

Edinburgh Research Explorer

On the tradeoff between mapping and querying power in XML
data exchange

Citation for published version:
Amano, S, David, C, Libkin, L & Murlak, F 2010, On the tradeoff between mapping and querying power in
XML data exchange. in Database Theory - ICDT 2010, 13th International Conference, Lausanne,
Switzerland, March 23-25, 2010, Proceedings. ACM, pp. 155-164. https://doi.org/10.1145/1804669.1804689

Digital Object Identifier (DOI):
10.1145/1804669.1804689

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Database Theory - ICDT 2010, 13th International Conference, Lausanne, Switzerland, March 23-25, 2010,
Proceedings

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 14. May. 2024

https://doi.org/10.1145/1804669.1804689
https://doi.org/10.1145/1804669.1804689
https://www.research.ed.ac.uk/en/publications/fa1d0b5b-213c-484e-a76b-bf20503e9fa2

On the Tradeoff between Mapping and Querying Power

in XML Data Exchange∗

Shun’ichi Amano Claire David Leonid Libkin Filip Murlak

ABSTRACT

In XML data exchange, a schema mapping specifies
rules for restructuring a source document under the tar-
get schema, and queries over the target document must
be answered in a way consistent with the source infor-
mation. Mapping rules and queries in this scenario are
typically based on various kinds of tree patterns. Pat-
terns with downward navigation have been studied, and
tractable classes of mappings and queries have been iso-
lated.

In this paper we extend schema mappings and queries
with general tree patterns that include horizontal navi-
gation and data-value comparisons, and study their im-
pact on the tractability of the query answering problem.
Our main results state that, in the nutshell, extending
the tractable cases for downward patterns with expres-
sive schema mappings is harmless, but adding new fea-
tures to queries quickly leads to intractability even for
very simple schema mapping.

1. Introduction

In the problem of data exchange, source data (conform-
ing to a source schema) must be restructured to form
a solution conforming to a target schema. The restruc-
turing must follow a specification, known as a schema
mapping, which describes the relationship between the
two schemas. Normally such specifications are given
by source-to-target dependencies, which are often for-
mulated as relational calculus queries of special form.
∗Authors’ address: School of Informatics, Univer-
sity of Edinburgh, Edinburgh EH8 9AB, UK. E-mail:
{s-amano,cdavid,libkin,fmurlak}@inf.ed.ac.uk.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Under a schema mapping, there could be many possi-
ble solutions to materialize as a target instance. The
goal then is to find a solution that would make it pos-
sible to answer queries over the chosen target instance
in a way that is consistent with the source data.

The problem of data exchange has been actively stud-
ied over the past few years (see, e.g., recent surveys
[19, 10, 8]). Most research has focused on the rela-
tional case, where the complexity of basic problems in
relational data exchange is by now quite well under-
stood. Systems for handling relational data exchange
have been developed and incorporated into commercial
systems (see, e.g., [24]). Although practical systems of-
ten claim to handle non-relational data, this is usually
done either through relational translations or with very
simple mappings whose power is in manipulating data
values rather than changing the structure [18].

A systematic study of semi-structured data exchange
was initiated in [7] which proposed a simple mapping
language for XML data exchange. Apart from basic
static analysis questions, [7] showed how to build solu-
tions for answering analogs of conjunctive queries, and
isolated a subclass of mappings admitting a polynomial
algorithm for query answering. The mappings consid-
ered by [7] were very restricted though, as they only
admitted downward navigation and a limited form of
equality comparisons, but disregarded horizontal navi-
gation, and arbitrary (in)equality comparisons.

A much more expressive language for XML schema
mappings was proposed recently [4]. The language
added the features that were missing in [7], and it al-
lowed one to restructure documents based on arbitrary
forms of navigation and arbitrary comparisons of data
values. But while [4] presented a rather complete pic-
ture of the complexity of static analysis problems, it did
not address the key problem of query answering.

Our goal thus is to study query answering in such ex-
pressive XML schema mappings. Once we add new fea-
tures to mappings, we can also use them in queries, so
there is a natural question to what extent we can en-
rich mapping and query languages while retaining good

1

bounds on the query answering problem. We show that
we cannot extend both simultaneously; in fact there is a
certain tradeoff between the power of the mapping lan-
guage and the power of the query language. We show,
informally, that:

• The basic tractable class of queries identified in [7]
remains tractable under the most expressive map-
pings; but

• adding new features to the query languages quickly
leads to intractability, even for very simple map-
pings that behave well with simple queries.

The plan of the paper is as follows. After presenting
the main definitions in Section 2, we review what is
known about query answering in simple settings, based
only on downward navigation. This is done in Section
3. The key findings of [7], reviewed there, are that we
need to restrict both DTDs and source-to-target con-
straints to have any hope of getting tractability. We
thus use the restrictions of [7] (to so-called nested re-
lational DTDs and fully specified source-to-target con-
straints) throughout this paper.

In Section 4 we show that throwing in all the new fea-
tures does not increase the upper bound for the query
answering problem – it remains in coNP. We then show
that if we add all the new features to schema mappings
while keeping the basic tractable language of [7], we
retain tractability. This is done in Section 5.

Then, in Section 6, we consider possible extensions of
query languages with the same features as the map-
pings: horizontal navigation and comparisons of data
values. We show that any such extension immediately
leads to intractability. This remains true even for very
simple mappings. We explore further possibilities of re-
stricting mappings, by strengthening the definition of
fully specified constraints and relaxing constraints on
the ordering of elements, and show that even then the
query answering problem remains intractable once the
queries are extended beyond the class considered in [7].

2. Preliminaries

2.1 XML documents and DTDs

We view XML documents as unranked trees. Each node
has a label indicating its element type and may also have
attribute values associated with attribute names. We
assume attribute values come from an infinite domain
V , and also that attribute names are prefixed by @ so
as to be distinguished from element types.

Formally, an XML document over a finite labeling al-
phabet Γ (element types) and a finite set Att of at-
tribute names is a structure 〈T, ↓,→, lab, (ρa)a∈Att 〉,
where

• the set T is an unranked tree domain, i.e., a prefix-
closed subset of N

∗ such that n · i ∈ T implies
n · j ∈ T for all j < i;

• the binary relations ↓ and → are the child relation
(n ↓ n · i) and the next-sibling relation (n · i →
n · (i+ 1));

• the function lab is a labeling from T to Γ;

• each ρa is a partial function from T to V . We say
that a node s ∈ T has the value v for the attribute
@a when ρa(s) = v.

Most often, when the interpretations of ↓,→, lab, and
ρa’s are understood, we write just T to refer to an XML
document.

A document type definition (DTD) over a labeling
alphabet Γ and a set of attributes Att is a triple
D = 〈r, PD, AD〉, where

• r ∈ Γ is a distinguished root symbol;

• PD is a function assigning regular expressions over
Γ − {r} to the elements of Γ, usually written as
ℓ→ e, if PD(ℓ) = e;

• AD is a function from Γ to 2Att which assigns a
(possibly empty) set of attribute names to each
element type.

For notational simplicity we assume that attribute
names come in some order, just as in the relational case
where attribute names for a relation R are ordered in
some way so that we can write R(a1, . . . , an). Similarly,
we describe a node that is labeled ℓ and has n attributes
as ℓ(a1, . . . , an).

A tree T conforms to a DTD D if its root is labeled
with r and for each node s ∈ T with lab(s) = ℓ it holds
that

• ρa(s) is defined iff @a ∈ AD(ℓ),

• the sequence of labels of children of s is in the
language of PD(ℓ).

For example consider the following DTD D1:

europe → country∗

country → (ruler)∗ country : @name

ruler → ε ruler : @name

(1)

2

europe

country

(Scotland)

ruler

(James V)

ruler

(Mary I)

ruler

(James VI & I)

ruler

(Charles I)

country

(England)

ruler

(Elizabeth I)

ruler

(James VI & I)

ruler

(Charles I)

Figure 1: Tree T1 conforming to DTD D1

A tree T1 that conforms to this DTD is shown in Figure
1.

We shall use a class of nested relational DTDs [2, 4,
7, 11] that generalize nested relations. Such DTDs are
common in practice (accounting for more than 50% of
DTDs in one empirical study [11]) and they have been
shown to reduce the complexity of many XML static
analysis problems.

A DTD is nested relational if it is non-recursive (i.e.,
the graph in which we put edges between ℓ and the
element types in PD(ℓ) does not contain cycles) and all

of its productions are of the form ℓ → ℓ̂1 · · · ℓ̂m, where
the ℓi’s are distinct elements of Γ and each ℓ̂i is one of
ℓi, or ℓ∗i , or ℓ+i = ℓiℓ

∗
i , or ℓi? = ℓi|ε. The DTD (1)

is nested relational. On the other hand, an expression
ℓ1ℓ1ℓ

∗
2 cannot occur in a nested relational DTD (as ℓ1

is used twice), nor can (ℓ1ℓ2)
∗ and ℓ1|ℓ2.

2.2 XML schema mappings

Recall that a relational schema mapping is a quadruple
〈S,T,Σst,Σt〉, where S and T are relational schemas
(called the source schema and the target schema, re-
spectively), Σst is a set of source-to-target dependen-
cies, and Σt is the set of target dependencies. The de-
pendencies are of the form ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), where
ϕ, ψ are conjunctions of atomic formulae. In the lit-
erature, schema mappings without target dependencies
(i.e., mappings such that Σt is empty) have attracted
special attention, e.g., in the study of compositions of
schema mappings [15].

In the XML context, various abstractions of XML
Schema naturally replace relational schemas. These
could be DTDs, or XSDs, or other formalisms (see, e.g.,
[23]). Following the tradition of papers on data ex-
change for semi-structured data [7, 4, 25] we use DTDs
as our schema formalism, although many results can be
easily extended to formalisms capturing the full power
of tree automata.

For source-to-target constraints, one can use conjunc-
tive queries as the specification language; however, in
the XML scenario this is quite cumbersome because we

have two sorts of objects in an XML database: tree
nodes and data values. Instead, following [7, 4], we use
tree patterns, that capture the expressiveness of two-
sorted conjunctive queries but are easier to handle syn-
tactically.

Extended tree patterns, that handle both vertical and
horizontal navigation, are given by the grammar below:

π := ℓ(x̄)[λ] patterns
λ := ε | µ | //π | λ, λ sets
µ := π | π → µ | π →∗ µ sequences

(2)

Here ℓ ranges over the alphabet Γ of labels and the
wildcard symbol that matches every label. We write
π(x̄) to indicate that x̄ is the tuple of variables used in
π.

A tree T satisfies ϕ(ā) at a node s, with variables in-
terpreted as ā, written (T, s) |= ϕ, iff the following con-
ditions hold:

(T, s) |= ℓ(ā) iff s is labeled by ℓ and ā is the
tuple of attributes of s;

(T, s) |= ℓ(ā)[λ1, λ2] iff (T, s) |= ℓ(ā)[λ1] and
(T, s) |= ℓ(ā)[λ2];

(T, s) |= ℓ(ā)[µ] iff (T, s) |= ℓ(ā) and (T, s′) |= µ
for some s′ with s ↓ s′;

(T, s) |= ℓ(ā)[//π] iff (T, s) |= ℓ(ā) and (T, s′) |= π
for some descendant s′ of s;

(T, s) |= π → µ iff (T, s) |= π and (T, s′) |= µ
for some s′ with s→ s′;

(T, s) |= π →∗ µ iff (T, s) |= π and (T, s′) |= µ
for some younger sibling s′

of s.

We write T |= ϕ for (T, ε) |= ϕ.

Observe that semantically ‘sets’ in tree patterns are lit-
erally sets: for a node satisfying ℓ(ā)[λ1, λ2], the child
witnessing λ1 is not necessarily distinct from the one
witnessing λ2.

Following [4], we define a source-to-target dependency

3

(std) as an expression of the form

π(x̄, ȳ), α=, 6=(x̄, ȳ) −→ π′(x̄, z̄), α′
=, 6=(x̄, z̄),

where π, π′ are tree patterns, and α=, 6= and α′
=, 6=

are sets of equalities and inequalities among variables.
Since we can always state equalities explicitly, we can
assume without loss of generality that no variable ap-
pears more than once in π and π′.

A pair of trees 〈T, T ′〉 satisfies an std of the form above
if for all tuples ā, b̄ so that T |= π(ā, b̄) and α(ā, b̄) holds,
there exists a tuple c̄ such that T |= π′(ā, c̄) and α′(ā, c̄)
holds.

An XML schema mapping is a triple M = 〈Ds, Dt,Σ〉,
where

• Ds is the source DTD, Dt is the target DTD,

• Σ is a set of stds.

Given a tree T conforming to Ds, a solution for T under
M is a tree T ′ such that

• T ′ conforms to Dt;

• 〈T, T ′〉 satisfies all the stds in Σ (written as
〈T, T ′〉 |= Σ).

For example, let Ds be the DTD D1 defined in (1), and
let Dt be the following DTD:

rulers → ruler∗

ruler → successor ruler : @name

successor → ε successor : @name

(3)

Assuming the rulers are stored in the chronological or-
der, a natural schema mapping M might be defined
with the following std:

europe[ruler(x) → ruler(y)] −→
rulers/ruler(x)/successor(y) ,

where we use the standard XML abbreviation ℓ(x̄)/π
for ℓ(x̄)[π].

A natural solution for the tree T1 from Figure 1 is a
tree T2 shown in Figure 2. Notice that the solution is
not unique. Every tree obtained from T2 by adding new
children with arbitrary data values, or by permuting the
existing children, is also a solution for T1. For instance,
a solution T3 shown in Figure 3 is as good a solution
for T1 as any.

Mappings based on downward navigation The
language of tree patterns used in [7] only referred to

downward navigation, i.e., it did not use sequences and
was given by

π := ℓ(x̄)[λ]
λ := ε | π | //π | λ, λ

(4)

The stds from that paper did not use inequalities and
only allowed equalities explicitly incorporated into the
patterns, i.e., they were of the form π(x̄, ȳ) → π′(x̄, z̄),
with the same semantics as we use here.

Classes of mappings In general, mappings can use
vertical and horizontal navigation as well as data com-
parisons. Restricted classes are obtained by limiting
downward navigation (for example, disallowing descen-
dant), horizontal navigation (disallowing → or →∗ in
sequences), and data value comparisons (disallowing
equalities or inequalities).

More precisely, we say that ↓∗, →, and →∗ are used
in a mapping if some pattern uses the //π construction
in ‘sets’ in (2), or the π → µ or π →∗ µ construction
in ‘sequences’ in (2). A mapping uses equality if either
equalities are present in formulae α=, or if some vari-
ables are repeated in patterns (which forces two data
values to be equal). And finally, a mapping uses in-
equality if inequalities are present in formulae α6=.

Thus, for a subset σ ⊆ {↓, ↓∗,→,→∗,=, 6=}, we write
SM(σ) to denote the class of schema mappings in which
stds use only the operations from σ. For example, the
mapping described above is in SM(↓,→). The class (4)
of XML schema mappings originally considered in [7] is
SM(↓, ↓∗,=) in this notation.

For reasons to be explained shortly, we work extensively
with nested relational schema mappings, i.e., schema
mappings whose target DTDs are nested relational. By
SMnr(σ) we denote the class of nested relational schema
mappings in SM(σ). Our example of a mapping above
is from the class SMnr(↓,→).

If we use the standard XML encoding of relational
databases, then relational schema mappings fall into the
class SMnr(↓,=).

2.3 Query language

We follow the relational case [8, 14, 19] and study query
answering for conjunctive queries and their unions.
Conjunctive queries over trees are normally represented
with tree patterns [16, 12, 13]. Thus, for querying XML
documents we use the same language as for the depen-
dencies: tree patterns augmented with equalities as well
as inequalities, to capture the analog of relational con-
junctive queries with inequalities. And, of course, we
allow projection.

4

rulers

ruler

(James V)

successor

(MaryI)

ruler

(Mary I)

successor

(James VI & I)

ruler

(James VI & I)

successor

(Charles I)

ruler

(Elizabeth I)

successor

(James VI & I)

Figure 2: T2: a solution for T1

rulers

ruler

(James V)

successor

(Mary I)

ruler

(Mary I)

successor

(James VI & I)

ruler

(James VI & I)

successor

(Charles I)

ruler

(Louis XIII)

successor

(Charles I)

ruler

(Elizabeth I)

successor

(James VI & I)

Figure 3: T3: another possible solution for T1

That is, a query is an expression of the form

∃x̄ (π, α=, 6=),

where π is a tree pattern and α=, 6= is a set of equal-
ities and inequalities. The semantics is defined in the
standard way. This class of queries is denoted by CTQ

(conjunctive tree queries). Note that CTQ is indeed
closed under conjunctions, due to the semantics of λ, λ′

in patterns.

We also consider unions of such queries: UCTQ de-
notes the class of queries of the formQ1(x̄)∪· · ·∪Qm(x̄),
where each Qi is a query from CTQ. Like for schema
mappings, we write CTQ(σ) and UCTQ(σ) for σ ⊆
{↓, ↓∗,→,→∗,=, 6=} to denote the subclass of queries
using only the symbols in σ.

Let us get back to our running example. A query one
might ask over the target database is to list the rulers
who were successors to more that one ruler. This would
be expressed by the following conjunctive query Multi-
Succ:

∃x ∃y

rulers[ruler(x)/successor(z),
ruler(y)/successor(z)],

x 6= y

 .

Note that this query uses both inequality and equality,
since the variable z is used twice in the tree pattern.
Hence, this query is in CTQ(↓,=, 6=).

Coming back to our example, on the tree T2 from Figure
2 the query MultiSucc would return {”James VI & I”},
and on the tree T3 from Figure 3 the answer would be
{”James VI & I”, ”Charles I”}.

3. Data exchange in simple settings

Data exchange is the problem of transforming data in
the source schema into data in the target schema, ac-
cording to stds. As we have already explained, the re-
sult of this transformation may not be unique. The fun-
damental problem of data exchange is to answer queries
over the target data. Suppose we are given a mapping
M , a query Q, and a source tree T conforming to Ds.
What answer should we return if there is more than
one solution for T ? Following [14, 7], we adapt the cer-
tain answers semantics, i.e., we return the tuples which
would be returned for every possible solution:

certainM (Q, T) =
⋂

{

Q(T ′)

∣

∣

∣

∣

T ′ is a solution for T
under M

}

.

The subscript M is omitted when it is clear from the
context.

Note that our queries output sets of tuples rather than
trees, so we can define certain answers by taking the
intersection of the answers over all solutions.

In our running example, certainM (MultiSucc, T1) =
{”James VI & I”}. Note that when Q is a Boolean
query, certainM (Q, T) is true if and only if Q is true
for all the solutions.

Fix an XML schema mapping M and a query Q. We
are interested in the following computational problem.

Problem: certainM (Q)
Input: a tree T , a tuple s̄

Question: s̄ ∈ certainM (Q, T) ?

5

We now recall what is already known about simple set-
tings based on downward navigation [7], i.e., mappings
from SM(↓, ↓∗,=) and queries from UCTQ(↓, ↓∗,=).
The problem is in coNP, and could be coNP-hard. To
reduce the complexity, one can vary three parameters
of the problem: DTDs, stds, and queries.

It turns out that in order to get tractability we have to
restrict the first two parameters simultaneously.

The general idea behind the restrictions is to avoid any
need for guessing where patterns could be put in a tar-
get tree. For that, the mapping has to be as specific
as possible. In terms of DTDs this restriction is well
captured by the notion of nested relational DTDs (for
instance, there is no explicit disjunction). But guessing
is also involved whenever wildcard and descendant are
used in the stds. The mappings which use neither ↓∗

nor in target patterns in stds were called fully speci-
fied. The following theorem summarizes the results on
simple mappings.

Theorem 3.1. (see [7]) For a schema mapping
M ∈ SM(↓, ↓∗,=) and a query Q ∈ CTQ(↓, ↓∗,=)

(1) certainM (Q) is in coNP,

(2) certainM (Q) is in PTIME, if M is fully specified
and nested relational.

Moreover, if one of the hypotheses in (2) is dropped,
one can find a mapping M and a query Q such that
certainM (Q) is coNP-complete.

Note that item (2) includes, as a special case, the
tractability of computing certain answers for conjunc-
tive queries in relational data exchange. Indeed, it says
that answering queries from CTQ(↓, ↓∗,=) (and even
unions of those) is tractable for mappings from the
class SMnr(↓,=), and as we remarked earlier, relational
schema mappings fall into this class under the natural
representation of relations as flat trees.

The result of [7] is actually more precise. For fully
specified mappings there is a dichotomy in the first
parameter: if there is enough nondeterminism in the
DTDs, the problem is coNP-hard, otherwise it is poly-
nomial. The exact class of tractable DTDs is the one
using so called univocal regular expressions (see [7] for
a rather involved definition). Intuitively, it extends
nested-relational DTDs with just a little bit of disjunc-
tion. Query answering in this case is based on con-
structing a specific instance using a chase procedure,
and the use of disjunction in DTDs is limited so as to
keep the chase polynomial.

Our goal Given the results of [7], we must stay with a
restricted class of DTDs and fully specified mappings to
have any hope of getting tractability of query answering.
Hence, our questions are:

1. How bad could the complexity of certainM (Q)
be if we extend the classes SMnr(↓,=) of mappings
and CTQ(↓, ↓∗,=) of queries?, and

2. Can we extend the classes SMnr(↓,=) of mappings
and CTQ(↓, ↓∗,=) of queries with new features
while retaining tractable query answering?

In the next section, we show that we do not have to
worry about the first question – the coNP bound is not
broken by adding new features. We also make an obser-
vation about an easy lower bound on the problem that
refines question 2) a bit.

4. Data exchange in extended settings

In the previous section we have sketched the tractability
frontier for simple mappings and simple queries. Now,
we would like to see what can be done to extend the
tractable case with horizontal navigation and data com-
parisons. But first, we need to verify whether the upper
bound remains the same with all the new features.

Note that unlike in some other cases (e.g., relational
queries under the closed world semantics [1]), the coNP
upper bound on certain answers is nontrivial even in the
case of simple downward mappings (4). Now we show
that we can recover the upper bound for much more ex-
pressive mappings. We do it by casting the problem as
a special case of query answering over incomplete XML
documents, for which the coNP bound has recently been
proved [9].

Proposition 4.1. For every schema mapping
M ∈ SM(↓, ↓∗,→,→∗,=, 6=) and for every query
Q ∈ CTQ(↓, ↓∗,→,→∗,=, 6=), the complexity of
certainM (Q) is in coNP.

Proof sketch. Suppose M is of the form
〈Ds, Dt, {ϕi → ψi | i ∈ [n]}〉. Given a tree T con-
forming to Ds, what we have is essentially an
incomplete tree. That is, we have polynomially many
target patterns ψi(s̄i,1), . . . ψi(s̄i,ki

), where i ∈ [n] and
ki is in polynomial in the size of T . This set of patterns
can be seen as a single XML tree with incomplete
information. Our problem is precisely the problem of
computing certain answers over this incomplete tree.
This was shown to be in coNP in [9]. 2

From the previous section we know that in order to
get tractability, we need to confine ourselves to nested
relational DTDs and fully specified stds. In addition,
we must disallow inequality in the query languages. It
is known to lead to coNP-hardness already in the re-
lational case [14, 22]. Since the usual translation from
the relational setting to the XML setting produces fully
specified nested relational mappings, we have the fol-
lowing result.

6

Corollary 4.2. There exist a nested-relational fully
specified schema mapping M ∈ SMnr(↓,=) and a query
Q ∈ CTQ(↓,=, 6=) such that certain(Q) is coNP-
complete.

Our goal – revised Now that we know that inequality
in queries immediately leads to intractability, and that
we do not have to worry about potentially worse com-
plexity bounds than before, our revised goal is as fol-
lows: Can we find σ1 ⊇ {↓,=} and σ2 ⊇ {↓, ↓∗,=} such
that certainM (Q) is tractable for all M ∈ SMnr(σ1)
and Q ∈ UCTQ(σ2).

In what follows we show that it is possible to extend
schema mappings, but it is almost impossible to extend
the query language.

5. Extending the mapping language

In this section we show that we can extend mappings
with horizontal navigation and data value comparisons
without losing tractability, provided that we stick to
the basic query language. Recall that mappings must
be fully specified to guarantee tractability, i.e., they use
patterns given by the grammar

π := ℓ(x̄)[λ]
λ := ε | µ | λ, λ
µ := π | π → µ | π →∗ µ

(5)

with ℓ 6= (i.e., they disallow ↓∗ and the wildcard), see
[7]).

Theorem 5.1. Suppose M is a fully specified
schema mapping in SMnr(↓,→,→∗,=, 6=) and
q ∈ UCTQ(↓, ↓∗,=). Then certain(Q) is in PTIME.

Proof sketch. The proof is based on the observa-
tion that the chase algorithm of [7] can be extended
to handle additional features of schema mappings.
Given an input tree T , the algorithm constructs in
polynomial time a “minimal” solution T ∗ for which
Q(T ∗) = certainM (Q, T).

The algorithm roughly works as follows. Given a source
tree T , it first construct a canonical presolution, which
is essentially the result of putting together all the tar-
get patterns to be satisfied. That is, for each std
ϕ(x̄, ȳ), α(x̄, ȳ) → π′(x̄, z̄), α′(x̄, z̄) and tuples ā, b̄ so
that ϕ(ā, b̄), α(ā, b̄) are satisfied in the source, we pick
a tuple c̄ of fresh nulls so that α′(ā, c̄) is satisfied and
put the pattern π′(ā, c̄) into the target tree. This con-
struction only involves evaluating patterns and can be
done in polynomial time.

As such a tree need not conform to the target DTD, the
algorithm then tries to “repair” the canonical presolu-

tion so that it actually is a solution, i.e., conforms to
the target DTD. The important property of the class
UCTQ(↓, ↓∗,=) is that queries are insensitive to the
horizontal order of children in trees. Hence in trying to
enforce the conformance to the target DTD, we do not
have to reorder children under each node. This repair-
ing procedure might fail, in which case there is no so-
lution for T . If it successfully terminates, then we have
the desired solution T ∗ and we can compute Q(T ∗). 2

6. Extending the query language

We have seen that extending the mapping language is
harmless, so the next question is whether we can ex-
tend the query language. The answer is exactly the
opposite: even very small additions lead to intractabil-
ity. We start with the simplest mappings and show that
extending queries with any form of horizontal naviga-
tion leads to intractability. Then, analyzing the causes
of this intractability, we consider two modifications of
the simple class, exploring two complementary direc-
tions. The first deals with mappings which fully spec-
ify the sibling order, the second investigates mappings
based on DTDs invariant under sibling permutations.
We show that even under such restrictions, tractability
cannot be recovered.

6.1 Simple mappings

We start with the simplest class of mappings, those with
only the child-based navigation, with fully specified pat-
terns, and nested relational DTDs. For such mappings,
we cannot extend the query language CTQ(↓, ↓∗,=)
with any form of horizontal navigation.

Theorem 6.1. There exist

• a fully specified schema mapping M ∈ SMnr(↓);

• a query Q1 ∈ CTQ(↓,→,=); and

• a query Q2 ∈ CTQ(↓,→∗,=)

such that both certainM (Q1) and certainM (Q2) are
coNP-complete.

Proof. The coNP upper bound follows from Proposition
4.1. For the lower bound, we prove the first claim of the
theorem, and the proof for the second can be obtained
by replacing →∗ with → in the following proof.

We describe an XML schema mapping M and a query
Q ∈ CTQ(↓,→,=) such that 3SAT is reducible to the
complement of certainM (Q). More specifically, there
exist an XML schema mapping M and a query Q for
which the following holds:

certainM (Q, Tϕ) is false iff ϕ is satisfiable., (6)

7

where Tϕ is a tree encoding of a formula.

The idea of the reduction is the following: we transform
a 3CNF formula ϕ into a source tree Tϕ. The mapping
is defined so that a solution of Tϕ corresponds to a se-
lection of (at least) one literal for each clause in the
formula. Finally we provide a query that is true when
such a selection contains a variable and its negation.
Thus the existence of a solution falsifying the query
means the existence of a well-defined (partial) assign-
ment that satisfies the formula ϕ.

Suppose we are given a 3-CNF formula ϕ =
∧n

i=1

∨3
j=1 cij , where cij is a literal. We construct a

source tree Tϕ by the following encoding, which we ex-
plain with a concrete example. A formula (x1 ∨ ¬x3 ∨
x4) ∧ (x2 ∨ x3 ∨ ¬x4) is encoded as follows:

r

C
(1)

H1

(1)
H2

(6)
H3

(7)

C
(2)

H1

(3)
H2

(5)
H3

(8)

L
(1,2)

L
(3,4)

L
(5,6)

L
(7,8)

Each L node has two attribute values encoding a vari-
able and its negation, respectively. For example L(1, 2)
indicates that x1 is encoded by the data value ‘1’ and
¬x1 by ‘2’. In general, for each variable we have an L
node encoding it and its negation with distinct values.
Also for each clause in the formula we have C node that
has three children labeled H1, H2, H3, respectively. The
data value held at C is an identifier for it, and Hi holds
the data value encoding the i-th literal in the clause. In
the example above, the second literal of the first clause
is ¬x3 and hence the data value of H1 under the middle
C node is ‘6’.

Formally the source DTD Ds is

r → C∗L∗ C : @a1 L : @a2,@a3

C → H1H2H3 H1, H2, H3 : @b1.

The target DTD Dt is quite similar to the source DTD
above:

r → C∗L∗ C : @a1 L : @a2,@a3

C → H∗ H : @b1

The last component of the schema mapping are the stds
Σ. The idea for the mapping is that, given Tϕ, we essen-
tially copy it in the target, but allow the reordering of
children under each C node with the use of ‘,’(comma).
This reordering corresponds to ‘choosing one literal per
clause’ mentioned earlier. Intuitively, we choose a lit-
eral having more than two younger siblings. Since each

C node has three H nodes below, clearly at least one
literal is chosen for each clause.

r[C[H1(x), H2(y), H3(z)]] → r[C[H(x), H(y), H(z)]]

r[L(x, y)] → r[L(x, y)]

Finally we define the query. It is true if a variable and
its negations are contained among the chosen literals.
The query is:

∃x∃y

(

r
[

L(x, y), C[H(x) → H → H],
C[H(y) → H → H]

]

)

(7)

Formally, the correctness of the reduction can be proved
as follows. We prove that certainM (Q, Tϕ) is false if and
only if a 3-CNF formula ϕ is satisfiable.

(⇒) Suppose certainM (Q, Tϕ) is false. Then there ex-
ists a tree T ′ that is a solution for the tree encod-
ing ϕ and falsifies the query. We extract an assign-
ment v from T ′ as follows. For each fragment match-
ing r[C[H(x) → H → H]], v assigns true to the variable
encoded by x. This assignment is consistent since the
query is false over T ′. Finally the assignment satisfies
ϕ. The dependency requires that there should be at
least three H ’s (holding values appearing in the source)
below a C node. Hence, for each C node, there is at
least one H node beneath it that has two younger sib-
lings, so that the corresponding literal is true by the
assignment.

(⇐) Suppose that ϕ is satisfiable. Assume v is a satis-
fying assignment. Then we construct a solution of the
mapping for Tϕ that falsifies the query in the follow-
ing way. Basically what we do is to change the order
of H ’s under each C node so that, for each clause, a
literal assigned true has at least two younger siblings.
More specifically, for each tree fragment of the form
r[C[H1(d1), H2(d2), H3(d3)]], the corresponding clause
has at least one literal that is assigned true by v. We
choose the data encoding one such literal (we choose
the one corresponding to a literal with the smallest in-
dex if there are more than one literal to which v assigns
true). For example, suppose it is d2. Then we make the
tree fragment r[C[H(d2) → H(d1) → H(d3)]]. After we
process all the fragments corresponding to clauses, we
simply copy all the L nodes in the target. Since v never
assigns true to a variable and its negation, the query is
false over the constructed tree. 2

6.2 Fully specified sibling order

We have seen that even if we stick to basic downward
mappings, we cannot extend the query language. But
perhaps we can find a more suitable class of mappings?

8

Observe that in the setting of the previous section, we
violated the idea behind the principle of being fully
specified (although not the formal definition), as queries
used horizontal navigation, and yet mappings did not
specify it completely, by allowing the set constructor
λ, λ′ in (5). Such nondeterminism in placing patterns
in target trees leads to intractability.

So it seems natural to restrict the use of this nondeter-
minism and properly redefine the notion of being fully
specified for horizontal navigation. We do it now, but
show that, unlike in the easier case of [7], it does not
lead to tractability.

There are two possible ways to define the notion of being
fully specified with respect to the horizontal ordering.
In the more relaxed notion, called →∗-fully specified,
we insist that for every two subpatterns which start at
children of the same node, we know their relative order-
ing. In the stronger notion, called →-fully specified, we
completely specify the → relation among the siblings.

More precisely, →∗-fully specified patterns exclude, in
addition to //π and wildcard, the ability to take union
(i.e., the λ, λ′ construct) and are given by

π := ℓ(x̄)[µ]
µ := ε | π | π → µ | π →∗ µ

(8)

The →-fully specified patterns in addition exclude →∗

and are given by

π := ℓ(x̄)[µ] µ := ε | π | π → µ (9)

For example, an std using a[b, c] is neither →- nor →∗-
fully specified; an a[b →∗ c] → a[c →∗ d] is →∗-fully
specified, but not →-fully specified, and an std using
a[b→ c→ d] is →-fully specified.

We start with the →-fully specified mappings.

Theorem 6.2. There exist a →-fully specified schema
mapping M ∈ SMnr(↓,→) and a query Q from the
class CTQ(↓,→,=) such that certain(Q) is coNP-
complete.

Proof sketch. As in the previous proof, we will provide
an XML schema mapping M = 〈Ds, Dt,Σ〉 and a query
Q such that we can reduce 3SAT to the complement
of certainM (Q, Tϕ), where Tϕ is the same encoding of
formulas as in the previous proof.

The source DTD Ds is:

r → C∗L∗ C : @a1 L@a2,@a3

C → H1H2H3 H1, H2, H3 : @b1,

The target DTD is again almost the same as the source,

except that it has Gi’s. With these extra element types,
we ‘choose’ a literal from each clause. Intuitively we
select Hi’s that are ‘two step to the right of G1’.

r → C∗L∗ L : @a1,@a2

C → G1G2?G3?H1H2H3 H1, H2, H3 : @b1.

The stds are simply copying: r[C[H1(x) → H2(y) →
H3(z)]] → r[C[H1(x) → H2(y) → H3(z)]] and
r[L(x, y)] → r[L(x, y)].

The queryQ is selected so that it is true if a variable and
its negation are both ‘chosen’, just as in the previous
proof. It is given by

∃x∃y

(

r
[

L(x, y), C[G1 → → → (x)],
C[G1 → → → (y)]

]

)

Correctness is shown in the appendix. 2

We now show intractability for →∗-fully specified map-
pings.

Theorem 6.3. There exist a →∗-fully specified schema
mapping M ∈ SMnr(↓,→∗) and a query Q from the
class CTQ(↓,→∗,=) such that certain(Q) is coNP-
complete.

Proof sketch. As before we provide M = 〈Ds, Dt,Σ〉
and a query Q to which 3SAT is reducible to the com-
plement of certainM (Q).

The DTD Ds is similar to the one we used before:

r → C∗L∗ C : @a1 L : @a2,@a3

C → H∗ H : @b1

Note that the subscript in H is dropped. We encode a
given 3CNF formula ϕ as Tϕ, by simply dropping the
subscript in the previous encoding.

The target DTD is the following:

r → A∗L∗ A : @b1,@b2 L : @a2,@a3

The constraint is the following: it “flattens” the struc-
ture using multi-attributes. Each A node contains two
attributes, the first of which indicates a clause and the
second of which encodes a literal. Formally the stds are:

r/C(x)/H(y) → r/A(x, y)

r/L(x, y) → r/L(x, y)

In a target tree, we choose a literal that has at least two
younger sibling in each clause (i.e., with the same first
attribute value).

Finally we define the query Q as follows. As in the
previous reductions, the query is true when the set of
selected literals contains a variable and its negation. It

9

is given by

r[L(x, y), r[A(v, x) →∗ A(v, u1) →
∗ A(v, u2)],

A(w, y) →∗ A(w, u3) →
∗ A(w, u4)]

with all the variables x, y, v, w, u1, u2, u3, u4 existen-
tially quantified. Note that the stds in M do not use
→∗.

Observe that we cannot replace →∗ with → here be-
cause the above constraints do not guarantee all the
a’s with the same first coordinate (identifier for clause)
appear consecutively in the target. 2

6.3 Threshold DTDs

To motivate our last attempt to find a tractable class,
consider the following example. Suppose we have a de-
pendency ϕ(x, y) → r[a(x) → b(y)] with the target
DTD being r → a∗b∗. Once a source tree has more
than one pair satisfying ϕ(x, y), it does not have solu-
tion since a(v1) → b(v2) and a(v3) → b(v4) can never
coexist (assuming v1 6= v3 or v2 6= v4). Arguably this is
rather anomalous and it is more natural, at least for
nested relational DTDs, to allow arbitrary permuta-
tions of letters.

Such an approach was taken by [2]. They used threshold
DTDs which assign each element type ℓ its multiplicity
atom µ(ℓ), an expression of the form ℓ̂1 · · · ℓ̂m, where ℓ̂
is one of ℓi, ℓ

∗
i , ℓ

+, and ℓ? = ℓi, which limits the number
of children of type ℓi of a node labeled ℓ in the obvious
way, without imposing any restriction on the order of
the children. For example, a∗b∗ viewed as a multiplicity
atom says that there are some (perhaps none) a’s and
some b’s, but not that all a’s should precede all b’s, as
the usual regular expression would say.

We write SMth and SMth(σ) for classes of schema map-
pings using such threshold DTDs.

Do such mapping admit a better algorithm for com-
puting certain answers? Again, the answer is negative,
this time for unions of conjunctive queries (note that
previous results for tractable query answering in both
relational and XML data exchange work for both con-
junctive queries and their unions).

Theorem 6.4. There exist

• a →-fully specified schema mapping M in
SMth(↓,→), and a query Q ∈ UCTQ(↓,→,=),
and

• a →∗-fully specified schema mapping M ′ in
SMth(↓,→), and a query Q′ ∈ CTQ(↓,→∗,=),

such that both certainM (Q) and certainM ′ (Q′) are
coNP-complete.

Proof sketch. For the second item, the proof of Theorem
6.3 applies verbatim, so we prove only the first item. We
will describe an XML schema mappingM = 〈Ds, Dt,Σ〉
and a query Q such that 3SAT is reducible to the com-
plement of certainM (Q). We use the same encoding
Tϕ of a given 3CNF formula ϕ as in the proof of Theo-
rem 6.1.

The idea of the reduction is the following: we transform
a 3CNF formula ϕ into a source tree Tϕ. The mapping
is defined so that a solution of Tϕ corresponds to a se-
lection of (at least) one literal for each clause in the
formula. Finally we provide a query that is true when
such a selection contains a variable and its negation.
Thus the existence of a solution falsifying the query
means the existence of a well-defined (partial) assign-
ment that satisfies the formula ϕ. The difference from
the previous proofs is how we “choose” literals.

The source DTD Ds is the familiar one:

r → C∗L∗ C : a1 L : @a1,@a2

C → H1H2H3 H1, H2, H3 : @b1

The target DTD Dt is the following. The difference
from the source DTDs is that each Hi has A,B below.
Since we are working with a threshold DTD, A,B can
appear in either order. The set of the selected (values
encoding) literals having “A→ B” below.

r → C∗L∗ L : @a1,@a2

C → H1H2H3 H1, H2, H3 : @b1

Hi → AB

The stds are copying. Note that they are →-fully-
specified.

r[C[H1(x) → H2(y) → H3(z)]] →
r[C[H1(x) → H2(y) → H3(z)]],

r[L(x, y) → r[L(x, y)].

We define the query that is true when both a variable
and its negation are selected or there is a clause where
no literal is selected. Formally, it is q1 ∪ q2, where

q1 =
⋃

i,j∈{1,2,3}

∃x∃y

(

r
[

L(x, y), C[Hi(x)[B → A]],
C[Hj(y)[B → A]]

]

)

and

q2 = r
[

C
[

H1[B → A] → H2[B → A] → H3[B → A]
]

]

The correctness of the reduction follows from these two
observations:

• Due to q1, the assignment is consistent;

10

• Due to q2, each clause has at least one variable
assigned true. 2

7. Conclusion

We have studied query answering for XML data ex-
change with the language allowing vertical and hori-
zontal navigation and data comparisons. Earlier work
on XML data exchange with a less expressive language
showed that query answering is tractable for simple
mappings, and coNP-complete for more complex ones.
Our main finding is that we can naturally extend the
simple mappings with horizontal navigation and in-
equality, retaining tractability, provided we stick to the
basic query language. On the other hand, tractability
is lost when extended query languages are considered,
even for very simple mappings.

Figure 4 presents the summary of the main results.
When we write coNP, we mean that the problem could
be coNP-complete for some choice of a mapping and
a query from the relevant classes (and is in coNP for
all such choices). We use ‘f.s.’ as an abbreviation for
‘fully specified’. The last line says that beyond the
class of fully specified mappings, there is no hope to
get tractability. Within the class of fully specified map-
pings, it is clear that we have the freedom to increase
the expressiveness of the mappings, but not the queries.

The conclusion, therefore, is that one must restrict the
usage of sibling order and inequality to the mappings.
What sense does it make to use sibling order in the
mapping if we cannot ask queries about it? Our run-
ning example shows how one can meaningfully use sib-
ling order on the source side, and store the result on
the target side as labeled tuples. In fact, the seman-
tics of the mappings makes it impossible to copy from
the source to the target ordered sequences of children of
arbitrary length. Hence, whatever we encode on the tar-
get side with sibling order, we can equally well encode
using labeled tuples, provided we have a little influence
on the target DTD. Thus, forbidding horizontal naviga-
tion in the target database and queries we do not lose
much in terms of expressiveness.

There are several directions to extend the results of this
paper. So far, we have concentrated on data complexity
of the problem. We would also like to look at combined
complexity in the future in order to have a better under-
standing of query answering in XML schema mappings.

Although we have shown that it is rather difficult to
extend the query language, there might still be some
hope to extend it in a limited way, as was done for
queries with inequalities in relational data exchange [6].

Yet anther dimension that has not been investigated is

the distinction between open world assumption (OWA)
and closed world assumption (CWA). Here, we have
worked under OWA. In the relational case, an anomaly
is observed when the query involves negation [5, 14].
As a remedy to such unintuitive behavior, the notion
of solutions under CWA was proposed in [20], further
extended in [17, 21, 3]. This direction is hardly explored
for XML: it is not even clear how to define the notion
of CWA in the XML context.

Acknowledgments The authors were supported by
EPSRC grants E005039 and F028288, and the FET-
Open Project FoX (grant agreement 233599).

8. References

[1] S. Abiteboul, P. Kanellakis, and G. Grahne. On
the representation and querying of sets of possible
worlds. Theor. Comp. Sci. 78 (1991), 158–187.

[2] S. Abiteboul, L. Segoufin, and V. Vianu.
Representing and querying XML with incomplete
information. ACM TODS, 31(1):208–254, 2006.

[3] F. Afrati, Ph. Kolaitis. Answering aggregate
queries in data exchange. In PODS 2008, pages
129–138.

[4] S. Amano, L. Libkin, and F. Murlak. XML
schema mapping. In PODS 2009, pages 33–42.

[5] M. Arenas, P. Barceló, R. Fagin, and L. Libkin.
Locally consistent transformations and query
answering in data exchange. In PODS 2004, pages
229–240.

[6] M. Arenas, P. Barceló, and J. Reutter. Query
languages for data exchange: Beyond unions of
conjuctive queries. In ICDT 2009, pages 73–83.

[7] M. Arenas and L. Libkin. XML data exchange:
consistency and query answering. JACM,
55(2):7:1–72, 2008.

[8] P. Barceló. Logical foundations of relational data
exchange. SIGMOD Record, 38(1):49–58, 2009.

[9] P. Barceló, L. Libkin, A. Poggi, and C. Sirangelo.
XML with incomplete information: models,
properties, and query answering. In PODS 2009,
pages 237–246.

[10] P. A. Bernstein and S. Melnik. Model
management 2.0: manipulating richer mappings.
In SIGMOD, 2007.

[11] G. J. Bex, F. Neven, and J. van den Bussche.
DTDs versus XML schema. In WebDB, pages
79–84, 2004.

11

Mappings CTQ(↓,=) CTQ(↓, ↓∗,=) CTQ(↓,→,=) CTQ(↓,→,→∗,=) CTQ(↓,=, 6=)

f.s. SMnr(↓,=) PTIME PTIME [7] coNP coNP coNP [14, 22]
→-f.s. SMnr(↓,→,=) PTIME PTIME coNP coNP coNP

coNP coNP
→∗-f.s. SMnr(↓,→∗,=) PTIME PTIME coNP (even for queries coNP

in CTQ(↓,→∗
, =))

f.s. SMnr(↓, ↓∗,→,→∗,=, 6=) PTIME PTIME coNP coNP coNP
SM(↓,=) coNP [7] coNP coNP coNP coNP

Figure 4: The complexity of certainM (Q)

[12] H. Björklund, W. Martens, T. Schwentick.
Conjunctive query containment over trees.
DBPL’07, pages 66–80.

[13] H. Björklund, W. Martens, T. Schwentick.
Optimizing conjunctive queries over trees using
schema information. MFCS’08, pages 132–143.

[14] R. Fagin, P. G. Kolaitis, R. J. Miller, and
L. Popa. Date exchange: semantics and query
answering. TCS, 336:89–124, 2005.

[15] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan.
Composing schema mappings: second-order
dependencies to the rescue. ACM TODS,
30(4):994–1055, 2005.

[16] G. Gottlob, C. Koch, K. Schulz. Conjunctive
queries over trees. J.ACM 53(2):238–272 (2006).

[17] A. Heinrich and N. Schweikardt. CWA-solutions
for data exchange settings with target
dependencies. In PODS 2007, pages 113–122.

[18] Informatica PowerCenter Transformation
Language Reference. Version 8.1.1, September
2006.

[19] P. G. Kolaitis. Schema mappings, data exchange,
and metadata management. In PODS 2005, pages
61–75.

[20] L. Libkin. Data exchange and incomplete
information. In PODS 2006, pages 60–69.

[21] L. Libkin and C. Sirangelo. Data exchange and
schema mappings in open and closed worlds. In
PODS 2008, pages 139–148.

[22] A. Madry. Data exchange: on the complexity of
answering queries with inequalities. IPL,
94:253–257, 2005.

[23] W. Martens, F. Neven, Th. Schwentick. Simple off
the shelf abstractions for XML Schema SIGMOD
Record 36(3): 15–22 (2007).

[24] R. Miller, M. Hernandez, L. Haas, L. Yan, C. Ho,
R. Fagin, and L. Popa. The clio project: managing
heterogeneity. SIGMOD Record, 30:78–83, 2001.

[25] L. Popa, Y. Velegrakis, R. Miller, M. Hernández,
R. Fagin. Translating web data. In VLDB 2002,
pages 598–609.

12

Appendix: Complete proofs

Proof of Proposition 4.1

Recall the statement of the proposition: Fix some schema mapping M ∈ SM(↓, ↓∗,→,→∗,=, 6=) and a query Q ∈
CTQ(↓, ↓∗,→,→∗,=, 6=). The problem certain(Q) is in coNP.

Proof. We reduce the problem to the problem of computing certain answers over XML with incomplete infor-
mation.

First we describe the problem of query answering over XML with incomplete information (see [9] for details).

An XML tree with incomplete information, or incomplete XML tree, is a pair 〈π(t̄), α=, 6=(t̄)〉, where π(t̄) is a partially
evaluated tree pattern and α=, 6= is the set of equalities and inequalities.

Formally, the pattern language for incomplete XML trees, is defined by the grammar1:

π := ℓ(t̄)[λ] patterns

λ := ε | µ | //π | λ, λ sets

µ := π | π → µ | π →∗ µ sequences

Here t̄ is a sequence of constants and variables.

The notion of certain answers over an incomplete tree 〈π, α〉 is introduced in the natural way. Given a query Q in
UCTQ 6= and a DTD D, we define:

certainD(Q, 〈π, α〉) =
⋂

{Q(T)|T |= D and T |= π, α}.

The query answering over incomplete trees can be formulated as:

Problem: inc-certainD(Q)
Input: an incomplete tree 〈π, α=, 6=〉, tuple s̄

Question: s̄ ∈ certainD(Q, 〈π, α〉)?

Proposition 8.1. For any Q ∈ UCTQ 6= and any DTD D, inc-certainD(Q) is in coNP.

Proof. The statement of theorem 6.1 in [9] is actually for an incomplete trees without inequalities and queries
in UCTQ(↓, ↓∗,→,→∗,=), but the proof is valid in the setting above as well.

The idea of the proof is standard: we exhibit a polynomial size counterexample. Without loss of generality, we may
consider only Boolean queries. Fix a query Q, a DTD D, and suppose an incomplete XML tree 〈π, α〉 is given. If
certainD(Q, 〈π, α〉) is false, there is a counter example, i.e., a tree T that satisfies 〈π, α〉 and falsifies Q. We prove
that we can prune T in such a way that the resulting T ′ of polynomial size is still a counterexample. First we label
all the nodes in T witnessing 〈π, α〉. Consider an FO formula equivalent to Q, and let k be its quantifier rank. Then,
roughly, for any pair u, v of non-witnessing nodes with the same FO rank-k type2, we cut the nodes in-between and
merge u, v (provided that cutting neither removes any witnessing node nor leads to violation of the DTD). Note that
the number of FO rank-k types is finite. Since it depends only on the query, it is fixed. By cutting this way, vertically
and horizontally, we make sure all the witnesses are not too far apart, and the resulting tree has polynomial size.

Thus guessing a counterexample of polynomial size provides coNP algorithm for inc-certainD(Q).

We now show how to reduce the query answering in XML data exchange to the query answering in incomplete XML
trees. Suppose that we have a query Q ∈ UCTQ 6= and an XML schema mapping M = 〈Ds, Dt,Σ〉. Given a tree
T , we construct an incomplete XML tree Ψ such that certainM (Q, T) is equivalent to certainDt

(Q,Ψ). For each
dependency in Σ of the form

ϕ(x̄, ȳ), α=, 6=(x̄, ȳ) → ψ(x̄, z̄), α′
=, 6=(x̄, z̄),

1The notation is different in [9]. For instance, ‖ is used in places where we use ‘,’(comma) in patterns (to mean the patterns
are unordered). Also they have extra features such as marking node with ‘first-child’ and so on.
2Two nodes having the same FO rank-k types means that they satisfy the same FO formulas with at most quantifier rank k.

13

and for each pair of tuples s̄, t̄ such that T |= ϕ(s̄, t̄), α(s̄, t̄), the constraint (on the target) is a tree pattern ψ(s̄, z̄′)
and a set of (in)equalities α′(s̄, z̄′), where z̄′ is a renaming of z̄. We collect all such patterns, of which there are at
most polynomially many: at most |T ||x|+|y| for each dependency and the number of dependency is fixed.

Now let Ψ be 〈η, β〉, where η is the result of merging at the root all the patterns that are obtained as above (for all
the stds) and β is the union of all the (in)equalities (for all the stds). It is straightforward to see that the problem of
certainM (Q, T) is equivalent to certainDt

(Q,Ψ). Since Ψ is polynomial in the size of the input, the coNP algorithm
for certainDt

(Q,Ψ) gives a coNP algorithm for certainM (Q, T).

Proof of Theorem 5.1

Recall the statement: Suppose M is a fully specified schema mapping in SMnr(↓,→,→∗,=, 6=) and
q ∈ UCTQ(↓, ↓∗,=). Then certain(Q) is in PTIME.

Proof. The algorithm follows the same lines with the one in Theorem 6.2 [7]. It constructs a canonical solution
T ∗ such that Q(T) = certainM (Q, T), working in two stages: First, it constructs a tree called canonical presolution.
Second, it tries to make it conform to the target DTD. With the extended mapping language, we have to do another
check between these two stages, as shown below. Due to the extended mapping language, the merging part becomes
more complicated.

First of all, we note an important property of queries in UCTQ(↓, ↓∗,=): In a word, it is ignorant to the (horizontal)
ordering in trees so that it does not matter whether solutions are ordered.

Before we state the proposition formally, we need some definitions. An unordered XML tree T is a structure
〈T, ↓, labT , (ρa)@a∈Att〉, where T is a tree domain, labT is a labeling element types to each node, ρa assigns an
attribute value for @a as appropriate. We will simply write T instead of T below.

An unordered XML tree T ′ is a solution for T if there exists an (ordered) XML tree T̂ into which T ′ can be obtained
by ignoring the sibling order relation. For a schema mapping M and a query Q, certain∗

M (Q, T) denotes the set of
unordered XML trees that are solutions for T under M .

Now we can formalise the property. The following essentially says ‘it does not matter whether or not solutions are
ordered’.

Proposition 8.2. Let M be a schema mapping, T an XML tree and Q a query in UCTQ(↓, ↓∗,=). Then the following
holds:

certainM (Q, T) = certain∗
M (Q, T)

With this property at hand, we describe the algorithm that, given a source tree T , constructs an unordered XML
tree T ∗ such that certainM (Q, T) = Q(T ∗). In the rest of the proof, without loss of generality, we assume that there
is no element type that appears in the mapping without associated attributes. That is, if an element type a has an
attribute, it always used in the mapping as a(x) and not just as a.

As mentioned earlier, the first step is the construction of the canonical presolution. The canonical presolution is
simply the result of putting together all the target patterns required by the given source tree T . Formally for each
fully-specified dependency ϕ(x̄, ȳ), α=, 6=(x̄, ȳ) → ψ(x̄, z̄), α′

=, 6=(x̄, z̄) and for every tuples s̄, s̄′ with T |= ϕ, α=, 6=[s̄, s̄′],

we have ψ(s̄, ⊥̄), α′(s̄, ⊥̄) where ⊥̄ is a sequence of distinct nulls and α′
=, 6= is a set of (in)equalities. In the end we

have ψ(s̄, t̄), α′(s̄, t̄), where s̄ is a tuple of strings and t̄ is a tuple of constants and nulls. We have polynomially many
of these patterns and polynomially many equalities and inequalities, which we denote by ααα. We further replace nulls
in the patterns as specified by ααα, that is, we put the same null if ααα so specifies by equality, and replace a null with
a constant if it is equalised to a constant in ααα. Finally, we obtain a canonical presolution merging all the patterns
at the root.

At this stage, if ααα contains any non-satisfiable (in)equality3, we return ’no solution’. The size of the canonical
presolution is polynomial and the construction ca be done in PTIME.

Example 1. We describe the computation of canonical presolutions by example. Consider two simple mappings, one

3E.g., if there is a dependency like x 6= y → x = y, then there could be an equality like 1 = 2 in ααα.

14

r

A(d1) B(d2) B(d3)

(a) a source tree

r

A(d1) B(d2) A(d1) B(d3)

(b) a canonical presolution for M1

r

A(d1) B(d2) A(d1) B(d3)

(c) a canonical presolution for M2

Figure 5: a source tree and its canonical presolutions

with sibling-order and the other without,

M1 = 〈Ds, Dt, {r[A(x), B(y)] → r[A(x) → B(y)]}〉;

M2 = 〈Ds, Dt, {r[A(x), B(y)] → r[A(x), B(y)]},

where Ds, Dt are both r → ab∗.
For the tree depicted in Figure 5(a), its canonical presolutions for M1 and M2 will be those in Figures 5(b) and 5(c),
respectively.

We now have a canonical presolution that contains all the constraints induced by the source tree T under the
mapping. Obviously the problem is that it might not conform to the target DTD. The second part of the algorithm
processes the canonical presolution to enforce the conformation to the target DTD. To do this, we work level by
level, from the root to the bottom, trying to ‘repair’ each level so that it is compatible with the corresponding regular
language.

Observe that the sibling-order in target trees imposes the extra constraint on whether or not a solution exists. Again
consider the example above. In the tree of Figure 5(b) we have to merge the two ‘A(d1)’s so that the tree conforms
the DTD r → ab∗. In the unordered case of 5(c) we could just merge them, but this time we have to maintain
the next-sibling relation, which is impossible since we cannot merge B(d2) and B(d3). Thus we have to do a more
careful check for the existence of solution than when we don’t have order in the mapping. (Note that this is not
complete check for existence of solution: it might turn out that there is no solution later on.)

The repair is done in several steps.

First, we check all the sequences appearing in the target are compatible with (appropriate) regular expressions. For
instance, if a sequence a→ c appears in the pattern while the corresponding regular expression is abc, then we exit
the algorithm with “no solution”.

Second, we put the nodes that are required by the target DTD but not present in the canonical presolution. For
example if the regular expression under consideration is abc (or a+bc or abc+ or a+bc+) and we have only a node
labeled b, then we add nodes labeled a and c.

Third, we will do the sequence consistency check. We have to merge and at the same time check if the all the
next-sibling relation can be maintained upon merging. Consider a pair of sequences appearing in the canonical
presolution of the form σ(d1) → τ(d2) and σ(d1) → τ(d3), where σ, τ are element types, di’s are distinct data values.
Further assume that σ appears in the target DTD as σ or σ? (i.e., unstarred) and that τ appears as τ∗ or τ+ (i.e.,
starred). In this case we exit the algorithm with “no solution”. The following cases are also treated in the similar
way:

• σ → τ1 and σ → τ2, where τ1, τ2 are distinct element types;

• the symmetric case where we have σ starred and τ unstarred;

• σ → τ(⊥1) and σ → τ(⊥2) and ⊥1 6= ⊥2 is in ααα.

• sequences longer than two can be checked in the same way.

15

We will do the above check for all the pairs of sequences in the canonical presolution. The number of these pairs is
at most quadratic in the size of canonical presolution, so that we can do it in polynomial time.

Finally, after we process all the sequences in the presolution, we will remove all the next-/following-sibling orders
and replace them with commas. Then we do the node merging. For any pair of nodes a(d1) and a(d2), we merge
if a appears in the current regular expression as a or a?. Thus, as before, if d1 = d2 we successfully merge and go
on to the next pair of nodes; otherwise we stop and return ‘no solution’. Similarly, if we have a(⊥1) and a(⊥2) and
have to merge them, we return ‘no solution’ when ⊥1 6= ⊥2 ∈ ααα; otherwise we remove a(⊥2) and replace ααα with
ααα[⊥1/⊥2], i.e., the set of (in)equalities where each ⊥2 in ααα is replaced with ⊥1.

We repeat the repair procedure above for each level. Clearly this algorithm terminates because of the following two
facts: First, the target DTD is nonrecursive and hence of constant depth. Second, we add nodes only when it is
required by the DTD so that we add only constant number of children under each node in the canonical presolution.

When the algorithm terminates, we have either “no solution”, which means there is no solution for the input tree
T , or a tree T ∗. T ∗ is a solution, i.e., satisfying the target DTD and all the tree patterns imposed by T . Also it is a
minimal solution, in the sense that for any solution T ′, there is a homomorphism from T ∗ to T ′. From this property
we can conclude certainM (Q, T) = Q(T ∗).

Proof of Theorem 6.1

This theorem was proved in full in the main part of the paper.

Proof of Theorem 6.2

Recall the statement: There exist a →-fully specified schema mapping M ∈ SMnr(↓,→) and a query Q from the class
CTQ(↓,→,=) such that certain(Q) is coNP-complete.

Proof. As in the previous proof, we will provide an XML schema mapping M = 〈Ds, Dt,Σ〉 and a query Q such
that we can reduce 3SAT to the complement of certainM (Q, Tϕ), where Tϕ is the same encoding of formulas as in
the previous proof.

The idea of the reduction is the following: we transform a 3CNF formula ϕ into a source tree Tϕ. The mapping is
defined so that a solution of Tϕ corresponds to a selection of (at least) one literal for each clause in the formula.
Finally we provide a query that is true when such a selection contains a variable and its negation. Thus the existence
of a solution falsifying the query means the existence of a well-defined (partial) assignment that satisfies the formula
ϕ. The difference from the previous proof is how we “choose” literals.

The source DTD Ds is:

r → C∗L∗ C : @a1 L@a2,@a3

C → H1H2H3 H1, H2, H3 : @b1,

The target DTD is again almost the same as the source, except that it has Gi’s. With these extra element types,
we ‘choose’ a literal from each clause. Intuitively we select Hi’s that are ‘two step to the right of G1’.

r → C∗L∗ L : @a1,@a2

C → G1G2?G3?H1H2H3 H1, H2, H3 : @b1.

The stds are simply copying precisely the source to the target.

r[C[H1(x) → H2(y) → H3(z)]] → r[C[H1(x) → H2(y) → H3(z)]]

r[L(x, y)] → r[L(x, y)]

The query Q is the following. The query is true if a variable and its negation are both ‘chosen’, just as in the
previous proof.

∃x∃y(r[L(x, y), C[G1 → → → (x)], C[G1 → → → (x)])

In order to formally prove the correctness of the reduction, we have to prove that certain(Q, Tϕ) is false iff ϕ is
satisfiable.

16

(⇒) To prove the left-to-right direction, suppose certain(Q, Tϕ) is false, which means there is a target tree T ′ that is a
solution for T and falsifies Q. Then we define the truth assignment from T ′ as follows: for each C node corresponding
a clause, find the node below it that is two steps away from G1 (whose element type must be one of Hi). Say, it is
Hi(n), by the dependency it encodes a literal. If n encodes xj (resp. ¬xj), then assign true (resp. false) to xj . By
the target DTD each clause contains a true literal. Furthermore, since the query is false T ′, the truth assignment
does not assign true to a variable and its negation, hence the assignment is well-defined.

(⇐) For the other direction, suppose the formula is satisfiable with an assignment v. We shall construct a solution
of the mapping for Tϕ base on v. First we copy every L node. Next for each fragment of the form r[C[H1(d1) →
H2(d2) → H3(d3)]], we will copy it and put G1 to the left of H1 with possibly putting G2 and G3 in-between. If
v assigns true to the first literal in the corresponding clause, then we put both G2 and G3 between G1 and H1 (to
make H1 “two steps to the left of G1); otherwise if it is the second literal that is assigned true by v, then we put
G2 alone; otherwise we put neither G2 nor G3. Since a truth assignment doesn’t assign true to both a variable and
its negation, it will not happen that the values paired in L, i.e. those encoding a variable and its negation, are both
two steps away from G1. Thus the query is false in the constructed tree, as desired.

Proof of Theorem 6.3

Recall the statement: There exist a →∗-fully specified schema mapping M ∈ SMnr(↓,→∗) and a query Q from the
class CTQ(↓,→∗,=) such that certain(Q) is coNP-complete.

Proof. As before we provide M = 〈Ds, Dt,Σ〉 and a query Q to which 3SAT is reducible to certainM (Q).

The idea of the reduction is the following: we transform a 3CNF formula ϕ into a source tree Tϕ. The mapping is
defined so that a solution of Tϕ corresponds to a selection of (at least) one literal for each clause in the formula.
Finally we provide a query that is true when such a selection contains a variable and its negation. Thus the existence
of a solution falsifying the query means the existence of a well-defined (partial) assignment that satisfies the formula
ϕ. The difference from the previous proofs is how we “choose” literals.

Ds is quite similar as before:

r → C∗L∗ C : @a1 L : @a2,@a3

C → H∗ H : @b1

Note that the subscript in H is dropped. We encode a given 3CNF formula ϕ as Tϕ, by simply dropping the subscript
in the previous encoding .

The target DTD is the following very simple one.

r → A∗L∗ A : @b1,@b2 L : @a2,@a3

The constraint is the following: it “flattens” the structure using multi-attributes. Each A node contains two
attributes, the first of which indicates a clause and the second of which encodes a literal. Formally the stds are:

r/C(x)/H(y) → r/A(x, y)

r/L(x, y) → r/L(x, y)

In a target tree, we choose a literal that has at least two younger sibling in each clause (i.e., with the same first
attribute value).

Lastly we define the query Q as follows. As in the previous reductions, the query is true when the set of selected
literals contains a variable and its negation.

∃xyvwu1u2u3u4(r[L(x, y), r[A(v, x) →∗ A(v, u1) →
∗ A(v, u2)],

A(w, y) →∗ A(w, u3) →
∗ A(w, u4)])

To prove formally the reduction, we have to show that, given a formula ϕ, certainM (Q, Tϕ) is false iff ϕ is satisfiable.

(⇒) Suppose certain(Q, Tϕ) is false. We have a solution T ′ for Tϕ that falsifies the query Q above. We extract a
truth assignment as follows. For any fragment matching r[A(d, d1) →∗ A(d, d2) →∗ A(d, d3)], where each di is a

17

data value encoding a literal (i.e, appears in some L node in the source) and d is a data value encoding a clause
(i.e., appears in C in the source), the variable encoded by d1 is assigned true. Since T ′ falsifies Q, our assignment
is consistent. Also it satisfies ϕ. For each clause C(d) in the source has three children (labeled H), so we have at
least three nodes of the form a(d, d′) in the target. Hence at least one literal in the clause will be assigned true.

(⇐) Assume ϕ is satisfiable, with a satisfying assignment v. We need to construct a solution of the map-
ping for the source tree Tϕ. First we copy all the L nodes from the source. For each fragment of the form
r[C(d)[H1(d1), H2(d2), H3(d3)]], a solution must contain the three fragments r[A(d, d1)], r[A(d, d2)], and r[A(d, d2)]
in some order. The order of the above three fragments is decided according to which literal is assigned true by v,
as follows. If it is the fist literal, we put r[A(d, d1) → A(d, d2) → A(d, d3)]; otherwise if it is the second literal, we
put r[A(d, d2) → A(d, d1) → A(d, d3)]; otherwise we put r[A(d, d3) → A(d, d1) → A(d, d2)] Repeating this for each
fragments encoding a clause, we obtain a tree that conforms to the target DTD and is a solution for Tϕ. Since v
does not assign true to both a variable and its negation, the constructed tree falsifies the query.

Note that we cannot replace →∗ with → here because the above constraints do not guarantee all the a’s with the
same first coordinate (identifier for clause) appear consecutively in the target.

Also this gives another proof of coNP-hardness of CTQ(↓,→∗,=) (Theorem 6.1).

Proof of Theorem 6.4

Recall the statement: There exist

• a →-fully specified schema mapping M in SMth(↓,→), and a query Q ∈ UCTQ(↓,→,=), and

• a →∗-fully specified schema mapping M ′ in SMth(↓,→), and a query Q′ ∈ CTQ(↓,→∗,=),

such that both certainM (Q) and certainM ′ (Q′) are coNP-complete.

Proof. We will describe an XML schema mapping M = 〈Ds, Dt,Σ〉 and a query Q such that 3SAT is reducible
to certainM (Q). The same encoding Tϕ of a given 3CNF formula ϕ is used as in the proof of 6.1.

The idea of the reduction is the following: we transform a 3CNF formula ϕ into a source tree Tϕ. The mapping is
defined so that a solution of Tϕ corresponds to a selection of (at least) one literal for each clause in the formula.
Finally we provide a query that is true when such a selection contains a variable and its negation. Thus the existence
of a solution falsifying the query means the existence of a well-defined (partial) assignment that satisfies the formula
ϕ. The difference from the previous proofs is how we “choose” literals.

The source DTD Ds is the familiar one:

r → C∗L∗ C : a1 L : @a1,@a2

C → H1H2H3 H1, H2, H3 : @b1

The target DTD Dt is the following. The difference from the source DTDs is that each Hi has A,B below. Since
we are working with a threshold DTD, A,B can appear in either order. The set of the selected (values encoding)
literals having “A→ B” below.

r → C∗L∗ L : @a1,@a2

C → H1H2H3 H1, H2, H3 : @b1

Hi → AB

The stds are copying., Note that they are →-fully-specified.

r[C[H1(x) → H2(y) → H3(z)]] → r[C[H1(x) → H2(y) → H3(z)]]

r[L(x, y) → r[L(x, y)]

We define the query that is true when both a variable and its negation are selected or there is a clause where no

18

literal is selected. Formally, it is q1 ∪ q2, where

q1 := ∪i,j∈[3]∃xy(r[L(x, y), C[Hi(x)[B → A]], C[Hj(y)[B → A]]])

q2 := r[C[H1[B → A] → H2[B → A] → H3[B → A]]]

To prove the correctness of reduction, we prove that, given a 3-CNF formula ϕ, certainM (Q, Tϕ) is false iff ϕ is
satisfiable.

(⇒) Suppose certainM (Q, Tϕ) is false. Then there exists a solution of the mapping T ′ for Tϕ that is a solution
and falsifies Q, that is, falsifies both of q1 and q2. Extraction of a truth assignment is done as described earlier: A
variable xi is assigned true (resp. false) if there is a node H(d), where d encodes xi, that has A→ B (resp. B → A)
below it. Note that some H(d) has A→ B in one place and B → A in another. In this case the variable encode by
d is assigned true. Recall that T ′ falsifies both q1 and q2. Because of falsifying q1, no variable and its negation are
assigned true, whence the assignment is consistent. Also due to falsifying q2, each C node has at least one H having
L→ R, meaning that each clause has at least one literal assigned true.

(⇐) For the other direction, assume we have a satisfying assignment v for ϕ. We can construct the solution of the
mapping for Tϕ by putting L → R under H ’s holding the data encoding literals assigned true and R → L under
those having data encoding false literals. We need to show that Q = q1 ∪ q2 is false over this constructed tree. Since
any assignment does not assign true to both a variable and its negation, q1 is falsified. Again by the definition of
satisfying assignment, it assigns true to at least one literal in each clause, so that q2 is falsified as well.

19

