
An Approximation Algorithm for the

Maximum Leaf Spanning Arborescence

Problem

Matthew Drescher

Master of Science

School of Computer Science

McGill University

Montreal, Quebec

October 2, 2007

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements of the degree of Master of Science

Copyright c© Matthew Drescher, 2007



DEDICATION

I dedicate this thesis to Ameera Chowdhury, whose unwavering belief in

me provided me with the courage to move to Montreal and pursue discrete

mathematics.

ii



ACKNOWLEDGEMENTS

I would like to thank Adrian Vetta for being a better supervisor than I could

have ever imagined possible: He took me on as a student and put together funding

and a plan when I came to his office last summer out of the blue without any of

these things. None of this would have been possible without Bruce Reed’s generous

funding. I would also like to thank Ameera Chowdhury for her helpful discussions

and advice. Thanks to the McGill Discrete Math Group at large of which I felt

very privileged to be a part. Thanks to everyone in the MCFC team for all the

soccer games! I would like to thank my parents who were always encouraging

and supportive. Finally I would like to thank Tony and the Shash for keeping me

awake!

iii



ABSTRACT

We present an O(
√

opt)-approximation algorithm for the maximum leaf

spanning arborescence problem, where opt is the number of leaves in an optimal

spanning arborescence. The result is based upon an O(1)-approximation algorithm

for a special class of directed graphs called willows. Incorporating the method for

willow graphs as a subroutine in a local improvement algorithm gives the bound

for general directed graphs.

iv



ABRÉGÉ

Nous présentons une approximation algorithmique O(
√

opt) pour le probléme

d’envergure maximum d’arborescence oú opt est le nombre de feuilles dans

une étendue arborescente optimal. Le résultat est basé sur une approximation

algorithmique O(1) pour une classe spéciale de graphiques dirigés appelés saules.

En incorporant la méthode des graphiques de saules comme une sous-routine dans

une amélioration algorithmique locale nous donne le lien des graphiques dirigée

généraux.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Undirected Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Greedy Approach . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Expansion Rules . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The Directed Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 An Approximation Algorithm for Willow Graphs . . . . . . . . . . 16
3.1.1 Willows. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Pitchforks. . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 An Algorithm for Willow Graphs. . . . . . . . . . . 19

3.2 An Approximation Algorithm for General Graphs . . . . . . . . . 30
3.2.1 Phase I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Phase II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



LIST OF FIGURES
Figure page

2–1 (a) Initial spanning arborescence with 2 leaves. (b) After an arbi-
trarily high number of edge swaps we have a new spanning arbores-
cence with an arbitrarily high number of leaves. . . . . . . . . . . . 9

3–1 A 3-prong pitchfork with a 5-arc handle. . . . . . . . . . . . . . . . . 18

3–2 (a) Time t = 0 and the willow W . (b) At time t = 1, we have I2 =
[v2, v13] and add the pitchfork with head v1 and prongs v4, v5, v9;
K = {v1}. (c) At time t = 2, we have I2 = [v2, v3] and P2 = ∅ so
the algorithm adds the downpath; K = {v1, v3}. (d) At time t =
3, we have I3 = [v6, v7, v8] and the algorithm adds a pitchfork with
tail v2, handle v8, v7, head v7, and prongs v6, v10; K = {v1, v3, v8}.
(e) At time t = 4, we have I4 = [v11, v12, v13] and P4 = ∅ so T
is extended to a spanning tree using path P = {v10, v12, v11, v13};
K = {v1, v3, v8, v13}. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3–3 (a) Find path Q to zW . (b) Add edges of the path Q and drop the
exchange partners from the tree. (c) Contract the rest of the tree
V −P into zW and call it z̃. (d) The arc from pi−1 ∈ P to z̃ creates
willow W̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



CHAPTER 1
Introduction

The vertices of any spanning tree can be naturally partitioned into two types:

leaves and internal vertices. In many applications, the leaves of a tree hold special

significance. For example, in communication networks the leaves of a tree represent

the receivers. A natural question then is to find a spanning tree T in a connected

undirected graph G containing the maximum number of leaves. This is known

as the Maximum Leaf Spanning Tree (mlst) problem and has applications in

communication network design [8], circuit layouts [14], and distributed systems

[12]. This problem, however, is hard; Galbiati et al [7] proved it to be maxsnp-

complete.

Given this, there has been much work on designing approximation algorithms.

Interestingly, the mlst problem is one of those select problems for which many of

the standard tools give good approximation guarantees.

The primary focus of this thesis is the Maximum Leaf Spanning Arborescence

(mlsa) problem: Given a directed graph G, whose underlying undirected graph

is connected, find a spanning arborescence T containing the maximum number

of leaves. Our new contributions include a
√

opt factor approximation algorithm

where opt is the number of leaves in an optimal spanning arborescence. To the

best of our knowledge this is the first nontrivial approximation algorithm for the

problem.

1



We begin by reviewing some of the more successful approximation algorithms

for the undirected mlst problem in Chapter 2. Our treatment of the undirected

algorithms is by no means an in-depth study, but serves to highlight concepts and

ideas from the undirected case that influenced our approach in the directed case.

The material in Chapter 2 is all previous work and contains no original results.

In Chapter 3 we turn to the mlsa problem. Chapter 3 contains work that is

joint with Adrian Vetta and presents the following new material:

1. We introduce willows, a special family of directed graphs for which mlsa has

a constant factor approximation algorithm.

2. Using the constant factor algorithm for willows as a subroutine, we develop a

O
√

opt factor algorithm for the mlsa problem in general.

2



CHAPTER 2
Undirected Background

In this chapter, we look at some of the techniques that proved successful

in the undirected version of the problem. We do so through a “directed lens”

and point out notions that have had an impact on our approach for the directed

problem.

We first review some basic graph theoretic terminology. A tree is a graph

in which any two vertices are connected by exactly one path. An arborescence

is an oriented tree in which all vertices are reachable via a directed path from a

distinguished vertex called the root. A spanning tree of a connected undirected

graph G is a subgraph of G that is a tree and that contains all vertices of G [6].

Similarly, a spanning arborescence of a directed graph D is a subgraph of D that

is an arborescence and that contains all the vertices of D [9].

There are many polynomial time algorithms, such as Kruskal’s algorithm

and Prim’s algorithm, to find a spanning tree in a graph [5]. As we mentioned

in Chapter 1, however, the problem of finding a spanning tree in a graph with

the maximum number of leaves is maxsnp-complete [7], which means that

it is unlikely that a polynomial time algorithm for this problem exists. We

can cope with the seeming intractability of the mlst problem by designing an

approximation algorithm [15], a polynomial time algorithm that finds a spanning

tree of G whose number of leaves is a guaranteed fraction of the number of leaves

3



in the optimal solution. We now turn to some of the techniques that were useful in

developing good approximation algorithms for the MLST problem.

2.1 Local Search

The very natural technique of Local Search can be described generically as

follows:

1. Start with any feasible solution F .

2. While possible:

(a) Perform some local modification of F which gives a new im-

proved solution F ′.

(b) Set F := F ′.

This technique does not work for every problem; for example, it fails on the

graph coloring problem. Lu and Ravi, however, show in [10] that, in the particular

case of the mlst problem, application of local search gives a constant factor

approximation algorithm.

To apply the above generic algorithm we need only specify how to find an

initial feasible solution and how to improve locally. A variety of efficient algorithms

exist for finding a spanning tree so we turn our attention to the problem of local

improvement. Lu and Ravi observed the following: If T is a spanning tree of

G = (V,E) and e ∈ E(G)−E(T ) then e∪T contains a unique cycle CT
e . Removing

any edge f ∈ CT
e from T ∪ e, where e 6= f , gives a new spanning tree T ′. For

4



a spanning tree T , let L(T ) denote the number of leaves of T . We define the

following operation:

Swap(T)

1. Find any e ∈ E(G) − E(T ) such that there exists f ∈ CT
e with the

property that L((T − f) ∪ e) > L(T ).

2. If found return (T − f) ∪ e; otherwise return T .

This operation leads directly to the local search algorithm.

Local Search Algorithm

1. Find a spanning tree T of G.

2. While (T 6= Swap(T ))

(a) Set T := Swap(T ).

In [10], Lu and Ravi illustrate an example for which no single edge swap leads

to an improvement, but a sequence of edge swaps does. We then have the following

generalization of the local search algorithm.

k-Swap(T)

1. Find a subset H ⊆ E(G) − E(T ) and a subset F ⊆ E(T ) that satisfy

(T − F ) ∪ H is a spanning tree of G, L((T − F ) ∪ H) > L(T ), and

|H| = |F | ≤ k.

2. If found return (T − F ) ∪ H; otherwise return T

5



For each increasing value of k, this defines an increasingly complex local

search algorithm.

k-Local Search Algorithm [LSA(k)]

1. Find a spanning tree T of G.

2. While (T 6= k-Swap(T ))

(a) Set T := k-Swap(T ).

Lu and Ravi prove that the local search and k-local search algorithms give

constant factor approximation guarantees in [10].

Theorem 2.1.1. LSA(1) is a factor 5 approximation algorithm.

Theorem 2.1.2. LSA(2) is a factor 3 approximation algorithm.

We will not give the proofs here; rather we shall illustrate some of the ideas

by proving the weaker but easier result, Theorem 2.1.5, which shows that LSA(1)

is a factor 10 approximation algorithm. Theorem 2.1.5 is due to Lu and Ravi

[10]. We will need the following notation: For a tree T and i ∈ {0, 1, 2, . . .}, let

Ti denote the set of vertices of T with degree i; similarly let T≥i denote the set of

vertices of T with degree at least i. We let T ∗ denote the optimal solution. Before

commencing with the proof, we develop some lemmas.

Lemma 2.1.3. If T is a spanning tree then T≥3 ≤ |T1| − 2.

Let T be a spanning tree of G. Note that the vertices of T2 naturally decom-

pose into a set of maximal paths which we denote by P2.

Lemma 2.1.4. |P2| ≤ 2|T1|.

6



Proof. Each path in P is terminated by either a vertex from T≥3 or from T1.

|P2| ≤ |T≥3| + |T1| and the result follows by Lemma 2.1.3.

Theorem 2.1.5. Suppose LSA(1) returns the tree T . Then |T1| ≥ (1/10)|T ∗
1 |.

Proof. We have

|T ∗
1 | = |T ∗

1 ∩ T1| ∪ |T ∗
1 ∩ T2| ∪ |T ∗

1 ∩ T≥3|

≤ |T1| + |(T ∗
1 ∩ T2)| + |T≥3|

≤ 2|T1| + |(T ∗
1 ∩ T2)|. (by Lemma 2.1.3)

Thus we need only concern ourselves with showing |(T ∗
1 ∩ T2)| ≤ 8|T1|. Since

T2 = ∪P∈P2
P , we have by Lemma 2.1.4 that

|(T ∗
1 ∩ T2)| ≤ max

P∈P2

{|P ∩ T ∗
1 |} · |P2| ≤ max

P∈P2

{|P ∩ T ∗
1 |} · 2|T1|.

Therefore, we need only show that each P ∈ P2 can have at most four vertices

which are leaves in T ∗
1 .

Suppose for a contradiction that a path P ∈ P2 contains more than four

leaves of T ∗
1 . In particular, suppose P contains five leaves v1, v2, v, v′

1, v
′
2 ∈ P ∩ T ∗

1

in this order. Let x′ be a vertex not in P . Let x be the first vertex in V − P on

the path T ∗(v, x′), and let w be the last vertex from P on path T ∗(v, x). Observe

that pathT (v, w) =pathT ∗(v, w) by the choice of w. Since v2 and v′
1 are leaves

in T ∗ they cannot be part of pathT ∗(v, x′). Thus pathT ∗(v, x′) has to leave P

before either v2 or v′
1. Hence w lies between v2 and v′

1 on path P . Now, the edge

{w, x} in T ∗ does not lie in T so adding it to T creates a cycle CT
{w,x}. Since

7



w lies between v2 and v′
1 on P , either v1 and v2 or v′

1 and v′
2 are in the cycle

CT
{w,x}. Without loss of generality, suppose v1 and v2 lie in CT

{w,x}: This implies

T ∪ (x,w) − e is a local improvement where e is an edge on P between v1 and v2,

which contradicts the definition of T .

Before we conclude, we ask the reader to pause and consider the mlsa prob-

lem. Certainly the k-Local Search Algorithm can be modified for this problem.

What structure would the output of such an algorithm have? For what value of k

could such an algorithm have a good if any approximation guarantee?

Figure 2.1 gives a spanning arborescence T on which a k-exchange algorithm

performs poorly. To improve T requires exchanging more than half of the arcs of

the arborescence; that is, we need k > 1
2
n. Moreover doing so enables us to find

the optimal arborescence T ′ which contains 1
2
n leaves compared to just two in

T . Consequently, the k-exchange algorithm gives a trivial θ(opt)-approximation

guarantee.

2.2 The Greedy Approach

In [11] Lu and Ravi employ a new greedy strategy obtaining a factor 3,

near linear time approximation algorithm for the MLST problem. Solis-Oba

then improves on this result and gives a factor 2 approximation algorithm. This

algorithm is based on a greedy strategy which follows expansion rules to grow a

spanning forest with many leaves that can be extended to a spanning tree at the

cost of a few leaves.

8



v1

v2

vj

vn/2

vn

vj+1

vn−1

v1

v2

vj

vn/2

vn

vj+1

vn−1

(a) (b)

Figure 2–1: (a) Initial spanning arborescence with 2 leaves. (b) After an arbi-
trarily high number of edge swaps we have a new spanning arborescence with an
arbitrarily high number of leaves.

9



We shall not go into full detail here. However, in order to provide the reader

with some intuition and to illustrate this more successful approach, we shall state

the algorithm and then give the much shorter proof that it is a factor 3 algorithm.

2.2.1 Expansion Rules

Given a sub-tree T , we apply a set of rules to the leaves of T in order to

obtain an expanded tree T ′. Let x be a leaf in T .

1. If x has at least 2 neighbors outside of T , then add the neighbors of x as x’s

children in the extended tree T ′.

2. If x has only one neighbor y outside of T but at least 2 neighbors of y are

outside T then add y as x’s child along with y’s neighbors as y’s children in

the extended tree T ′

The above rules are assigned priorities as follows:

• Rule 1 has priority over rule 2: If x and x′ are leaves and x, x′ can be

expanded using rules 1 and 2 respectively, then expand x.

• If x and x′ can both be expanded by rule 1, choose the vertex with more

neighbors outside T .

• If x and x′ with single neighbors y, y′ in G − T respectively can be expanded

by rule 2, choose the vertex whose single neighbor (y or y′) has more

neighbors outside of T .

We are now in a position to describe the algorithm.

10



Greedy Expansion(G)

1. Set F = ∅.

2. While there remains a vertex v ∈ G of degree at least 3:

(a) Let T i be the tree with root v and the neighbors of v in G as

leaves.

(b) While there is some leaf in T i that can be expanded:

i. Expand a leaf with highest priority rule.

3. Set F = F ∪ T i and G = G − T i.

4. Connect the trees in F and the vertices not in F to obtain the span-

ning tree T .

2.2.2 Analysis

Suppose F = {T 0, T 1, . . . , T k} is the forest returned by the algorithm. Let

X = G − F be the vertices not spanned by F , which we will refer to as exterior

vertices. We will need the following lemmas.

Lemma 2.2.1. Let G′ denote the graph obtained by contracting each tree in F to a

single vertex. Each exterior vertex has degree at most two in G′.

Proof. Suppose, for a contradiction, that there is an exterior vertex x with three

neighbors in G′. At least one of these neighbors must be in F ; otherwise the

algorithm would have continued with x as the root of a new tree. Let T j ∈ F be

the first tree added to F that contains a neighbor y of x. Clearly, y cannot be an

11



internal vertex; otherwise x would have been added as a child of y. However, x is

adjacent to two vertices outside T j so y would have been expanded by rule 2.

A similar argument proves the following lemma.

Lemma 2.2.2. Let u be a leaf of T i ∈ F . If u is adjacent to two vertices

v, w /∈ T i, then v and w are leaves of the same tree T j ∈ F .

The following corollary applies to any spanning tree of G and, in particular, to

an optimal spanning tree.

Corollary 2.2.3. If T is any spanning tree of G, then T has at most |V (F )| − 2k

leaves, where F = {T 0, T 1, . . . , T k} is the forest returned by the algorithm.

Proof. Suppose T is a spanning tree of G. Let F = T [F ] be the forest induced

on T by F . In order to extend F to a spanning tree we must connect the trees

in F . Either we must connect two leaves of F by an edge or we must connect

two leaves of F by a path through X, the set of exterior vertices. Lemma 2.2.2

and Lemma 2.2.1 therefore imply that we will lose at least 2k leaves of F in the

process. Clearly, each leaf in X must have a unique parent p that is a leaf in F ′;

otherwise p would have been expanded using rule 1.

We call a vertex y in F black if it has 2 children and is the only child of its

parent x. In other words x was expanded with the lowest priority instance of rule

2. Let B(V ′) be the set of black vertices in V ′ ⊆ V .

Lemma 2.2.4. For T i ∈ F , |T i
1| ≥ 3 + |B(T i)| + (1/2)(|T i| − 3|B(T i)| − 4).

Proof. By construction T i’s root has at least 3 children. Consider the application

of the expansion rules when growing the tree. Notice that, when we use the least

12



priority rule, we kill one leaf and add two leaves for a net increase of one leaf.

Since we use the least priority rule |B(T i)| times, this corresponds to |B(T i)|

leaves that were contributed by the least priority rule. Also note that the total

number of vertices added by this rule is 3|B(T i)|. Every other expansion type

clearly adds at least as many leaves as internal vertices. Excluding the root,

its children, and the vertices added by the lowest priority rule, we see there are

|T i| − 3|B(T i)| − 4 vertices added by these other expansion types. Hence, we add

at least (1/2)(|T i| − 3|B(T i)| − 4) leaves.

We now show that the greedy expansion algorithm is a factor 3 algorithm:

Theorem 2.2.5. If T is the spanning tree returned by Greedy Expansion(G) then

|T ∗
1 | < 3|T1|.

Proof. Applying Corollary 2.2.3 and Lemma 2.2.4 we have

|T ∗
1 |

|T1|
≤ |V (F )| − 2k

∑k

i=0(3 + |B(T i)| + |V (T i)|−3|B(T i)|−4
2

) − 2k

≤ 2(|V (F )| − 2k)

|V (F )| − |B(F )| − 2k + 2

≤ 2 +
2|B(F )|

|V (F )| − |B(F )| − 2k
(2.1)

To finish up the proof we observe that |V (F )| > 4k + 3|B(F )|. To see this,

note that each root in F and its at least three children contribute a total of at

least four vertices. Since each application of the lowest priority rule adds three

vertices, we have

|V (F )| =
k∑

i=0

|V (T i)| ≥
k∑

i=0

(4 + 3|B(T i)|) = 4(k + 1) + 3|B(F )|.

13



Substituting this into 2.1 finishes the proof:

|T ∗
1 |

|T1|
≤ 2 +

2|B(F )|
|V (F )| − |B(F )| − 2k

≤ 3.

Solis-Oba does a more intricate case analysis of the algorithm and shows:

Theorem 2.2.6. If T is the spanning tree returned by Greedy Expansion(G) then

|T ∗
1 | ≤ 2|T1|.

Again, we ask the reader to pause and consider modifying this algorithm for

the directed mlsa problem. What if anything about this approach can work when

we have directed edges? Are there certain subclasses of directed for which it will

be more successful?

It is easy to construct bad examples for all obvious types of greedy algorithms.

For example, greedily growing a forest will fail as the arc directions may then

prohibit the forest from being connected up efficiently.

Our approach to mlsa is motivated by the example in Figure 2.1. How can

we deal with the difficulty inherent in this simple directed graph? To do this, we

consider a specific family of directed graphs, called willow graphs, which contains

the structures causing the problems in Figure 2.1. We first present a constant

factor approximation algorithm for the mlsa problem in willow graphs.

The key observation then is that paths in an arborescence T in a general

directed graph must induce willow-like graphs, otherwise local improvements to

T can be obtained easily. Consequently, we are able to apply the algorithm for

willow graphs as a subroutine in a O(
√

opt)-approximation algorithm for the

14



mlsa problem in general directed graphs, where opt is the number of leaves in an

optimal spanning arborescence.

15



CHAPTER 3
The Directed Case

3.1 An Approximation Algorithm for Willow Graphs

We can not proceed without some terminology. Let T be an arborescence and

let i ∈ N. We denote by Ti the set of vertices with out-degree i in T ; similarly, T≥i

denotes the set of vertices with out-degree at least i.

We begin with some general observations that apply to any directed graph

G. Observe that if a vertex v is an internal (non-leaf) vertex in an arborescence

T ⊆ G then adding any outgoing arc from v does not reduce the number of leaf

vertices. It follows that we wish to select a subset R of vertices such that R is

spanned by an arborescence rooted at r and every vertex u ∈ V − R has an

incoming arc whose tail is in R.

We say a directed graph G is strongly connected if there is a directed path

between every ordered pair of vertices. A strong component of G is a maximal

strongly connected subgraph of G. A source strong component is a strong compo-

nent C of G such that there is no arc from G − C to C.

It is possible to test in polynomial time for the existence of a spanning

arborescence in a directed graph G. Decomposing a directed graph G = (V,E) into

its strongly connected components can be accomplished in time O(|V | + |E|), an

application of the classic depth first search algorithm see for example [5]. Therefore

the following theorem gives one such method [2].

16



Theorem 3.1.1 ([3]). A directed graph G has a spanning arborescence if and only

if G has a unique source strong component.

Hence we assume from now on that any directed graph G which we consider

contains a spanning arborescence.

3.1.1 Willows.

An ordering {v1, v2, . . . , vn} of the vertices of a directed graph partitions the

arc set into two groups; up arcs (vi, vj) satisfy i < j and down arcs (vi, vj) satisfy

i > j. A directed graph W = (V,A) is called a willow if V has a vertex ordering

for which the down arcs are precisely a Hamiltonian path H.

For vertices vi, vj ∈ H, we say that vi is lower than vj if i < j. We denote

this using the “<” operator and write vi < vj. We define a closed interval

[vi, vj] := {v ∈ W : vi ≤ v ≤ vj}; an open interval can be defined analogously.

Observe that our bad example for the k-exchange algorithm contained an

induced willow. Consequently, being able to deal with willows is a necessary

attribute of any good algorithm. Conversely, we will show in Section 3.2 that

an approximation algorithm for the maximum leaf arborescence problem in a

willow gives an approximation algorithm for the general case (albeit with a weaker

approximation guarantee). Ergo, in this section we present an approximation

algorithm for willows.

3.1.2 Pitchforks.

A key structure for our algorithm is a pitchfork. A pitchfork consists of

17



(i) A directed path {w0, w1, . . . , wk} with tail w0 and head wk. The arcs of

the path form a handle. (The handle need not be non-empty; in this case

w0 = wk).

(ii) A set of at least two arcs emanating from the head wk, called prongs, that

point to vertices disjoint from the handle.

Prongs

w0

w1

w2

w3

w4

w5 Head

Figure 3–1: A 3-prong pitchfork with a 5-arc handle.

Figure 3–1 illustrates a pitchfork. To understand why pitchforks will be

useful, consider the following simple result.

Lemma 3.1.2. In any arborescence T , the number of leaves is greater than the

number of vertices with out-degree at least two.

Proof. The number of leaves in T is

|T0| = 1 +
∑

v:deg+(v)≥2

(deg+(v) − 1) ≥ 1 + |T≥2|.

18



Hence, an arborescence with a large number of nodes of out-degree at least

two will have a large number of leaves. This observation is the motivation behind

our algorithm. The idea is to grow an arborescence T by adding one pitchfork at

a time; the tail of the pitchfork should be in the current arborescence with all its

other vertices lying outside the current arborescence. Intuitively, if the handles of

the pitchforks are small then the constructed arborescence will have few internal

nodes of degree one and so will have a large number of leaves by Lemma 3.1.2.

Of course, such an approach faces two immediate difficulties. First, what

happens if the algorithm finds pitchforks with long handles? Secondly, what

if the algorithm cannot find any pitchfork at all? The latter problem is easy

to deal with: If the algorithm “gets stuck” we will obtain a certificate showing

that the optimal solution cannot do much better at that point. We have to deal

with the former problem in a similar fashion; the need for the output of long

handles implies an improved upper bound. However, showing this is not quite as

straightforward and requires a more careful examination of the structure of the

algorithm. Consequently, we will now describe the algorithm formally and then see

how it provides a constant factor approximation algorithm for willow graphs.

3.1.3 An Algorithm for Willow Graphs.

Take a willow W with Hamilton path H := vn, vn−1, ..., v1. We remark that it

is easy to determine in polynomial time if W has a spanning arborescence rooted

at v1. Therefore, we may assume that W does contain such an arborescence.

19



From here on, we will use the words “tree” and “arborescence” interchange-

ably since the latter is cumbersome. We hope there is no confusion as we will only

be considering the case of directed graphs.

Recall that our algorithm constructs T , beginning with v1, by finding and

adding pitchforks. In order to obtain an upper bound on the performance of

the algorithm we will colour the vertices of the graph when we add them to the

arborescence. Our colouring is

• The head of a pitchfork is coloured red.

• The internal vertices on the handle are coloured yellow.

• The prong vertices are coloured blue.

We will attempt to colour the vertices of G in a roughly contiguous fashion

from v1 up to vn. To do this we begin, at time t = 0, by colouring the root vertex

v1 blue. Subsequently, at time t, we focus on the lowest uncoloured interval, say

It = [vi+1, vj−1]. We let Pt denote the set of pitchforks whose tail vertices lie in

the current tree, whose handles lie in It ∪ {vj}, and whose prongs are uncoloured.

We search for a minimal pitchfork Ft ∈ Pt whose highest handle vertex vk ≤ vj

is minimised. By “minimal” we mean that the handle of Ft does not properly

contain the handle of another pitchfork in Pt. If such a pitchfork exists, we add

it to the current tree. Note that the tail of the handle of such a pitchfork must

be either a blue vertex in {v1, . . . , vi} or the blue vertex vj. Then the head of the

pitchfork either coincides with its tail or is in the interval It ∪ {vj} if the handle is

non-empty.

20



If such a pitchfork does not exist then we have two possibilities. If j ≤ n then

we add the downpath from vj to vi+1; the endpoints vi+1 and vj are coloured blue

and the vertices in the interior of the downpath are coloured yellow. If vi+1 is not

still a leaf at the end of the algorithm, then this downpath must, at some point in

the algorithm, have been be followed by a pitchfork with tail at vi+1; that is, two

downpaths cannot be joined consecutively. If j = n+1 then we add a path through

all the remaining uncoloured vertices; again the endpoints of this path are coloured

blue and the interior vertices are coloured yellow. We then repeat and consider the

next uncoloured interval.

Our algorithm also partitions the vertices into intervals by marking certain

vertices. The set of marked vertices is denoted by K, and K is initially empty at

time t = 0. When we attach a pitchfork to the current tree, we add its highest

handle vertex to K if it is higher than all vertices in K. Similarly, when we attach

a downpath starting at vj, we add vj to K if vj is higher than all vertices in K.

If the algorithm is forced to terminate by attaching a final path through all the

uncoloured vertices then we add the vertex vn to K. The following table formalizes

the algorithm and Figure 3-2 illustrates an example.

21



Willow(G)

1. Initialize t := 0, colour v1 blue, T := v1, K := ∅; t := 1.

2. Given T and t, let It := [vi+1, vj−1] be the lowest uncoloured interval.

• Let Pt denote the set of pitchforks whose tail vertices lie in the current

tree T , whose handles lie in It ∪ {vj}, and whose prongs are uncoloured.

• If no such pitchforks exist then set Pt := ∅.

3. If Pt 6= ∅ then

(i) Let Ft ∈ Pt be a minimal pitchfork whose highest handle vertex is mini-

mized. [By “minimal” we mean that the handle of Ft does not properly

contain the handle of another pitchfork in Pt.]

(ii) Set T := T ∪ Ft and colour Ft. Colour the head ht red, the internal han-

dle vertices yellow and the prongs blue.

(iii) Let kt be the highest handle vertex of Ft. If kt > max{k ∈ K} then set

K := K ∪ kt.

4. If Pt = ∅ then

(i) If j ≤ n then

• Add the downpath Ft := {vj, vj−1, . . . , vi+1} to T .

• Colour the vertices [vi+2, vj−1] yellow, and colour vi+1 blue.

• If vj > max{k ∈ K} then set K := K ∪ vj.

(ii) If j − 1 = n then extend T to a spanning arborescence as follows:

• Find a path P from T through every uncoloured vertex.

• On P , colour the last vertex blue and internal vertices yellow.

• Set K := K ∪ vn.

5. Terminate if all vertices are coloured; otherwise set t := t + 1, and goto (2).

22



Observe that requiring our pitchforks to be “minimal” gives the following

characterization of yellow vertices.

Observation 3.1.3. The yellow vertices are those vertices that are not blue and

have exactly one uncoloured out-neighbor when they are added to the tree.

We remark that both the colouring and marking are not required by the

algorithm; they will be used solely to guide the analysis of the algorithm’s per-

formance. Some comments are in order here. First observe that when we add

a pitchfork the tail vertex will have already been coloured blue. Consequently,

a vertex may receive more than one colour; for example, a vertex could first be

added to the tree as a prong vertex, and later could be the head of a pitchfork

with an empty handle (and, is thus also the tail of the pitchfork); such a vertex

will be coloured both blue and red. The set of yellow vertices, however, intersects

neither the set of red vertices nor the set of blue vertices. Secondly, the set K of

markers naturally partition the vertices into intervals. The markers also possess

the following useful property.

Observation 3.1.4. At the time vertex ki is added to K, there are no yellow or

red vertices higher than ki−1.

Now that we have described our algorithm, we will prove that it is indeed a

constant factor approximation algorithm. We need to show the algorithm outputs

a spanning arborescence, runs in polynomial time, and has a constant factor

worst-case guarantee.

Lemma 3.1.5. The algorithm produces a spanning arborescence.

23



Root

r = v1

vn=13

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

Red

Yellow

Blue

Uncoloured

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

5

6

7

8

9

10

11

12

13

(a) (b) (c) (d) (e)

Figure 3–2: (a) Time t = 0 and the willow W . (b) At time t = 1, we have I2 =
[v2, v13] and add the pitchfork with head v1 and prongs v4, v5, v9; K = {v1}. (c) At
time t = 2, we have I2 = [v2, v3] and P2 = ∅ so the algorithm adds the downpath;
K = {v1, v3}. (d) At time t = 3, we have I3 = [v6, v7, v8] and the algorithm adds
a pitchfork with tail v2, handle v8, v7, head v7, and prongs v6, v10; K = {v1, v3, v8}.
(e) At time t = 4, we have I4 = [v11, v12, v13] and P4 = ∅ so T is extended to a
spanning tree using path P = {v10, v12, v11, v13}; K = {v1, v3, v8, v13}.

24



Proof. Clearly, step (3) adds a pitchfork and step 4(i) adds a directed path to

T , and by construction these objects do exist when they are added. It remains to

prove that the path P added in step 4(ii) does exist. Suppose that at time t, the

lowest uncoloured interval is It = [vi+1, vn] and that Pt = ∅. As there is a spanning

arborescence of W rooted at v1, there is a path P̂ in W from v1 to vn. Let y be

the last vertex of P̂ in [v1, vi]. Let P1 be the segment of P̂ from y to vn.

If P1 = (y, vn) then adding the downpath from vn to vi+1 gives the de-

sired path through all the uncoloured vertices. Otherwise, consider the vertices

V (P1) \ {y, vn} that form the interior of the path P1. We claim these interior

vertices form an interval; specifically, V (P1) \ {y, vn} = [vi+1, vj] for some j such

that i + 1 < j < n. Suppose, for a contradiction, that the interior of P1 is not an

interval. This implies that, for some s 6= 1, there exists a vertex vi+s in the interior

of P1 such that vi+s−1 is not in the interior of P1. Let w be the vertex following

vi+s in P1. Observe that the vertices vi+s−1 and w are uncoloured at time t because

they lie in It = [vi+1, vn]. Moreover, vi+s−1 and w do not lie on the subpath of P1

from y to vi+s, denoted y
P1−→ vi+s, because vi+s−1 is not in the interior of P1 and w

follows vi+s. We then have a pitchfork with tail y, head vi+s, handle y
P1−→ vi+s, and

prongs vi+s−1 and w. This contradicts the assertion that Pt = ∅.

Now define P2 to be the downpath from vn to vj+1. Then P = P1 ∪ P2 is a

path through all the uncoloured vertices, as required.

Lemma 3.1.6. The algorithm runs in polynomial time.

Proof. First let’s see that step (2) can be carried out in polynomial time. It is

easy to find It = [vi+1, vj−1], so we just need to find a minimal pitchfork Ft with

25



highest handle vertex kt ≤ vj minimised. This we can do by exhaustively searching

over all possible choices for the tail vertex, head vertex, sets of two prongs, and kt.

Given such choices it is easy to check if the desired pitchfork exists in polynomial

time. Similarly, it easy to find the path P of step 4(ii) in polynomial time as

outlined in Lemma 3.1.5

We now obtain an approximation guarantee for the algorithm. To do this, we

utilise the markings and colouring made by the algorithm. Let R, B and Y be the

set of red, blue and yellow vertices, respectively. (Recall that the sets R and B

may intersect.)

Lemma 3.1.7. The algorithm outputs an arborescence with more than 1
5
(|R|+ |B|)

leaves.

Proof. Observe that the set of red vertices is exactly the set of vertices in T with

out-degree at least 2. Consequently, |R| < |T0| by Lemma 3.1.2.

We now prove that |B| ≤ 4|T0|. First consider B \ T0, the blue vertices that

are not leaves in T . We show that |B \ T0| ≤ 3|T0|. Let b 6= v1 be a blue vertex

that is not a leaf in T . We consider two cases.

(i) The vertex b has a red descendant.

Let r be b’s closest red descendant in T . We show that at most one other

blue vertex can have r as a closest red descendant. To see this, note that in

a pitchfork the red head is immediatly followed by a blue prong. It follows

that consecutive blue nodes in the arborescence are separated by a red vertex

unless they were added in a downpath. Recall, however, that there can be

no two consecutive downpaths in the arborescence; moreover a downpath

26



containing b cannot be followed by the final path of Step 4(ii) because b has

a red descendent. Thus, no more than two vertices in B \ T0 can share a

closest red descendant. Therefore, the number of vertices in B \ T0 with a red

descendant is at most 2|R|.

(ii) The vertex b does not have a red descendant.

We show that the number of vertices in B \ T0 without a red descendant is at

most |T0| + 1. Suppose that b is the prong of a pitchfork F . Since b ∈ B \ T0

does not have a red descendant, b must be the first vertex of a downpath

P . Now the last vertex of P is either a leaf or the first vertex of the final

downpath. Since the last vertex of the final downpath is a leaf, the number

of vertices in B \ T0 without a red descendant is at most T0 + 1.

Therefore, by Lemma 3.1.2 and noting that v1 is also blue, we obtain

|B \ T0| ≤ 2|R| + (T0 + 1) + 1 ≤ 2(T0 − 1) + (T0 + 1) + 1 = 3|T0|.

Consequently we obtain an upper bound on the number of blue vertices:

|B| = |B \ T0| + |B ∩ T0| ≤ 3|T0| + |T0| = 4|T0|.

Hence,

|R| + |B| < |T0| + 4|T0| = 5|T0|

so the algorithm outputs a tree with more than (1/5)(|R| + |B|) leaves.

Next consider the set of yellow vertices. If we can show that only a small

number of yellow vertices can be leaves in the optimal arborescence T ∗ then we

would be done. To do this, we consider the interval partition produced by the set

27



K of markers. Let K := {k1, ..., kl} be ordered according to the time the vertices

were marked by the algorithm. Note that, by construction, for i < j, we have

ki < kj.

Theorem 3.1.8. The number of yellow vertices that are leaves in the optimal

solution is at most 2|B| + |R|.

Proof. Let T ∗ denote the optimal arborescence. For each 1 ≤ i ≤ l, define a

subset Ai of T ∗
0 ∩ Y as:

Ai := {y ∈ T ∗
0 ∩ Y ∩ (ki−1, ki] : the path from v1 to y in T ∗ uses ki.}.

Next let A =
⋃l

i=1 Ai. We will show that |A| ≤ |K| ≤ |B| + |R| and that

|(T ∗
0 ∩ Y ) − A| ≤ |B|; from this, the statement of the theorem follows.

We first prove that |Ai| ≤ 1. Suppose, for a contradiction, that y1, y2 ∈ Ai.

Without loss of generality, we can assume y1 < y2. Since the path from v1 to y1

in T ∗ goes through ki ≥ y2 > y1, the vertex y2 is on the path from v1 to y1 in T ∗,

which contradicts the fact that y2 is a leaf in T ∗. Hence, there can be at most one

vertex of A in each interval (ki−1, ki] so |A| ≤ |K| = l. Now |K| ≤ |B|+ |R| because

each marked vertex either belongs to the handle of a distinct pitchfork found in

Step 3 or a path found in Step 4 of the algorithm.

We now show that |(T ∗
0 ∩ Y ) − A| ≤ |B|. Let y1, y2 ∈ (T ∗

0 ∩ Y ) − A. Without

loss of generality, assume that y1 < y2 and that y1 ∈ (kj−1, kj]. We will prove

that y1 and y2 cannot share a common closest blue ancestor in T ∗. Suppose, for a

contradiction, that b is the closest blue ancestor in T ∗ of y1 and y2. Let P1 and P2

be the paths in T ∗ from v1 to y1 and y2, respectively. Let t(j) be the time at which

28



vertex kj is coloured, and let w be the last vertex on P1 that was coloured by the

start of time t(j). Since v1 is coloured blue at time t = 0, the vertex w exists.

Also, w 6= y1 by Observation 3.1.4 since y1 is yellow and higher than kj−1.

We will show that the vertex w must be blue. Let x be the vertex after w on

P1. Suppose first, for a contradiction, that w is red. Since x is an out-neighbor

of w, either x was coloured before w or x was coloured blue when w was coloured

red; both possibilities contradict the definition of w. Now suppose that w is

yellow. By Observation 3.1.3, this implies that when w was coloured, it had

exactly one uncoloured out-neighbor. This out-neighbor must be x so x must

have been coloured at the same time as w, a contradiction. Thus, w must be

blue and, because b is the closest blue ancestor of y1, either w = b or w occurs

before b on P1. A similar argument shows that w is the last vertex on P2 that is

coloured blue at the start of time t(j), since b is the closest blue ancestor of y2 and

y2 > y1 > kj−1.

Consider the tree P1 ∪ P2. Since y1 and y2 are leaves in T ∗, there exists a

unique vertex h whose out-degree is two in P1 ∪ P2. Clearly, h occurs after b on

P1; otherwise b would not be an ancestor of y1 and y2. Since y1 ∈ (T ∗
0 ∩ Y ) − A,

all vertices on P1 must be lower than kj. Now kj lies in It(j), the lowest uncoloured

interval at time t(j). Since the vertices on P1 after w and up to h are uncoloured

at time t(j) and are lower than kj, they must lie in It(j) as well. Observe that the

vertex kj−1 is not in It(j) so the vertices on P1 after w are higher than kj−1.

Now let p1 and p2 denote the children of h on the paths P1 and P2, respec-

tively. Since p1 and p2 occur after w on these paths, they are uncoloured at time

29



t(j). Therefore, at the start of time t(j), we have a pitchfork F ∈ Pt(j) with tail w,

handle w
P1−→ h, head h, and prongs p1, p2. Since the highest handle vertex of F is

lower than kj and higher than kj−1, this contradicts the definition of kj.

We have shown that that two vertices in T ∗
0 ∩ Y − A cannot share a common

closest blue ancestor in T ∗. Therefore, |T ∗
0 ∩ Y − A| ≤ |B| so

|T ∗
0 ∩ Y | = |A| + |T ∗

0 ∩ Y − A| ≤ (|B| + |R|) + |B| = 2|B| + |R|.

Putting these results together gives a worst case guarantee for willow graphs.

Theorem 3.1.9. The algorithm gives a factor 14 approximation guarantee for

willow graphs.

Proof. We have that

|T ∗
0 | ≤ |(B ∩ T ∗

0 )| + |R ∩ T ∗
0 | + |Y ∩ T ∗

0 |

≤ |B| + |R| + |Y ∩ T ∗
0 |

≤ |B| + |R| + (2|B| + |R|) (by Theorem 3.1.8)

= 3|B| + 2|R|

< 14|T0|. (by the proof of Lemma 3.1.7)

Therefore, we have a factor 14 approximation algorithm for willow graphs.

3.2 An Approximation Algorithm for General Graphs

We are now ready to present an approximation algorithm for general graphs.

The algorithm is a glorified local improvement algorithm. It is an iterative

30



algorithm with upto two phases in each iteration. The first phase is a simple 1-

exchange algorithm with a clean-up step. The clean-up step allows us to partition

the graph into willow-like pieces; the second phase then looks for improvements by

applying our willow algorithm on each piece.

To guide our algorithm, we will use a colouring scheme similar to that utilized

by our willow algorithm. At any point, we will colour our current arborescence T

as follows.

• If v has out-degree at least two in T , then colour v red.

• If v is the child of a red vertex or is a leaf then colour v blue.

• Colour all other vertices yellow.

We denote the sets of red, blue and yellow vertices by R,B and Y , respectively.

Again, the sets R and B may intersect whereas Y ∩ R = Y ∩ B = ∅. Observe also

that the set of yellow vertices consists of all the vertices of out-degree exactly one

in T except for those that are coloured blue.

3.2.1 Phase I

Let T be a spanning arborescence in a directed graph G = (V,A). In order to

describe our local improvement algorithm the following fact will be useful.

Observation 3.2.1. Given a = (u, v) ∈ A, let â = (x, v) ∈ T be the unique

arborescence arc entering v. Then (T − â) ∪ a is a spanning arborescence if and

only if v is not an ancestor of u.

Proof. First suppose v is an ancestor of u in T and let P be the path from v to u

in T . The graph (T − â) ∪ a has a directed cycle P ∪ {u, v}, so (T − â) ∪ a is not a

31



spanning arborescence. On the other hand, if v is not an ancestor of u then clearly

(T − â) ∪ a is a spanning arborescence.

This observation will be of use in describing our local improvement algorithm

where we will attempt to improve our current tree by substituting a non-tree arc

a for its exchange partner â. In general, let Q be a set of arcs that form a forest.

Then let Q̂ consist of all the arcs in T that are exchange partners for arcs in Q.

The process of setting T := (T − Q̂) ∪ Q will be called a k-exchange, where k

is the number of arcs in Q, provided that it produces a valid arborescence. In

particular, Phase I of the algorithm is a 1-exchange algorithm (this is similar

to the method applied by Lu and Ravi on undirected graphs). Our input is any

spanning arborescence T .

Phase I: Local Improvement.

1. [1-exchange]

While there is an arc a ∈ G − T such that (T − â) ∪ a is an arbores-

cence with more leaves than T :

(a) Set T := (T − â) ∪ a.

2. [tree-shortening]

While there is a vertex u and arc a = (u, v) with v a descendant of

u:

(a) Set T := (T − â) ∪ a, where â = (x, v) ∈ T .

(b) Recolour T .

32



Phase I is repeated until the tree T is unchanged throughout a whole itera-

tion; namely, no 1-exchange or tree-shortening modifications are possible. We now

show that Phase I runs in polynomial time.

Lemma 3.2.2. Phase I runs in polynomial time.

Proof. The conditions for Steps (1) and (2) can easily be tested in polynomial

time. The 1-exchange step adds an extra leaf each time it is applied, so clearly this

happens at most n times. After a tree-shortening step the depth of vertex v and

its descendants decrease. Therefore this step can only be carried out at most n2

times between successive 1-exchange applications .

We call a tree on which no Step (1) or Step (2) modifications can be applied a

short-tree. Note that Step (2) does not change the number of leaves; otherwise it

would have been carried out in Step (1). This implies the parent of v must be red

since if v is the only child of its parent then the parent would become a new leaf

after Step (2).

In order to see why short-trees are useful, take a maximal yellow path

P = {p1, . . . , pj} in a short-tree T . By maximality, p1 must be the descendant of a

blue vertex, say p0. We call the path W = {p0, p1, . . . , pj} a closed maximal yellow

path and denote the set of all closed maximal yellow paths in a short-tree T by P .

Observation 3.2.3. Any closed maximal yellow path in a short-tree T induces a

willow graph in G.

33



This observation will be of value as we would like to isolate these yellow paths

and attack them with the willow algorithm from the previous section. This we will

do in the second phase of the algorithm.

3.2.2 Phase II

We wish to apply our willow algorithm on the paths in P . As we have seen,

these paths induce willows in G. However, we cannot just use the willow algorithm

on some W ∈ P as there may be other arcs, for example with heads in W and

tails in V − W , that may be of use to us. Therefore, we transform our tree into a

form on which the willow algorithm can be applied successfully. In particular, we

will use the algorithm to try to obtain a spanning arborescence that has a “large”

number of leaves from W . If we succeed on some W then we will have an improved

arborescence; if we fail on every W ∈ P then we will obtain a certificate that our

current tree is approximately optimal.

We now formally describe the procedure for transforming our tree. Our input

is a closed maximal yellow path W ∈ P in a short-tree T that contains at least one

vertex which is reachable from r by a path whose interior does not intersect W .

If no vertex on W satisfies this property, then we cannot hope to find a spanning

arborescence of G with a large number of leaves in W . Therefore, we restrict our

attention to closed maximal yellow paths with this property; we then define zW

to be the lowest vertex in W that can be reached from r by a path whose interior

does not intersect W . Assume zW = pi and let P = {p0, p1, . . . , pi−1} be the

segment of W above pi.

34



Swap(W ): Willowfication

• Let zW be the lowest vertex in W reachable from r by a path Q

whose interior does not intersect W .

• Set T := (T − Q̂) ∪ Q provided that (T − Q̂) ∪ Q is an arborescence.

[Note that zW is no longer a child of pi−1 after this |Q|-exchange.]

• Contract T − P into zW and call it z̃; add an arc from pi−1 ∈ P to z̃.

• We have now built a willow W̃ = {p0, p1, . . . , pi−1, z̃} with root z̃ =

pi.

Observe that, since there is a path in T − W from r to p0, there is an arc

from z̃ to p0 in W̃ . Consequently, the willow W̃ always contains a spanning

arborescence. Figure 3–3 illustrates the Swap procedure used by the algorithm.

The key property of the willow W̃ is that no spanning arborescence T of G

can have more leaves in W than the optimal arborescence in W̃ . As a first step

towards proving this, we show that all the leaves of any spanning arborescence T

that are in W must lie above the vertex zW . We will need the following notation:

For any closed maximal yellow path W in a short-tree T , let TW denote the

subtree of T rooted at the first vertex p0 of W .

Lemma 3.2.4. Take a closed maximal yellow path W in a short-tree T , and let T

be a spanning arborescence of G. If x is a leaf of T that lies in W then x > zW .

Proof. Let W = {p0, . . . pj} be a closed maximal yellow path in a short-tree T .

Observe that the child of pj in T is either a red vertex or a leaf; we call this vertex

rW . Now suppose, for a contradiction, that x ≤ zW is a leaf in T . Consider the

35



zW

r

W w

rW

Non tree arc

Tree arc

Q = q1, q2, q3, q4, q5, q6

q1

q2 q3

q5

q6

q4

Yellow

Blue

Red

zW

r

W w

rW

q1

q2 q3

q5

q6

q4

(a) (b)

r

rW

q1

q2 q3

q5

q6

q4

zW

z′W

W
w

z̃

W̃

w

Contract

T − P into

zW

z̃W

r

rW

q1

q2

q3

q5

q6

q4

zW

(c) (d)

Figure 3–3: (a) Find path Q to zW . (b) Add edges of the path Q and drop the
exchange partners from the tree. (c) Contract the rest of the tree V − P into zW

and call it z̃. (d) The arc from pi−1 ∈ P to z̃ creates willow W̃ .

36



path P from r to rW in T . Since rW < zW , the interior of path P must intersect

W . Let u be the last vertex of P that is not on W and let (u, v) be an arc in P .

Then v ∈ W and P must end with the downpath [v, rW ]. Therefore, we must have

v < x ≤ zW because x is a leaf in T .

We claim that u is a descendant of rW in T . If not, there exists a path P ′

from r to u in T that does not intersect W . Thus, adding (u, v) to the path P ′

gives a path from r to v in G whose interior does not intersect W . Since v < zW ,

this contradicts the definition of zW .

Let y be the last vertex preceding u on P that is not a descendant of rW . As

T is a short-tree, we know that y is not in W because there are no arcs in G from

W to the subtree of T rooted at rW . Hence, y is not in TW and so there is a path

P ′′ in T from r to y whose interior does not intersect W . Then the path P ′′ from

r to y followed by the subpath of P from y to v is a path in G from r to v whose

interior doesn’t intersect W . This contradicts the definition of zW since v < zW .

Thus, x is not a leaf in T .

We now show no spanning arborescence T of G can have more leaves in W

than the optimal arborescence in W̃ .

Lemma 3.2.5. Let W = {p0, . . . , pj} be a closed maximal yellow path in a short-

tree T . Then no spanning arborescence T of G can have more leaves in W than the

optimal arborescence in W̃ .

Proof. We prove the result by showing that, given any spanning arborescence T of

G with l leaves in W , we can construct a spanning tree T̃ of W̃ with l leaves. Let

Q be the path from r to zW in G whose interior does not intersect W . Take the

37



short-tree T and exchange Q with its exchange partners; call this new tree T̂ . Let

zW = pi and observe that P := {p0, . . . , pi−1} is a path in T̂ all of whose vertices

have out-degree one except for the vertex pi−1, which is a leaf.

By Lemma 3.2.4, all the leaves of T in W must lie on P . Note that T [P ], the

restriction of T to P , is a forest. Thus, since T is a spanning arborescence, there

must be a set of arcs X ⊆ T from V − P to the root of each component of P . In

addition, T̂ [V − P ], the restriction of T̂ to V − P , is a spanning arborescence of

V − P because all vertices of P have degree at most one.

Add the forest T [P ] and the arcs X to T̂ [V − P ] to form a new tree T
′

:=

T̂ [V − P ] ∪ X ∪ T [P ]. Observe that leaves of T in W are leaves of T
′

. Form a new

graph T̃ by contracting T̂ [V − P ] in T
′

to a root r′ and adding an arc from the

vertex pi−1 ∈ P to r′. Then T̃ is a spanning arborescence of W̃ with l leaves.

We are finally ready to describe the second phase of the algorithm. It applies

the algorithm Willow(G) to the maximal yellow paths after they have been

“willowficated” by the Swap procedure.

Phase II: Greedy.

1. Given a short-tree T and closed maximal yellow path set P .

2. For each W ∈ P, consider W̃ = swap(W ). If T̃ = Willow(W̃ ) has

more leaves than |T0| then improve T as follows:

• Un-contract V − P in T̃ , where P = {p0, p1, . . . , pi−1} is the seg-

ment of W above zW = pi.

38



If an improved tree is found then the algorithm returns to Phase I to turn this

new tree into a short-tree. If Phase II finds no improvements then the algorithm

terminates.

3.2.3 Analysis.

We now analyse the performance guarantee of our algorithm. We begin with

some simple observations. Let T be the tree returned by our algorithm. The

vertices of T1 are either blue or yellow. Any vertex v ∈ T1 lies in a maximal path

Pv whose vertices are all contained in T1. If Pv 6= v, then Pv is a closed maximal

yellow path; otherwise v is a blue vertex followed by a leaf or a red vertex. Let M

be the set of all distinct maximal paths Pv ⊆ T1, namely M = {Pv ⊆ T1 : v ∈ T1}.

Since every path Pv must end with a leaf or a red vertex, we obtain the following

simple bound on the size of M.

Observation 3.2.6. The cardinality of M satisfies |M| ≤ |R|+|T0| ≤ 2|T0|−1.

Lemma 3.2.7. The optimal tree T ∗ has at most 14|T0| leaves in any path W ∈ P.

Proof. Let T be the tree returned by our algorithm. Suppose, for a contradiction,

that T ∗ contains at least 14|T0| + 1 leaves in W ∈ P. By Lemma 3.2.5, the optimal

spanning arborescence in W̃ contains at least 14|T0| + 1 leaves. Since Willow(G)

is a 14-approximation algorithm, it returns a spanning arborescence T̃ of W̃ with

at least ⌈ 1
14

(14|T0| + 1)⌉ = |T0| + 1 leaves. Thus T̃ has more leaves than T and we

would have used W to improve T in Phase II, a contradiction.

We now obtain our approximation guarantee.

Theorem 3.2.8. The algorithm is an O(
√

opt)-approximation algorithm.

39



Proof. Partition T ∗
0 as

T ∗
0 = (T ∗

0 ∩ T0) ∪ (T ∗
0 ∩ T1) ∪ (T ∗

0 ∩ T≥2).

By Lemma 3.1.2, we have

|T ∗
0 | ≤ |T0| + |T ∗

0 ∩ T1| + (|T0| − 1)

= 2|T0| + |T ∗
0 ∩ T1| − 1.

Hence, it suffices to bound |T ∗
0 ∩ T1|. We have

|T ∗
0 ∩ T1| =

∑

Pv∈M

|T ∗
0 ∩ Pv|

≤
∑

Pv∈M

14|T0| (By Lemma 3.2.7)

≤ (2|T0| − 1) · 14|T0| (By Observation 3.2.6)

= 28|T0|2 − 14|T0|

This gives

opt = |T ∗
0 | ≤ 2|T0| + 28|T0|2 − 14|T0| ≤ 28|T0|2,

which proves that our algorithm is an O(
√

opt)-approximation algorithm.

40



REFERENCES

[1] N. Alon, F. Fomin, G. Gutin, M. Krivelevich and S. Saurabh, “Better
Algorithms and Bounds for Directed Maximum-Leaf Problems,” preprint,
2007.

[2] N. Alon, F. Fomin, G. Gutin, M. Krivelevich and S. Saurabh, “Parametrized
algorithms for directed maximum leaf problems”, preprint, 2007.

[3] J. Bang-Jensen and G.Gutin, “Digraphs: Theory, Algorithms and Applica-
tions.”, Springer-Verlag, 2000.

[4] M. Chlebik and J. Chlebikova, “Approximation Hardness for Dominating Set
Problems,” Algorithms - ESA 2004, pp192-203, 2004.

[5] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, “Introduction to Algo-
rithms”, The MIT Press, 2001.

[6] R.Diestel, “Graph Theory”,Springer , 2006.

[7] G. Galbiati, F. Maffioli, and A. Morzenti, “A Short Note on the Approx-
imability of The Maximum Leaves Spanning Tree Problem”, Information
Processing Letters, 52, pp45-49, 1994.

[8] S. Guha and S. Khuller, “Approximation Algorithms for Connected Domi-
nating Sets,” Proceedings of 4th Annual European Symposium on Algorithms,
pp179-193, 1996.

[9] B.Korte and J.Vygen, “Combinatorial Optimization, Theory and Algorithms”
Springer, 2006.

[10] H. Lu and R. Ravi, “The Power of Local Optimzation: Approximation
Algorithms for Maximum-Leaf Spanning Tree”, Proceedings of the Thirtieth
Annual Allerton Conference on Communication, Control and Computing,
pp533-542, 1992

41



42

[11] H. Lu and R. Ravi, “Approximating Maximum Leaf Spanning Trees in Almost
Linear Time”, Journal of Algorithms, 29(1) pp132-141, 1998.

[12] C. Payan, M. Tchuente, and N.H. Xuong, “Arbes avec un nombre de maxi-
mum de sommets pendants,” Discrete Mathematics, 49 pp267-273, 1984

[13] R. Solis-Oba, “2-Approximation algorithm for finding a spanning tree with
maximum number of leaves”, Proceedings of the 6th Annual European Sympo-
sium on Algorithms (ESA), LNCS 1461, pp. 441-452, 1998.

[14] J.A. Storer, “Constructing full spanning trees for cubic graphs,” Information
Processing Letters 13 pp8-11, 1981.

[15] V.Vazirani, “Approximation Algorithms” Springer, 2003.


