj(vix)/s⌋.

Finally, for each x = 1, . . . , ℓ, we add a 1 to E[ix, i]. Assuming constant time lookups and constant

time probes into a matrix, this entire process takes only O(n2s) time.

The running time of the above procedure is O(n2s+ n
sn

ω). Choosing s = n
ω−1

2 , the time bound

becomes O
(

n
3+ω
2

)

.

2.1 Finding a heaviest triangle in sub-cubic time

We first present a weakly polynomial deterministic algorithm, then a randomized strongly polyno-

mial algorithm.

Theorem 2.2 On graphs with integer weights, a maximum vertex-weighted triangle can be found

in O(n(ω+3)/2 · logW ) time, where W is the maximum weight of a triangle. On graphs with real

weights, a maximum vertex-weighted triangle can be found in O(n(ω+3)/2 ·B) time, where B is the

maximum number of bits in a weight.

Proof: The idea is to obtain a procedure that, given a parameter K, returns an edge (i, j) from

a triangle of weight at least K. Then one can binary search to find the weight of the maximum

triangle, and try all possible vertices k to get the triangle itself.

We first explain the binary search. Without loss of generality, we assume that all edge weights

are at least 1. Let W be the maximum weight of a triangle. Start by checking if there is a triangle

of weight at least K = 1 (if not, there are no triangles). Then try K = 2i for increasing i, until

there exists a triangle of weight 2i but no triangle of weight 2i+1. This i will be found in O(logW )

steps. After this, we search on the interval [2i, 2i+1) for the largest K such that there is a triangle

of weight K. This takes O(logW ) time for integer weights, and O(B) time for real weights with B

bits of precision.

We now show how to return an edge from a triangle of weight at least K, for some given K.

Let V = {1, . . . , n} be the set of vertices. For every i ∈ V , we make a point fi = (e(1), . . . , e(n)),

where

e(j) =

{

K − w(i) if there is an edge from i to j

∞ otherwise.

(In implementation, we can of course substitute a sufficiently large value in place of ∞.) We also

make a point gi = (e′(1), . . . , e′(n)), where

e′(j) =

{

w(i) + w(j) if there is an edge from i to j

−∞ otherwise.

Compute the dominance matrix D(K) on the sets {fi} and {gi}. For all edges (i, j) in the graph,

check if there exists a k such that fi[k] ≤ gj [k]. This can be done by examining the appropriate

entry in D(K). If such a k exists, then we know there is a vertex k such that

K − w(i) ≤ w(j) + w(k) =⇒ K ≤ w(i) + w(k) + w(j),

7



that is, there exists a triangle of weight at least K using edge (i, j). Observe that the above works

for both directed and undirected graphs. �

In the above, the binary search over all possible weights prevents our algorithm from being

strongly polynomial. We would like to have an algorithm that, in a comparison-based model, has a

runtime with no dependence on the bit lengths of weights. Here we present a randomized algorithm

that achieves this.

Theorem 2.3 On graphs with real weights, a maximum vertex-weighted triangle can be found in

O(n(ω+3)/2 · log n) expected worst-case time.

We would like to somehow binary search over the collection of triangles in the graph to find the

maximum. As this collection is O(n3), we would then have our strongly polynomial bound. Ideally,

one would like to pick the “median” triangle from a list of all triangles, sorted by weight. But as

the number of triangles can be Ω(n3), forming this list is hopeless. Instead, we shall show how

dominance computations allow us to efficiently and uniformly sample a triangle at random, whose

weight is from any prescribed interval (W1,W2). If we pick a triangle at random and measure its

weight, there is a good chance that this weight is close to the median weight. In fact, a binary

search that randomly samples for a pivot can be expected to terminate in O(log n) time.

Let W1,W2 ∈ R ∪ {−∞,∞}, W1 < W2, and G be a vertex-weighted graph.

Definition 2.4 C(W1,W2) is defined to be the collection of triangles in G whose total weight falls

in the range [W1,W2].

Lemma 2.5 One can sample a triangle uniformly at random from C(W1,W2), in O(n(ω+3)/2) time.

Proof: From the proof of Theorem 2.2, one can compute a matrix D(K) in O(n(ω+3)/2) time, such

that D(K)[i, j] 6= 0 iff there is a vertex k such that (i, k) and (k, j) are edges, and w(i) + w(j) +

w(k) > K. In fact, the i, j entry of D(K) is the number of distinct vertices k with this property.

Similarly, one can compute matrices E(K) and L(K) such that E(K)[i, j] and L(K)[i, j] contain

the number of vertices k such that (i, k) and (k, j) are edges, and w(i) +w(j) +w(k) ≤ K (for E)

or w(i)+w(j)+w(k) < K (for L). (This can be done by flipping the signs on all coordinates in the

sets of points {fi} and {gi} from Theorem 2.2, then computing dominances, disallowing equalities

for L.)

Therefore, if we take F = E(W2)− L(W1), then F [i, j] is the number of vertices k where there

is a path from i to k to j, and w(i) + w(j) + w(k) ∈ [W1,W2].

Let f be the sum of all entries F [i, j]. For each (i, j) ∈ E, choose (i, j) with probability F [i, j]/f .

By the above, this step uniformly samples an edge from a random triangle. Finally, we look at the

set of vertices S that are neighbors to both i and j, and pick each vertex in S with probability
1
|S| . This step uniformly samples a triangle with edge (i, j). The final triangle is therefore chosen

uniformly at random. �

Observe that there is an interesting corollary to the above.

8



Corollary 2.6 In any graph, one can sample a triangle uniformly at random in O(nω) time.

Proof: (Sketch) Multiplying the adjacency matrix with itself counts the number of 2-paths from

each vertex to another vertex. Therefore one can count the number of triangles and sample just as

in the above. �

We are now prepared to give the strongly polynomial algorithm.

Proof of Theorem 2.3: Start by choosing a triangle t uniformly at random from all triangles.

By the corollary, this is done in O(nω) time.

Measure the weight W of t. Determine if there is a triangle with weight in the range (W,∞),

in O(n(ω+3)/2) time. If not, return t. If so, randomly sample a triangle from (W,∞), let W ′ be its

weight, and repeat the search with W ′.

It is routine to estimate the runtime of this procedure, but we include it for completeness. Let

T (n, k) be the expected runtime for an n vertex graph, where k is the number of triangles in the

current weight range under inspection. In the worst case,

T (n, k) ≤
1

k

k−1
∑

i=1

T (n, k − i) + c · n(ω+3)/2

for some constant c ≥ 1. But this means

T (n, k − 1) ≤
1

k − 1

k−2
∑

i=1

T (n, k − i) + c · n(ω+3)/2,

so

T (n, k) ≤

(

1

k
+

k − 1

k

)

· T (n, k − 1)

+

(

1−
k − 1

k

)

cn(ω+3)/2

= T (n, k − 1) +
c

k
n(ω+3)/2,

which solves to T (n, k) = O(n(ω+3)/2 log k).

2.2 Most significant bits of a distance product

Let A and B be two n × n matrices with entries in ℜ ∪∞. The distance product C = A ⋆ B is an

n× n matrix with C[i, j] = mink=1...,nA[i, k] +B[k, j]. Clearly, C can be computed in O(n3) time

in the addition-comparison model. In fact, Kerr [Ke70] showed that the distance product requires

Ω(n3) on a straight-line program using + and min. However, Fredman showed in [Fr76] that the

distance product of two square matrices of order n can be performed in O(n3(log log n/ log n)1/3)

time. Following a sequence of improvements over Fredman’s result, Chan gave an O(n3/ log n) time

algorithm for distance products.
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Computing the distance product quickly has long been considered as the key to a truly sub-cubic

APSP algorithm, since it is known that the time complexity of APSP is no worse than that of the

distance product of two arbitrary n×n matrices. Practically all APSP algorithms with runtime of

the form O(nα) have, at their core, some form of distance product. Therefore, any improvement

on the complexity of distance product is interesting.

Here we show that the most significant bits of A ⋆B can be computed in sub-cubic time, again

with no exponential dependence on edge weights. In previous work, Zwick [Zw02] shows how to

compute approximate distance products. Given any ε > 0, his algorithm computes distances dij
such that the difference of dij and the exact value of the distance product entry is at most O(ε). The

running time of his algorithm is O(Wε · nω logW ). Unfortunately, guaranteeing that the distances

are within ε of the right values, does not necessarily give any of the bits of the distances. Our

strategy is to use dominance matrix computations.

Proposition 2.7 Let A,B ∈ (Z ∪ {+∞,−∞})n×n. The k most significant bits of all entries in

A ⋆ B can be determined in O(2k · n
3+ω
2 log n) time, assuming a comparison-based model.

Proof: For a matrix M , let M [i, :] be the ith row, and M [:, j] be the jth column. For a constant

K, define the set of vectors

ML(K) := {(M [i, 1] −K, . . . ,M [i, n] −K) | i = 1, . . . , n}.

Also, define

MR(K) := {(−M [1, i], . . . ,−M [n, i]) | i = 1, . . . , n}.

Now consider the set of vectors S(K) = AL(K) ∪BR(K). Using a dominance computation on

S(K), one can obtain the matrix C(K) defined by

C(K)[i, j] :=

{

0 if ∃k s.t. ui[k] < vj [k], ui ∈ AL(K), vj ∈ BR(K)

1 otherwise

Then for any i, j,

min
k

{A[i, k] +B[k, j]} ≥ K ⇐⇒ C(K)[i, j] = 1.

Let W be the smallest power of 2 larger than maxij{A[i, j]} + maxij{B[i, j]}. Then C(W2 ) gives

the most significant bit of each entry in A ⋆B. To obtain the second most significant bit, compute

C(W4 ) and C(3W4 ). The second bit of (A ⋆ B)[i, j] is given by the expression:

(¬C(W )[i, j] ∧ C(3W4 )[i, j]) ∨ (¬C(W2 )[i, j] ∧ C(W4 )[i, j]).

In general, to recover the first k bits of (A ⋆ B), one computes C(·) for O(2k) values of K. In

particular, to obtain the ℓ-th bits, compute

2ℓ−1−1
∨

s=0

[¬C(W (1−
s

2ℓ−1
)) ∧C(W (1−

s

2ℓ−1
−

1

2ℓ
))].
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To see this, notice that for a fixed s, if (for any i, j ∈ [n])

W (1−
s

2ℓ−1
−

1

2ℓ
) ≤ min

k
A[i, k] +B[k, j] < W (1−

s

2ℓ−1
),

then the ℓ-th bit of mink A[i, k] +B[k, j] must be 1, and if the ℓ-th bit of mink A[i, k] +B[k, j] is 1,

then there must exist an s with the above property.

The values for C(W (1− s
2ℓ−1 )) for even s are needed for computing the (ℓ− 1)-st bits, hence to

compute the ℓ-th bits, at most 2ℓ−2 + 2ℓ−1 dominance computations are necessary. To obtain the

first k bits of the distance product, one needs only O(2k) dominance product computations. �

2.3 Buyer-Seller stable matching

We show how the “dominance-comparison” ideas can be used to improve the runtime for solving

a problem arising in computational economics. In this problem, we have a set of buyers and a set

of sellers. Each buyer has a set of items he wants to purchase, together with a maximum price for

each item which he is willing to pay for that item. In turn, each seller has a set of items she wishes

to sell, together with a reserve price for each item which she requires to be met in order for the

sale to be completed. Formally:

Definition 2.8 An (n, k)-Buyer-Seller instance consists of

• a set C = {1, . . . , k} of commodities 1

• an n-tuple of buyers B = {b1, . . . , bn} where bi = (Bi, pi), s.t. Bi ⊆ C are the commodities

desired by buyer i, and pi : Bi → R
+ is the maximum price function for buyer i

• an n-tuple of sellers S = {s1, . . . , sn} where si = (Si, vi), s.t. Si ⊆ C are the commodities

owned by seller i, and vi : Si → R
+ is the reserve price function for seller i

A sale transaction for an item l between a seller who owns l and a buyer who wants l can take

place if the price the buyer is willing to pay is at least the reserve price the seller has for the item.

Let us imagine that each buyer wants to do business with only one seller, and each seller wants to

target a single buyer. Then the transaction between a buyer and a seller consists of all the items

for which the buyer’s maximum price meets the seller’s reserve price.

Definition 2.9 Given a buyer (Bi, pi) and a seller (Sj, vj) the transaction set Cij is defined as

Cij = {l| l ∈ Bi ∩ Sj, pi(l) ≥ vj(l)}. Denote by C the transaction matrix with entries |Cij |.

The price of Cij is defined as Pij =
∑

l∈Cij
pi(l), and the reserve of Cij is defined as Rij =

∑

l∈Cij
vj(l). Denote by P and R respectively the transaction price and reserve matrices with

entries Pij and Rij.

1We will use the words “commodities” and “items” interchangeably.
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Further, we assume that every buyer i has a preference relation on the sellers j which depends

entirely on Pij , Rij and |Cij |. Conversely, every seller has a preference relation on the buyers

determined by the same three values. More formally,

• buyer i has a (computable) preference function fi : R
+ × R

+ × Z
+ → Z such that i prefers

seller j to seller j′ iff fi(Pij , Rij , |Cij |) ≥ fi(Pij′ , Rij′ , |Cij′ |).

• Similarly, seller j has a (computable) preference function gj : R
+ × R

+ × Z
+ → Z such that

j prefers buyer i to buyer i′ iff gj(Pij , Rij , |Cij |) ≥ gj(Pi′j, Ri′j, |Ci′j |).

Ideally, each buyer wants to talk to his most preferred seller, and each seller wants to sell to

her most preferred buyer. Unfortunately, this is not always possible for all buyers, even when the

prices and reserves are all equal, and all preference functions equal |Cij |. This is evidenced by the

following example: Buyer 1 wants to buy item 2, buyer 2 wants to buy items 1 and 2, seller 1 has

item 1, seller 2 has items 1 and 2. Here buyer 1 will not be able to get any items.

In a realistic setting, we want to find a buyer-seller matching so that there is no pair (bi, sj) for

which bi is not paired with sj, such that both bi and sj would benefit from breaking their matches

and pairing among each other. This is the stable matching problem, for which optimal algorithms

are known when the preferences are known (e.g., Gale-Shapley [GS62] can be implemented to run

in O(n2)). However, for large k, the major bottleneck in our setting is that of computing the

preference functions of the buyers and sellers.

The obvious approach to compute Pij , Rij and |Cij| is to explicitly find the sets Cij. This gives

an O(kn2) algorithm to compute Pij, Rij and |Cij | for all pairs (i, j).

Let for a (computable) function f , Tf be the maximum time, over all n-bit p, r and c, needed

to compute f(p, r, c). Let T be the maximum time Tf , over all preference functions fi and gj for a

buyer-seller instance. Then in time O(kn2 + Tn2+n2 log n) one can obtain for every buyer (seller)

a list of the sellers (buyers) sorted by the buyer’s (seller’s) preference function. Exploiting fast

dominance computation, we can do better.

Theorem 2.10 The matrices P , R and C for an (n, k)-Buyer-Seller instance can be determined

in O(n
√

kM(n, k)) time, where M(n, k) is the time required to multiply an n×k by a k×n matrix.

Proof: Using the dominance technique, we can compute matrix C as follows. For each buyer

i we create a k-dimensional vector βi = {βi1, . . . , βik} so that βij = pi(j) if j ∈ Ci, and βij = −∞ if

j /∈ Ci. For each seller i we create a k-dimensional vector σi = {σi1, . . . , σik} so that σij = vi(j) if

j ∈ Si, and σij = ∞ if j /∈ Si. Computing the dominance matrix for these points computes exactly

the number of items l which buyer i wants to buy, seller j wants to sell, and pi(ℓ) ≥ vj(ℓ).

By a modification of Matousek’s algorithm for computing dominances, we can also compute the

matrices P and R. We demonstrate how to find R. Recall that the dominance algorithm does a

matrix multiplication Ak · B
T
k with entries Ak[i, j] = 1 iff rj(bi) ∈ [ks, ks + s), and Bk[i, j] = 1 iff

rj(si) ≥ ks+ s (using the notation from Theorem 2.1). Let Bk be the same, but redefine Ak to be

Ak[i, j] =

{

vi(j) if rj(bi) ∈ [ks, ks+ s)

0 otherwise
.
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Similar modifications are made to the computation of the matrix E. Instead of adding 1 to the

matrix entry E[ix, i] in the step for coordinate j, we add the corresponding reserve price vix(j).

Determining P can be done analogously. �

Corollary 2.11 A buyer-seller stable matching can be determined in O(n
√

kM(n, k) + n2 log n+

n2T ), where T is the maximum time to compute the preference functions of the buyers/sellers,

given the buyer price and seller reserve sums for a buyer-seller pair.

For instance, if k = n and T = O(polylog n), the runtime of finding a buyer-seller stable

matching is O(n
3+ω
2 ) = O(n2.688).

3 Heaviest H-subgraphs of real vertex-weighted graphs

In the proof of Theorem 1.2 it would be convenient to assume that H = Kh is a clique on h vertices.

The proof for all other induced subgraphs with h vertices is only slightly more cumbersome, but

essentially the same.

Let G = (V,E) be a graph with real vertex weights, and assume V = {1, . . . , n}. For two

positive integers a, b, the adjacency system A(G, a, b) is the 0-1 matrix defined as follows. Let Sx

be the set of all
(

n
x

)

x-subsets of vertices. The weight w(U) of U ∈ Sx is the sum of the weights of

its elements. We sort the elements of Sx according to their weights. This requires O(nx log n) time,

assuming x is a constant. Thus, Sx = {Ux,1, . . . , Ux,(nx)
} where w(Ux,i) ≤ w(Ux,i+1). The matrix

A(G, a, b) has its rows indexed by Sa. More precisely, the j’th row is indexed by Ua,j . The columns

are indexed by Sb where the j’th column is indexed by Ub,j . We put A(G, a, b)[U,U ′] = 1 if and

only if U ∪ U ′ induces a Ka+b in G (this implies that U ∩ U ′ = ∅), otherwise A(G, a, b)[U,U ′] = 0.

Notice that the construction of A(G, a, b) requires O(na+b) time.

For positive integers a, b, c, so that a+ b+ c = h, consider the Boolean product A(G, a, b, c) =

A(G, a, b) × A(G, b, c). For U ∈ Sa and U ′ ∈ Sc for which A(G, a, b, c)[U,U ′ ] = 1, define their

maximum witness δ(U,U ′) to be the maximal element U ′′ ∈ Sb for which A(G, a, b)[U,U ′′] = 1 and

also A(G, b, c)[U ′′, U ′] = 1. For each U ∈ Sa and U ′ ∈ Sc with A(G, a, b, c)[U,U ′ ] = 1 and with

U ∪U ′ inducing a Ka+c, if U
′′ = δ(U,U ′) then U ∪U ′ ∪ U ′′ induces a Kh in G whose weight is the

largest of all the Kh copies of G that contain U ∪ U ′. This follows from the fact that Sb is sorted.

Thus, by computing the maximum witnesses of all plausible pairs U ∈ Sa and U ′ ∈ Sc we can find,

for each pair of vertices, a Kh in G with maximum weight containing them, if such a Kh exists, or

else determine that no Kh-subgraph contains the pair.

Let A = An1×n2
and B = Bn2×n3

be two 0-1 matrices. The maximum witness matrix of AB is

the matrix W = Wn1×n3
defined as follows.

W [i, j] :=

{

the maximum k s.t. A[i, k] = B[k, j] = 1 if (AB)[i, j] 6= 0,

0 otherwise.
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Let f(n1, n2, n3) be the time required to compute the maximum witness matrix of the product of

an n1 × n2 matrix by an n2 × n3 matrix. Let h ≥ 3 be a fixed positive integer. For all possible

choices of positive integers a, b, c with a+ b+ c = h denote

f(h, n) = min
a+b+c=h

f(na, nb, nc).

Clearly, the time to sort Sb and to construct A(G, a, b) and A(G, b, c) is overwhelmed by

f(na, nb, nc). It follows from the above discussion that:

Lemma 3.1 Let h ≥ 3 be a fixed positive integer and let G = (V,E) be a graph with n vertices, each

having a real weight. For all pairs of vertices u, v ∈ V , an induced H-subgraph of G containing

u and v of maximum weight (if one exists), can be found in O(f(h, n)) time. Furthermore, if

f(na, nb, nc) = f(h, n) then the number of comparisons needed to find a maximum weight Kh is

O(nb log n+ z(G, a+ c)) where z(G, a + c) is the number of Ka+c in G.

In fact, if b ≥ 2, the number of comparisons in Lemma 3.1 can be reduced to only O(nb+z(G, a+c)).

Sorting Sb reduces to sorting the sums X +X + . . .+X (X repeated b times) of an n-element set

of reals X. Fredman showed in [Fr76a] that this can be achieved with only O(nb) comparisons.

A simple randomized algorithm for computing (not necessarily maximum) witnesses for Boolean

matrix multiplication, in essentially the same time required to perform the product, is given

by Seidel [Sei95]. His algorithm was derandomized by Alon and Naor [AN96]. An alternative,

somewhat slower deterministic algorithm was given by Galil and Margalit [GM93]. However,

computing the matrix of maximum witnesses seems to be a more difficult problem. Improv-

ing an earlier algorithm of Bender et al. [BFPSS05], Kowaluk and Lingas [KL05] show that

f(3, n) = O(n2+1/(4−ω)) ≤ o(n2.616). This already yields the case h = 3 in Theorem 1.2. We

will need to extend and generalize the method from [KL05] in order to obtain upper bounds for

f(h, n). Our extension will enable us to answer more general queries such as “is there a Kh whose

weight is within a given weight interval?”

Proof of Theorem 1.2: Let h ≥ 3 be a fixed integer. Suppose a, b, c are three positive integers

with a+b+c = h and suppose that 0 < µ ≤ b is a real parameter. For two 0-1 matrices A = Ana×nb

and B = Bnb×nc the µ-split of A and B is obtained by splitting the columns of A and the rows

of B into consecutive parts of size ⌈nµ⌉ or ⌊nµ⌋ each. In the sequel we ignore floors and ceilings

whenever it does not affect the asymptotic nature of our results. This defines a partition of A

into p = nb−µ rectangular matrices A1, . . . , Ap, each with na rows and nµ columns, and a partition

of B into p rectangular matrices B1, . . . , Bp, each with nµ rows and nc columns. Let Ci = AiBi

for i = 1, . . . , p. Notice that each element of Ci is a nonnegative integer of value at most nµ and

that AB =
∑p

i=1 Ci. Given the Ci, the maximum witness matrix W of the product AB can be

computed as follows. To determine W [i, j] we look for the maximum index r for which Cr[i, j] 6= 0.

If no such r exists, then W [i, j] = 0; otherwise, having found r, we now look for the maximal index

k so that Ar[i, k] = Ar[k, j] = 1. Having found k we clearly have W [i, j] = (r − 1)nµ + k.

We now determine a choice of parameters a, b, c, µ so that the time to compute C1, . . . , Cp and

the time to compute the maximum witnesses matrix W , is O(nt(ω,h)). By Lemma 3.1, this suffices
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in order to prove the theorem. We will only consider µ ≤ min{a, b, c}. Taking larger values of

µ results in worse running times. The rectangular product Ci can be computed by performing

O(na−µnc−µ) products of square matrices of order nµ. Thus, the time required to compute Ci is

O(na−µnc−µnωµ) = O(na+c+(ω−2)µ).

Since there are p such products, and since each of the na+c witnesses can be computed in O(p+nµ)

time, the overall running time is

O(pna+c+(ω−2)µ + na+c(p+ nµ)) = O(nh−(3−ω)µ + nh−µ + nh−b+µ)

= O(nh−(3−ω)µ + nh−b+µ). (6)

Optimizing on µ we get µ = b/(4−ω). Thus, if, indeed, b/(4−ω) ≤ min{a, c} then the time needed

to find W is O(nh−b+b/(4−ω)). Of course, we would like to take b as large as possible under these

constraints. Let, therefore, b1 be the largest integer b so that b/(4 − ω) ≤ ⌊(h − b)/2⌋. For such a

b1 we can take a = ⌊(h − b1)/2⌋ and c = ⌈(h − b1)/2⌉ and, indeed, µ ≤ min{a, c}. Thus, (6) gives

that the running time to compute W is

O(nh−b1+b1/(4−ω)).

This justifies s1 appearing in (2) in the definition of t(ω, h). There may be cases where we can

do better, whenever b/(4 − ω) > min{a, c}. We shall only consider the cases where a = µ =

⌊(h− b)/2⌋ ≤ b (other cases result in worse running times). In this case c = ⌈(h− b)/2⌉ and, using

(6), the running time is

O(nh−(3−ω)⌊h−b
2

⌋ + nh−b+⌊h−b
2

⌋).

This justifies s2 appearing in (4) in the definition of t(ω, h). Since t(ω, h) = min{s1, s2} we have

proved that W can be computed in O(nt(ω,h)) time.

As can be seen from Lemma 3.1 and the remark following it, the number of comparisons that

the algorithm performs is relatively small. For example, in the case h = 3 we have a = b = c = 1

and hence the number of comparisons is O(n log n+m). In all the three cases h = 4, 5, 6 the value

b = 2 yields t(ω, h). Hence, the number of comparisons is O(n2) for h = 4, O(n2 +mn) for h = 5

and O(n2 +m2) for h = 6.

Suppose w : {1, . . . , nb} → ℜ so that w(k) ≤ w(k + 1). The use of the µ-split in the proof of

Theorem 1.2 enables us to determine, for each i, j and for a real interval I(i, j), whether or not

there exists an index k so that A[i, k] = B[k, j] = 1 and w(k) ∈ I(i, j). This is done by performing

a binary search within the p = nb−µ matrices Ci, . . . , Cp. The running time in (6) only increases

by a log n factor. We therefore obtain the following corollary.

Corollary 3.2 Let H be a fixed graph with h vertices, and let I ⊂ ℜ. If G = (V,E) is a graph

with n vertices, and w : V → ℜ is a weight function, then, deciding whether G contains an induced

H-subgraph with total weight in I can be done O(nt(ω,h) log n) time.
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Proof of Theorem 1.3: We partition the vertex set V into two parts V = X ∪ Y according

to a parameter ∆. The vertices in X have degree at most ∆. The vertices in Y have degree larger

than ∆. Notice that |Y | < 2m/∆. In O(m∆) time we can scan all triangles that contain a vertex

from X. In particular, we can find a heaviest triangle containing a vertex from X. By Theorem

1.2, a heaviest triangle induced by Y can be found in O((m/∆)t(ω,3)) = O((m/∆)2+1/(4−ω)) time.

Therefore, a heaviest triangle in G can be found in

O

(

m∆+
(m

∆

)2+1/(4−ω)
)

time. By choosing ∆ = m(5−ω)/(13−3ω) the result follows.

The results in Theorems 1.2 and 1.3 are useful not only for real vertex weights, but also when

the weights are large integers. Consider, for example, the graph parameter β(G,H), the H edge-

covering number of G. We define β(G,H) = 0 if G has no H-subgraph, otherwise β(G,H) is the

maximum number of edges incident with an H-subgraph of G. To determine β(G,Kk) we assign

to each vertex a weight equal to its degree. We now use the algorithm of Theorem 1.2 to find

the heaviest Kk. If the weight of the heaviest Kk is w, then β(G,Kk) = w −
(

k
2

)

. In particular,

β(G,Kk) can be computed in O(nt(ω,k)) time.

Finally, we note that Theorems 1.2 and 1.3 apply also when the weight of an H-subgraph is

not necessarily defined as the sum of the weights of its vertices. Suppose that the weight of a

triangle (x, y, z) is defined by a function f(x, y, z) that is monotone in each variable separately. For

example, we may consider f(x, y, z) = xyz, f(x, y, z) = xy + xz + yz etc. Assuming that f(x, y, z)

can be computed in constant time given x, y, z, it is easy to modify Theorems 1.2 and 1.3 to find a

triangle whose weight is maximum with respect to f in O(n2+1/(4−ω)) time and O(m(18−4ω)/(13−3ω))

time, respectively.

We conclude this section with the following proposition.

Proposition 3.3 If G = (V,E) is a graph with n vertices, and w : V → ℜ is a weight function,

then a (not necessarily induced) maximum weight K2,k-subgraph can be found in O(n2+1/(4−ω)).

Proof: To find the heaviest K2,k we simply need to find, for any two vertices i, j, the k largest

weighted vertices v1, . . . , vk so that each vi is a common neighbor of i and j. As in Lemma 3.1, this

reduces to finding the last k maximum witnesses of a 0-1 matrix product. A simple modification of

the algorithm in Theorem 1.2 achieves this goal in the same running time (recall that k is fixed).�

4 Heaviest H-subgraphs of real edge-weighted graphs

Given a vertex-colored graph G with n vertices, an H-subgraph of G is called colorful if each

vertex of H has a distinct color. The color coding method presented in [AYZ95] is based upon

two important facts. The first one is that, in many cases, finding a colorful H-subgraph is easier

than finding an H-subgraph in an uncolored graph. The second one is that in a random vertex

coloring with k colors, an H-subgraph with k vertices becomes colorful with probability k!/kk > e−k
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and, furthermore, there is a derandomization technique that constructs a family of not too many

colorings, so that each H-subgraph is colorful in at least one of the colorings. The derandomization

technique, described in [AYZ95], constructs a family of colorings of size O(log n) whenever k is

fixed. It is based upon a construction of k-perfect hash functions given in [FKS84] and in [SS90], and

constructions of small probability spaces that admit almost ℓ-wise independent random variables

[NN90]. The size of the constructed family of colorings is only O(log n) where k is fixed.

By the color coding method, in order to prove Theorem 1.4, it suffices to prove that, given a

coloring of the vertices of the graph with k colors, a colorful cycle of length k of maximum weight

(if one exists) can be found in O(m2−1/⌈k/2⌉) time.

Proof of Theorem 1.4: Assume that the vertices of G are colored with the colors 1, . . . , k.

We first show that for each vertex u, a maximum weight colorful cycle of length k that passes

through u can be found in O(m) time. For a permutation π of 1, . . . , k, we show that a maximum

weight cycle of the form u = v1, v2, . . . , vk in which the color of vi is π(i) can be found in O(m) time.

Without loss of generality, assume π is the identity. For j = 2, . . . , k let Vj be the set of vertices

whose color is j so that there is a path from u to v ∈ Vj colored consecutively by the colors 1, . . . , j.

Let S(v) be the set of vertices of such a path with maximum possible weight. Denote this weight

by w(v). Clearly, Vj can be created from Vj−1 in O(m) time by examining the neighbors of each

v ∈ Vj−1 colored with j. Now, let wu = minv∈vk w(v) + w(v, u). Thus, wu is the maximum weight

of a cycle passing through u, of the desired form, and a cycle with this weight can be retrieved as

well.

We prove the theorem when k is even. The odd case is similar. Let ∆ = m2/k. There are

at most 2m/∆ = O(m1−2/k) vertices with degree at least ∆. For each vertex u with degree at

least ∆ we find a maximum weight colorful cycle of length k that passes through u. This can

be done in O(m2−2/k) time. It now suffices to find a maximum weight colorful cycle of length k

in the subgraph G′ of G induced by the vertices with maximum degree less than ∆. Consider a

permutation π of 1, . . . , k. For a pair of vertices x, y, let S1 be the set of all paths of length k/2

colored consecutively by π(1), . . . , π(k/2), π(k/2 + 1). There are at most m∆k/2−1 = m2−2/k such

paths and they can be found using the greedy algorithm in O(m2−2/k) time. Similarly, let S2 be

the set of all paths of length k/2 colored consecutively by π(k/2 + 1), . . . , π(k), π(1). If u, v are

endpoints of at least one path in S1 then let f1({u, v}) be the maximum weight of such a path.

Similarly define f2({u, v}). We can therefore find, in O(m2−2/k) a pair u, v (if one exists) so that

f1({u, v}) + f2({u, v}) is maximized. By performing this procedure for each permutation, we find

a maximum weight colorful cycle of length k in G′.

The definition of distance products, mentioned in the previous section, carries over to rectangu-

lar matrices. Let A = An1×n2
and B = Bn2×n3

be two matrices with entries in ℜ∪∞. In this case,

the distance product C = A ⋆B is an n1 × n3 matrix with C[i, j] = mink=1...,n2
A[i, k] +B[k, j]. By

partitioning the matrices into blocks it is obvious that Chan’s algorithm for distance products of

square matrices can be used to compute the distance product of an n1 × n2 matrix and an n2 × n3

matrix in O(n1n2n3/ log min{n1, n2, n3}) time. The analogous MAX version of distance products

(namely, replacing MIN with MAX in the definition, and allowing −∞) can be used to solve the
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MAX H-SUBGRAPH problem in edge weighted graphs.

Proof of Theorem 1.5: We prove the theorem for H = Kh. The proof for other induced

H-subgraphs is essentially the same. Partition h into a sum of three positive integers a+ b+ c = h.

Let Sa be the set of all Ka-subgraphs of G. Notice that |Sa| < na and that each U ∈ Sa is an a-set.

Similarly define Sb and Sc. We define A to be the matrix whose rows are indexed by Sa and whose

columns are indexed by Sb. The entry A[U,U ′] is defined to be −∞ if U ∪ U ′ does not induce a

Ka+b, otherwise it is defined to be the sum of the weights of the edges induced by U ∪ U ′. We

define B to be the matrix whose rows are indexed by Sb and whose columns are indexed by Sc.

The entry A[U,U ′] is defined to by −∞ if U ∪U ′ does not induce a Kb+c, otherwise, it is defined to

be the sum of the weights of the edges induced by U ∪ U ′ with at least one endpoint in U ′. Notice

the difference in the definitions of A and B. Let C = A ⋆B. The time to compute C using Chan’s

algorithm is O(nh/ log n). Now, for each U ∈ Sa and U ′ ∈ Sc so that U ∪ U ′ induces a Ka+c, let

w(U,U ′) be the sum of the weights of the edges with one endpoint in U and the other in U ′ plus

the value of C[U,U ′]. If w(U,U ′) is finite then it is the weight of the heaviest Kh that contains

U ∪ U ′, otherwise no Kh contains U ∪ U ′.

The weighted DENSE k-SUBGRAPH problem (see, e.g., [FKP01]) is to find a k-vertex subgraph

with maximum total edge weight. A simple modification of the algorithm of Theorem 1.5 solves

this problem in O(nk/ log n) time. To our knowledge, this is the first non-trivial algorithm for this

problem. Note that the maximum total weight of a k-subgraph can potentially be much larger than

a k-clique’s total weight.

Proof of Theorem 1.6: We use the color coding method, and an idea similar to Lemma

3.2 in [AYZ95]. Given a coloring of the vertices with k colors, it suffices to show how to find the

heaviest colorful path of length k − 1 connecting any pair of vertices in 2O(k)n3/ log n time. It will

be convenient to assume that k is a power of two, and use recursion. Let C1 be a set of k/2 distinct

colors, and let C2 be the complementary set of colors. Let Vi be the set of vertices colored by

colors from Ci for i = 1, 2. Let Gi be the subgraph induced by Vi. Recursively find, for each pair

of vertices in Gi, the maximum weight colorful path of length k/2− 1. We record this information

in matrices A1, A2, where the rows and columns of Ai are indexed by Vi. Let B be the matrix

whose rows are indexed by V1 and whose columns are indexed by V2 where B[u, v] = w(u, v). The

max-distance product DC1,C2
= (A1 ⋆B)⋆A2 gives, for each pair of vertices of G, all heaviest paths

of length k − 1 where the first k/2 vertices are colored by colors from C1 and the last k/2 vertices

are colored by colors from C2. By considering all
(

k
k/2

)

< 2k possible choices for (C1, C2), and

computing DC1,C2
for each choice, we can obtain an n × n matrix D where D[u, v] is the heaviest

colorful path of length k−1 between u and v. The number of distance products computed using this

approach satisfies the recurrence t(k) ≤ 2kt(k/2). Thus, the overall running time is 2O(k)n3/ log n.

The proof of Theorem 1.6 shows that, as long as k = o(log log n), a cycle with k vertices and

maximum weight can be found, with high probability, in o(n3) time. We note once again that

all of our algorithms also apply to the MIN version of the problems. The previous best known

algorithm for finding a minimum weight cycle of length k, in real weighted graphs, has running
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time O(k!n32k) [PV91].

5 Monochromatic and rainbow H-subgraphs

Proof of Theorem 1.7: Assume that H has t edges. The problem of finding a rainbow H-

subgraph in G can be reduced, at a small cost, to the problem of finding a rainbow H-subgraph

in another edge-coloring of G where the number of colors used is only t. Assume C is the set of

colors used in G and consider a function f : C → {1, . . . , t}. This defines a new edge-coloring of

G. Clearly, if an H-subgraph is not rainbow in the original coloring then it is also not rainbow in

the new coloring. If f is constructed at random, a rainbow H-subgraph in the original coloring is

also rainbow in the new coloring with probability t!/tt > e−t. As in the color coding method, this

method can be derandomized by constructing O(logm) = O(log n) colorings with only t colors used

in each of them, so that if H is originally rainbow, it will also be rainbow in one of the constructed

colorings.

We may now assume that c : E → {1, . . . , t} and show how to find a rainbow H-subgraph if

it exists, in O(nωk+j) time. We shall assume that H = Kh and h = 3k + j where j ∈ {0, 1, 2}.

The proof for other types of subgraphs is similar. By our assumption, t =
(

h
2

)

. Consider a

partition of {1, . . . , t} into 6 parts C1, C2, C3, C4, C5, C6. The respective sizes are |C1| = |C2| =
(k
2

)

,

|C3| =
(k+j

2

)

, |C4| = k2, |C5| = |C6| = k(k+ j). Notice that there are 2O(t) choices for the partition.

For each partition we construct two Boolean matrices A and B that are defined as follows. The

rows of A are indexed by all the rainbow Kk subgraphs of G that use the colors from C1. The

columns are indexed by all the rainbow Kk subgraphs of G that use the colors from C2. We define

A[X,Y ] = 1 if X ∩ Y = ∅ and the bipartite subgraph induced by the parts X and Y is complete,

rainbow, and uses the colors from C4, otherwise A[X,Y ] = 0. The rows of B are indexed exactly

in the same order as the columns of A. Namely, by all the rainbow Kk subgraphs of G that use

the colors from C2. The columns are indexed by all the rainbow Kk+j subgraphs of G that use

the colors from C3. We define B[X,Y ] = 1 if X ∩ Y = ∅ and the bipartite subgraph induced by

the parts X and Y is complete, rainbow, and uses the colors from C5, otherwise A[X,Y ] = 0. The

Boolean product C = AB can be performed in O(nωk+j) time using fast matrix multiplication.

Now, if C[X,Y ] = 1 and X ∩ Y = ∅ and the bipartite subgraph of G induced by the parts X and

Y is complete, rainbow, and uses colors from C6 then we must have that X ∪ Y is contained in a

rainbow Kh subgraph of G. By considering all possible partitions we are guaranteed not to miss a

single rainbow Kh-subgraph of G.

Proof of Theorem 1.8: If H is a star, the theorem is trivial. Next, assume that H is not a

star and has at least five vertices. Thus, H has two independent edges and at least one additional

vertex. Put h = 3k + j and consider a labeling of the vertices of H with {1, . . . , h} so that the

following holds. If we partition {1, . . . , h} into three consecutive parts, as equally as possible, then

the subgraph of H induced by the first part contains an edge e1 and the subgraph induced by the

second part contains an edge e2. Thus, e.g., if H is the 5-cycle (1, 2, 3, 4, 5) a plausible partition is

{1, 2}{3, 4}{5}, e1 = (1, 2) and e2 = (3, 4). Denote by H1, H2, and H3, the labeled subgraphs of H
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induced by each of the parts and denote their respective sizes by h1, h1, h3. Thus, if j = 0 we must

have h1 = h2 = h3 = k, if j = 1 we can assume h1 = k + 1 and h2 = h3 = k and if j = 2 we can

assume h1 = h2 = k + 1 and h3 = k.

We create a Boolean matrix A as follows. The rows of A are indexed by all the ordered h1-tuples

of vertices and the columns by all the ordered h2-tuples. We put A[X,Y ] = 1 if X ∩ Y = ∅ and

the mapping that assigns the i’th vertex of X to i and the ℓ’th vertex of Y to h1 + ℓ corresponds

to a monochromatic labeled copy of H1 ∪H2. In particular, note that the edge mapped to e1 has

the same color as the edge mapped to e2. We create a Boolean matrix B as follows. The rows of

B are indexed exactly like the columns of A. The columns of B are indexed by all the ordered

h3-tuples. We put B[X,Y ] = 1 if X ∩ Y = ∅ and the mapping that assigns the i’th vertex of X

to h1 + i and the ℓ’th vertex of Y to h1 + h2 + ℓ corresponds to a monochromatic labeled copy of

H2 ∪H3. Let C = AB be the Boolean product. Suppose that C[X,Y ] = 1 and suppose also that

X ∪ Y corresponds to a monochromatic labeled copy of H1 ∪H3. Let Z satisfy A[X,Z] = 1 and

B[Z, Y ] = 1. Then we must have that X ∪Y ∪Z corresponds to a monochromatic copy of H. This

is because the color of each mapped edge is either that of the edge of G mapped to e1 or that of

the edge of G mapped to e2 but these two are also colored the same. Notice also that if there is

a monochromatic H-subgraph, it would be captured by our algorithm. Since the time needed to

compute C is O(nωk+j), the result follows.

Consider next the case h = 4. If H 6= K4 then we can assume that H is labeled by {1, 2, 3, 4}

so that (1, 4) is not an edge and (2, 3) is an edge. Thus, the same algorithm described above using

the partition {1}{2, 3}{4} yields an O(nω+1) time algorithm for detecting a monochromatic H.

If H = K4 the algorithm is slightly different. For each v ∈ G, let S1, . . . , St be a partition of

the neighbors of v so that x, y ∈ Si if and only if c(v, x) = c(v, y). Searching for a triangle in

the subgraph induced by Si all of whose edges are colored by a given specific color has the same

complexity as searching for an uncolored triangle in a graph, and hence can be done in O(|Si|
ω)

time. Thus, in O(
∑t

i=1 |Si|
ω) ≤ O(nω) we can find a monochromatic triangle containing v, if it

exists. Performing this procedure for each v ∈ V gives the desired O(nω+1) time algorithm.

The only remaining case is H = K3. Let Ei be the set of edges of G colored with i. We say that i

is heavily used if |Ei| ≥ n(ω+1)/2. Clearly, the number of colors heavily used is at mostO(n2−(ω+1)/2).

For each heavily used color i we can decide, in O(nω) time, whether there is a monochromatic

triangle colored with i. The overall running time is, therefore O(nω+2−(ω+1)/2) = O(n(3+ω)/2).

For each color i that is not heavily used, we can decide in O(|Ei|
2ω/(ω+1)) time whether there is a

monochromatic triangle colored with i using the algorithm from [AYZ97]. The overall running time

is maximized if |Ei| = Θ(n(ω+1)/2) and when there are Θ(n2−(ω+1)/2) such colors. In this extremal

case the running time is still only O(n((ω+1)/2)(2ω/(ω+1))+2−(ω+1)/2 ) = O(n(3+ω)/2).

6 Concluding remarks and open problems

We presented several algorithms for MAX H-SUBGRAPH in both real vertex weighted or real

edge weighted graphs, and results for the related problem of finding monochromatic or rainbow

20



H-subgraphs in edge-colored graphs. It may be possible to improve upon the running times of

some of our algorithms. More specifically, we raise the following open problems.

(i) Can the exponent t(ω, 3) in Theorem 1.2 be improved? If so, this would immediately imply an

improved algorithm for maximum witnesses.

(ii) Can the logarithmic factor in Theorem 1.4 be eliminated? We know from [AYZ97] that this is

the case in the unweighted version of the problem. Can the logarithmic factor in Theorem 1.7 be

eliminated?

(iii) Can monochromatic triangles be detected faster than the O(n(3+ω)/2) algorithm of Theorem

1.8? In particular, can they be detected in O(nω) time?

(iv) Is the dominance matrix for a set of n points in n dimensions computable in Õ(nω) time?
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