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ARTICLE INFO ABSTRACT

The paper introduces and investigates the aggregation problem for synthesized mediators
of Web services (SWMs). An SWM is a deterministic finite-state transducer defined in
terms of templates for component services. Upon receiving an artifact, an SWM selects
a set of available services from a library to realize its templates, and invokes those services
to operate on the artifact, in parallel; it produces a numeric value as output (e.g., the
total price of a package) by applying synthesis rules. Given an SWM, a library and an

ﬁz;;v Z:iv&ices input artifact, the aggregation problem is to find a mapping from the component templates
Artifacts of the SWM to available services in the library that maximizes (or minimizes) the output.
Synthesis problem As opposed to the composition syntheses of Web services, the aggregation problem aims to
Static analysis optimize the realization of a given mediator, to best serve the users’ need. We analyze this
Transducers problem, and show that its complexity depends on the underlying graph of the mediator:

while it is undecidable when such graphs contain even very simple cycles, it is solvable
in single-exponential time in the size of the specification (i.e., the total size of the input
SWM, library and artifact) for SWMs whose underlying graphs are acyclic. We prove
several results of this kind, with matching lower bounds (NP and PSPACE), and analyze
restrictions that lead to polynomial-time solutions. In addition, we study the aggregation
problem for nondeterministic SWMs (NSWMs). We show that the aggregation problem for
NSWMs with various underlying graphs retains the same complexity as its deterministic
counterparts. We also provide complexity bounds for determining whether SWMs and
NSWMs terminate.

1. Introduction

Fundamental research on Web services has mostly focused on service models, verification and composition. A variety of
models have been proposed to specify the behaviors and interactions of Web services, based on finite-state automata [1-3],
data-driven transducers [4-9] or recently, artifacts [10-13]. A number of verification problems have been studied to decide,
e.g., whether a transaction with certain properties can be generated by a service, or whether two services are equivalent
[2,4,6-9,11,14-16]. The composition synthesis aims to determine whether available services can be coordinated to deliver
a requested service, by automatically generating a mediator. Complexity bounds on the composition problem have been
established for various service models [1,3,5,8,17,18].

This paper studies a problem that has not yet received much attention, referred to as the aggregation problem for Web
services. In practice a mediator is often predefined, in terms of templates for component services. Each template indicates
a service of a certain functionality (e.g., for booking flight tickets or reserving hotel rooms), and is to be realized with an
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Fig. 1. An SWM specifying a travel planner.

available service. Provided that a mediator and a library of available services are already in place, a natural question concerns
how to find an optimal realization of the mediator that best serves the users’ need. That is, given user’s input, we want to
generate a composite service on the fly by selecting a set of available services from the library and realizing templates in
the mediator with these services, such that certain values representing the user’s interest are maximized (e.g., benefits) or
minimized (e.g., price). We illustrate the problem by an example.

Example 1. Consider a mediator M; for planning a trip to Disney World. Users have two options, as shown in Fig. 1.
(1) They may book a flight, reserve a hotel room, and arrange activities separately, all by themselves. (2) Alternatively, they
may opt for a cruise package, with which the choices of hotels are limited. In either option, the users may repeatedly make
reservations for activities, e.g., Disney World, scuba, to arrange a reasonable trip schedule.

The mediator M is defined with component templates, e.g., flight and activity, which indicate services with a function-
ality for booking a flight and an activity, respectively. Such a template is to be realized with an available service having the
required functionality. For example, flight can be realized with one of the online ticket booking systems launched by airlines
or services such as Expedia and Priceline. Provided with travel dates, the available service that is chosen to realize flight
returns the lowest airfare and reserves a ticket.

Provided travel dates and a list of free time slots, etc., the mediator is expected to explore both options to make a travel
plan.

(1) For the first option, it ranges over available services for checking flights, hotel rooms and activities. It picks the ones
that lead to the minimum cost Cq, which is the sum of the airfare, the accommodation cost and the costs of all the
activities chosen.

(2) For the second option, it ranges over cruise packages, and for each package, it inspects its logging constraint and finds
a hotel accordingly. It inspects activities as in the first option. The cost C; is the sum of the prices of the cruise, logging
and activities.

(3) After both C; and C, are computed, the mediator returns the option with min(Cy, C3). The option is reserved with the
locked price [19], and recommended to the users. The users may then either decide to purchase the package, or cancel
the reservation and repeat the process again. The actions are not committed until the users are ready to do so.

Observe that the templates in M1 may be realized with possibly multiple available services. In this work we focus on
how the mediator should realize its templates with the ones that lead to the lowest overall cost.

The aggregation analysis is not only of theoretical interest. The need for it is also evident in practice. In response to
practical demand, there have been service providers looking into service selection based on the quality of services, e.g.,
the Océano project at IBM [20]. However, the issue has not yet received a formal treatment, from models for specifying
aggregation syntheses to the complexity of the related problems.

The aggregation problem is, however, nontrivial. As illustrated in Example 1, there are typically multiple choices of
available services to realize a component template. Furthermore, there is data flow [17] among the components, i.e., the
output of a component is passed as the input to another; as a result, the realization of a component is dependent on the
choice of the services for the components that invoke it. In addition, the control flow of the mediator may be complex, e.g.,
represented as a tree, DAG or a cyclic graph. These make this optimization problem rather challenging.

Contributions. We present a model to specify mediators with aggregation, formulate the aggregation problem, and establish
complexity bounds on the problem for mediators of various structures, e.g., tree, DAG or cyclic graph.



Mediators with aggregation. We present a notion of synthesized mediators for Web services (SWMs), which extends mediators
studied in [8] by incorporating aggregation synthesis. An SWM specifies a requested service that takes an artifact as input,
and returns an aggregate value at the end. We consider artifacts that are updatable records representing the life-cycle of
the processing of a requested service (see [10-12,21] for detailed discussions).

An SWM M is a deterministic finite-state transducer. Each state has a transition rule and a synthesis rule. The transi-
tion rule is specified with a precondition, component templates and successor states. Upon receiving an artifact, it checks
whether the precondition is satisfied; if so it realizes the templates with available services in a library, invokes the services
to operate on the artifact in parallel, and passes the updated artifacts downward to its successor states. The synthesis rule
computes an aggregate value. It is defined in terms of a polytime-computable function on the aggregate values of the suc-
cessor states, i.e., aggregate values are passed upward. The aggregate value generated in the start state of M is returned as
(part of) the output of the service.

A formulation of the aggregation problem. An SWM M is realized with available services in a library L. A service in L is a
function that takes an artifact as input and returns an (updated) artifact. A realization of M in L is a mapping o from the
templates of M to L. Substituting service p(t) for each template 7 of M yields a composite service M[p].

To ensure that composite services generated by a realization p are sensible, we consider realization constraints on p that
specify what available services are allowed to realize a template.

Given an SWM M, an input artifact t, a library L, a realization constraint A, the aggregation problem, denoted by
AGP(M, L, A, t), is to find a realization p of M in L that satisfies A and maximizes (or minimizes) the output of M[p]
on the input artifact t.

Complexity bounds. The control flow of an SWM M can be depicted as a graph G(M) of a form similar to Fig. 1, in which
nodes are states of M and an edge (s1, s2) indicates that s, is a successor state of s;. We establish lower and upper bounds
on AGP(M, L, A, t), all matching, for M of various structures. We show that AGP(M, L, A, t) is undecidable when G(M) is
cyclic. In fact, for every cyclic graph G, the aggregation problem is undecidable over SWMs M so that G(M) = G. But when
G(M) is not cyclic (i.e., a DAG), the aggregation problem becomes decidable. Note that for many verification problems that
ask questions about specifications (which are often expressed in temporal logics [22]), rather than data, single-exponential
running time is viewed as acceptable (and in many cases unavoidable) [23]. We show that by forbidding cycles we get such
acceptable algorithmic solutions: the problem is PSPACE-complete in the acyclic case, and the complexity drops further to
NP-complete (but approximation-hard) when G(M) is a tree.

In light of the intractability we also study special cases of AGP(M, L, A, t). In particular, we give the complexity bounds
for the problem when M is fixed but L varies, and when L is fixed while M may change. The former is to cope with a set of
predefined mediators when the library L may take new services or drop obsolete services, and the latter is to accommodate
the practical setting where a relatively stable library L serves various mediators. We show that the former simplifies the
aggregation synthesis, e.g.,, AGP(M, L, A, t) is in PTIME as opposed to PSPACE-complete for DAG-structured M. In contrast,
the latter does not make our lives easier: the complexity bounds remain intact when L is fixed.

Aggregating nondeterministic mediators. In practice one often wants to use nondeterministic mediators. We introduce non-
deterministic synthesis mediators (NSWMs) by extending SWMs, such that each state in an NSWM may have multiple pairs
of transition and synthesis rules. That is, one is allowed to specify a variety of options for actions in a given situation. Upon
receiving an artifact in a state, one of its transition rules is nondeterministically picked and applied if its precondition is
satisfied, and its corresponding synthesis rule is used to compute the aggregate value.

We show that NSWMs do not make lives harder: AGP(M, L, A,t) for NSWMs M has the same complexity as its deter-
ministic counterparts. Specifically, it is undecidable, PSPACE-complete and NP-complete when G(M) is cyclic, a DAG and
a tree, respectively. Furthermore, the complexity results for the special cases of SWMs given above carry over to their
nondeterministic counterparts.

Termination analysis. Finally, we investigate the termination problem for NSWMs. Given an NSWM M, an artifact t, a library
L of available services and a realization constraint A, the termination problem is to decide whether there exists a realization
p of M in L such that p satisfies A and a run of M[p] terminates on the input t. We show that the problem is undecidable
for SWMs M when G(M) is cyclic, while a run of M[p] always terminates for NSWMs M and valid realization p when
G(M) is acyclic.

To the best of our knowledge, this work is a first formal treatment of aggregation syntheses of Web services. Our results
provide a comprehensive picture of complexity bounds for the aggregation problem, for deterministic and nondeterministic
mediators. In addition, the proofs provide algorithmic insight for developing effective methods to conduct the syntheses.
We summarize the main results of this work in Table 1.

Related work. This work extends [24] by including (1) the definition of nondeterministic mediators NSWMs, (2) the com-
plexity bounds of the aggregation problem for various NSWMs, (3) the termination analysis for SWMs and NSWMs, and
(4) the proofs of complexity results for the aggregation analysis of SWMs. Neither the results in Section 6 nor the proofs in
Sections 4 and 5 were presented in [24].



Table 1
Complexity bounds on the aggregation problem AGP(M, L, A, t).

Mediators M AGP(M, L, A,t) With fixed L With fixed M AGP(M, L, A,t)
(the SWM case) (the NSWM case)
Tree-structured NP-complete NP-complete PTIME NP-complete
(Theorem 5) (Theorem 5) (Proposition 8) approximation-hard
approximation-hard approximation-hard
(Theorem 6) (Theorem 6) (Theorem 11)
DAG-structured PSPACE-complete PSPACE-complete PTIME PSPACE-complete
(Theorem 7) (Theorem 7) (Proposition 8) (Theorem 11)
Graph-structured undecidable undecidable undecidable undecidable
(Theorem 2) (Theorem 2) (Theorem 2) (Corollary 10)

Several algorithms have been developed for selecting available services for service composition, based on the quality
of services (QoS) [25-29]. Previous work on QoS differs from this work in the following aspects. (a) The criteria for QoS
focus on system issues such as service response time, cost, reliability, availability, trust and bandwidth. In contrast, the
aggregation problem is to maximize (or minimize) certain values in an artifact representing users’ interest, which are the
data processed by the services and are returned as output. (b) The complexity of the aggregation problem largely comes
from data flow among component services, i.e., the output of one component is treated as the input of another. In contrast,
data flow is not a major issue for previous work on QoS. (c) Previous work on QoS does not address how aggregation
syntheses are expressed in Web services. Furthermore, previous results mostly consist of heuristic algorithms for estimating
QoS and selecting available services accordingly; complexity bounds for service selection are not studied, except in [25].
A NP-complete bound was shown in [25] for optimal selection of available services, for pipelined (linear-structured) services
based on a QoS model, in the presence of constraints on connecting a pair of services. The QoS model and the constraints
of [25] are quite different from the aggregation syntheses and realization constraints studied in this work. Indeed, in the
QoS settings the optimal selection problem remains in NP even for DAG-structured services [27], as opposed to the PSPACE-
complete bound of this work.

Related to our work are also [30,31]: [30] proposes an approximation algorithm to find top-k flows of business processes
w.r.t. an aggregate value, and [31] aims to find top-k execution flows with high likelihood in a probabilistic metric. The prob-
lem for finding top-k flows is shown to be in PTIME, NP-complete or undecidable, depending on memory bound for partial
flows preceding a given choice. It is quite different from the aggregation problem studied in this work. Indeed, (a) [30,31]
focus on aggregate values determined by monotonic functions on weights or likelihoods that are predefined for each edge
in a flow, computed when traversing a flow. In contrast, we consider synthesis of aggregate values upward from multiple
processes that run in parallel. Our aggregate values can only be computed after a complete run, and are determined by the
data flow: the output artifact of one service is the input of another. Hence the complexity results of [30,31] do not carry
over to our setting, and vice versa. (b) This work provides the complexity bounds of the aggregation problem for media-
tors with various underlying structures: cyclic graph, DAG or tree, which are not studied in [30,31]. (c) This work provides
the first complexity bounds of the aggregation and termination problems, for mediators which nondeterministically select
transition and synthesis rules. It should be remarked that a mediator in the model of [30,31] is specified in terms of a set
of recursively defined DAGs, in which each node (activity) has multiple implementations that can be picked at run-time.
While the nondeterministic selection of implementations for activities and the termination of the evaluation algorithms are
discussed in [30,31], their setting is quite different from ours and moreover, no complexity bound is given there.

A number of standards have been developed for specifying Web services, such as WSDL [32], WSCL [33], OWL-S [34],
SWEFL [35] and BPEL [36]. A variety of models have also been proposed to characterize services supported by those standards,
based on finite-state automata [1-3], data-driven transducers [4-9] or artifacts [10-12]. The notion of SWMs is a refinement
of synthesized mediators studied in [8], which shows that its mediators are able to express automaton and transducer
abstractions of services. SWMs refine mediators of [8] by defining synthesis rules in terms of aggregation functions. They
emphasize data flow among component services, along the same lines as [17]. Meanwhile SWMs specify control flow in
terms of transitions of a transducer. To our knowledge, (a) only [8] and the split-join operator of OWL-S [34] allow one to
express synthesis operations, and (b) no previous model supports aggregation syntheses.

As remarked earlier, several verification problems have been investigated for Web services [2,4,6-9,11,14-17]. Complex-
ity bounds have also been developed for the composition problem [1,3,5,8,17]. To the best of our knowledge, however, no
previous work has studied the aggregation problem. In particular, the aggregation problem is quite different from the com-
position problem. The latter is a decision problem to determine whether there exists a mediator that coordinates available
services to deliver a requested service; in contrast, the former is an optimization problem that aims to find a realization of
a given mediator to maximize (or minimize) certain values in an artifact.

An artifact is an identifiable record in which attributes may be created, updated, or deleted [11,10,13,21]. It represents
the life-cycle and business-relevant data of a business entity [12]. In this work we use artifacts to characterize input mes-
sages to a composite service, communications between components during a run of the service, and the output of the
run.



Organization. We present SWMs in Section 2, and formulate the aggregation problem in Section 3. We establish the unde-
cidability of the problem in Section 4. We identify decidable cases of the aggregation problem, and provide their matching
complexity bounds in Section 5. In Section 6 we introduce NSWMs, investigate their aggregation analysis, and study the
termination problem for SWMs and NSWMs. Section 7 summarizes the main results and identifies open problems.

2. Synthesized mediators
In this section we define the syntax and the semantics of SWMs.
2.1. Synthesized mediators

Before we formally define SWMs, we first describe artifacts and component templates.

Artifacts and templates. SWMs will be based on artifacts, which we define, following [12], as records specified by an artifact
schema

Ra=(val:Q,A1:61,...,An:6h),

where each A; is an attribute and 6; is its domain. We have a designated attribute val with the domain Q of rational
numbers (for storing aggregate values). We assume that a special symbol L is in each of the domains, denoting undefined
as usual. We use Z(R,) to denote the set of all artifacts of schema Rj4.

We assume a countably infinite set I" of template names for component services, ranged over by t. Each template denotes
a service of a certain functionality.

Mediators. A synthesized mediator (SWM) is a deterministic finite-state transducer defined in terms of component tem-
plates. When the templates are realized with available services, the SWM coordinates those services to deliver a requested
composite service. More specifically, upon receiving an artifact, the SWM invokes the component services to operate on the
artifact, and redirects it by routing the output of one service to the input of another [36]. It generates the output of the
requested service by synthesizing certain values in the artifacts updated by the component services.

Definition 2.1. A synthesized mediator (for Web services, referred to as an SWM) over an artifact schema R, is defined as
M=(Q,$,0,q0), where Q is a finite set of states, qq is the start state, § is a set of transition rules, and o is a set of synthesis
rules, such that for each state g € Q, there exist a unique transition rule §(q) and a unique synthesis rule o (q):

3@ q,9)— (q1,T1), -, Gk, T)s
o(q): val(q) < Fg(val(qr), ..., val(qy)).

Here q,q1, ..., gy refer to states in Q, and

e for each i € [1,k], 7; is a template name from I, referred to as a component template of M; the set of all the templates
of M is denoted by I"'(M);

e ¢, called the precondition of q, is a PTIME-computable predicate over artifacts of schema Ra;

e k > 0; in particular, when k = 0, the right-hand side (RHS) of the rules §(q) and o (q) are empty; and

o Fq : Q% - Q is a PTIME-computable function, referred as a synthesis function, and val(q) is the aggregate value in state
q computed by Fg().

For a transition (q, ¢) — (q1,71), ..., (Qk, Tx), we call q1, ..., gk the successor states of q carrying templates tq,..., T, re-
spectively.

Example 2. The mediator My described in Example 1 can be expressed as an SWM. The artifact schema for mediator M
consists of attributes specifying (1) departure city, travel dates, and the number of tickets, (2) a list T; of free time slots
to be filled, (3) a list A; of activities, initially empty, and (4) val indicating the total cost of a trip, initially L. We define
mediator M1 = (Q1, 81, 01,q1), where Q1 =1{q1.4s.9c.qf.9n.9a. qr. qp, qi}, and ¢ is the start state. The transition rules 81
and synthesis rules o are shown in Fig. 2.

In mediator My, I"(M1) includes templates tf, Ty, Tq, Tp and 7;. As shown in Fig. 1, these templates are to be realized
with available services for checking flight, hotel, activity, cruise package and logging, respectively. Each of these services
updates certain attribute values of the artifact. For example, t, updates attributes A; and T; by filling a time slot with an
activity. In addition, I"(M1) contains a dummy template tj4, which simply passes artifact to its successor state without
incurring any changes.

Note that the synthesis rule for q; is defined with aggregation operator min, while the synthesis rule for g is defined in
terms of the sum aggregate. We shall explain the semantics of mediator My in Example 3.



(g1, true) — (gs, Tid), (qc, Tia) val(q1) < min(val(gs), val(qc))

(s, true) — (qf, Tf), (Gh, Th)s (qas Ta) val(qs) < val(qy) + val(qn) + val(qq)

(9a> Pa) = (Ga, Ta)s @r, Tia) [* ¢ais t.Ty#D "/ val(qq) < val(qq) + val(gr)

(gc, true) — (qa, Ta)» (Gp, Tp) val(qc) <« val(qa) + val(qp)

(qp,true) — (qr, Tia), (1, T0) val(qp) < val(gr) + val(q))

(g, true) — . val(qp) < . [* similarly for qp, q;, qr */

Fig. 2. The transition rules and synthesis rules of mediator M.

2.2. Semantics of mediators

The semantics is defined via realizations of SWMs, which substitute available library services for template names. Once
this is done, we give two ways to present the semantics of SWMs: a traditional, purely operational one, and an equivalent
semantics that describe the run at once, rather than via a sequence of steps.

Realizing SWMs. We view available services as functions on artifacts, i.e., functions f : Z(Ra) — Z(Ra). We only impose a
condition that such functions be tractable, i.e., PTIME-computable. We assume there is a library L of available services to
choose from. The library can be built by leveraging techniques for Web service discovery (e.g., [37,38]).

In a nutshell, the output of an available service is used to update attribute values of the input artifact. The service con-
ducts the computation based on data in its local database and the input artifact. While in practice it may take additional
input from the users, to simplify the discussion we assume that all the input parameters are encompassed in the input ar-
tifact as attributes. This assumption does not change the complexity bounds for the aggregation problem to be investigated.

To make a composite service, an SWM needs to be realized by substituting available library services for its templates.
Thus, we define a realization of an SWM M in library L as a mapping o : I'(M) — L, from the set I"(M) of templates of M
to L. We denote the result of substituting a library service p(t) for each occurrence of 7 in M by M[p], referred to as the
composite service of M realized by p.

To ensure that the services realized make sense, we need to impose constraints on realizations. For instance, it is not
sensible if one realizes a template intended for airfare with a service for hotel. Thus, we define a realization constraint as
a mapping A : I'(M) — P(L), from I'(M) to the powerset P(L) of L. That is, a template T is restricted to a set A(T) of
available services that have the required functionality, such that T is only allowed to be realized with a service in the
subset A(7) of L. That is, realization constraints classify services in the library based on their functionality.

A realization p of M is said to be valid w.r.t. realization constraint A if for each 7 in I'(M), we have p(7) € A(T).
We also say that a realization constraint A is deterministic if it uniquely determines the library service for each template,
i.e. |AM(t)|=1 for all T € I'(M).

Operational semantics. It will be defined in terms of runs of composite services. A composite service M[p], where M is
defined over an artifact schema R4, runs on artifacts of R4. We present two equivalent notions of a run: one of purely
operational, and the other of more denotational flavor.

For the operational notion, we define a step relation = (vp1,¢,), Where to is an artifact. The relation is between execution
trees [5,1]. One starts with a single-node execution tree labeled with the triple (qo, to, L), and proceeds until a terminal
execution tree is reached, on which the step relation is not applicable. Then the value of the third attribute of the root’s
label in that execution tree is the result of running the composite service, i.e., M[p](to).

More precisely, in an execution tree, each node v is labeled with a triple (q, t, w), where q € Q, t is an artifact of Ry,
and w € QU {_L}. We refer to the value w as val(v). For two execution trees & and &', we write & = p),p) & if one of the
following conditions holds.

Spawning. If there exists a leaf node v of & labeled with (q,t, 1) (where the transition rule for q is (q,¢) —

(q1,71),...,(qk, Tx)) and &’ is obtained from & as follows.

e If either k=0 or ¢ evaluates to false on t (i.e., either ¢ has no successor state, or the precondition for q does
not hold), then &’ is obtained from & by setting val(v) to the value of the val attribute of t.

e Otherwise &’ is obtained from & by spawning k children u, ..., u, of v, in parallel. For each i € [1, k], a distinct
node u; is created as the i-th child of v. The node u; is labeled with (q;, p(7;)(t), L), i.e., it invokes available
service p(t;) and labels u; with the updated artifact po(t;)(t).

Synthesizing. If there is no leaf node to which a transition rule applies, then &’ is obtained from & by picking a node v

labeled by (g, t, L) so that none of its successors u1,..., U, has val(u;) = L, and updating val(v) according to the
synthesis rule: val(v) gets the value Fq(val(uy),...,val(uy)), where Fq is the aggregate from the synthesis rule
for q.

In other words, the synthesis rule is applied if val(v) = L as soon as val(u;) is available for all i € [1, k].

The run starts from an execution tree &y consisting of a single root node r, labeled with qg, the input artifact ty and
carrying val(r) = L. Then an execution tree is generated top-down; spawning new nodes stops at a node reached if either it
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Fig. 3. An example execution tree.

is in a “final state” q indicated by the transition rule of g (with an empty RHS), or its precondition ¢ is not satisfied. In both
cases val at such a node carries a non-_L value. The synthesis rule for state g is applied bottom-up to a node v labeled with
(q,t, L) as soon as val(u;)’s are available for all the children of v.

If the process stops, val(r) is the output. More precisely, the result of the run of M[p] on artifact tg is an execution tree &
such that & =* & and there is no distinct &’ such that & = &’ (here =* is the reflexive-transitive closure of = ). The output
M{[p](to) is the content of val(r) at the root r of the result of the run.

The process may not necessarily stop when a mediator M is “recursively defined”, i.e., when a state in M can reach
itself after one or more transitions. In other words, there may not exist a finite execution tree & such that & =* & and &
cannot be further expanded via spawning. When this happens, M[p](tp) is undefined. We shall study termination analysis
in Section 6.

Denotational semantics. Note that while there may be multiple runs of a composite service, their results coincide, and thus
the output is uniquely defined. In fact, one can compactly represent the output of such runs by a single tree, as shown in
the easily verified proposition below. The proposition suggests a semantics of denotational flavor, which is equivalent to its
operational counterpart given above.

Proposition 1. For a composite service M[p] and an artifact to of schema R4, the result of a run and the output of M[p] on tg are
eithera (Q x I(Ra) x Q)-labeled tree & and a number wq € Q satisfying the following conditions:

1. the root of & is labeled with (qq, tg, Wo);
2. consider a node v of & labeled with (q, t, w), where (q, ) — (q1, T1), ..., (Qk, T¢) is the transition rule for q;
(a) v isaleaf iff w = t.val and either ¢ (t) = false or k = 0;
(b) v is a non-leaf node iff it has k children labeled with (q;, o (7;)(t), w;) fori € [1,k] so that w = Fg(w1, ..., wi), where Fq is
the aggregate in the synthesis rule for q;

or are undefined.

Example 3. Recall mediator M, from Example 1. Given an artifact ¢t; of schema Ry and a realization pq, the execution tree
specifying the run of M1[p1] on t; is constructed as follows, as depicted in Fig. 3.

(1) It starts with a tree & consisting of only the root node r, labeled with (g1, t1, val(r) = L).

(2) Since the preconditions for qs and q. are true, the tree &y is expanded to &; by creating two children v and v, for root r,
labeled with (gs, t1, L) and (qc, t1, L), respectively. Note that the dummy service t;4 simply passes the input artifact t1 to v;
and v..

(3) At node v, the available services p1(ty), p1(th) and p1(7q) are invoked unconditionally, in parallel with parameter t;
associated with vs. The tree &; is expanded by creating three children vy, vy, vq for vs.

At node v, assume that ts is the output artifact of p1(zf), and ty.val is the airfare found by p1(7y) based on the data in
the input artifact 1 and the local database of p1(7y). Since state gy does not have any successor state, v¢ does not spawn
any new node, and val(vy) is simply set to be ty.val; similarly for vj.

On the other hand, at node v, if the precondition ¢g(t1) is satisfied, service pi(t,) is triggered to find an activity.
It returns an artifact tg, which updates t1 by filling a free time slot with an activity, i.e., adding the newly chosen activity to
t1.A; (treated as t4.A;), and removing the corresponding slot from t1.T; (denoted as t4.T;). It spawns two children v}l and v;
for vq, and passes t; to them. While the node v, simply retains t,.val for synthesizing (denoted as t;.val), the process



repeats at node v;, which invokes p1(t;) to select activities for the remaining time slots in t,.T;. The tree expands until all
the free time slots are filled, i.e., when the precondition ¢, no longer holds.

(4) As soon as the spawning process terminates for the subtree of v, the synthesizing phase starts for the subtree of v;.
Synthesizing val values upwards, val(vy) is set to be the sum of the costs for all the chosen activities. When val(vg) is
available, val(v ) 4 val(vy) 4 val(vq) is computed and assigned as the value of val(vs), which is the cost C; as shown in
Fig. 3.

(5) Similarly, at node v, two children vﬁ and v, are created. In particular, at node v, service p1(zp) is triggered to select
a cruise package, which yields artifact t,. Based on the package selected and its constraint on logging, a hotel is chosen by
invoking service p1(t;), which takes t, as the input parameter.

Along the same lines as described above, the subtree rooted at v, is completed and val(v.) is computed. At this point
val(r) can be computed, as min(val(vs), val(v¢)). This yields the result of the run, an execution tree in which no node v is
labeled with val(v) = L. The output M1[p1](t1) of the run is val(r).

To sum up, a transition rule indicates a business rule, and the precondition for each state determines whether its associ-
ated business rule should be carried out or not. An SWM specifies the control flow in terms of its transition rules, and the
data flow with artifacts. There exist dependencies on the artifacts, e.g., the output artifact of p1(tp) is the input of p1(7)) in
the example above; that is, the choice of hotel depends on what cruise package is selected in the previous state, as various
cruise packages impose different lodging constraints. Also, to simplify the discussion, we only take a single artifact as input
and produce a single value val as output. However, the definition of SWMs can be readily extended such that a composite
service may take multiple artifacts as input and return multiple artifacts as output (including but not limited to val), and
this does not change the results in the paper.

3. The aggregation problem

We now present the aggregation problem. Given an SWM M over artifact schema Rj4, an artifact ¢ of Ry, a library L
of available services and a realization constraint A, the aggregation problem is to find a realization p of M in L that is valid
w.r.t. A and maximizes (or minimizes) M[p](t), the output of M on t.

Intuitively, given an input t and a mediator M, the aggregation synthesis is to generate a composite service “on-the-
fly” [39] that is “optimal” for user’s request, by realizing templates of M with available services w.r.t. the user’s input. For
instance, the aggregation synthesis for SWM M of Example 1 is an instance of the aggregation (minimization) problem.

To study the complexity, we turn to a decision version of the problem. In such a version, we are interested in a valid
realization p of M in L so that M[p](t) > B, for a predefined bound B.

PROBLEM: AGP(M, L, A, t)

1. an SWM M on artifact schema Ry;
2. an artifact t of Ry;

3. a library L of available services;

4, a realization constraint A.

INPUT:

QUESTION: Does there exist a realization p of M in L valid w.r.t. A so that M[p](t) > B?

One can change the sign of all the values and aggregate functions and arrive at an equivalent minimization problem
which asks whether M[p](t) < B. If we want to emphasize whether we refer to the maximization (M[p](t) > B) or mini-
mization (M[p](t) < B) version, we shall write AGPmax 0r AGPmin, respectively.

Our goal is to investigate the complexity bounds of AGP(M, L, A, t) for SWMs M of various structures. More precisely, we
define the mediator graph of an SWM M = (Q, 8, 0, qo), denoted by G[M], as a directed edge-labeled graph G[M]=(Q,E, L)
in which there is an edge (q,q’) in E labeled with 7 if ¢’ is a successor state of q carrying template 7, i.e., (¢, 7) is in
the RHS of the transition rule for q in M. In the sequel we simply write G[M] as (Q, E) when L is clear from the context.
An SWM M is recursively defined if G[M] is cyclic.

We start by showing that the general problem is undecidable even for very simple SWMs that have a single state and
whose underlying graph is a self-loop. In fact, we show that for every graph containing a cycle, the aggregation problem
for mediators with that underlying graph is undecidable (even if some of the parameters are fixed). As an example, Fig. 1
depicts an SWM with a cyclic graph structure.

So this suggests a restriction to SWMs whose mediator graph is a DAG. We shall show that for such SWMs the problem
is decidable in PSPACE, and the further restriction to tree-structured SWMs puts the problem in NP.

4. Aggregation synthesis: undecidability

In this section we show that the general problem AGP(M, L, A,t) is undecidable, and identify restrictions that need to
be put on the parameters of the problem to achieve decidability.



Recall that the mediator graph for an SWM M is the graph G[M] whose nodes are reachable states of M, and which has
an edge from q to q’ if g’ appears in the right-hand side of the unique transition rule for q in M.

We then have the following undecidability result. Recall that a realization constraint A is deterministic if |[A(t)| =1 for
all T € I'(M), i.e., for each template, the library service realizing it is uniquely determined.

Theorem 2. Let G be an arbitrary connected graph with a cycle. Then there exists an SWM Mo whose mediator graph is G, a fixed
library Ly and a deterministic realization constraint Ao such that the problem AGP(My, Lo, Ao, t), whose only input is the artifact t,
is undecidable.

Proof. For now assume that G is the simplest possible graph with only one node and a cycle (i.e., it has only one state g
and one self-loop (q, q)).

We show the undecidability by reduction from the existence of solutions of Diophantine equations with fixed-degree
and fixed number of variables. It is known that one can fix numbers d and k so that the following problem is undecidable:
given a polynomial p(x1,...,X;) with integer coefficients of degree at most d, does it have an integer solution? That is, do
there exist integers jq, ..., ji so that p(ji,..., jk) =0. This was shown in [40], and the bounds on k and d have since been
improved, for example, to d =4, k=58 or d = 16, k =29, see [41].

Let 81, ...,8n enumerate all the tuples of integers (ni,...,ng) so that Y ;n; <d. These correspond to the monomials
x’l11 ...XZ". The artifact schema R, contains attributes Aq,..., Ay, and an extra attribute I. The idea is that the values of
that attribute will be iterated, while looking for a (code of a) solution. Note that since d and k are fixed, the number m is
bounded by a constant and can be considered to be fixed as well.

Suppose that we are given as an input a Diophantine polynomial

m
s 8i(k
pPX1, ..., X)) = Za,-x]'( )...xk’( ),
i=1

where for §; = (n1,...,n,), we denote nj by §;(j). We represent it as an artifact t,, where val is set to 0, each A; is set to
the corresponding coefficient a;, and I is set to O.

We construct SWM M as follows. It keeps iterating the value of I, viewing it as a code of a k-tuple of natural numbers.
Since k is fixed, this value can be decoded into a k-tuple in polynomial time. We use a fixed library consisting of a single
function f that increases the value of I by 1. Then, in state q, the SWM Mg decodes the code value and computes the value
of the polynomial. If the value is O, the val attribute is set to 0 and propagated up. Otherwise the function f is invoked to
increase the code by 1, and the process proceeds.

We now define this formally. Assume that decode; : N — NK is a polynomial-time computable function that decodes
a number into a k-tuple. This can be obtained by iterating the standard coding of pairs, i.e.,, a one-to-one function
pair : N2 — N. Then the coding of (n1,...,ny) is pair(ni, pair(ny, ..., pair(ng_1,ng)...)). Since the function pair and the
corresponding decoding are polynomial-time computable, and k is fixed, then decode; is computable in polynomial time.
The library Lo has only one function f which increases the value of the I attribute by 1. SWM Mg will have only one
template 7, and the deterministic realization constraint is Ag(t) = {f}. The transition rule of q is:

(q,P#0)— (@, 7).

Here P takes the value N of the I attribute and computes p(decode(N)). Since all the coefficients of p are present in the
artifact and the degree is constant, the computation takes polynomial time.

The synthesis rule is simply val(q) < val(q), i.e., the value is propagated all the way to the root. It is now routine to
verify that for p having an integer solution, Mg will return 0, and for p not having a solution it will not terminate.

The graph of My is G, which has one node with a self-loop. If we have an arbitrary graph with a cycle go - q1 — -+ —
qi—1 — qo, we simply modify the transition rule so that it cycles through these states, i.e., the rules are (q;, P #0) — (q;, 7),
where j = (i + 1) mod [, with go being the initial state. Then the preceding proof applies verbatim. This concludes the
proof. O

A slight modification of the proof shows the following undecidability result.

Corollary 3. The aggregation problem is undecidable even if the library, the (deterministic) realization constraint, the artifact, and the
cyclic mediator graph are fixed. That is, for an arbitrary connected graph G with a cycle, there exist a fixed library Lo, a deterministic
realization constraint Ag and an artifact to so that the problem AGP(M, Ly, Ao, to), whose only input is an SWM M with the mediator
graph G, is undecidable.

Proof. We follow the previous proof and remove the coefficients of the polynomial from the artifact, and instead put
attributes for the values of the decoded tuple of variables. The SWM produces the tuple from a code and computes the
polynomial in the precondition, i.e., follows a transition rule (q, p(n) # 0) — (q, t), where p is the Diophantine polynomial
and n is the k-tuple holding the decoded values. The library contains a single function f as in the previous proof. O



Analyzing the proof, we see that there are two main reasons for undecidability:

1. cyclicity of the mediator graph (even a single cycle leads to undecidability), and
2. the infinite domain of attribute values of the artifact.

The second constraint is essential for many applications as artifacts store numbers, dates, strings, etc. So we need to impose
restrictions on the mediator graph. As no cycles are allowed, we shall look at mediator graphs which are DAGs and trees in
the next section. But now, for completeness only, we present a simple result for the case of fixed-size domain.

Proposition 4. When the size of the domain of each attribute of the artifact schema is fixed, AGP(M, L, 1, t) can be solved in single-
exponential time. If M and the artifact schema are fixed as well, it is solvable in polynomial time.

Proof. Let & be an upper bound on the size of the domain. If the artifact schema contains m attributes, we can have at
most 9™ possible values of artifact values. Suppose t1,..., 7} are the templates used in SWM M, and L is the library.
The library is finite (since there are finitely many possible artifacts) and there are at most |L|¥ realizations p of M. For each
such p, we can represent M[p] as a tree automaton Ay, whose states are of the form (q,t’), where q is a state of M
and t’ is a possible value of the artifact tuple. The transitions of Ay, ensure that both transition and synthesis rules of M
are respected. It is clear that the set of states of the automaton is exponential in the size of the input of AGP(M, L, A, t),
and that the transitions can be computed in single-exponential time. Finally, the accepting states are (qo,t’), where val of t’
is at least B. Then Apyp) accepts a tree if and only if M[p](t) > B.

Now for each p, we construct Ay and test it for nonemptiness; since the latter takes polynomial time in the size of
the automata, and there are exponentially many p’s, the algorithm runs in exponential time. The answer to AGP(M, L, A, t)
is true if and only if the language of one of the Apyp)’s is nonempty.

Finally, if m (the number of attributes) is fixed, then there exists a fixed number of artifacts, and if M is fixed, then there
are polynomially many realizations p; in this case, the algorithm runs in polynomial time. 0O

5. Decidable cases

In this section we identify special decidable cases of the aggregation problem. We study AGP(M, L, A,t) for SWMs M
that are not recursively defined, i.e., when the mediator graph G(M) of M is acyclic. As a result, one does not have to worry
about the termination of runs of composite services realized with these SWMs.

5.1. Tree-structured mediators

We start with AGP(M, L, A, t) for tree-structured SWMs M, i.e., when G(M) is a tree.

Complexity. Our first result shows that the aggregation problem indeed becomes decidable when G(M) is a tree. In fact, it
can be solved in single-exponential time, which is acceptable for static analysis of specifications such as SWMs.

The problem is, however, intractable even for simple “pipelined” SWMs, i.e., when G(M) has a linear (chain) structure.
More specifically, we say that M has a pipelined structure if every transition rule of M either has an empty right-hand side,
or is of the form (q, ¢) — (q’, T). Moreover, the intractability is rather robust: it holds even if we fix the library L (which is a
reasonable assumption, as in practice, a library of available services may be relatively stable: it is only updated periodically).

Theorem 5. AGP(M, L, X, t) is NP-complete for tree-structured SWMs. The problem remains NP-hard when the library L is fixed and
when the mediator M has a pipelined structure.

Proof. We show that AGPmax(M, L, A,t) and AGPmin(M, L, A, t) are NP-complete, and are already NP-hard even when L is
fixed and when M has a pipelined structure.

(1) AGPmax(M, L, A, t). Given M, L, A, t and a number B, we show that it is NP-complete to determine whether there exists
a realization p such that p is valid w.r.t. A and M[p](t) > B.

Upper bound. We first show that for any tree-structured M, the problem is in NP, by giving an NP algorithm for deciding
whether there exists such a realization p. The algorithm takes two steps: it first guesses p, and then checks whether p is
valid w.r.t. A and M[p](t) > B. The checking can obviously be done in PTIME, since (a) for all templates T in M, checking
whether p(7) € A(7) is in PTIME, (b) M[p](t) can be computed in PTIME because all preconditions and synthesis rules are
defined with PTIME-computable functions, and moreover, for all templates T in M, p(t) is a PTIME function in the library L.
Hence when M has a tree structure, the problem is in NP.



Lower bound. We next show that the aggregation problem AGPmax(M, L, A,t) is NP-hard when L is fixed and M has a
pipelined structure, by reduction from 3SAT. It is known that 3SAT is NP-complete (cf. [42]). Given an instance ¢ of 3SAT,
we construct a pipelined SWM M, a library L of available services, a realization constraint A, an initial artifact ¢t and a
number B, such that ¢ is satisfiable iff there exists a realization p that is valid w.r.t. A and moreover, makes M[p](t) > B.

Assume that ¢ = Cq A --- A Gy, defined with variables xi, ..., x,, where for each i € [1,n], C; is a clause of the form
l1 vI; vI3, and [; is either a variable x; or its negation x;. We construct Ry, L, M and A as follows.

(A) The artifact schema R, is defined to be (X,val), where X is to hold a binary number b;...bn, encoding a truth
assignment for xq, ..., xn, and val is to denote the truth value of ¢. The initial artifact t is (X =0, val =0).

(B) The library L consists of three services: fr, fr and fi, where (a) fr takes (X =b1...bj,val) as input, and returns
t=(X=b1...bj1,val), ie, by adding 1 as the last digit of the updated t.X, (b) similarly, fr expands t.X by adding 0 as
the last digit of t.X, and (c) f; is a constant function that returns 1. Note that L is fixed: it is independent of ¢.

(C) The SWM M is defined as (Q, 8,0, q1), where the set of states Q ={q; | j € [1,m+ 2]}, and the rules § and o are given
as follows:

(qj,true) = (qj+1, Tj),

val(qj) < val(gj+1) [*for je[1,m]%/

Gm+1,9) = @m+2, Tv),

val(qm+1) < val(qm+2)

(Gm+2,true) — .

val(qm+2) <.

Here ¢ is a Boolean function (C; A --- A Cp) [x1/t.X[1]]...[xm/t.X[m]], where t.X[j] denotes the j-th digit of t.X.
The set I"(M) of templates consists of t; for j € [1,m] and T,.

Intuitively, § and o specify a control flow of a pipelined structure that generates a truth assignment for variables of ¢,
step by step. Specifically, in state q; for j <m, the truth value of x; is added as the last digit of t.X, by invoking either fr
or fr in the library L. In state qp4+1, the precondition p evaluates the truth value of ¢ based on the last m digits of the
truth assignment t.X, in PTIME; if the condition is satisfied, t.val is changed to 1 by invoking f; otherwise t.val remains to
be 0.

The constraint A is defined as follows: A(tj) ={fr, fr} for j € [1,m], and A(zy) ={f1}.

(D) The constant B is set to be 1.

We show that the construction given above is indeed a reduction. Assume that ¢ is satisfiable. Then there exists a truth
assignment p for variables in ¢ that satisfies ¢. Define a realization p such that for all j € [1,m], p(t;) = fr if u(xj) =1,
and p(tj) = fr otherwise. Obviously M[p](t) =1, i.e, M[p](t) > 1.

Conversely, suppose that there exists a realization p such that M[p](t) > 1. Define a truth assignment w for ¢ such that
for all je[1,m], u(xj) =1if p(tr;) = fr and w(x;) =0 otherwise. Then u satisfies ¢.

(2) AGPmin(M, L, A, t). The proof for the upper bound is by giving an NP algorithm. The algorithm is the same as its coun-
terpart for AGPmax(M, L, X, t), except that the last step of the algorithm inspects whether M[p](t) < B.

The proof for the lower bound is by reduction from non-tautology, which is NP-complete (cf. [42]). The definitions of
M, L, ,t are the same as the construction given in (1), except the following: (a) B =0, (b) t.val=1 in the initial artifact,
(c) the service fi is a constant function that returns 0, and (d) the precondition p tests whether the given instance of the
non-tautology problem evaluates to false. O

In light of this intractability result one might be tempted to develop a PTIME approximation algorithm for the aggre-
gation problem such that one can still efficiently find a solution with certain performance guarantee. However, this is also
infeasible. The result below shows that the aggregation problem is not even in APX (see, e.g., [43]), the class of problems
that allow PTIME approximation algorithms with approximation ratio bounded by a constant.

We show a stronger result: AGP(M, L, A, t) does not even allow any PTIME approximation algorithms with approximation
ratio bounded by any polynomial. Following [43], we say that an algorithm achieves a polynomial approximation ratio n' for
a maximization (resp. minimization) problem if for every instance of the problem, it produces a solution of value at least

ﬁOPT, i.e. in the range [ﬁOPT, OPT] (resp. at most (1 +n')OPT), where [ is fixed and OPT is the value of the optimal

solution. We refer to such an algorithm as a n'-approximation algorithm. The result below tells us that no matter what n' is
used, it is impossible to find a PTIME n!-approximation algorithm for AGP(M, L, A, t) unless P = NP, even for restricted L
and M.



Theorem 6. Unless P = NP, there does not exist any PTIME n'-approximation algorithm for AGP(M, L, A, t), even when M has a
pipelined structure and when L is fixed.

Proof. We show that unless P = NP, AGPmax(M, L, A, t) and AGPnin(M, L, A, t) do not allow any PTIME approximation algo-
rithms with a polynomial approximation ratio.

(1) AGPmax(M, L, A, t). The main idea is by reduction from 3SAT: given an instance ¢ of 3SAT, we construct in PTIME a
pipelined SWM M, a library L of fixed services, a realization constraint A and an initial artifact t, such that (a) if ¢ is
satisfiable, then there exists a realization p such that M[p](t) = 2/XI*1, where X is the set of variables in ¢ (2IXI*1 is
expressed in binary, in O (| X|) space); and (b) otherwise for all realizations p, M[p](t) = 0.

We next give the reduction. The mediator M, library L, constraint A and initial artifact t are the same as their counter-
parts given in the proof of Theorem 5, except the following. The available service f; in L takes an artifact t as input, and
converts the binary number t.X into binary number Y such that Y and X have the same number of digits, and Y consists
of 1 only. In addition, it sets t.val = Y. Obviously (a) M[p](t) is either 0 or 2XI*1 and (b) the service function f; is in
PTIME.

We now show the construction above is a reduction. Indeed, given any instance ¢ of 3SAT, (1) the mediator M, A and t
can be constructed in PTIME, and the algorithm .4 on M, L, A and t is in PTIME, and (2) ¢ is satisfiable iff the algorithm
returns a value no less than #2"““ for any given polynomial n!. Assume by contradiction that there exists a PTIME n'-
approximation algorithm A for the aggregation problem, then one can decide 3SAT in PTIME. Hence, such an algorithm A
cannot possibly exist unless P = NP.

Along the same lines as the proof of Theorem 5, it is straightforward to verify that if ¢ is satisfiable, then M[p](t) =
2X141 and otherwise M[p](t) =0, as desired.

(2) AGPmin(M, L, 1, t). The proof is similar, by reduction from non-tautology. Given an instance ¢ of the non-tautology
problem, we construct in PTIME a pipelined SWM M, a realization constraint A and an initial artifact ¢, with a fixed library L
of available services, such that (a) if ¢ is not a tautology, then there exists a realization p such that M[p](t) = 2/XI*1,
where X is the set of variables in ¢, and (b) otherwise for all realizations p, M[p](t) = 0.

This suffices. Assume that there exists a PTIME n'-approximation algorithm 3 for the aggregation problem, then one can
decide non-tautology in PTIME. Indeed, given any instance ¢ of non-tautology, we construct M, A and t, executes 5 on M,
L, » and t, in PTIME; we can conclude that ¢ is a tautology iff the algorithm returns 0. This shows that unless P = NP,
AGPmin(M, L, 1, t) does not admit any PTIME n’—approximation algorithm.

The reduction is the same as its counterpart given in the proof of Theorem 5, except that f; is changed as described in
(1) above. O

5.2. DAG-structured mediators

We next investigate AGP(M, L, A, t) for SWMs with a DAG structure. We show that like tree-structured SWMs, DAG-
structured SWMs simplify the aggregation analysis: AGP(M, L, A, t) is also decidable in this setting.

Given Theorem 5, the best one can hope for is that AGP(M, L, A, t) remains in NP for DAG-structured SWMs. It turns
out that for these SWMs, the complexity goes up, but the aggregation problem is still solvable in single-exponential time
(in PSPACE). The PSPACE hardness bound remains intact even for fixed library L and deterministic realization constraint A.

Theorem 7. AGP(M, L, A, t) is PSPACE-complete for DAG-structured SWMs. It remains PSPACE-hard when the library L is fixed and
the realization constraint A is deterministic.

Proof. We show that AGPmax(M, L, A, t) and AGPmin(M, L, A, t) are in PSPACE, and are PSPACE-hard when L is fixed. We give
a proof for AGPmax(M, L, A, t). The proof for AGPyin(M, L, A, t) is similar.

Upper bound. We first show that for any DAG-structured M, the problem is in PSPACE, by giving an NPSPACE algorithm.
Given M, L, A, t and a number B, the algorithm first guesses a realization p, and then checks whether p is valid w.r.t. A
and M[p](t) > B.

We show that the checking can be conducted in PSPACE. Indeed, checking whether p is valid is in PTIME. To check
whether M[p](t) > B, the algorithm computes M[p](t) as follows, constructing the execution tree & of the run in stages
without storing the complete tree. At each node v of the tree labeled with (q,t,val), suppose that the transition and
synthesis rules are (q,$) — (41, T1), ..., (qk, Tx) and val(q) < Fq(val(q1), ..., val(qk)), respectively. The algorithm inspects
the subtrees &1,...,& of v one by one, for the successor states q1, ..., qk, respectively. To inspect a subtree, it follows a
depth-first traversal order, and stores only necessary information. After a subtree &; is checked, it retains only the val value
of its root, denoted by valj, and reuses its space to compute & for [ > j. When all val;’s are available, val(v) is computed by
evaluating Fg(valy, ..., valj), and the space for storing valy, ..., val; and the subtrees of v are released. The process starts
from the root of & and proceeds until M[p](t) is computed.



To see the space complexity of the checking, let d be the longest path in G(M), w the maximum length of transition
rules in M (the width of &), c; the maximum space needed for evaluating an available service in L, and py the maximum
space for evaluating a precondition or a synthesis function in M. Then at any stage of the computation, at most O (w *d x|t])
space is needed to store necessary information for computing &, where w and d are linear in the size of M. In addition, at
most ¢y + pp space is required to evaluate preconditions and synthesis rules, where c¢; and pj; are polynomials since all
available services in L are PTIME functions, and all preconditions and synthesis rules are PTIME-computable. Putting these
together, the algorithm is in O(w *d * |t| + ¢, + pm) space. Since PSPACE = NPSPACE, the problem is in PSPACE.

Lower bound. We next show that the aggregation problem AGPmax(M, L, A,t) is PSPACE-hard when L is fixed, XA is deter-
ministic and M has a DAG structure, by reduction from Q3SAT.

An instance of Q3SAT is given by a well-formed quantified Boolean sentence of the form ¢ = Q1x1Q2x2 - - - QX E, where
E=Cy A---ACp is an instance of 3SAT in which all the variables are x1,...,xn, and Q; € {V, 3} for i € [1, m]. The Q3SAT
problem is to decide, given such a sentence ¢, whether ¢ is valid. It is known that Q3SAT is PSPACE-complete (cf. [42]).

Given an instance ¢ of Q3SAT, we construct a DAG-structured SWM M, a fixed library L of available services, a realization
constraint A, an initial artifact t and a number B, such that ¢ is satisfiable iff there exists a realization p that is valid w.r.t. A
and makes M[p](t) > B.

(1) The artifact schema Ry, initial artifact t, library L and number B are the same as their counterparts given in the proof
of Theorem 5. Recall that L is fixed: it is independent of ¢.

(2) The SWM M is defined as (Q,48,0,q1), where Q ={q;|je[1,m+ 2]}, and § and o are given as follows. For each
j €[1,m], if the quantifier Q; is V, then

(qj,true) — (qj+1. T1)s (41, TF),
val(qj) < min(vali (qj+1), val(qj+1)),

where for [ € [1, 2], valj(qj+1) denotes the val value of the I-th successor state.
If the quantifier Q; is 3, then

(qj,true) — (qj+1. T1)s (Gj41, TF),
val(qj) < max(vali (qj+1), val(qj+1)).

For j € [m+ 1, m + 2], we define

@m+1,9) = (@m+2, Tv), val(@m+1) < val(@m+2),
(m+2, true) — . val(qm+2) <.

The set I'(M) has three templates tr, Tf, Ty.

(3) The constraint A is defined as follows: A(tr) = {fr}, A(tr) = {fr}, and A(zy) = {f1}. Note that there is a unique p valid
w.rt. A, i.e,, A is deterministic.

Intuitively, the SWM generates a complete binary tree of depth m to inspect all possible truth assignments for variables
in ¢. In other words, each path of length m encodes a truth assignment for ¢. The end of the path is followed by a node
labeled with state qp+1, in which the precondition p evaluates the truth value of E based on the truth assignment t.X;
if the condition is satisfied, t.val is changed to 1 by invoking f7; otherwise t.val remains to be 0. The synthesis rules inspect
whether ¢ is satisfied along all paths in the execution tree of a run, by using aggregation operators. More specifically, min
is used to encode universally quantified variable x;, and assures that both truth values for x; are inspected. On the other
hand, max encodes an existentially quantified variable x;, and takes the truth value that satisfies ¢ if there exists any.

We show that the construction given above is indeed a reduction. Observe that there is a unique realization p valid
w.r.t. A. Assume that ¢ is true. It is easy to verify by induction on m that M[p](t) =1, i.e.,, M[p](t) > B. Conversely, suppose
that there exists a realization p such that M[p](t) > 1. One can verify that ¢ is true, again by a simple induction on m.

For AGPnin(M, L, A, t), the upper bound proof remains unchanged. The proof for the lower bound is the same except
that B is now set to 0. Since a Q3SAT instance ¢ is a sentence with a unique truth value, ¢ is false iff there exists a
realization p such that M[p](t) < 0. That is, the reduction given above also verifies that AGPyin(M, L, A, t) is PSPACE-hard
when the library L is fixed and A is deterministic. O

The case of the fixed mediator. We have seen from Theorems 2, 5, 6 and 7 that fixing library does not make our lives easier:
the lower bounds remain unchanged when the library of available services is predefined and fixed.

Another practical setting is that a service provider often maintains a set of predefined mediators. That is, the SWMs can
be considered fixed, while the library L is periodically updated by adding newly found available services to it, or removing
obsolete services from it.

Below we show that fixing SWMs simplifies the aggregation synthesis: the problem is in PTIME for a fixed SWM M,
when M has a tree or a DAG structure. Contrast this to Theorem 2, which tells us that when the mediators are recursively
defined, fixing both mediators and library does not help.



Proposition 8. AGP(M, L, A, t) is in PTIME when M is a fixed DAG-structured SWM.

Proof. Given L, A, t and a realization p, it is in PTIME to compute M[p](t) for a fixed DAG-structured SWM M. Indeed, it
takes PTIME to construct the execution tree of the run of M[p] on t, since the size of M is a constant when the SWM M is
fixed.

In light of this, a PTIME algorithm for finding o that maximizes (or minimizes) M[p](t) is as follows. For each realiza-
tion p that is valid w.r.t. A, computes M[p](t), and returns the realization that yields the maximum (or minimum) output.
The realizations can be enumerated by ranging over all A(t) for each template t in M, where |I"(M)| is a constant when M
is fixed. That is, there are at most |L|' many realizations, where [ = |I"(M)| and it is a constant. The algorithm is obviously
in PTIME. O

6. Nondeterministic mediators

So far we have only considered deterministic mediators: in an SWM, each state is associated with a unique pair of transi-
tion rule and synthesis rule. As observed in, e.g., [44], in practice one may want to specify mediators with nondeterministic
transition rules. For example, one may want to extend the SWM My given in Example 2 by defining two pairs of transition
and synthesis rules for state q, with different preconditions, one for winter and the other for summer, such that different
activities can be chosen in different seasons.

In this section we first extend SWMs and define nondeterministic SWMs (NSWMs), by allowing multiple pairs of tran-
sition and synthesis rules to be associated with each state. We then revisit the aggregation problem for NSWMs of various
structures, showing that the presence of nondeterminism does not complicate the analysis. Finally, we formulate the termi-
nation problem, and establish its complexity bounds, for composite services generated from NSWMs and SWMs.

6.1. Nondeterministic SWMs

We first introduce nondeterministic SWMs.

Definition 6.1. A nondeterministic synthesized mediator (for web services; NSWM) over an artifact schema R, is defined as
M=(Q,é,0,q0), where Q is a finite set of states, qo is the start state, § is a set of transition rules, and o is a set of synthesis
rules, such that for each g € Q, there exist a nonempty set of pairs (§'(g), o'(g)) for i € [1, ngl, where 8'(q) is a transition
rule in § and oi(q) is a synthesis rule in o, defined as follows:

8@: (@6~ @i, T, - @iks Tik),
ol(@): val(q) < Fq(val(gi), ..., val(qix)).

Here q,q1, ..., qi refer to states in Q, t;’s are template names from I" and ¢; is a precondition, as given in Definition 2.1.

Obviously SWMs are a special case of NSWMs in which for each state g there exists a unique pair (8(q),o(q)) of
transition and synthesis rules, i.e., for each state g, ng =1.

A realization p for an NSWM M and the composite service M[p] of M realized by p are defined the same as for an SWM;
similarly for realization constraints A (see Section 2).

On an input artifact tp, a run of a composite service M[p] of an NSWM M is, however, more involved than its counterpart
for an SWM. In each state q of M, a pair (8'(q), 6'(q)) is now nondeterministically picked among nq options, such that the
transition and synthesis in this state follow the rules §!(q) and o(q), respectively. As a result, for the same ty there are
(possibly exponentially many) different runs, which lead to different outputs. In other words, the results of different runs
of M[p] on tg no longer converge to yield the same output.

We revise the step relation =1ty for M[o] of an NSWM M as follows. For two execution trees £ and &', we write
& = Mipl.to) & if one of the following conditions holds.

Spawning. If there exists a leaf node v of £ labeled with (g, t, L), then there exists a pair (5'(q), c'(q)) of transition and
synthesis rules defined for state g, such that &’ is obtained from & via the rule §'(q) as described in the spawning
step of Section 2.2. That is, one of the rule pairs for q is nondeterministically chosen to expand & to &’.

Synthesizing. If there is no leaf node to which a transition rule applies, then &’ is obtained from & by picking a node v
labeled by (g,t, L) so that none of its successors uq,...,u, has val(u;) = L, and updating val(v) according to
the synthesis rule oi(q) as described in the synthesizing step of Section 2.2. Here oi(q) is the rule in the pair
(8'(q), o'(q)), where 8i(q) is the transition rule chosen for spawning the children of v in the spawning phase.

If the process stops, the result of the run of M[p] on artifact tp is an execution tree & such that & =* & and there is no
distinct &” such that & = &’. This yields the output of the run, which is the value of val(r) at the root r of &'.
If the process does not stop, we say that the result of the run is L, i.e., undefined.



Due to the nondeterministic nature of NSWM M, there are possibly multiple results of runs of M[p] on the same artifact
to and hence, a set of outputs, denoted by S(M[p], to).

When it comes to the aggregation analysis, we define M[p](to) to be the maximum value (resp. minimum) in S(M[p], to)
for AGPmax (resp. AGPmin), assuming that L <m for any m € Q. Clearly M[p](to) is well defined.

Example 4. We extend the SWM M; to an NSWM M3 = (Q2, 8, 02, 2), where the set space Q3 is {q2, gs. qc, 4 f. qn. 43, 42,
Gr,qp,q}, and the transition rules 8, and synthesis rules o, are the same as §; and oy shown in Fig. 2, except that for q
and qq, rules are defined as follows:

(g2, true) — (gs, Tig) val(qz) < val(gs)
(g2, true) — (qc, Tia) val(qz) < val(qc)

(qa. #4) = (44 7a). (@r. Tia)  val(qa) < val(q}) + val(gr)
(qa. 92) — (42.7a). (@r. Ta) ~ val(qa) < val(q3) + val(gr)

(g2, true) — (qa, Tia) val(q}) < val(ga)
(g2, true) — (qa, Tia) val(g2) < val(qa)

Here two pairs of rules are defined for the start state g, with the same precondition, while two pairs of rules are given
for state q,, with distinct preconditions for activities in the winter and the summer, respectively. In a run of M;[p] realized
with o on an input artifact top, one pair of the rules for g, is nondeterministically picked, and M;[p](tp) is the minimum
among the outputs of all possible runs, for the minimization analysis. When the state q, is reached, one pair of the rules
for g4 is again nondeterministically chosen, as long as the precondition ¢; (resp. qbg) is satisfied.

6.2. The aggregation analysis of NSWMs

We now re-investigate the aggregation problem for NSWMs. For a predefined bound B and given an NSWM M over
artifact schema R4, an artifact t of R4, a library L of available services and a realization constraint A, the aggregation problem
AGP(M, L, A, t) is to determine whether there exists a realization p of M in L such that p is valid w.r.t. A and M[p](t) > B
(for maximization AGPmax; resp. M[p](t) < B for minimization AGPy,n). In other words, it is to find realization p of M in L
such that p is valid w.r.t. A and there exists a run of M[p] on t with the maximum (or minimum) output.

The main conclusion of this section is that NSWMs do not make the aggregation analysis harder. Indeed, the aggregation
problem for NSWMs of various structures retain the same complexity as their SWM counterparts. To verify this, we first
introduce a notion of normal forms for NSWMs and revise the notion of the mediator graphs for NSWMs.

A normal form of NSWMs. We show that every NSWM can be expressed in a “deterministic” form in which each state is
associated with a unique transition rule and a unique synthesis rule. To do this we extend synthesis functions by allowing
Fg :Q¥U{L} > QU{L} such that Fg(ml, ...,my) =m;, where m; is nondeterministically picked from {m; | i € [1, k], m; £ 1}
if the set is nonempty, and Fg(m1, ...,my) =L if for all i € [1,k], m; = L. We refer to Fg as a choice selector.

When choice selectors are used in the synthesis phase, they behave a little differently from synthesize functions de-
scribed above. More specifically, for synthesizing a node v in an execution tree with F[;. Fg(m1,...,mk) is assigned to
val(v) if there exists a child u; of v such that val(u;) # L. That is, even when val(u;) = L for j#1, i.e.,, when some children
of v have an infinite subtree, val(v) can still be computed via F!, and its value remains unchanged after a rational value is
assigned to it.

Definition 6.2. We say that an NSWM M = (Q, 8,0, qo) is in the normal form if for each state q € Q, there exist a unique
transition rule §(q) and a unique synthesis rule o (q) defined as follows:

3@ @, ¢)—> @1, 7)., (Gks Te)s
o(q@): val(q) < Fq(val(@qr), ..., val(qr)),
where Fg is either a synthesis function as in Definition 2.1 or a choice selector.
We say that two NSWMs M and M, are equivalent for aggregation if for any input artifact t, library L and realization

constraint A, there exists a realization p; of My in L valid w.r.t. A iff there is a realization p; of M; in L valid w.r.t. A such

that M1[011(t) = M2[021(t).
One can readily verify that each NSWM M can be “normalized” to an equivalent NSWM M’, in PTIME. Hence the size
IM’| of M’ is bounded by a polynomial in |[M|.



Proposition 9. For every NSWM M, an equivalent NSWM in the normal form can be computed in time polynomial in |[M|.

Proof. Given an NSWM M = (Q, 8,0, qo), we construct an NSWM M’ = (Q’,8’,0',qo) as follows. For each state q € Q,
suppose that g is associated with pairs (§'(q), o'(q)) of transition and synthesis rules for i € [1, nq], where

8 @: (@6~ @i TiDs - @ik Tik),
ol(@): val(q) < Fq(val(gin), ..., val(qi)).

Then we introduce dummy states q',...,q", and define a unique transition rule and a unique synthesis rule for q and g
as follows:

8(@:  (q.true) > (q", Tig). ... (4", Tia).
o(q): val(q) < Fj(val(q').....val(q")).

S(qi): (qi7¢,.') — (qi1> Ti1)s - - -» ik Tik)
o(q'): val(q') < Fq(val(@i1), . ... val(gi)).

Here Fg is a choice selector, while F; is a synthesis function as given in M.

Let Q' include all the states in Q as well as all dummy states introduced for each state g € Q, and §’ and o’ be
as defined as above. In a nutshell, M’ enumerates all possible options of rules for each state, while nondeterministically
returns one of the synthesized values for the state via a choice selector Fg. It is easy to verify that M" and M are equivalent
for aggregation. Obviously M’ is in the normal form and it can be computed in PTIME in |M|. O

By Proposition 9, in the sequel we consider w.Lo.g NSWMs in the normal form only.
The mediator graph G(M) of an NSWM M can then be defined exactly the same as its counterpart for SWMs, as given in
Section 3.

Complexity bounds. We are now ready to present the complexity bounds of the aggregation analysis of NSWMs with
various underlying mediator graphs. We start with AGP(M, L, A,t) when G(M) is a cyclic graph. Since M is also an SWM,
from Theorem 2 it follows immediately that the problem is undecidable even when M, L and A are all fixed, and when
G(M) is a graph with a single self-loop.

Corollary 10. AGP(M, L, A, t) is undecidable for NSWMs even when NSWM M, library L and realization constraint A are all fixed.

When G(M) is acyclic, AGP(M, L, A, t) becomes decidable in single-exponential time. Indeed, compared to Theorems 5, 6
and 7, the result below tells us that NSWMs do not make our lives harder in this case.

Theorem 11. For NSWMs, the problem AGP(M, L, A, t) is

1. PSPACE-complete for DAG-structured M

2. NP-complete for tree-structured M; and moreover,

3. there exists no PTIME n!-approximation algorithm for any polynomial approximation ratio n' even when M has a pipelined struc-
ture, unless P = NP.

The lower bounds and approximation hardness remain unchanged even when library L is fixed.

Proof. The lower bounds in (1), (2) and (3) follow from Theorems 7, 5 and 6, respectively, since SWMs are a special
case of NSWMs. Below we verify the upper bounds of (1) and (2). We give a proof for AGPyax(M, L, A, t). The proof for
AGPin(M, L, A, t) is similar.

(1) DAG-structured NSWMs. We first show that for any DAG-structured NSWM M, the problem is in PSPACE, by giving an
NPSPACE algorithm. Given M, L, A, t and a number B, the algorithm first guesses a realization p, and then checks whether
(a) p is valid w.rt. A, and (b) there is a run of M[p] such that the output of the run is no less than B. If so, then the
algorithm returns “yes”.

We show that the checking can be done in NPSPACE. By Proposition 9, we assume that M is in the normal form.
(1) As shown in the proof of Theorem 7, it is in PTIME to check whether p is valid w.r.t. A. (2) Moreover, computing
the output of a run of M[p] on t is in NPSPACE. (i) As in the proof of Theorem 7, the algorithm constructs the execu-
tion tree & of a run in stages without storing the complete tree. At each node v of the tree labeled with (q,t, val), the
subtrees of v are inspected one by one. After a subtree &; is checked, only the val value of its root is retained (denoted
by val;), and its space is reused for computing other subtrees. (ii) For synthesizing at node v, suppose that the synthesis



rule for q is val(q) <— Fg(val(q1), ..., val(qi)). Consider the two cases of Fq: (a) when Fg is a synthesis function, val(v) is
Fq(valq,...,val); (b) when F; is a choice selector, one of val(q1), ..., val(qy) is nondeterministically picked as the val(q)
value at v. In both cases the space for storing valy, ..., val, and the subtrees of v is released. The process proceeds until the
output of the run is computed. As argued in the proof of Theorem 7, this can be done in NPSPACE. Since NPSPACE = PSPACE,
the algorithm is in PSPACE.

(2) Tree-structured NSWMs. We now show that for tree-structured NSWMs M, the aggregation problem is in NP, by provid-
ing an NP algorithm. Given M, L, A, t and a number B, the algorithm first guesses (a) a realization p, and (b) a run of M[p]
on t. It then checks whether the output of the run is no less than B. If so, M[p](t) > B and the algorithm returns “yes”.

By Proposition 9, we assume that M is in the normal form. Note that for a tree-structured NSWM M, the mediator
graph G(M) and the execution tree of any run of M[p] are isomorphic, for any realization p. Hence we guess a run of
M[p] as follows: for any node v in an execution tree labeled with (q,t,val), suppose that the synthesis rule for q is
val(q) < Fq(val(qq), ..., val(qy)). If Fq is a choice selector, we nondeterministically pick val(g;) as the value of val(v) for
i € [1, gx]. This is independent of what realization p is chosen.

As shown in the proof of Theorem 5, it is in PTIME to check whether p is valid w.r.t. A, and to compute the output of
the run of M[p] on t when M is tree structured. Thus, the algorithm is indeed in NP, and so is the aggregation analysis of
tree-structured NSWMs. O

We have seen from Proposition 8 that for an SWM M, if M is fixed and G(M) is acyclic, AGP(M, L, A, t) becomes
tractable. We show that it is also the case for NSWMs.

Proposition 12. For a fixed DAG-structured NSWM M, the problem AGP(M, L, X, t) is solvable in polynomial time.

Proof. As shown in Proposition 8, when M is fixed, (a) there exist polynomially many realizations p of M in L that are valid
w.r.t. A, and (b) for each run of M[p] on t, its execution tree can be constructed in PTIME. In addition, we show (c) that
for each realization p, the number of runs of M[p] on t is a constant. Indeed, by Proposition 9, we assume that M is in
the normal form. As argued in the proof of Theorem 11(2), the execution tree of each run of M[p] is isomorphic to the
tree obtained by unfolding G(M). Then a run of M[p] is determined as follows. For any node v in an execution tree labeled
with (q, t, val), suppose that the synthesis rule for q is val(q) <- Fq(val(q1), ..., val(q)). If F4 is a choice selector, the run is
decided by which val(g;) is chosen as the value of val(v), for i € [1, q]. When M is fixed, the size of M is a constant; hence
so are the number of runs of M[p] for a realization p, and the size of the execution tree of each run.

This yields a PTIME algorithm for finding p such that M[p](t) is maximum (or minimum). The algorithms ranges over
all realizations p that are valid w.r.t. A, and for each such p, it ranges over all runs of M[p] to compute the output of the
run. It returns the realization p and the run that maximizes (or minimizes) M[p](t). From the discussion above it follows
that the algorithm is indeed in PTIME. O

6.3. Termination analysis

We have seen that a composite service M[p] generated from an NSWM or an SWM may not terminate on an input
artifact t, i.e., there exists no any finite execution tree that is the result of a run of M[p] on t. In other words, M[p](t) is
not defined. Hence it is natural to investigate the termination problem, denoted as TMP and presented as follows.

PROBLEM: TMP(M, L, A, t)

1. an NSWM M on artifact schema Rga;
2. an artifact t of Ry;

3. a library L of available services;

4, a realization constraint A.

INPUT:

QUESTION: Does there exist a realization p of M in L such that p is valid w.r.t. A and
M([p](t) is defined, i.e., a run of M[p] terminates?

The termination analysis is nontrivial for NSWM M when G(M) is a cyclic graph. In contrast, it is trivial when G(M) is
acyclic.

Corollary 13. For an NSWM M with mediator graph G (M), the problem TMP(M, L, A, t) is

1. undecidable if G(M) is cyclic, even when M is a fixed SWM, and when library L and realization constraint A are fixed; and
2. in linear-time if G(M) is a DAG or a tree.



Proof. (1) We show that TMP(M, L, A, t) is undecidable by reduction from the problem of determining solutions of Dio-
phantine equations with fixed-degree and fixed number of variables. Given a Diophantine equation p, the reduction is the
same as the one given in the proof of Theorem 2, in which G(My) is a self-loop, My is a fixed SWM, and both A and L are
fixed. As shown there, p has a solution in N¥ if and only if Mp[p] terminates and returns 0.

(2) When G(M) is acyclic, one can verify that for any realization p valid w.r.t. A, every run of M[p] on an artifact ¢
always terminates. Hence the termination problem in this case is equivalent to the problem for checking whether there
exists a realization valid w.r.t. A, which takes linear time in the size of I'(M). O

7. Conclusion

We have given a formal treatment of the aggregation synthesis of Web service mediators, a problem that is of practi-
cal importance but has not been adequately addressed theoretically. We have developed a model for specifying mediators
with aggregation synthesis, deterministic or nondeterministic, and formulated the aggregation problem. We have also estab-
lished matching upper and lower bounds on the problem for mediators of various structures. In addition, we have provided
complexity bounds of the termination analysis of composite services of various structures generated from mediators.

The main results of the paper are summarized in Table 1 (Section 1). We have shown that the problem is beyond reach
in practice for recursively defined mediators, even when the mediators and the library of available services are predefined
and fixed. Nevertheless, for mediators with a DAG or a tree structure, the problem becomes decidable in single-exponential
time, which is an acceptable complexity for static analysis problems. More specifically, the problem is PSPACE-complete for
DAG-shaped mediators, and is NP-complete for tree-shaped ones; it is even in PTIME when a set of predefined mediators
are considered, a common setting in practice. These make our lives easier, but only to some extent: the NP-lower bound
remains intact when the mediator has a pipelined structure and the library is fixed. Worse still, the problem does not allow
any PTIME approximation algorithms with a polynomial ratio. The PSPACE lower bound is also robust: it remains unchanged
when the library is fixed.

This work is a first step toward understanding the aggregation synthesis of Web services. There is naturally much more
to be done. First, a run of a composite service generated from an NSWM may not terminate. We are currently investigating
practical restrictions on NSWMs such that every run is guaranteed to terminate and yield a solution. Second, while the
aggregation problem is undecidable in general and is intractable for non-recursive NSWMs, we expect that practical PTIME
cases can be identified in certain specific application domains. Third, it is interesting to revisit the composition problem
when aggregation synthesis is brought into the play. That is, we want to automatically generate mediators that coordinate
available services and deliver a requested service, with aggregation analysis that aims to best serve the users’ need. Finally,
we would like to develop efficient heuristic algorithms to realize mediators with aggregation synthesis for specific applica-
tions. The operational semantics given in Section 2.2 provides a conceptual-level strategy for delivering a requested service.
The strategy can certainly be improved by capitalizing on practical pruning techniques. For instance, one may employ a lazy
evaluation strategy such that if some branch already yields a larger (or smaller) value than a given bound, realizations of
the templates in other branches as well as their computation can be entirely avoided.
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