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1 Introduction

In a recent paper Kinber, Smith, Velauthapillai, and
Wiehagen [8, 9] introduced a notion of parallel learning
to model the learning of a collection of concepts all ch~

sen from a single set. More precisely, they call a collec-
tion S of functions (m, n)-iearnalde iff there is a learn-

ing machine which for any n-tuple of pairwise distinct
functions from S learns at least m of the n functions
correctly from examplee of their behavior after seeing
some finite amount of input. One of the basic questions
in this area is the “inclusion problem”, i.e., the ques-
tion for which m, n, m’, n’, every (m, n)-learnable class
is also (m’, n’)-learnable. This question turns out to be
combinatorially difficult and in [8, 9] it could be solved
only for some few inst antes.

In this paper we propose a general approach for attack-
ing this problem. The idea is to associate with each
m, n, m’, n’ in a uniform way a finite 2-player game
such that the second player has a winning strategy in
this game iff every (m, n)-learnable class is (m’, n’)-
learnable. In this way we take off the recursion the-
oretic disguise of the problem and isolate its combina-
torial core. This works out nicely for the popperian ver-
sion of parallel learning (where all guesses have to be
total) and we get a complete characterization of the cor-
responding inclusion problem. For the general case we
get a strong sufficient condition for noninclusions which
gives us an explicit solution of the ‘equality problem”,
i.e., the question for which m, n, m’, n’, (m, n)-learnable
and (m’, n’)-learnable coincide.

In the popperian case we are also able to explicitly char-
acterize the “strength” of each particular noninclusion
by the complexity of an oracle which is needed to over-
come it. There are four different types of noninclusions.
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1.1 Notation and Definitions

The set of all natural numbers is denoted by w. The set
of aU finite sequences of natural numbers is u+. u * T is

the concatenation of u and T, for v, r G w*. Sometimes
we simply write 131 for 1 * 3 *1, etc. We write a ~. r if

v is an initial segment of T. The set u“ can be identified
with an infinite tree whose nodes are ordered by ~. The

root of this tree is the empty sequence A. The functions
f:u * u can be identified with an infinite branches
of w*. The initial segment of f of length t is denoted
by f / t, i.e., f / t is the finite function with domain
{O,. . . . t – 1} which agrees with f on its domain. The
recursion theoretic notation is standard and follows the
books [14, 16]. Let RXC be the set of all total recursive
functions.

We recall the definitions of some well-known inference
criteria, see [15] for further background. An inductive
inference machine (IIM) M is a total recursive function
with domain w* and range w U {?}. A4 jirdeiy infers

f G REC if there exists t ~ w such that M(f I s) =?,
for all s < t and M(f I t) = e where e is an index of
f, i.e., p, = f. In this case we also write M(f) = e.
We say that Af diverges on input f if M(f r t) =?, for
all t G u. M tinitely infers S ~ REC iff M finitely
infers all ~ G S. Intuitively, after reading a certain
finite initial segment off G S, M knows an index of f.
FIN = {S ~ REC : @M)[M finitely infers Sl}.

An IIM A4 is called popperian if every number in the
range of M is an index of a total recursive function (see
[2, Definition 2.16]). PFIN is the class of all S ~ REC
which can be finitely inferred by a popperian I~M.

Below we consider a slight generalization of IIM’s which
take as input initial segments of n functions in parallel
and output n-tuples of programs.

1.2 Basic Definitions and Facts for Parallel

Learning

Now we turn to the notion of inference which is central
for our paper.

Definition 1.1 [8] Let S be a set of recursive functions,
1 ~ m ~ n. S is finitely (m, n)-learnable iff there is an
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inductive inference machine M that takes as input any
pairwise distinct functions fl, . . . . fn c S and computes
an n-tuple of indices el , ..-. , en such that at least m of
them are correct, i.e., sat~fy /i = p,,. Formally,

(~3:;:t f,,..., f. es)
. . ..en)(Ys < t)

[ti(fl t s, . . .. fnt s)=?.

M(fl tt,. -., f~ If)= (cl,..-,en), and
I{i’; pe, = fi}i ~ ~j.

Let (m, n) FIN be the class of all S that are finitely
(m, ~)-lednable. Furthermore let (m, rz)PFIN be the

class of all S that are finitely (m, n)-learnable via some
popperian IIM Al.

The following is a generalization of the basic fact that
classes which contain an accumulation point are not

finitely learnable.

Fact 1.2 [8, Theorem 11] The follom”ng inclusions hold
for FIN:
● (rn+l, n+l)FIN ~ (m, n)FI’N ~ (m, n+l)FIN and
● (m, n)FIiV n (h, k) FIN ~ (m+h, n+k)FIN.
The same incksions also hold for PFIN:
. (m+l, n+l)PFIN ~ (m, n) PFINS (m, n+l)PFIN,
● (m, rz)PFIN n (h, k)PFIN ~ (m+h, n+k)PFIN.
!lkivialiy, (n, n) FIN = FIN, (n, n)PFIN = PFIN.

Fact 1.3 [8, Lemma 6] If n- > k-h then the following
noninclusions hold:
● (m, n) FIN Q (h, k) FIN and
● (m, n)PFIN ~ (h, k) PFIN.

Corollary 1.4 Let n ~ k. Then

(m, KZ)FIN ~ (h, k) FIN
+ n–m s k-h
@ (m, n)PFIN < (h, k) PFIN.

2 A Game-Theoretical

Characterization of the Inclusion

Problem for Parallel Learning

In this section we provide game-theoretical characteri-
zations for the inchwion problems for PFIN and FIN.
The idea of using games to study recursion theoretic
questions was also used in investigations of the lattice
of r.e. sets by Degtev [4] and Lachlan [12].

2.1 A Characterization of the Inclusion
Problem for PFIN

Definition 2.1 A finite two person game ~ is a 5-tuple
(Gl, G2, W,so, to) where G, = (VI, El), Gz = (VZ, .Ez)
are tlnite directed acyclic graphs, W ~ VI x V2, and
(S,, t,) c (u x V2)- w.

We say that node v is adjacent to win a directed graph
G iff there is a directed path in G from v tow (the path
may be empty, i.e., v is adjacent to v; we say that w is
properly adjacent to v if w is adjacent to v and v # w).

The game (Gl, G2, t~ so, to) is played in rounds as foi-
10WS. There are two players: Anke and Boris. At the
beginning Anke has a marker at node so ~ VI and Boris
has a marker at node tO E Vz. A position is just an
element of VI x Vz. So the starting position is (so, to).
In each round both players move their marker to some
adj scent node, Boris moves first. All previous moves
are known to both players. The position after Boris’
move must belong to W. Anke is not allowed to per-
form empty moves. The first player who is unable to

move according to these rules loses the game. By the

restriction on the moves of Anke, it is clear that the
game ends after at most \V1I rounds. Since the game is
finite, one of the players has a winning strategy.

We will now describe for 1 ~ m ~ n < k and 1 ~
h s k a finite game G(m, n; h, k) for w~ich we prove
that Boris has a winning strategy iff (m, n)PFIN ~
(h, k) PFIN. This characterizes the inclusion problem
for PFIN. Since the game is finite, one can effectively
decide which player has a winning strategy. Thus the
inclusion problem for PFIN is decidable.

For the sake of readability we formulate our game not
quite according to Definition 2.1 but in a more intuitive
way.

Deihition 2.2 Letl<m~n<k and l<h~k.
The game G(m, n; h, k)–i played as follows: There are
two players Anke and Boris. Each of them is equipped
with several movable markers: For every n-element set
Dg {l,... , k} and every j -~ D Anke has a marker

~D,j. Boris has k markers VI, ..., Uk.

The markers are moved on the infinite “board” W*. At
the beginning each PD,j is placed on node j and each ~j
is placed on node X In each move a player is allowed to
shift her (his) markers downwards in the tree to adjacent
nodes. Boris moves first.

Anke’s moves have to be of the following type (“node-
splittings” ): She a-elects a node a which contains at least
two of her markers and distributes all of her markers
from u onto the successor nodes u k 1,..., u ir a, for
some a ~ 2, such that each of these nodes receives at
least one marker.

Boris chooses for each of his markers uj an adjacent
node uj ~ j, containing at least one marker of Anke,
and moves ~j to node Cj. Furthermore at any time Boris
may move one of his markers from any node u to O (and
stay there forever); this is only for technical reasons, we
need it to model a siLly move of Boris.

Note that after each move of Boris any two markers
either belong to incomparable nodes or they belong to
the same node.

We say that the markers are in an A-configuration via
L~u*iff

● Every node in L contains a marker of Anke and for

each j= l,..., k there is at most one node u ~ j
in L;
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. For every D, at least m of Anke’s markers KD,l, .. . .

PD,~ are on nOCkS in L;

● Less than h of Boris’ markers ~j are on nodes in L.

The other configurations of the game are called B-con-

figurations. Boris wins the game iff after each of his
moves the markers are in a B-configuration.

Intuitively, Boris is trying to establish with each of his
moves a B-configuration, while Anke tries to eventu-

ally establish an A-configuration which cannot be trans-
formed in a B-configuration by any of Boris’ moves.

At the beginning Anke’s p markers are distributed on
k nodes. Every move of Anke increases the number of
nodes which wntain at least one of her markers; so after
Anke hss moved j times at least k + j different nodes
contain one of her markers. Thus Anke cannot make
more than p – k moves and the game ends after at most
1 + p – k rounds. Therefore we do not really need an
infinite board, the tlnite tree U,<P {O,..., p}’ would be

enough.

Now it is easy to see that we can reformulate the game
G(rn, n; h, k) as a finite game according to Definition
2.1: W corresponds to the set of all B-configurations,
etc.

Theorem 2.3 Let k ~ n.
T’hen (7n, n)PFIN ~ (h, k)PFIN
ifl Bom”s has a winning strategy in G(m, n; h, k).

Proof: (~) : This is shown by contraposition. As-
sume that Boris has no winning strategy. Since the
game is finite, Anke hss a winning strategy. Further-
more, we may sssume that if Anke plays according to
her winning strategy then after each of her moves she
reaches an A-configuration. We show that this winning
strategy is the bssic building block to construct a class
S E (m, n)PFIN – (h, k)PFIN by diagonalization.

Let {dfi}jeu be a recursive liiting of ail inductive in-
ference machines. We define S inductively and add for
every i a set of k functions which is not (h, k) PFlN-

inferred by Afi. This diagonalizes every (h, k) PFliV-
algorithm. It should be noted that S is defined nonuni-
formly. This basic idea is due to [8, 9] who used it in
their proofs that (b – 1, b)I’lN ~ BC and (1, 2)F1N ~
(2, 3)FIN.

To ensure that S E (m, n)PFIN we construct a uni-
formly recursive family of total functions {~i,e,D,j : i, e

GwAD~ {l,..., k} A I.DI = nAj G D} and a further
(nonuniform) f~ly {~i,e~ :i,eewAl~j~k}of
total recursive functions with the following properties:

(1)
(II)

(III)

fi,~ti(o) = (i, e,~) and (VmZ)[.fi,.,j(~) = O];

For all D ~ {1,..., k}, [D! = n, there are m dis-
tinct indices jl ,... ,j~ c D such that fe,ii, =
Fe,i,D~l, fe,ij, = Fe,i,D,jg, --. , .fe,i~~ = ~e,i,D,j~;

Mi does not (h, k) PFIN-infer f~,e,l, . . . . fi,e,k.

S is the ascending union of finite sets Si: Let So = 0.
In each step i there exists by ([) a constant ei such that
,f(z) = O for all ~ c Si and all z ~ ei since Si is finite.
Let Si+l = Si U {~i,..,l, . . . . .fi,.,,~}.

S G (m, n) PFIN: Consider any n pairwise different
functions gl ,..., g. C S. The inference algorithm first
reads gl(0),. . ., gn(0) which gives the corresponding val-

ues (ii, eii, jl), ..-, (in, ein, jn) for all functions. Let

e be the maximum of these ei. Then the algorithm
reads the initial segments of length e of every function.
W.1.o.g., let gl,..., g. with maximal first component
i=il, ..., ~. The remaining functions have ij < i and,

by ([), they satisfy the equation gj = (gj r ef) x OW.
Thus we can compute their indices which give us n – u
correct components.

Since jl,... , ja are pairwise dHerent there is a set E ~
{1,..., k}, IEI = n–u such that D = {jl,..., jti}n
E is an n-elements set. Then we output in the first
u components the indces of Fe,i,DJ.l, . . . . Fe,i,D,j=. By

(11), at least m - (n – u) of them are correct. So we get
a total of m correct components, ss required.

S $! (h, k) PFIN: In stage i of the construction of S,
functions f~,e,,l,.. ., fi,e,,k are added to S which are not
inferred by Mi. So there is no IIM M such that S c
(h, k)PFIN via M.

For the following tix i, e. The diagonalization imple
ments the game G(m, n; h, k) in a recursion theoretic
way and uses the winning strategy of Anke to satisfy (x),
(u) and (111). There is a translation between the nodes
a of the board and their current value r~ (u). This is ei-
ther undefined or is a finite function defined on an initial
segment. If r,(u) is defined then r.(u) ~ 7,+1(u). Fur-
thermore let PDJ,s denote the position of marker PDJ
at stage s, then

(*) Fi,e,DJ = lb~.(PDJ,.) = @&PD,j,#).

The position ~j,. of the marker ~j are constructed from
the functions $j which denote the functions guessed by
.Mi:

@j(Z) =

{

~ej(z) if Mi((i, e, 1) *O’”, . ...(i. e,k)*W)
=(el,..., e~)

1 otherwise.

W.1.o.g. we assume that ~j,~(z) is undefined if z ~ s

or Mi((i, e, l)wO’+2, . . . . (i, e, k) *0$+2) is undefined. In
every stage s the diagonalization procedure does the
following

Check whether Boris has moved;
If yes, check whether the game is in an B-configu-
ration;

If both conditions are satisfied, implement Anke’s
next move;
Extend ~ in order to make all functions total.

Anke’s markers are at each stage on the leaves of the
tree spanned by the positions of all markers. The other
nodes are called interior nodes. If cr becomes an inten”or
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node in stage s then r~,(a) = 7$(u) for all s’ ~ s. only
the ~-values of the leaves may change. Furthermore, if
IY ~ a’ and r,(u), r.(d) are defined then ~$(u) ~ ~$~(d).
Now we present the algorithm in detail:

(1)

(2)

(3)

(4)

Initialize the algorithm.
Let TO(A) = A and To(j) = (i, e,j) forj = I,... )k.
Furthermore place Anke’s markers flD,j on the node
j and Boris’ markers in the root A Let s = O.

Reconstruct the positions of Boris’ markers.
Note that dorn(vj,g) S {O,..., S} and dom(~,(a))

={0,..., s} for every leaf cr. For every marker ~j
define its position ~j,$ ss follows:

{

u if there is u c dorn(r, ) such
that u is the shortest string

Vj,f =
with +j,~ s ~.(~);

O otherwise (no T,(u) extends ~j,~).

The O in the second case stands for markers no
longer to be considered in the game; it means that
for each leaf u there is z < s such that @j,,(z) 1#
~,(a)(z) and thus ~j # F~,e,j,D for all ~ and D.

In particular if a marker ~j once moved onto O, it
remains there forever, i.e., ~j,t = O for all t ~ S.

Check whether Boris has completed his move.
A move of Boris is complete only if ail his markers
are in the leaves and if the game is in a B-configu-
ration. If this has not already been achieved, goto
step (5); otherwise continue at step (4).

Implement Anke’s move according to the winning
strategy.

Since the game is in a B-configuration, Anke se
Iects according to the winning strategy a leaf u and
distributes the markers from the node u onto the
nodes uAl, . . ..u Aa(a> 2).—

(5) Extend ~ on the leaves.. .
If u is an interior node then let

7-.+1(U) = r.(a).

If IY is an old leaf (i.e. ~.(u) 1) then

7,+1(U) = 7$(U)* o.

let

If u = q k b is a new leaf from step (4)

T.+l(u) = T,(q)*b*o.

Otherwise ~,+l(u) remains undefined.

Let s = s + 1 and goto step (2).

then let

Note that pD~,g is always placed on a leaf. By induction
on s and the update-rule for ~~, it follows that Ir.(u)l ~
5 fOr all leaves a. Therefore the functions Fi,e,D,j =

lim.~$ (pD~,$ ) are totaL If u, u are incomparable nodes
and r$ (u), rs (q) are both defined, then they are also
incomparable.

Anke moves only finitely often. After her last move
she reaches an A-configuration. Choose a set of nodes
L witnessing the A-configuration. Bor~ cannot reach
a B-configuration (otherwise Anke would need at least

one further move to win the game). Therefore Boris will
never complete his last move. On the other hand, there
are only finitely many stages where he moves his mark-
ers. Let s be sufficiently large such that after stage s no
marker is moved and consider the final configuration in

stage s.

(a) If one of Boris’ markers ~j is not in a leaf or in node
O, then the corresponding @j is not total, i.e., lfi is not
a PFf’N-machine. In this case we let j~,i~ = lb ~~(q)

if7ELA~~j. Ifthereisnoq GLwithq~j, we let

fe,i,j = (% z,I)~. ‘Then it is wy to see that ([), (II),
(111) are satisfied.

(b) If in the final configuration every ~j is on a leaf or on
node O, then we are in an A-configuration (since Anke
has won the game), say via L’. We let fe,j~ = lh ~t(~)
ifq EL’ Aq~j. Ifthere isnoq~L’withq~ j,

then we choose f.,}j & (e, i, j) such that ~.,i,j is almost
always zero and dfierent from ~j.

As above (I), ([x) are satisfied. Suppose for a contradict-
ion that A4i (h, k) PFIZV-infers ~e,i,l, . . . . fe,i,k. Then
at least h of the equations f ~,i,j = @j must hold. If
there is no q ~ L’ with q ~ j then clearly fe,j,j # ~j.
Thus there are at lesst h nodes q E L’ such that qj =
lb ~t(q). However, since the ~-values of incomparable
nodes are incomparable, it follows that ~j = li~ i-t(q)
holds only if the final position of vj is q. Thus in the
final configuration at least h of Boris’ markers are on
nodes in L!. This contradicts the hypothesis that the
final configuration is an A-configuration via L’. Hence
(m) holds.

(~) : Assume that Boris has a winning strategy in
G(m. n: h. k) and S6 (m, n)PFIN via M. We describe—-.
an’ (h, k) PF’IN-machine N which infers S.

Given k pairwise difkrent functions fl,..., fk, N simu-
lates M(fil, . . . . fi. ) for every n-element set D = {il <
. . . <in} ~{1, ..., k}. N waits until Al converges for
each such D, say with output eD,il, . . . . eD,iW. By hy-
pothesis, all of these programs compute total functions.
Let FDJ denote the function computed by eDJ.

Then N outputs programs which compute the functions

91, -.., gk defined ss follows: We consider the FD ,j ‘s,

translate them into configurations of the game, move the
markers according to the winning strategy, and trans-
late the positions ~i,~ of vi back into gi: gi,, = ~$(~i,~).

(1) Initialization.
Place the markers ~D~ and ~j on node j. Let
To(j) = A, s = O, z = O and goto step (2).

(2) Check whether Anke has moved.
Select a leaf q such that z = Ir, (~)[ is minimal
among the lengths lr~ (a) I of all leaves a. For every
marker ~D,j placed on q caiculate FDJ (z). Since
the guesses FD,j are always total functions, these
calculations terminate. Let yl, . . . . ya be the values.
If a > 1 then we discovered a move of Anke and
goto step (4). Otherwise, Anke did not move, and
we goto step (3).
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(3)

(4)

(5)

Adjust T while waiting for Anke’s move.
Since Anke did not move, the game remains in
a B-configuration and the only activity is to up-
date r:

{

TS(u)*yl if u = q;
~s+l(u) = ~$(a) otherwise (a # q).

Let s = s + 1 and goto step (2).

Implement Anke’s move.
The computations of the FDJ (z) with flD,j placed

on the leaf q give several different values yl, ..., y..
Now r is adjusted on the new leaves q k b (b =

1, . . . . a) Ss follows:

All markers /.lD,j with FDJ(z) ~ r’(~)* Yb move
from q to q k b. Goto step (5).

Implement Boris’ move.
If Boris hss no marker on n then he does not move.

Otherwise some marker vi’remained on q while all
markers of Anke moved to some leaf. Then Boris
moves this marker according to his winning strat-
egy from q to a new leaf q + b. Now the game is
again in a B-configuration. Let s = s + 1 and goto
step (2).

Anke makes only finitely many moves. Therefore the
game ends in a B-configuration and for ail leaves u of
this final configuration, T,(~) is extended infinitely of-
ten. Since every vi eventually moves onto such a leaf, all

gi = lb~s(~i,,) are total. Thus N is a PFIN-machine.

Now suppose that ~1,..., ~k ES. Let L={u:(3j)

[fj = lim~.(a)]}. Since the ~j are total functions, the
nodes u c L must be leaves of the final configuration.
Since for every n-element set D, m of the functions FD,j
coincide with fj, m of the markers pDJ are placed on
nodes in L. Thus h of the markers ~j must be placed
on nodes in L since L otherwise the final configuration
would be an A-con figtuation via L. Therefore gj = fj
for these Vj c L, so N infers at least h of the fl, . . . . fk.
Thus S e (h, k)PFIN. i

2.2 Noninclusions for FIN

In this section we define a slight modification of the
game G(m, n; h, k). This modification used to give a
sufficient condition for the noninclusion (m, n) FIN ~
(h, k)FIN.

Definition 2.4 The game G’(m, n; h, k) is a variant of
the game G(m, n; h, k). The players receive the same
markers. Anke has for every n-element set D ~ {1, ... . k}
and each j ~ D a marker ~D,j, Boris has the markers

VI, . . . . vk. Anke’s markers pD,j are initially placed on
the node j, Boris’ markers on the root A As in the
game G the markers move on the tree w“ from nodes
u to adj scent nodes q ~ u. From now on the words

leaf, interior node and successor refer to the subtree
generated by the current positions of Anke’s markers.

The definition of an A-configuration via a set L is the
same as in the game G, but the implicit requirement
that L consists of leaves must be made explicit since

Anke’s markers may remain on interior nodes:

● Every node in L is a leaf (and therefore contains a
marker of Anke).

●Foreachj= 1, ..., k there is at most one node
u~jin L.

● For every D, at least m of Anke’s markers PD,I, . . . .

l.LD,n are on nodes in L.

● Less than h of Boris’ markers ~j are on nodes in L.

The rules to move the markers are less restrictive:

Anke moves her markers from nodes u to any ad-

jacent node q ~ u.

Boris moves his markers from u to q & u or to O,
where q is inside the subtree generated by Anke’s

markers and markers on O do never leave this node.

After Anke’s move the game is in an A-con figura-
tion, after Boris’ move ii is in a B-configurati~n.

Boris moves first, then the players move alternately.
Boris wins the game if he always moves into a B-con-
figuratiorq otherwise the game comes to an end in an
A-configuration and Anke wim the game.

Theorem 2.5
If Anke has a recursive winning strategy for the game
G’(nz, n; h, k) then (m, n) FIN ~ (h, k)FIN.

Proof: The diagonalization works as in Theorem 2.3.
In general it is the same except that the Fi,e,DJ may be
partial, the conditions (I), (1[) and (111) are the same,

also their verification after the algorithm to implement
the winning strategy is the same. Again Fi,e,D,j =

~t~s(PDJ,t) and tij < Ts(~j,s) if Vj,s # O. The al-
gorithm has to be partially adapted:

(1)

(2)

(3)

(4)

Initialize the algorithm.
Place the markers ~D,j and Uj on node j. Let
To(j) = A, s = O, z = O and goto step (2).

Reconstruct the positiona of Boris’ markers.
Let ~j,$ be the shortest string u c dom(~, ) such
that @j ~ r,(u) w O’; if such a string does not exist

let Vj,s = O.

Check whether Boris hss completed his move.
If the game is in a B-configuration then Boris com-
pleted his move and the algorithm continues at
step (5) otherwise goto step (4).

Extend ~ on the leaves while waiting for Boris’
move.

{

T,(u)*O ifu is alea~
7,+1 (u) = ‘r, (u) if u is an interior node;

T otherwise.

Let s = s + 1 and goto step (2).
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(5)

(6)

Implement Anke’s move according to her winning
strategy.
Since the game is in a B-configuration, Anke moves
the markers according to her winning strategy from
nodes u onto nodes u’ c u * {1, 2,. . .}*. The game
is in an A-configuration again. Goto step (6).

Update r for stage s + 1 after Boris and Anke have
moved.
Let “old treen refer to the tree generated by Anke’s
marker positions before step (5) and let ‘new tree”
refer to that of the marker positions after step (5).
Every node u in the new tree can be split into an
old part q which is the longest initial segment of u
belonging to the old tree and a new part rf defined
by the equation u = q k ~. If ~ already belongs to
the old tree then q’ = A otherwise q’ c {1, 2,.. .}+.

If u is on the new tree, but was not an interior node
on the old tree, then let

T,+l(a) = r.(q) *O’ *q’.

If u was an interior node on the old tree, then let

7,+1((7) = r.(u).

Otherwise, i.e. when u is not on the new tree, the
value T,+l (u) remains undefined.

Let s = s + 1 and goto step (2).

Since Anke follows in step (5) a recursive winning strat-
egy, this strategy can be coded into the programs of the
F~,e,D,j. Further by the winning strategy, she moves
only finitely often. After Anke’s last move, Boris has
only finitely many possibilities to shift his markers but
lie will not reach a B-configuration. So the game ends
in a final A-configuration at some stage s witnessed via
some set L of leaves. Now the ti,e,j are defined via L
as in Theorem 2.3 and the further verification of the
local step is the same. Note that the ji,~ti are total
since lirnt~t(q) is total iff q is a leaf at stage s. Those

tij, which belong to markers ~j remaining on an interior
node at stage s, are partial. ~

A further modification is the game G“ which is a ver-
sion between G and G’. The only difference betw~n
G“ and G is that Boris - as in the game G’ - is not
required to move all markers onto leaves while Anke’s
moves have to fulfil the same requirements as in the
game G. Also the definition of A-configuration and
B-configuration is the same as in game G. A small
modification of the proof of Theorem 2.3 gives that
(m, n) PFIiV ~ (h, k) FIN iff Boris has a winning strat-
egy for the game G“(m, n; h, k).

The game G’(m, n; h, k) does not characterize the inclu-
sion-problem for FIN. Nevertheless this can be done
with a more complicated game using the methods of [12,
13]. However, it might not be worth the effort, since by
now we cannot guarantee that there are any nontrivial
inclusions for FIN besides those that follow from Fact
1.2. If this is indeed the case then one would have an

easy explicit description of the inclusion structure and
no games would be needed.

Open Problem: Are there any inclusions for FIN

besides thoee generated by Fact 1.2?

There are certain partial results on the way to this con-
jecture. Proposition 3.5 shows that (n, n+ l) FIN ~

(ml-l,n+2)FIN. Furthermore Corollary 3.10 establishes
the conjecture for m = 1: (1, n) FIN ~ (h, k) FIN iff
k ~ hn. For m = 2 we can show w a first result that

(2, n) FIN ~ (3, k) FIN H k z 2n -1. But already the
questions whether
● (2, n) FIN ~ (5, k) FIN & k ~ 3n – 1 and

. (3, n) FIN ~ (4, k)FIiV @ k z 2n – 2
are open.

3 Explicit Results on the Inclusion

Problem for Parallel Learning and

Popperian Parallel Learning

The next results are application of the game-theoretic
characterization of the inclusion-relation.

3.1 On Popperian Parallel Learning

Proposition 3.1 (2, 3)PF1N ~ (3, 4) PF11V.
(3,4)PF1N ~ (4, 5)PF1N.

Proof: Both noninclusions follow from suitable win-
ning strategies for the first player in the corresponding
game G(rn, n; h, k); we show only the first noninclusion.

The winning strategy of Anke starts with creating three
new leaves 11, 12, 13 below 1. Then Boris places his
marker w.1.o.g. onto the leaf 11. Now Anke creates
three new leaves below 2; Boris answers by moving to
an node 22. The following diagram illustrates the situ-
ation, the first four rows show the positions of the four
classes of Anke’s markers {p~j : j G D} for D =
{2, 3,4}, {1, 3,4}, {1, 2, 4}, and {1,2, 3}. The last row
shows the positions of Boris’ markers VI, . . . . V4.

~

2134

11-34

1222-4

13233 -

112z34

If 2x = 22 then the game is in an A-configuration via
{12, 23,3, 4}. Otherwise the game is in an A-ccmfigura-
tion via {13, 22,3, 4}; thus Boris lost the game.

In this strategy Anke’s second move depends on the

first move of Boris. One can check that there is no
winning strategy for Anke which is independent of Boris’
moves. B

Theorem 3.2 (n, n+l)PFIZV = (n+l, n+2)PFIN for

all n ~ 4.

LY,z!



Open Problem: Find an explicit characterization of
the equality problem for PFI;V, i.e., of the set

{(m, n; h, k) : (772,n)PFIN = (h, k) PFIfV}.

3.2 On Parallel Learning

Since the condition of Theorem 2.5 is not a characteri-
zation as in Theorem 2.3, the following Proposition 3.3
must be proved in a direct way.

Proposition 3.3 If (m, n) FIN ~ (h, k)F1fV
then (m, 7z+1)F1N Q (h, k+l)F1lV.

Proof: Let S’ E (m, n) FIN – (h, k)FIN, w.1.o.g.
.f(0)=O forall~6S. Aset S= S’U{gi: iew}
6 (m, n+ l) FIN - (h, k+ l)FliV is constructed via a

sequence gi; the functions gi are of the form eiO*Sbio’”
where e. = 1, ei+l =ei+ai+ 2andai, biew.

Already these construction-requirements guarantee that

S G (m, n + l)FIN: Given n+ 1 functions ordered by
the il.rst value (~1(0) < ~2(0) <... ~ ~n+l(0)) there is
an u such that O = ~V(0) < ~ti+l(0), w.1.o.g. u ~ n.

The indices of fti+l,..., f. can be calculated from their
initial segments of length fn+l (0). So one obtains n – u
correct indices. Since fl ,..., f~ ES’ and, by Fact 1.3,
S’ c (m– (n–u), n– (n –u))FIN, u indices can be
calculated such that m – (n – u) of them are correct.
In total there are n indices for fl,. . . . f. of which m
are correct. Suggesting for fn+l some default index,
S G (m, n+l)FliV.

One diagonalize.s against the i-th (h, k + l) PFlN-ma-
chine Mi while defining gi. Since S’ ~ (h, k)FIN, there
are fl, . . ..fk ES’ such that

● either AZi does not converge on input fl, .. . . fk, eio’”.

Then let gi = ei&’, ai = O, bi = O and ei+l = ei +2.

. or Mi converges after reading ai arguments to k+ 1
indices such that k+l–h of the indices for fl, . . . . fk
are incorrect.
Then select bi such that the index for gi = eiOa*bi&’
is also incorrect and let ei+l = ei + ai + 2.

In both css.es gi is selected ss a witness against the Mi
(together with fl, . . . . fk). SOS@ (h, k+l)FIN. ~

In the following we show explicit noninclusions by pre
vidhg winning strategies for Anke in G’(m, n; h, k).

Proposition 3.4 (2, 3)FIN Q (3, 4)F1N.

Proof: The first move of Anke’s winning strategy for
the game G’(2, 3; 3, 4) creates an A-configuration via the
set {11, 21, 3,4} in order to force Boris to move at least
one marker, w.1.o.g. Boris moves his first marker:

~

–234
1 –34
112-4
1 213–

11234

Now Anke moves the markers, which remained on 1,
to the node 12 and those, which remained on 2, to the
node 21. Now the set {12, 21, 4} witnesses an A-confi-
guration, since it contains two markers of each row, but
it does not cent ain three of Boris’ markers.

I–2134 I

~

12–34
1121–4

12213–

112134

Boris can move his second marker to 21, but he cannot

move his marker from 11 to 12. So {12, 21,4} contains
at most two of Boris’ markers and thus he has lost the
game. 1

Proposition 3.5 (n, n+l)FIN ~ (n+l, n+2)FlN.

Propositions 3.3 and 3.5 confirm the following conjec-
ture of Kinber and Wiehagen [9]:

ForaUmand nwithl~m <n:
(m, n)FIN ~ (m+l, n+l)FIN.

They already indicated in [9, p. 15] that their conjecture
implies that there are no nontrivial equalities between
the FIN-clssses:

Theorem 3.6 (m, n) FIN = (h, k) FIN ifl m = h A
n=korm=n Ah=k.

Proof: The if-direction is trivial. For the converse
assume that (m, n) FIN = (h, k)FIN, and say n < k.
By Fact 1.3 it follows that n - m = k – h, By Fact 1.2
(h, k)FIN g (h-1, k-l)FIN ~ .-. q (h-b, k-b)FIN,
for every b < h. Therefore, if k > n then (h, k) FIN ~
(m+l, n+l)FIN (let b = k-n-l). But ss we noted
above, (m, n) FIN ~ (m+l, n+l)FIN unless m = n.
Soitfollows thatm=n Ah=korn= kAm=h. I

Together with the facts (3, 4)PFIN Q (4, 5) PFIN,
(4, 5)PFIiV = (5, 6) PF1N, (3,4)PF1N C (4, 5)F1N,
Propeeition 3.5 shows that all three inclu&on-problems
differ in general. (The fourth type of inclusion (FIN
versus PFIN) is not considered since it never holds:
(Vn)[FIN ~ (1, n) PFIN]. This is witnessed by the
family S = {f c R,EC : Wf(o) = f}.)

Corollary 3.7 The following three inclusion structures
do not coincide in general:
● (m, n)PFIN ~ (h, k) PFIN;
● (m, n)PFIN ~ (h, k)FIN;

. (m, n) FIN ~ (h, k)FIN.

3.3 Admissible Sets

In his investigation of the inclusion problem for fre-
quency computation, Degtev [4] introduced the notion
of (m, n)-admissible sets. They also appear implicitly in
Kinber’s thesis [7]. We show that they are also of use in
the study of parallel learning, since they give us further
explicit noninclusions.
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Definition 3.8 Let s 2 n 2 m ? 1. A finite set
V ~ w’ is called (m, n)-admissible iff for every n rIum-
berszi(l<zl <--- < z- s s) there exists a vector
(b,, . . . . bn) c Un such that for every v E V:

I{i : TJ[Zi] = b~}l z m.

In other words, there is a function ~ : {1, ... . S}n + tin
such that for all pairwise distinct zl, . -., % c {1, ... . s},
I{i : V[Z~] = (~(Z~, . ..,sn))~}l ~ m.

Theorem 3.9 If V is (m, n)-admissible, but not (h, k)-
admissible, then (m, n) FIN ~ (h, k) PFIN, in par-
ticular, (m, n)FIiV ~ (h, k)FIN and (m, n)PFIN ~
(h, k)PFIiV.

Prootl If k < n, then an (m, n)-admkible set V
which is not (h, k)-admissible exists only for n — m >
k - h and so Theorem 3.9 reduces to Fact 1.3.

Let n ~ k and let V $ {1,..., g}k be (m, n)-admissible
but not (h, k)-admissible. By the remark following The
orem 2.5 it su.f%ces to show that Anke has a winning
strategy in the game G“(m, n; h, k).

In the first move, Anke places her markers on the leaves
according to an (m, n)-operator for V; i.e., if the (m, n)-
operator for D = {ii, . . -, in} gives (bl, . . ..b~) then
each marker p~,~ j is placed on the leaf ij * bj. Thus for
every v G V the associated set L“ = {iw[~ :1< is k}
witnesses the A-configuration.

Assume that Boris could move into a B-configuration
by placing his markers on nodes 1*cI,2*c2, . . .,k*ck.
Then for each v, h markers are in the set L. and h com-
ponents of (CI, CZ,..., c~) agree with the corresponding
components of v. Thus V would be (h, k)-atiible via
(CI, C2,..., ck), a contradiction. Thus whatever Boris
does, the game remains in an A-configuration and Anke
wins the game. ~

The set {lk,2k,..., nk } is an example for an (1, n)-ad-
rnissible set which is not (h, k)-admissible for any h, k
with h/k > 1/n. So thissetprovides following nonin-
clusion:

Corollary 3.10 If I/n< h/k then
(1, n)FINjZ(h, k)FIN A (1, n)PFINQ(h, k) PFIN.

Further noninclusions can be derived from the following
fact:

Fact 3.11 [10, Lemma 9.5] If one o~ the following coT?-
ditions hold then there is an (m, n)-admissible set V
which is not (h, k)-admissible:
(a)n–2rn>k-2h~O;
(b)n=2m+ l,k=2h+landk>n;
(c) There is an (m, n–1)-admissib~e set W which is not

(h, k-1)-admissible.

Proofi (a) Let V = {O, 1}”-2’” x {O}k+m.

(b) Let V contain O‘, 1~, all vectors OilOk-i-l for i =
o ,..., k–1, 10k-21 and 0il10k-i-2 for i = 0,..., k-2. Note

that V is the closure of {Ok, 10k-l, 110~-2, lk} under
“rotational shifts”.

(c) Let V= Wx {0,1}.
See [10] for the verification that the sets V have the
required properties. !

Fact 3.12 [7, Theorem 1.6] Every (n, n+l)-admissible
set is (n+l, n+2)-admissible for n ? 2.
Therefow the inclusion-relations of FIN and PFIN
both difler from the admissibility-criterion.

Proof: It is suficient to show this for subsets V ~
GJn+2 Le V be (n, n+l)-admissible and let 0fi+2 c V. If

V is not (n-t-l, n+2)-admissible via 0“+2 then some vector

hss two nonzero componenk, say 120n c V. Since V is

(1, 2)-admissible, there are a and b such that vIO] = a
and v(1] = b for every v c V, say a = 1 and b = O. Now

V is (n+l, n+2)-admissible via 10n+l: Otherwise there
would exist some v c V differing on two components
from 10’’+1, e.g., v[il = 1 and vu] = 1 and i > j >0.
Since either vIO] = 1 or v[l] = O, j > 1. Thus the
projection onto the coordinates O, i, j contains the set
{100, 011, 000} which is not (2, 3)-admissible.

(2, 3)F1NQ (3, 4)F1N and (2, 3)PF1N ~ (3, 4)PFIN
while every (2,3)-admissible set is (3,4)-admissible, so
the second statement follows. i

Nevertheless results on admissible sets allow a further
partial result for the PFIN-equality-problem:

ProPosition 3.13 If m/n < 2/3 and (h, k) # (m, n)

then there erists either an (m, n)-admissible set which
is not (h, k)-admissible or an (h, k)-admissible set which
is not (m, n)-admissible.
If m/n’< 2/3 and (h, k) # (m, n) then (m, n)PFIN #
(h, k)PFIiV.

4 Oracles for Finitary Games

In Detlnition 2.1 we have introduced the notion of a
finite game G = (GI, Gz, W, SO, to) in order to charac-
terize the inclusion problem for PFIN. Our next goal
is to determine when (m, n)PFIN ~ (h, k) PFINIA].
Here (h, k)PFINIA] is the class of all S c REC which
are (h, k) PFIN-inferable by an algorithm which has ac-

cess to oracle A ~-w. To this end we have to investigate
the ‘off-line” version of G(m, n; h, k). But this is only
a special case of a more general approach which works
for arbitrary finite games ~, and which may be of use
in similar situations and for other inference criteria. In
this section we study the general approach and in the
next section we discuss the application to PFIN.

Definition 4.1 In the off-line version of G, Anke an-
nounces at the beginning the list of her moves (VI, ..., v~)
in rounds 1,..., k. Here, v~+l must be properly adja-
cent to vi for i = O, ..., k (where vo = SO) and Vk must
not have outcoming edges. Boris wins iff there is a list
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of counter moves (we, ..., wk) such that Boris wins the
original game if both playe& play according to their
move hats, i.e., Boris moves from to to W., Anke from
so to VI, Boris from W. to WI, . . . until Auke moves
from vk.1 to Vk and Boris wins the game by b last
move from Wk_l to Wk. Formally the wi have to sat-. .7
iafy that W. is adjacent to to, wi+~ is adjacent to wi for

i=O ,...,lan d(~i,wi )EWfori=O, O,k.., k.

In the injinite version of ~ both players are allowed to
perform empty moves and we drop the condition that
the position after each move of Boris belongs to W.

There are w many rounda. Since GI, G2 are finite and
acyclic it follows that at almost all rounds the marker
of Anke [Boris] is at some fixed node S1 [tl]. Boris wins
the game MT(sl, tl) E W.

It is easy to see that any winning strategy for the finite
veraion can be translated into a winning strategy for the

infinite version.

We are interested in computability questions for the off-
line version of the infinite game. Suppose we are given
an index i for the liit of moves of Anke in the infinite
game. Can we compute uniformly in i a list of counter
moves for Boris such that he wins the corresponding
intinite game? We want to characterize the oracles A
such that th~ computation can be done recursive in A.
Let wmp(~) denote the class of all such oracles A.

Let PA denote the class of all degrees containing a
complete and consistent extension of Peano Arithmetic.
See [14, pp. 510-515] for background information. Let
DNRk = {g : w + {O,.. .,k-1} I (Vi)[g(i) # ~i(i)]}.
Jockusch [6, Proprxition 2] showed that PA coincides
with the degrees of functions in DN.qk for ~ k ~ 2.

Theorem 4.2 There are exactly four possible cases:

(1) If Boris has a winning strategy for ~
then comp(~) = {A : A ~ w}.

(2) If Boris has a winning strategy for the off-line
version of ~ but not for ~,
then cornp(~) = {A: dgT(A) E PA}.

(3) If Anke has a winning strategy for the ofl-line
version and for every s adjacent to so there is t
adjacent to to with (s, t) E W,
then comp(~) = {A : A ZT K}.

(4) If there is s adjacent to so such that (s, t) @ W
for all t adjacent to to,
then comp(g) =0.

Proof: (1) and (4) are obvious.
(2) hmune that Boris hss a winning strategy for the
(finite) off-line veraion of ~. Every list of counter moves
(wO,..., wk ) induces in a uniform way a list of counter

moves for the infinite off-line version as we now explain.

Suppose we are given an index i for the list of moves for
Anke. W.1.o.g. sssume that ~i(0) = so. We define hi,
the induced list of counter moves, as follows

Let hi(0) = Wo. If hi(n) = Wm, (~i(~ + l), hi(n)) @
W, and m < k, then let Iti(n + 1) = w~+l, else let

hi(n + 1) = hi(n).

We say that w = (we,..., wk) loses against i in step
n if n is minimal such that (pi(n), hi(n)) @ W. In
that case we write 1(w, i) = n. If n does not exist then

i(w, i) = co. Note that the graph of /(–, –) is uniformly
recursive.

If 1(w, i) = w then in particular the induced hi wins
aga&t “pi in the infinite veraion of the game. It essily
follows from the hypothesis that for every infinite list of

moves pi of Anke, there exists w with i(w, i) = co.

Since the off-line version of the finite game has at moat
k = IV1 I rounds, we may assume that all lists of counter
moves have length k. Let L be the finite set of all these
lists.

Now suppose that we are given an index i of the list
of moves of Anke in the infinite game. We show that
if dgT(A) c PA then we can A-recursively compute a
finite list w which does not lose against i in any step.
By the remarks above, this completes the proof.

By the hypothesis we know that a suitable w is con-
tained in L. So it suffices to provide an A-recursive
reduction procedure which reduces L to a one-element
set that still contains a suitable w.

Construction:
As long as ILI > 1 choose different lists u, w E L and
compute an index e of the following constant function f.

{

0, if /(u, i) <co A I(u1 i) ~ 1(w, i);
f(z) = 1, if i(w, i) < i(u, i);

~, otherwise.

Since dgT(A) EPA we can A-recursively ezclude either

%(e) = O or pe(e) = 1. In the first case we let L =
L- {w}, else we let L = L – {u}. Then we repeat the
procedure. ❑

Note that if the list which we remove does not lose
againat i at any step, then the list that we keep in L
has the same property. Thus at each step L wntains
a suitable list, i.e., the reduction procedure is wrrect.
This completes the proof of the fit part.

For the other direction, assume that Anke hsa a winning
strategy for the off-line veraion of ~. In our case this is
just a function p : VI x V2 z V1 such that Anke wins if
she plays p(vl, V2) in every position (U1, V2) where it is
her turn to move.

(*) We may assume w.1.o.g. that (p(vl, V2), V2) @ W in
every position (vl, V2) c W which is reachable when
Anke plays according to her winning strategy.

Let a = IVll, V. = {we,...,w~_i}. Suppose that A G
comp(~). We shall show that there is an A-recursive
function in DNRk. As wae mentioned above th~ im-
pli- dgT(A) c PA.

To this end we define inductively for every sequence of
anumbersa=(zl,..., Z*) a move list g = go for Anke
in the infinite off-line veraion of ~ as follows:
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Construction:
Initialization: Let n = O; g(0) = so; v = SO; w = to.

Goto step 1.
Ste~ j: Let Cj = {i: wi adjacent to W, (v, ~i) E W}.

Whale p.,,n(zj) @ Cj let g(n + 1) = g(n), n = n +1.
(NOW pz,,n(zj) c Cj.) Let w = wi for i = p.,,n(zj), let
g(n + 1) = p(v, w), v = p(v, w), n = n + 1, and goto
step j + 1. U

Note that g is the sequence of moves according to the
winning strategy of Anke against a potential Boris who

chooses his move in round j as follows: He waits until

~j (z!) ~ defined, say equal to i. Then he moves to wi
(If tlus is correct and produces a position in W).

Thus any A-recursive counter strategy that wins against
g must be different from this potential strategy. We
complete the proof by showing that if one can A-recur-
sively compute different counter strategies for all such
g, then dg2.(A) G PA.

By the hypothesis, there exists in an uniform way an A-
recuraive infinite list f. of counter moves for Boris with
(sl,tl) E W for SI = li~ ga(n) and tl = li~ ~o(n).
We may assume w.1.o.g.:

(**) [g.(n + 1) = g.(~) A (g.(~), f.(~)) ~ ~

* fa(n + 1) = f.(n).

Let nj(u) denote the j-th number n (in increasing order)
such that go(n + 1) # go(n), if it exists. For every
U=(zl, ..., Zo) and every z’ (1 ~ i ~ a) we define a
predicate P(i, u) as follows:

Note that trivially P(l, u) s true. Also note that
P(i, u) is r.e. in A. Intuitively, if P(i, r) holds then
gv has correctly predicted the behaviouz of fv up to
round i.

If g. would correctly predict the game up to round a
then (g(n=_l+l), f(na_l)) would be a final position in
~ such that (g(no_l +1), w) @ W for any node w adja-
cent to f(n._l). Furthermore g(n) = g(na_l + 1) for
all n > rza-l. Since lii f(n) is adjacent to f(rzo-l)
we would have (~ g(n), li~ f(n)) @ W, contradict-
ing the property of f. Therefore, P(a, c) s false.
Consider the least i with 1 ~ i < a such that:

(~zi+~, -. ., ZJ(VZ1, .- .,%)
[lP(i+ l,a) for a= (z~,..., zd)].

Note that i exists because YP(a, a) z true. For the
following we fix witnesses ~i+l,. . . . z.. If i > 1 then,
using the minimality of i, we get

‘(3 Zi)(VZ~, . . . . Zi-~)[qP(ij U)].

Or equivalently,

(+) (VZi)(3Z~, . . . . zi_l)[P(i, U)].

For i = 1 this holds trivially since P( 1, a) s true. Now
we can A-recursively compute a function d ~ DNRk as
follows:

Construction:
On input zi we search for ZI,. . . . zi-l such that P(i, u)
holds. The search is effective since P(–, –) is r.e. in A.
By (+), the search terminates.

Let ni-l = ni-l(u), f = fa, g = ga. By the choice of
Zi+l, . ..y z. we know that P(i+l, u) does not hold. This
means:

(++) H:; ~he:(g(og$:)) E w,

f(nj) = Wm A m # ~Z,(zi).

Therefore we search for the least n’ > ni-l such that
(a) 72’ = ni, or
(b) (g(n’), f(n’)) G W.

If the search terminates by (a) then we know p=, (~i )
and define d(~i) = min{z : z # ~z, (zi)}. If the search
terminates by (b) then we let d(~i) = m with w~ =
f(n’). •l

Clearly d(zi) < k. By the property of ~ we have that

(9(n), f(n)) C W for all sufficiently large n. Thus the
search terminates and d ia total.

If ni is undefined and ~z,(~i) = m’ then (g(n’), w~,) @
W or Wn, is not adjacent to f(ni-l ). Hence in this case
m# m’.

Now suppose that the search terminates by (b) and ni
is defined. Then ni > n’. Since g(n) = g(n’) for n’ <
n ~ ni we get by assumption (**) that f(n) = f(n’) for
n’ < n ~ ni. Using (++) we get d(zi) = m # ~z, (zi).

Thus we have d e DNRk and therefore dgT(A) E PA..
This completes the proof of part (2).

(3) Suppose we are given an index i of the move list
of Anke. Let S1 be the final position of the marker
of Anke. Then S1 = li~_~ pi(n). IJsing a K-oracle
we can compute S1 from i. By hypothesis, there exists
tlc V2 adjacent to to with (sl, tl) c W. So the list of
counter moves (i!l, tl, . ..) wins for Boris.

Now suppose that Boris can A-recursively compute from
every index i of a move list of Anke an A-recursive func-
tion fi which is a winning list of counter moves. Let
(L’iL’ne,:mion of the ~tite g=e) be a winning list of moves for Anke in the

For any Zl,..., xk we define a recursive function g =

!hl,...,=k ss fo~ows: 9(0) = SO1and 9(n) = vm where
m=l{i:zi CKn}lfOrn>O.

Now we can A-recursively enumerati for all ZI, . . . . xk
a set of at meet k strings such that FkK(zl, . . . . z~) is
among them. By the Nonapeedup Theorem [1] it follows
that K ST A.

The enumeration procedure works as follows:

Compute an index i of g = g=, ,...,=k. In step n enumer-

ate (Kn(ZI),..., Kn(z~)) if (g(n), fi(n)) C W’.

Since fi wins against g it follows that (g(n), fi(n)) G W
for all sufficiently large n, sO Fk~(zl, . . . . z~) is enumer-
ated. Suppose for a contradiction that we enumerate
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k + 1 different strings. Choose nj minimal such that a
string with exactly j 1s is enumerated in step nj, j =

o,..., k. ?40tethat (g(no), . . ..g(n~)) =(sO. vl, v~), v~).

Then thelist ofcounter moves (~i(no),.. .,~i(n~) wins

against 1 = (VI, ..., v~ ) in the off-line version of the
finite game. This contradicts the hypothesis that 1 is a
winning liit of moves. ~

5 On the Strength of Noninclusions in

Parallel Learning

Suppose that (m, n) PFIiV ~ (h, k) PFIN, i.e., there
exists a set S ~ REC which can be inferred by an
(m, n) PFIN-machine, but not by any (h, k) PFlN-ma-
chine. What happens if we scabup the (h, k) PFlN-
machines and allow them to access an oracle A? Then S
might become (h, k) PFIN-inferable if A is sufficiently
powerful. How powerful must A be? This question is
studied for teams of finite learners in [11], by similar

methods.

In this section we characterize the oracles A such that
every S c (m, n)PFIN can be A-recursively inferred
by an (h, k) PFIN-machine. Let strength(m, n; h, k)
denote the class of all such A. The strength of the
noninclusion (m, n)PFIN ~ (h, k)PFIN is measured
by the clsss strength(m, n; h, k): the stronger the non-
inclusion the smaller is strength(m, n; h, k). Applying
Theorem 4.2 we show that there are four possibilities
for strength(m, n; h, k).

(1) strength(m, n; h, k) = {A : A ~ w}
ifl[n~k An-m~k-h]V [n< k and
Boris has a winning strategy in G(m, n; h, k)].

(2) strength(m, n; h, k) = {A : dg~(A) ~ PA}
ifl [n S k A Anke has a w“nning stmtegy in
G(m, n; h, k), but Boris has a m“nning strategy
in the ofl-line version of G(m, n; h, k)].

(3) strength(m, n; h, k) = {A : A ~* K}
iff[n<k A n–m<k–h AAnkehas awinning
strategy in the ofl-line version of G(m, n; h, k)].

(4) strength(m, n; h, k) = 0
iffn-m> k-h.

Proof: Since the right-hand sides of(l)-(4) is a com-
plete case distinction, it suffices to show the if-direction
in (l)-(4).

(1) If the condition on the right hand side holds then
we have (m, n)PFIN ~ (h, k)PFIN by Corollary 1.4

and Theorem 2.3, respectively.

(2) Assume that n ~ k and that Boris has a winning
strategy for the off-line version of G(m, n; h, k). We
show that strength(m, n; h, k) a {A: dgT(A) E PA}.

Fix any A with dgT(A) E PA. By Theorem 4.2, Boris
has a winning strategy for the intinite off-line version

of G(m, n; h, k). similar as in the proof of Theorem
2.3, (<), we can build, for any given (m, n) PFlN-
machine M that infers a set S ~ REC, an A-recursive
(h, k) PFIN-machine NA which simulates M:

On input ~1,..., ~~ we simulate M(~~,,..., ~i,) for ev-

ery n-element subset D = {il < ...< in} s {1, . . ..k}

until it outputs programs (eD,il, ..., eD,in), for every

such D. These programs determine in a uniform way
an off-line strategy for Anke in G(m, n; h, k). We com-
pute an index i of this strategy. Now we are using the
oracle A to compute a finite list 1 of counter moves
for Boris such that 1 does not lose against i. This is
done as in the proof of Theorem 4.2, (2). Only at this
point the machine NA outputs programs for k func-
tionsgl, . . . , 9k. Thee are equipped with the move-list
1which they use in the same way as the winning strategy
for Boris was used in the proof of Theorem 2.3, (~). By
an analogous argument as in this proof it follows that at
least h of the gi’s are correct, and ail of them are total.

S 6 (h, k) PFINIA] via NA.

Now assume that n ~ k and that Anke has a win-
ning strategy in G(m, n; h, k). Fix any oracle A with
dgT(A) ~ PA. We show that A @strength(m, n; h, k).

By a modification of the proof of Theorem 2.3, (a), we

1
can construct a set S E (m, n)PFIN – (h, k PFINIA].
The idea to diagonalize a single machine Mi is to build
a uniformly recursive sequence F(i,~) ,DJ for p = O, 1, . . .
The functions F(i,P) ,D,j are defined according to the
moves of Anke wluch are given by the pth recursive
off-line strategy stratP. Here we refer to the correspond-

ing listing {stratP }P~W of recursive off-line strategies for
Anke as they are used in the proof of Theorem 4.2, (2).
Note that as in the proof of the Theorem 2.3, (~), the
action of M~A defines an A-recursive counter strategy for
each stratP. Recall fkom the proof of Theorem 4.2, (2),
that each stratP wins against some potential strategy of
Boris where the moves in each round are correctly pre-
dicted by stratP. We have shown there that if one can
A-recursively compute for each stratP a counter strat-
egy which wins against st ratP, then dgT(A) c PA. The

action of ~iA on the initial segments of the F(i,p) ,D j ‘S

however defines us an A-recursive counter strategy for
Boris.

In order to formally cover the case where the F(iW),~J ‘S

split before MiA has produced its guess, we may intro-
duce the convention that the corresponding positions
are B-configurations. I.e., if Boris’ markers are in node
A and one of Anke’s marker is not in {1,..., k} then
this a B-configuration. In particular, Boris wins the off-
line version of the infinite game if he keeps his markers
in A and finds a stage where Anke moves. However, if
Anke would never move then this strate~ would not be
successful.

Since A @ PA itfollows that there exists p such that
the strategy provided by M,A loses against stratP. This
means that we can define functions fl, ..., fk which are
not (h, k) PFIN-inferred by MiA, but which are inferred
in a uniform way by a recursive (m, n) PFIN-algorithm.
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As in the proof of Theorem 2.3, (=), we define S E
(m, n)PFIN – (h, IC)PI’INIA] by pasting together the

k-tuples that diagonaiize the ditTerent lf~ for i = 0,1,...

(3) Assume that n~kandn-m <k-h. Letan
(m, n) PF1iV-machine M be given wfich infers a class

S ~ REC. We can build a K-recursive (h, k) PFlN-
machine NK which simulates M.

As above, on input ~1,.. ., j~ we simulate i14(.fil, ... . ~i.)

for every n-element subset D = {il < --- < in} ~
{1 . . . . . k} until it outputs programs (e~,il,. . . . e~,im),

for every such D. Since the FD3 are total we can K-
recursively compute which of them are equal and which
are different. Then we find so such that if two of these
functions dfier then they differ on an argument less
than so. If there is a function FD,j which agrees With ~j
for all arguments 1- than so then let gj = FDJ, oth-
erwise let gj = ~z.O. We output a k-tuple of programs
for (gl, . . . . g~).

Clearly, every program which we output computes ate
tal function. We claim that at most n – m of them are
incorrect. Suppose for a contradiction that there is a
set Eofn– m + 1 indices j with fj # gj. Choose an
n-element set D ~ {1 ,..., k} with E ~ D, For every

j E -E: if FD,j = gj then FD,j # fj, by the hypoth&s

on gj; if FD,j # gj then FDti # fj, since F~ti must
already ditTer from fj on some argument less than so.
Thus more than n - m of the FD,j are incorrect, i.e., M
does not (m, n)-infer {~i : i E D}, a contradiction. This
shows that NA makes at most n — m ~ k – h errors,
i.e., it (h, k)-infers S.

Finally, assume that n ~ k, Anke has a winning strategy
in the off-line version of G(h, k; m, n), and (m, n)PFIN
~ (h, k) PFINIA]. Then A >T K. This is shown by

combtig the prooik of Theorem 2.3 with the proof of
Theorem 4.2 in a similar way ss in (3) above. We omit
the details.

(4) Thw follows from the observation that the diag~
nalization in the proof of Fact 1.3 in [8] also works
against (h, k) PFIN-algorithrns which have access to an
oracle. I

Each of these four cases may occur in a nontrivial way:

(1) (4, 5)PF1N ~ (5, 6) PF1N, see Proposition 3.2.

(2) This holds for (2, 3)PF1N versus (3, 4)PF1N[A],
one can check that Boris has a winning strategy for the
off-line version of the game G(2, 3; 3,4) (cf. the proof of
Proposition 3.1).

(3) Thisholds ifn~k, n-m< k-h, and thereis
an (m, n)-admissible set which is not (h, k)-admissible:
the proof of Theorem 3.9 actually provides an off-line
winning strategy for Anke. For exsmple this holds for
PFIN(l, 3) versus PFIN(2, 5)[A].

(4) Obvious.
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