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Abstract Gruber [Gru83]). Informally, two geometric patterns P
and Q resemble each other under the Hausdorff metric,

Developing the ability to recognize a landmark if every point on one pattern is "close" to some point
from a visual image of a robot's current loca- on the other pattern.

tion is a fundamental problem in robotics. We As a motivation of this problem consider the problem
consider the problem of PAC-learning the con- of recognizing from a visual image from a robot's cur-
cept class of geometric patterns where the tar- rent location whether or not it is in the vicinity of a
get geometric pattern is a configuration of k known landmark (where a landmgrk is a location that
points in the real line. Each instance is a con- is visually different from other locations). Such an al-
figuration of n points on the real line, where it gorithm is needed for navigation where the navigation
is labeled according to whether or not it visu- is performed by planning a path going between known
ally resembles the target pattern, landmarks, tracking the landmarks as it goes. Because
We relate the concept class of geometric pat- of inaccuracies in effectors and possibly errors in the
terns to the landmark recognition problem and robot's internal map, when the robot believes it is at
then present a polynomial-time algorithm that landmark L, before heading to the next landmark it
PAC-learns the class of one-dimensional geo- can check that it is really in the vicinity of L. Then
metric patterns when the negative examples adjustments can be made if the robot is not at L by el-
are corrupted by a large amount of random ther re-homing to L and/or updating its map. We can
misclassification noise, apply our algorithm to learn geometric patterns to this

problem by converting the visual image the robot has
into a one-dimensional geometric pattern.

1 Introduction The main result of this paper is a polynomial-time al-
gorithrn that PAC-learns the class of one-dimensional

Developing the ability to recognize a landmark from a geometric patterns when the negative examples are cor-
visual image of a robot's current location is a funda- rupted by a large amount of random misclassification
mental problem in robotics. We consider the problem noise. Our algorithm can learn as long as the noise
of PAC-learning the concept class of geometric patterns rate is strictly less than one and the expected number
where the "target" geometric pattern is a configuration of truly positive examples is greater than the expected
of k points in the real line. Each instance is a config- number of false positive examples. The time and sample
uration of n points on the real line, where it is labeled complexity are polynomial in the inverse of the amount
according to whether or not it visually resembles the by which the noise rate is less than 1, and the inverse
target pattern. To capture the notion of visual resem- amount by which the ratio of true positive examples to
blance we use the Hausdor]J metric (for example, see total positive examples is greater than 1/2.

'This research was performed while visiting Washington An interesting feature of this problem is that the tar-
University. Currently supported by the U.S. Department of get concept is specified by a k-tuple of points on the
Energy under contract DE-AC04-76AL85000. real line, while the instances are specified by n-tuples

tSupported in part by NSF Grant CCR-9110108 and an of points on the real line where n is potentially much
NSF NYI Grant CCR-9357707. larger than k. Although there are some important dis-

tinctions, in some sense our work illustrates a concept
class in a continuous domain in which a large fraction
of each instance can be viewed _ "irrelevant". As in

previous work on learning with a large number of ir-

__S__ relevant attributes it, the Boolean domain (e.g. Little-

stone's work [Lit88]), our algorithm's sample complexity
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• (the best dual to a mistake-bound) depends polynomi- _--2--_ally on k and lg 7,..
1 target [ . 1 r _ca _-- j i "LJ - ] "
] This paper is organized as follows. In the next section
I we formally define the concept class of one-dimensional

geometric patterns. Next in Section 3 we describe in] ' X1 _. _ _. _. ;; _. - positive
] more detail how our algorithm could be applied to the

landmark recognition problem described above. In Sec-
' tion 4 we describe the learning model and noise model j

used in this paper. Then, in Section 5, we describe our X2 _. _. _. r. _ _. _. negative
; algorithm to PAC-learn the cl_ss of one-dimensional ge-

ometric patterns when the data is noise free. Then in

r ! __ _ negativeSection 6 we present our main result, an algorithm to X3 .-._ .- r. L j--"
learn when the negative examples are corrupted by ran-
dom misclassification noise. Finally we conclude in Sec-
tion 7. Figure 1: This figure illustrates an example concept

from Ca,7. The top line shows the target pattern.
Around each target point we show an interval that cov-

2 One-Dimensional Geometric Patterns ers all points within unit distance from that point. Ev-
ery positive example must have every point within one

For the concept class considered here, the instance space of the above intervals and no interval can be empty (e.g.
,In consists of all configurations of n points on the real see X1 above). For an example to be negative, there
line 1. A concept is the set of all configurations from must be a point in it that is not within unit distance of
,In within unit distance _ under the Hausdorff metric any target point (e.g. see X2 above) and/or there are
of some "ideal" configuration of k points. The Haus- no points in the example near some target point (e.g.
dorff distance between configurations P and Q, denoted see Xa above).
H(P,Q), is:

| max_sup{_l_f{d(p,q)}},sup_inf__{d(p,q)}}} given any positive (respectively, negative) example from(peP qeO. I.pe_" ,In, there exists a subset of k of the n points in that ex-

| where d is the Euclidean distance between p and q. ample such that the configuration of these k points is
: also a positive (respectively, negative) example. How-
*= Let P be any configuration of points on the real line. ever, observe that unlike the Boolean domain, there is
_' Then we define the concept cp that corresponds to P| no fixed set of points of an instance that are "relevant".

by cp --" {X E ,In J H(P,X) < 1}. Figure 1 illus- Thus if an arbitrary point is removed from an instance
_ trates an example of such a concept. Thus one can it can no longer be determined if that instance was pos-
j view each concept as a sphere of unit radius in a metric itive or negative before the point was removed.
II space where P defines the center of the sphere. For any
m X E ,In such that X E cp, we say that X is a positive At first glance, there may appear to be some similari-

example of cp. Likewise, if X q_cp, we say that X is a ties between Ok,,, and the class of the union of at most
negative example of cp. Furthermore, all configurations k intervals over the real line. However, the class of ,
of points that resemble the given configuration P are one-dimensional geometric patterns is really quite dif-
contained within this sphere. Finally, the concept class ferent (and significantly more complex) than the class of
Ck,, that we study is defined as follows: Ck,, = {cp ] unions of intervals on the real line. One major difference
P is a configuration of k points on the real line}. As is is that for the union of intervals each instance is a single
standard in the neural network literature, we assume the point on the real line, whereas for Ck,,_each instance is
unit cost model of real computation. (See Valiant [Valgl] a set of n points on the real line. Thus the notion of be-
for a discussion of why this assumption is typically ap- ing able to independently vary the concept complexity
propriate for geometric domains.) and instance complexity does not exist for the class of

union of intervals. Furthermore, observe that for Ck,,_
As discussed in the introduction, n may be significantly each instance (configuration of n points) is an element
greater than k. For example, the learner may be asked of a metric space, which has a measure of distance de-
to predict if a configuration of 100 points is contained fined between any pair of instances, ttowever, with the
within a sphere defined by 3 points. This considera- class of union of intervals there is no notion of a distance
tion is, in some sense, analogous to the notion of irrele- between instances. Finally, for the class of union of in-
vant attributes studied in the Boolean domain. Namely, tervals, an instance is a positive example simply when

1Note that throughout this abstract, the word "point" the single point provided is contained within one of the
will refer to a single point on the real line, and we shall use k intervals. For Ck,,, an instance is positive if and only
the term % configuration of points" when speaking of an if it satisfies the following two conditions:
instance.

2All results presented here apply if unit distance is re- 1. Each of the n points in the instance are contained
placed by some fixed distance since we can just rescale, within one of the k, width 2 intervals defined by

_l ,_ ' , ' _ ' ' '
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! tile k target, points, robot is standing exactly at position L, then the pat-

2. There is at least one of the n points in the instance tern matching approach can easily be implemented to
contained within tile width 2 interval defined by work well. However, in reality, the matching algorithm
each of tile k target points, must determine if the robot is in the vicinity of L (i.e.

in a circle centered around L). Because the visual image

Thus, these two classes are very different in character, may change significantly as small movements around L
are made, the pattern matching approach encounters
difficulties.

3 Motivation: The Landmark

Recognition Problem Rather than using a pattern matching approach to matchthe light intensity array from the current location with
the light intensity array of the landmark, we instead

In this section we explore one motivation for this work. propose using a learning algorithm to construct a good
Consider a robot designed to navigate through a large- hypothesis for performing landmark recognition. We
scaled environment 3. Suppose that we have selected a obtain the instances by converting the array of light
set of key "landmarks" of which the robot has prior intensities into one-dimensional geometric patterns by
knowledge. It is crucial that the robot be able to rec- placing points where there are significant changes in
ognize whether or not it is in the vicinity of a given light intensity. The target pattern could be constructed
landmark from a visual image taken from the robot's as follows: whenever there is an object at eye-level that
current location. We shall refer to this problem as would cause the light intensity received by the robot to
the landmark matching problem. In his doctoral the- change, a set of points are placed evenly spaced at dis-
sis, Pinette [Pin93] says that "any general navigation tance two from each other along the image of the object.
algorithm must be able to match landmarks by their Thus if there is an object in view frgm the location of the
appearance." Namely, when performing navigation a landmark, then even though a relatively small number
robot plans a path by moving between known land- of poinLs are placed in the "target pagtern" tile "exam-
marks, tracking landmarks as it goes. Because of in- ple pattern" may have significantly many more points
accuracies in effectors and errors in the robot's internal placed in this region. It is from this occurrence that we
map, when the robot believes it has reached landmark motivate looking at the situation in which the example
L, before heading to the next landmark it can check complexity may be significantly larger than the target
that it is really in the vicinity of L. Then adjustments complexity (and thus leads to a notion that has similar-
can be made if the robot is not at L by either re-homing ities to the notion of irrelevant attributes in the Boolean
to L and/or updating its map. domain). Then by applying our algorithm, giving it a

It is also crucial that the landmark matching algorithm set of positive examples (i.e. patterns obtained from
can be performed in real-time. To reduce the process- locations in the vicinity of the landmark) and a set of
ing time required by the landmark matching algorithm, negative examples (i.e. patterns obtained from locations
some are proposing the use of imaging systems that gen- not in the vicinity of the landmark), we can construct a
erate a one-dimensional array of light intensities taken hypothesis that can accurately predict whether or not
at eye-level [ItTP+92, LLg0, Pin93, SA88]. We now the robot is near the given landmark.
briefly describe one such imaging system (see Hong et
al. [HTP+92] and Pinnette [Pin93]). In their robot a
spherical mirror is mounted above an upward-pointing 4 The Learning Model and Model of
camera on a robot thus enabling it to instantaneously Noise
obtain a 360 degree view of the world. See Figure {2for a
picture of such a robot. The view of the world obtained
by this imaging system and tile processing performed We assume the reader is familiar with the PAC learning

model as define by Valiant [Va184]. As commonly done,
are shown in Figure 3. All points along the eye-level- we allow the learner t.o output any polynomially evalu-view of the robot. (shown bv the horizon line in Figure '2)

" arable hypothesis. We now describe the hypothesis class
project into a circle in the robot's 360 degree view. Fig- used here. We define the hypothesis class 7-/e to be theure 3 shows the panoramic view that results by scanning
the 360 degree view (beginning at due north) in a circle intersection of at most 2(k + 1) lg m 1 hypotheses from
around tile robot's horizon line. The panoramic view is el,,, where ml is the size of the sample required in the
sampled along the horizontal line midway between the noise-free setting. Our algorithm for PAC-learning C_,,_

from noise-free data uses 7/k+1 as the hypothesis classtop and tile bottom to produce a one-dimensional array
of light intensities (or signature) as shown in Figure 3. and the algorithm for PAC-learning Ck,,_ with noisy data

uses _2k+1 as the hypothesis class.
Most work on designing landl,:mrk matching algorithms
uses a pattern matching approach by trying to match In this work we consider a variant of the FAC model
the current signature to the signature taken at land- in which the negative examples from the oracle, £'X,
mark position L If one's goal is to determine if the are corrupted by random misclassification noise. (This

• noise model is just a variation of the model of ran-
3By a large-scaled environment we mean that not all land-, dom misclassification noise introduced by Angluin and

marks are visible from all locations in the environment. I,aird [AL88] except here only negative examples are

'r,lr_................ ' "' "11...... ' ......... I_ " r,' '_ll ' ', .... ', ,,'11_1_.... 'l! .........., ...... " " ' "" °"'"l_,[Ill'lI"
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Figure 2: The imaging system on the _obot, (This figure comes directly from Pinnette's thesis [Pin93}.)
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Figure 3. Stages o[ image processing. (This figure cornea directly from Pinnette's thesis [Pin93].)
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• corrupted by the noise process.) Namely, we assume concept and instance complexities.

that for scrne noise rate u every negative example drawn We now present our algorithm for learning ¢k,n in thefrom EX is randomly and independently labeled as pos-
itive with probability u and labeled as negative with noise-free setting. Our algorithm is an Occam algorithm

(see [BEHW89]). Namely, it draws a sufficiently largeprobability (1 - u). We shall use EXv to denote the or-
acle after the noise process, as described above, has been sample of size ml (polynomial in k, lg n, I/e, and lg 1/6)
applied. If u is the noise rate and p_ (respectively, p+) and then outputs a consistent hypothesis from 7-/k+l.
is the probability that a randomly drawn uncorrupted To build the hypothesis we use a greedy set cover Mgo-
example is negative (respectively, positive), then our al- rithm that is based on the observation that it is possi-
gorithm can learn as long as u < 1 (i.e. the noise rate is ble, in polynomial time, to find a concept from Ck+l,n
strictly less than one) and up_ < p+ (i.e. the expected consistent with all the positive examples and a fraction

number of truly positive examples is greater than the _o= _ of the negative examples. Then the negative
expected number of false positive examples). Our al- examples accounted for are removed and the procedure
gorithm's time and sample complexity are polynomial is repeatedly applied until all negative examples have

p+ up2" where _ is the inverse of been eliminated. Let r denote the number of rounds
the amount by which the noise rate is less than 1, and until all negative examples have be covered. Then it

{p+ + vp__) is the inverse of the amount by which the is easily shown that r < 2(k + 1)lgrnl. Finally, thep+ - ,p_ hypothesis output is the intersection of the r concepts
ratio of true positive examples to total positive exam- obtained in this manner.

pies is greater than 1/2. By the results of Blumer, et al. [BEHW89] we get that
For ease of exposition, we assume that u and up_ are the VC-dimension of 7/k+l is at most 2drlg(3r) where
known, however, our results can be easily modified to d-- 2(k + 1)log 16en(k + 1) and r _- 2(k + 1)lg m l, and
work as long as an upperbound on both quantities is thus any hypothesis that is consistent with a sample of

provided, size rnl "-O (_lg _ + k____Alga (k.d)) will have error at
most e with probability at least 1 - 6.

5 Learning Ck,_ in the Noise-Free We now summarize how the concept H from Ck+l,n is

Setting selected in a given round, l_ecall that there are two
ways for an example to be negative: either there is a

The problem of learning one-dimensional geometric pat- point in the example that is not near 4 any target point
terns has been previously studied by Goldberg [Go192, (e.g. X2 in Figure 1), or no points in the example are
Go193]. He has developed an algorithm to PAC-learn near some target point (e.g. X3 in Figure 1). Let .hf be
Cn,n in the noise-free setting [Go193]. Our al_,orithm to the set of negative examples that remain at the start of
learn Ck,n is obtained by making straightforward mod- a round. Then either
ifications to Goldberg's algorithm. However, the mod-
ifications needed to handle the false positive errors are Case 1: At least IAfl/2 of the negative examples
significantly more involved. We also note that Gold- have no points near some target point. Thus, by an
berg [Go192] has shown that it is NP-complete to find averaging argument, there is some width 2 interval
a sphere in the given metric space (i.e. one-dimensionM I1 containing at lea_t one point from each of the
patterns of points on the line under the Hausdorff met- positive examples that does not contain points in
ric) consistent with a given set of positive and nega- at least _ of the negative examples.

tire examples of an unknown sphere in the given met- Case 2: At least IAfl/2 of the negative examples
ric space. In other words, given a set S of examples have a point that is not near a target point. Since
labeled according to some one-dimensional geometric the portions of the real line that are not near any
pattern of k points it is NP-complete to find some target pointformatmost/:+l contiguous intervals,
one-dimensional geometric pattern (of any number of by an averaging argument, there is some interval

points) that correctly classifies all examples in S. Thus, 12 containing points from at least _ distinctassuming NP :fi RP, it is necessary to use a more
expressive hypothesis space, rio give even further ev- negative examples and no points from the positive
idence that the class of one-dimensional patterns is sig- examples.
nificantly more complex than the union of intervals on
the real line, observe that the consistency problem for Using brute force (scanning the points in the sarnple
that class is trivial to solve, from lei't to right) we can search for these two conditions,

and are guaranteed to successfully find one. In the first
Finally, the results of Goldberg and Jerrum [GJ93] can case, we place a point ia the hypothesis in the middle
be used to show that the Vapnik-Chervonenkis dimen- of interval I1 and then cover all points from the positive
sion of Ck,,_ <_ 2klog(8enk) = O(klgn). We observe
that as either k or n increases, and the other is held 4For ease of exposition, we say that an example point
fixed, then the VC dimension can incre_e without limit, within unit distance from a given target point is nc¢_r that
Hence both parameters are needed as upper boutMs on target point.
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• examples in a greedy fashion. In tile second case, we Also, for 0 <_o_<_p,

build a hypothesis that covers all the points from the Pr[S < am] < e -2"_(_-p)_ (2)positive examples in a greedy manner, but that has no - -
point in the hypothesis that is within unit distance of
any point in interval I2. It is easily seen that in both Theorem 3 Given a sample of size
cases k + 1 points placed in H suffices. Thus we obtain

the following result, max{2ml ,--2 ln6 21n6 (P-_+++ uP-) 2}Theorem 1 The concept class Ck,n is PAC-learnable 1- v (1- u) 2 6' -5 - up_
from the hypothesis class 7"lk+l when the learner is given
access to the noise-free oracle EX. The sample corn-

( ml 1 in 1 (p_ + up_) 2 _)plexity of this algorithm is = 0 _- u + (-_-- v)-5 '6 + - up_ In

ml "- O lg_ + _lg 3
e obtained from the noisy oracle EXv, we are guaranteed

whered= 2(k+l)logl6en(k+l) andr= 2(k+l)lgm_, with probability at least 1- _ that at least ml noise-
and the time complexity is 0 (r. ml). free er.amples are in the sample and more than half of

the positive examples in the sample are truly positive
examples.

6 Learning Ck,. in the Presence of Noise Proof: We individually compute the sample size needed

We now describe our algorithm to PAC-learn the class for each condition so that the probability that the con-
of one-dimensional patterns when the negative examples dition fails to hold is at most 6/6.q'hus the total prob-
are corrupted by random misclassification noise of rate ability of either condition failing is at most _ as desired.
u. (i.e. the oracle EX is replaced by EX_,) As in the To compute the sample size needed to ensure that Con-
noise-free setting we use an Occam algorithm, in this dition (1) holds we apply tile bound given in Equa-

1-1kv_O
case, outputting a hypothesis from 7-/2k+1. Throughout tion (2) with m2 = _t 5, p = (1 - u), and 3' = 2this section we let ml denote the sample complexity for
the noise-free case when the hypothesis is drawn from to obtain that
"H2k+l, the accuracy parameter is c/2, and the confi- Pr[number of noise free exs < ml] < e -'_-a(1-v)_
dence parameter is 6/3. As in the previous section, it
can be shown that VC-dimension of 7/2k+1 is at most Thus by selecting e- _-_(1-v)2 < 6/6 we ensure that with
2dr lg(3r) where here d = 2(2k+ 1)log 16en(2k + 1) and probability at least 1 - 6/6 that at least m_ noise-free
r = 2(k + 1) lg ml From the derivations in Section 5 it examples are obtained• Thus by solving for m2 we ob-• 2 6

({ ) thin that we must select m2 > _ln _. Thus byis easily seen that ml = O _ lg _ + k_Alga (_)_" drawing a sample of size

We now describe our algorithm for learning Ck,,_ in the _" 2mi 2 6 ;
presence of noise. The complete algorithm is shown in m2 = max l. 1 - u' (1 - u)----------_ In )
Figure 4. The learner begins by drawing a large en ugt_l
sample Scooe_ so that with probability at least I °-_ we are guaranteed that Condition (1) holds with prob-3

both of the following two conditions hold: (1) At least ability at least 1- 6/6.
ml noise-free examples are obtained (to satisfy this con- To compute the size of the sample needed to guaran-
dition, we need only require the minimal condition that tee that Condition (2) holds with sufficiently high prob-
u < 1), arm (2) more than half of the positive examples ability, we use Equation (2) with c_ = 1/2 and p =
in the sample are truly positive examples (to satisfy this p+/(p+ + up_) (i.e. the probability that an example In-
condition we require that up_ < p+). beled as positive is truly positive). From this bound

To compute the size of the sample (as a function of rnl, we get that by drawing a sample of size at least m2 =

v, p_, p+, and 5) we use ttoeffding's Inequality [Hoe63] 2In 6 (p+ + ,p- )2
(also referred as a form of Chernoff bounds) as stated \P+ ,p , , then condition (2) holds with prob-
below: ability at lea.st 1 - 6/6.

This completes the proof of tile theorem. 13
Lemma 2 (Hoeffding's Inequality) Let }_,..., Ym be
a sequence of m independent Bernoulli trials, each suc- Observe that _ is the inverse of the amount by which

(e____-,e- _ is timceeding with probability p. Let S = Yt + "'" + Y,,_ be the noise rate is less than 1, and p+ + ,p_]the random variable describing the total number of,suc-
cesses. Then for 0 _<7 <_ 1, both of the following hold: inverse of tile amount by which the ratio of true positive

examples to total positive examples is greater than l/2.

P_[X> (_,+v)M _< e-2m_ Next we perform a preprocessing phase that detects
Pr[,S' < (p- 7)m] <_ e -2,n_''_ (I some of the false positive examples, t'or each positive

r i ,n ,, ,llll_,,, ,v ,, .... , ,,,, _" " _ Ill , _ ' , ' " 'lrl _' II II ''_ '' Ill' ' r' ' ' " '



LEARN-Ck,n-FROM-EX_,

1. Let ml denote the sample complexity for the noise-free case when the hypothesis is drawn from
7/2k+1, the accuracy parameter is e/2 and the confidence parameter is 6/3.

of ize=max{ + }J p+ - vp_ "

3. For each positive example X E Scorer, let Ix be the portion of the real line within unit distance of
any one of the n points in X. Let J be all points z on the real line such that z is contained within
at least half of the Ix where X ranges over all positive examples in Scooer.

4. Remove from Scorer any positive example in which a point of the example is not within unit distance
of a point in the set J.

5. Let 79 be the set of positive examples that remain in Scorer, and let .h/" be the set of negative
examples in Scorer.

6. Initialize H to be the always true hypothesis.

7. Repeat the following until .hf = 0:

(a) Search for an interval of width 2 containing at least one point from half of the examples in 79

that does not contain points in at least _ of the examples in A/'.
(b) If such an interval 11 is found in Step 7a Then

i. Compute H1 E "H2k+l by placing a point in the center of I1 and then greedily covering the
points in 79 .

ii. H_HNH_.
iii. W" _A/'- {g E H[HI(N) = 0}.

(c) Else (Case 2 applies)

i. Draw a sample Se,timate of size m3 = sr_(1-")_ (In 6 + In r)

ii. Let g be ;he set of minimum-sized intervals that contain at least one point from _ of
the examples in A/'.

iii. For each I E :_, compute i(I) from Se,ti,nate.

iv. Let lmi,, be the interval 1 E 2 which minimizes i(1)
v. Compute H2 E 7/2k+1 by greedily covering all points in 79 under the restriction that no

point be placed within unit distance of Imin.

vi. H _-- tI _112.
vii. A/" _ A/'- {N E ,_[t12(N) -- 0}.

8. Output H.

Figure 4' Algorithm to PAC-learn Ck.,, from the hypothesis class 7/2k+1 when the learner is given access to the noisy
oracle EX,,.
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: example X E Scoo_, let Ix be tile portion of the real Case 2. Recall that in the noise-free setting if at least
line within unit distance of any one of the n points in half of the negative examples in the sample have a point
X. Recall that in any true positive example, each point that is not within unit distance of a target point then
in the example is near some target point and there is a there is some interval containing points from at least

point in the example near each target point. Therefore, _ distinct negative examples and no points from
if we could intersect the Ix for all true positive examples the positive examples where A/" is the set of negative
X in 8cooer, then the k target points would be contained examples that remain.
in the intersection. Thus,by Condition (2) on the sam-
ple, the candidate intervals for the target points can be While in the noise-free setting in each positive exam-
reduced to those portions of the real line that are con- ple there are no points in intervals not within unit dis-
tained within at least half of Ix where X ranges over tance of any target point, with false positive examples
all examples reported as positive. Finally, any positive we must find intervals having the desired number of
example with a point not within unit distance from a negative examples represented and "few enough" points
candidate interval for the target points is a false pos- from positive examples. We then ignore these points,
itive example and is discarded. This preprocessing is potentially introducing error if they were near a target
important to ensure that in each round wc will be able point. The main complication comes from the obser-
to cover all points of the positive examples with 2k + 1 vation that in an interval within unit distance from a
points in candidate intervals for the target, target point, there could be a very high concentration

,_ of points from negative examples. Thus simply finding a

_I Lemma 4 With probability at least 1- _, after the pre- group of _ negative examples with the fewest num-
processing phase is completed, any false positive ezam- bet of positive examples interleaved (thus treating the
pies that remain in Scou_,- are within 2 units from a positive examples as false positives)could cause signifi-
target point, cant error in the final hypothesis. _

Proof: By Theorem 3, with probability at least 1 - For any interval I of the real line, let p+(I) (respec-
tively, (I)) denote the probability that a point fromg, greater than half of the positive example are truly P-

positive. For a truly positive example X, observe that a randomly drawn positive (respectively, negative) ex-
all points in Ix are within 2 units from a target point, ample from the noise-free oracle EX is in I. We use
Thus it follows that all false positive examples with a A(I) to denote the expected ratio of observed positive
point greater than 2 units from a target point will be to observed negative examples in interval I, and A(I) to
removed by the preprocessing. [] denote the estimated value for A(I). Let Iatoa._ denote

the set of intervals for which all points in any I E Zatoay
We now describe the modifications that we make in the are not within unit distance of a target point. Let Ilight

portion of the noise-free algorithm in which a fraction denote the set of intervals such that a portion of each
1 of the remaining negative examples are elimi- I E _rligh, is within unit distance of a target point, yet

hated, for all I E Zlight, P+ ( I) < _, Finally, let Zh_aou denote
the set of intervals such that for I E Zh_a,y, p+(I) >
(and thus a portion of each such interval is within unit

Case 1. Recall that in the noise-free setting if at least distance of a target point).
half of the negative examples in N" have no points near
some target point, then there is an interval of width 2 Observe that for any interval I, A(I) = v,(I)+_v-(1) _O-_)v-(1) -

conta_ining at least one point from each positive example t-;" (T_'-_) P___I)+
Thus we get the following key oh-

that does not contain points in at least _ of the neg-
ative examples where N" is the set of negative examples servations.
that remain.

• For any interval I E Zaway, p+(I) = 0 and thus
We now show that this case is easily modified to han- A(I) = 1---_"
die the false positives errors that occur in the sample.

• For any interval I E Ihea_ since p+(I) > c/(2r) it

Since more than half of the positive examples are real, follows that A(I) > _ + 2-ffi(__,)it follows that in an interval near a target point, more
than half of the positive examples are represented. Fur-
thermore, since only false positive examples arc located We now show that this separation is sufficient so that
in an interval not near a target point, less than half of if we draw a large enough, but polynomial size, sample
the positive examples are represented there. Thus, it then with high probability, we know that in e_ch round
suffices to find an interval I1 of width two containing at if Case 2 applies (which we know if Case 1 fails) then
least one point from half of the positive examples that of the intervals containing a point from at least IXI

does not contain points in at least _ of the negative distinct examples from h/', the interval I with the lowest
examples. Finally, we compute Hi E 7-/.,.k+1that is to value of A(I) provides a good set of negative examples
be added to the hypothesis by placing a point in the from N" to eliminate.
middle of interval Ii and then covering the rest of the
points in the positive examph.'s in a greedy fashion. Lemma 5 Assume that Ca.se 1 does not apply and let



J

• ,o I

• Z be the set of minimum-sized intervals that contain at Furthermore, I C 2, and thus it will be included in
least one point front 2k_+l) distinct examples from A/'. the minimum. By Equation (4) the probability that

the estimate for any interval ill :T.heavyis selected as the
For each I E Z we compute _(I) from Seotimate. Let minimum is at most 5/(6r) and thus, with probability

Imin be the interval I C Z which minimizes )_(I). Then, at least 1- _, Imin E J"awauU:rligh_ • The concept from
with probability at least 1 - 6 the error introduced by_, "H2k+l placed in the hypothesis prevents an example
not allowing a positive point within unit distance of I,mn with a point in Imi n to be classified as positive. Finally
will be at most e/(2r), by the definitions of Z, wau and :Z'tight this introduces

Proof Sketch: Since Case 1 does not apply, we know error at most _ giving the desired result. [:l

that Case 2 applies and thus there must be some in- Putting this all together we get our main result.
terval I that is greater than unit distance from any

target point that contains points from at least 2-_ Theorem 6 There is an algorithm to PAC-learn the
distinct examples from .A/. Since the minimum separa- concept class Ck,n from the hypothesis class 7-{2k+1 when
tion between the value of A for intervals in Zawau and the learner is given access to the noisy oracle EXu that

intervals in _heavy is at least 2r-7¢:_, using Hoeffding's has time complexity and sample complexity polynomial

i'_ can be shown that when the estimates for in k, lg n, I/e, lg 1/6, U'_' and (P+ + _P- )inequality
p+- up_ / "

the _s are computed from the sample 8estimate of size
\

(In _ + lnr) where r = 2(k + 1)lgm,, then Proof Sketch: Our algorithm is shown in Figure 4.
each of the following conditions hold with probability By the choice of ml, if the algorithm's final hypothesis
at least 1 6 were consistent with ml properly labeled examples then

6r" it would have error at most e/2 with probability at least

1 - _. Furthermore, from Theori_m 3 the probability
u e that either Condition (1) or Condition (2) on Scorer does

For any I E Iawau, A(I) < _ + 4r(1 - v)' (3) not hold is at most 6/3. Thus if the final hypothesis were
consistent with all examples from S_o_ then it would
have error at most e/2 with probability at. least 1 263"

IJ E

For any I E Zheaoy, A(I) > _ + 4r(1 - v)" (4) Given that Condition (2) holds then if Case 1 applies
(i.e. at least half of the negative examples in 3/" h_ _e
no points within distance two of any target point), then

denote the minimum separation be-Let s = _ there is an interval of width two containing at least one
tween the value of A for intervals in Zaway and intervals point from each from each truly positive example in 7)

in :rheav u. We use sanaple Sestirnale to compute _(I) that does not contain points in at least _ of the neg-
for interval I. We now apply Hoeffding's inequality as ative examples where Af is the set of negative examples
given in Equation (1) with 3' = s/2 to get that for any that have not yet been eliminated. Since more than half
I E 2"atoay, of the points in "P are truly positive if Case 1 applies

t/ S e_2rn3(8/2)_ then there exists an interval I1 of width two containing
Pr[_(I) > (--i--u-----_+ 2] -< at least one point from half of the positive examples that

does not contain points in at least _ of the negative
and for _ny I E Y.h_a_u, examples. Thus this interval will be'_'tound. Finally, by

u S e_2m3(s/2)_ ' placing a positive point in the middle of I1 all examples
Pr[,_(I) _< (1 -u---_ + 2] -< in A/" with a point in Ix will be classified as negative by

H1 and the algorithm will return to the top of the loop.

Then to ensure the probability (for each condition above) Now consider the case in which Case 1 does not apply,
that the condition does not hold is at most _ we require and thus Case 2 applies (i.e. at least half of the exam-
that e -2"n3(s/2)_ < 6A/in both cases, pies in .A/have a point that is not near the target point).

From Lemma 5 it follows that at each round the proba-
Solving for m3 yields that a sample of size C

bility that the error introduced in H is greater than 2-7

2 ( 6 '] 8r2(1-u) 2 (In 6 "] is at most _. Thus, given that Conditions (1)and (2)
s-g \In _ + In r/ = e2 \ _- + In r/ hold for Scorer, the probability that total additional er-6

ror incurred in Case 2 is greater than c/2 is at most 5"
suffices. Solving fbr ,rna fields that the given sample Finally, we show that all positive points can be prop-
suffices, erly classified by a hypothesis in "H2k+l for which there

We now complete the proof of the lemma. Since I E is no point within unit distance of Imin. From Lemma4
2,,o_v by Equation (3) we have that with probability at we know that all positive examples in P (truly positive
least 1 6 and the false positives not eliminated by the preprocess-

6r, ing) are within distance 2 from a target point. Thus by
u ¢ greedily covering the positive examples we know that at

,_(I) < 1 - t------7+ 4r(1 - t,)" most 2k additional points will be needed.
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; Combining the above with the guarantees given that Real Numbers. Conference on Computa-
Conditions (1) and (2) on Scorer hold, we get that tile tional Learning Theory, July 1993.

error of the final hypothesis output by our algorithm is [Gru83] P.M. Gruber. Approximation of con-
at most ¢ with probability at least 1 - 6. The sample vex bodies. In P.M. Gruber and P.M.
complexity of our algorithm is O(IScover I+r" ISestima_el) Willis, editors, Convexity and its applica-
and the time complexity is O(r. I&o_l + r. ISo,,mo,,I). tions. Brikhauser Verlag, 1983.

D [HoeB3]-" Wassily Hoeffding. Probability inequali-
ties for sums of bounded random variables.
Journal of the American Statistical Associ-

7 Concluding, Remarks ation, 58(301):13-30, March 1963.

We are currently beginning to implement and test our [tITP+92] Jiawei Hong, Xiaonan Tan, Brian Pinette,Richard Weiss, and Edward M. Riseman.
algorithm on data from a robot with an imaging system Image-based homing. IERE Control Sys-as shown in Figure 2. Such experimental work will en-
able us to see how this approach to solve the landmark terns Magazine, 12(1):38-45, 1992.
matching problem compares to a pattern matching ap- [LL90] Todd S. Levitt and Daryl T. Lawton. Qual-
proach. Also this experimental work may suggest mod- itative navigation for mobile robots• Artifi-
ifieations in the theoretical model of noise that we have cial Intelligence, 44(3): 305-360, 1990.

studied so that it better models the type of noise found [Lit88] Nick Littlestone. Learning when irrelevant
in real data. attributes abound: A new linear-threshold

We are also looking at techniques to reduce the time algorithm. Machine Learning, 2:285-318,
and sample complexity of the algorithm presented here, 1988. +
and studying the situation in which both the positive [Pin93] Brian Pinette. Image-Based Naviga-
and negative examples are corrupted by random mis- tion Through Large-Scaled Environments.
classification noise. Finally, it would be interesting to PhD thesis, University of Massachusetts,
consider extensions of this work when the points in the Amherst, November 1993.

target and example configurations are drawn from the [SA88] Hisashi Suzuki and Suguru Arimoto. Visual
plane, control of autonomous mobile robot based

on self-organizing model for pattern learn-
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