Securing a Java P2P framework: The JXTA-Overlay case

Joan Arnedo-Moreno
Estudis d’Informatica,
Multimédia i Telecomunicacié
Universitat Oberta de
Catalunya (UOC)
Rambla de Poblenou, 156
08018 Barcelona, Spain
Rambla de Poblenou, 156
08018 Barcelona, Spain

jarnedo@uoc.edu

Leonard Barolli
Department of Information and
Communication Engineering
Fukuoka Institute of
Technology (FIT)
3-30-1 Wajiro-Higashi,
Higashi-Ku, 811-0295
Fukuoka, Japan

barolli@bene.fit.ac.jp

ABSTRACT

In the wake of the success of Peer-to-Peer (P2P) networking,
security has arisen as one of its main concerns, becoming a
key issue when evaluating a P2P system. Unfortunately,
some systems’ design focus targeted issues such as scalabil-
ity or overall performance, but not security. As a result,
security mechanisms must be provided at a later stage, af-
ter the system has already been designed and partially (or
even fully) implemented, which may prove a cumbersome
proposition. This work exposes how a security layer was
provided under such circumstances for a specific Java based
P2P framework: JXTA-Overlay. !

Keywords
JXTA, Java, Security, XMLdsig, XMLenc, Peer-to-Peer

1. INTRODUCTION

Just as the popularity of P2P applications has risen, con-
cerns regarding their security have also increased. As P2P
applications move from simple data sharing, for example Bit-
Torrent [6], to a broader spectrum, such as e-learning [8],

!This work is partially supported by the Spanish Ministry
of Science and Innovation and the FEDER funds under the
grants TS12007-65406-C03-03 E-AEGIS and CONSOLIDER
CSD2007-00004 ARES.

Keita Matsuo
Graduate School of
Engineering
Fukuoka Institute of
Technology (FIT)
3-30-1 Wajiro-Higashi,
Higashi-Ku, 811-0295
Fukuoka, Japan

bd07002@bene.fit.ac.jp

Fatos Xhafa

Department of Languages and

Informatics Systems
Technical University of
Catalonia (UPC)
Jordi Girona 1-3, 08034
Barcelona, Spain
fatos@Isi.upc.edu

they become more and more sensitive to security threats.
Therefore it becomes very important to design P2P archi-
tectures taking into account an acceptable security baseline.
To achieve this end, it must be taken into account that, since
security is an ubiquitous matter within a system’s architec-
ture, once the system’s design is over, providing security
simply as an add-on may prove a difficult and time consum-
ing task. Unfortunately, some systems did not take security
into account during the design process, and as a result, there
is no option but adding security at a later stage. Under that
circumstance, a compromise must be reached so a security
baseline is provided without redesigning and implementing
the system from scratch.

The JXTA [12] (or "juxtapose”) specification provides a set
of open protocols that enable the creation and deployment
of P2P networks, enabling P2P applications to discover and
observe peers, communicate and offer and access resources
within the network. Such protocols are generic enough so
they are not bound to a narrow application scope, but are
adaptable to a large set of application types. For that rea-
son, they also keep implementation independence, so they
can be deployed under any programming language or set of
transport protocols. Currently, the most advanced reference
implementation of such protocols is the Java one [1].

JXTA-Overlay [15] is a JXTA-based framework, which en-
ables the creation of JXTA-based end-user Java applications
in an efficient and effective manner. Its main goal is to im-
prove the original JXTA protocols, increasing the reliabil-
ity of JXTA-based distributed applications and supporting
group management and file sharing. However, the design
focus on JXTA-Overlay was completely concerned with im-
proving system performance, but not security, a situation
which may become a great constraint under today’s stan-

dards. Even though the JXTA Java implementation pro-
vides some basic security mechanisms, they were not taken
into account and none are currently used.

In this paper we present our work to provide a basic security
layer to JXTA-Overlay. Our main contribution is proposing
an approach which is transparent to the JXTA-Overlay li-
braries, requiring few modifications on the base code and
keeping class coupling low. Furthermore, the security layer
is extensible and can be easily adapted to different cryp-
tographic modules, according to the end-user application’s
security requirements. Finally, minimum effort is necessary
by end-user application developers to provide a secure en-
vironment, providing an abstraction layer, thus maintaining

the philosophy of JXTA-Overlay.

This paper is organized as follows. Section 2 provides a gen-
eral overview of JXTA and JXTA-Overlay’s architecture and
capabilities, as well as some insights on the current state of
security of JXTA-Overlay and why providing security ser-
vices is deemed important. The proposal of a basic security
framework is presented in Section 3., detailing the security
extensions and how they were integrated into the current
system. Concluding the paper, section 4 summarizes the
main contributions and further work.

2. JXTA-OVERLAY OVERVIEW
JXTA-Overlay is a P2P middleware built on top of the
JXTA Java reference implementation, taking advantage of
its set of libraries standardizing how different devices may
communicate and collaborate. JXTA-Overlay extends the
JXTA reference implementation with the goal of overcom-
ing some of its limitations: the need for the developer to
explicitly manage the presence mechanism, peer group pub-
lication and message exchange. To achieve this end, the
JXTA-Overlay libraries provide a set of basic functionalities,
named primitives and functions, intended to be as complete
as possible to satisfy the needs of most JXTA-based appli-
cations. Therefore, custom Java P2P applications may be
built on top of the JXTA-Overlay libraries by using the set
of primitives and functions as an Application Programming
Interface (API).

2.1 The JXTA-Overlay network

In a JXTA-Overlay network, the main interacting entities
are:

End-users connect to the JXTA-Overlay network by previ-
ously authenticating via a username and password. Once the
authentication process is successfully completed, they are or-
ganized into different overlapping groups, so only members
of the same group may interact. This authentication pro-
cess is the only security mechanism currently deployed in
JXTA-Overlay.

A client peer represents a custom application built on top
of the JXTA-Overlay libraries, which end-users use to com-
municate and share resources between them. Client peers
effectively act as end-user proxies within the JXTA-Overlay
network, forwarding end-user data to client peers that be-
long to other end-users of the same group. A client peer is
assumed to belong to the same groups as its current end-
user.

The brokers’ main task is access control, requesting end-
user authentication, and helping client peers interact be-
tween themselves by propagating their related information.
Brokers also act as beacons used by client peers which have
recently gone online to join the network. In contrast with
client peers, brokers are not custom made applications, but
fully functional peers provided by the JXTA-Overlay libraries.

All the information related to user configuration (username,

password and group membership) is stored in a central database.

Only brokers may access the database content, in order to
verify end-user authentication attempts and organize them
into groups. It is assumed that some administrator takes
care of properly manage the database.

2.2 General architecture

The architecture of the JXTA-Overlay framework defines
three distinct layers, which let the different entities described
in section 2.1 communicate: the client layer, the broker layer
and the control layer. Together, they form an abstraction
layer on top of JXTA, as shown in Figure 1. The JXTA
packages are divided in those related to the generic protocol
specification (net.jxta) and those implementation specific
(net.jxta.implem).

Client Application

Event Call

Broker Client
(overlay.broker) (overlay.client)

Functions | | Functions H Primitives |
Control
(overlay.groups)
JXTA
(net.jxta, net.jxta.impl)

Figure 1: JXTA-Overlay architecture.

e The client layer (package overlay.client) defines all
necessary primitives and functions for peer clients to
join a JXTA-Overlay network and interact with other
peers and brokers. Primitives serve as entry points to
execute tasks and send messages across the network,
whereas functions process incoming messages and gen-
erate events which may be captured by the application,
using a Model-View-Controller pattern approach. Five
groups of primitives and functions exist depending on
the kind of tasks processed, each group defined in a
different Java interface: Discover, Executable, Files,
Learning and Messenger.

Primitives are defined in the overlay.client.prim-
itives package, whereas events are defined in the o-
verlay.client.core.functions package. There is a
total amount of 122 primitives and 84 possible events.

e The broker layer (package overlay.broker) defines all
the functions that client peers may call upon a broker
in order to be granted access to the the network, create
and publish groups or retrieve some other client peers’
status information. After a broker function has been
executed, it always produces a reply from the broker

to the calling client. A fully functional broker peer
is already developed in the overlay.broker.Broker
class.

e The control layer (packages overlay.groups and over-
lay.utils) acts as an intermediate layer between the
broker and client layers, providing the generic func-
tionalities on regards to group management and mes-
saging. All interaction with JXTA libraries is per-
formed at this layer. Developers never directly interact
with this layer’s classes.

It must be remarked that JXTA-Overlay does not provide
any full client peer, apart from some demo applications that
may be used as all purpose clients or code examples (the de-
moApplication.Client and demoApplication.SimpleClient
packages). Only brokers are provided as a fully developed
application.

2.3 Message exchange

JXTA-Overlay uses JXTA pipes at the control layer to ex-
change messages between any peer type (both brokers and
client peers). A JXTA pipe acts a a virtual communication
channel between peer endpoints, configurable to different
underlying transport protocols. Any transport capable of
unidirectional asynchronous unreliable communication can
be used, however, JXTA-Overlay exclusively relies on TCP
unicast transport. Client peers have an input pipe for each
group it belongs to, so other group members may send mes-
sages by specifically using the input pipe associated to that
group. Brokers have a single input pipe which is shared for
all incoming messaging.

Before any message may be sent to any peer’s input pipe,
its pipe advertisement must be previously located and re-
trieved. The JXTA specification defines several types of ad-
vertisements, metadata XML documents used to distribute
resource information between peers. Periodically, the con-
trol layer at each peer republishes pipe advertisements, so
newcomers to the network are able to receive them, or net-
work changes may be properly updated (for example, peer
disconnections).

A pipe advertisement contains four basic fields. The Id and
Type are mandatory fields used to define the advertisement
unique identifier, and the message transport pipe type. The
Name and Desc are optional fields, but JXTA-Overlay uses
them in order to define which client peer is the advertise-
ment owner, by including the Peer ID in the Name field,
and which end user is connected to that client peer, by in-
cluding the username. In this manner, JXTA-Overlay may
easily search for some pipe advertisement by username and
send messages to the associated pipe. Since all messaging
capabilities ultimately rely on each peer’s input pipes, pipe
advertisements are very important within the JXTA-Overlay
network.

2.4 JXTA-Overlay and security

As previously exposed, JXTA-Overlay’s design was not con-
cerned with security, with the only exception of end-user
network access control via a username and password. As a
result, it is unable to provide any degree of security to its

end-users as well as vulnerable to different security threats
which may jeopardize the network. We must take into con-
sideration the fact that not only entities external to the
JXTA-Overlay network may try to subvert it, but also ma-
licious legitimate users.

Some of the greatest security concerns in JXTA-Overlay are
the following ones:

e Transmitted data may be easily eavesdropped, since
no data privacy is provided. This is specially critical
in those cases when sensitive data is being exchanged,
such as sending the username and password in the ini-
tial authentication to a broker. Both fields are cur-
rently sent in plain text. Therefore, intermediate peers
or any device at broadcast range may read this in-
formation with a network protocol analyzer (such as
Wireshark [7]).

e Client peers connect to a self-proclaimed broker, but
never check if it is a legitimate one. Even in the case
that client peers are connecting to the proper broker
address, there are no guarantees that the broker is a
legitimate one, since it is possible that traffic is be-
ing redirected to a fake one via methods such as DNS
spoofing [10].

e A malicious client peer may forge advertisements with
no fear of reprisal. No integrity or source authenticity
is enforced. False fields, such as the source client peer
identifier or username may be used on advertisements,
which will be automatically distributed by the broker
and accepted by all group members, unaware of the
false data they contain.

As can be seen, some of the current JXTA-Overlay vulnera-
bilities are quite obvious ones, such as transmitting sensitive
data with no real privacy. Therefore, it would be very inter-
esting to extend the system by providing a security layer.

3. SECURITY EXTENSION FOR JXTA AND
JXTA-OVERLAY

In this section we present an extended version of JXTA-
Overlay which provides a baseline for protecting end-user
applications against the current vulnerabilities exposed in
section 2.4. In out proposal, we combine several approaches,
adapting them to JXTA-Overlay’s specific architecture and
network setup. Client peers are protected against imperson-
ation by extending the Discover primitives and functions
with broker authentication. In addition, a secure login prim-
itive is provided to protect the username and password from
eavesdroppers. Finally, we deploy a basic method for key
distribution between group members, once they have been
granted access to the JXTA-Overlay network by the broker.
From this point, security capabilities may be easily added
to JXTA-Overlay by extending the system with additional
secure primitives and functions.

Our main goal is extending JXTA-Overlay with the least
amount of modifications to the base libraries and always
following its base architecture design, providing a security
layer operating in the most transparent way to a client peer

developer. Even though some changes in the source code are
unavoidable, we take special care in concentrating them in
very specific, easily manageable, places, as well as keeping
class coupling low.

3.1 JXTA’s security mechanisms

Before a security layer extension for JXTA-Overlay may be
proposed, it is useful to review which are the current security
mechanisms available to JXTA-based applications. From
this review, it is possible to study which may prove useful or
suitable to JXTA-Overlay’s architecture and network setup
specifics. In this section, only some of the more important
highlights to our particular case, securing JXTA-Overlay,
will be provided. A more detailed analysis is provided in [3].

On regards to message security via pipes, the JXTA refer-
ence implementation provides two mechanisms: TLS [14]
(Transport Layer Security) and CBJX [4] (Crypto-Based
JXTA Transfer). The former provides private, mutually au-
thenticated, reliable streaming communications, whereas the
latter provides lightweight secure message source verification
(but not privacy).

JXTA provides its own definition of standard TLS as a trans-
port protocol. The JXTA definition of TLS is composed of
two subprotocols: the TLS Record Protocol and the TLS
Handshake Protocol. The TLS Record Protocol provides
connection security using symmetric cryptography for data
encryption. The keys for this symmetric encryption are gen-
erated uniquely for each connection and are based on a secret
negotiated by the TLS Handshake Protocol. In addition,the
connection is reliable by including message integrity check
using a keyed MAC.

On the other hand, CBJX is a JXTA-specific security layer
which pre-processes messages to provide an additional secure
encapsulation, creating a new message that is then relayed
to an underlying transport protocol. The original message’s
is signed, and an additional information block, is also added
to the secured message. This information block contains
the source peer credential, both the source and destination
addresses, and the source peer ID.

The current JXTA reference implementation also provides
a method to get some degree of advertisement security by
providing the option to sign advertisements. No distinction
between different types of advertisements is made, all be-
come a new type of advertisement when signed: the Signed
Advertisement. A Signed Advertisement encapsulates the
original XML advertisement as plain text encoded via the
Base64 algorithm [9].

Unfortunately, in order to use all the secure mechanisms in
the JXTA reference implementation it is mandatory to use
a specific implementation of the JXTA Memberhip Service,
one of the JXTA core services which takes care of group
membership and identity management: the Personal Se-
cure Environment (PSE). None of the described security
mechanisms may be applied without PSE. However, JXTA-
Overlay does not rely on this membership service at all,
using a simpler one (the None membership service). This
is a great constraint, since the choice of membership service
has strong implications during the design and implementa-

tion stages, being pervasive through the application’s code.
Therefore, it is difficult to use PSE in JXTA-Overlay with-
out many changes. Furthermore, PSE has a limited range of
cryptographic module support, solely supporting Java key-
store files [13] and X509 certificates [5] as credentials.

3.2 Secure primitives

As presented in section 2.2, JXTA-Overlay defines an in-
terface for each primitive group, specifying the expected
behaviour for each primitive. In this manner, it is easy
to integrate different primitive implementations. JXTA-
Overlay provides one default implementation for each in-
terface, which is enough for most scenarios, in the form of
“Impl” classes (for example, the DiscoverImpl class, the
MessageImpl class, etc.). They also belong to the over-
lay.client package. Anyway, applications call primitives
only through the interfaces. We have expanded the origi-
nal set of primitives with secure versions for some of them,
providing the building blocks for a secure layer.

In order to keep class coupling low, we have defined a special
class, the SecureManager, which serves as the main API to
all security services at the security layer. All secure prim-
itives solely use methods defined in this class to perform
security-specific operations. The SecureManager uses a Sin-
gleton pattern to guarantee that a single entrypoint exists,
as well as making it easy to locate the instance from any
code location.

All the necessary operations dependant on the particular
cryptographic module chosen by the client peer application
developer are defined in the CryptoManager interface. The
SecureManager relies on an implementation of this inter-
face to complete any operation related to cryptographic data
management and operations.

The main reason for the CryptoManager is acting as a proxy
for any cryptographic module. It enables the integration
of the security layer with any kind of cryptographic mod-
ule such as hardware cryptographic tokens. This approach
takes into account the fact that not all such modules are ac-
cessed via plain text passwords (for example, using biomet-
rics or hardware tokens). Client peer application develop-
ers will implement the CryptoManager interface according to
the needs of the specific cryptographic provider being used.
The application developer must provide a proper implemen-
tation of this interface when initializing the SecureManager
singleton.

We provide a default implementation, which is enough for
most standard scenarios which do not rely on hardware mod-
ules, the CryptoManager0v class. X509Certificates are used
as credentials, and public key cryptography is assumed for
cryptographic operations. The local client peer’s key pair
and all credentials are stored using volatile memory (specif-
ically, a JCE KeyStore instance).

The base class diagram for this common APT to the security
layer is shown in Figure 2.

The CredentialRequest class is used as an intermediate
data representation for credential requests, as will be ex-
plained in the following 3.2.2 subsection.

SecureManager

-singleton: SecureManager

~SecureManager()
+getManager(): SecureManager
+initialize(CryptolManager: cr)

CryptoManager
<<interface>>

+generateChallenge(): String “+getPrivateKey(): PrivateKey
+generateChallengeResponse(String: ch): String +getPublicKey(): PublicKey
+getCredential(): Object 1 +getPublicKey(String: id): PublicKey
+generateSID(String: cl) [~ +storeCredential(String: id, Object: ¢)
+validateChallengeResponse(String: r, Object: ¢): boolean +getCredential(): Object
+storeBrokerCredential(String: id, Object: cr) +getCredential(String: id): Object
+storeSID(String: sid) +createKeyInfo(): Keylnfo
+generateCredentialReq(String: id, String: u, String: pw): Object +getSignatureMethod(): String
+processC i j : C i +isAuthentic(Object: ¢): boolean
+checkSID(String: sid): boolean +newModularKeySelector()
+generateCredential(CredentialRequest: req): Object T

+updateCredential(Object: cr)

+encryptMessage(String: msg, String: dst) y<<uses>>
+decrypthlessage(String: msg) CredentialRequest
T sid: String
| +username: String
77777777 —»{ +password: String
<<uses>> +pubKey: PublicKey
+signature: byte(]
+sigh (SecretKey sk)
+serialize(): bytel]

Figure 2: Common security layer API class diagram.

Since securing every single primitive is beyond the space
limitations of this work, in this section we will focus in two
particular cases. Other secure primitives follow the same
approach as the ones described here, making use of the Se-
cureManager instance as necessary. First, we will describe
the connect and login primitives, two very important ones
related to discovery. These primitives search for an available
broker and authenticate to it in order to join the network.
They are important since, being the initial negotiations to
join the JXTA-Overlay network, they allow to setup the
base client peer credentials and cryptographic data. Then,
we will describe two primitives related to instant messaging.

For the rest of this section, in each figure, classes shad-
owed in grey are those from our secure layer, whereas white
colored ones are those from the original JXTA-Overlay or
JXTA libraries.

3.2.1 Secure connection

Broker connection, via the connect primitive, is the first
step before any client peer may try to join the JXTA-Overlay
network. This non-secure method just locates a broker.
Once one has been found, the client peer waits until a con-
nection becomes actually available using the waitRdv primi-
tive. No message exchange happens between the client peer
and the broker at this stage.

The authBroker primitive is the secure version of connect.
However, in this case, a two-way message exchange is pro-
duced in order to authenticate the broker and setup some
initial cryptographic data exchange. The resulting message
executes the authRequest function at the broker side, and
the final broker response executes the authResponse func-
tion at the original client. At this stage, the client is ready
to try to join the network.

The sequence diagrams for authBroker, authRequest and
authResponse are shown in Figures 3, 4 and 5 respectively.
The GroupManager class is the one responsible for sending
messages across the network. All interactions with the se-
cure layer are done exclusively through the SecureManager.

During this process, the client peer locates a broker and
waits for a connection to open. Then, authenticates the
broker by initiating a challenge-response protocol [11] (Fig-

:DiscoverPrimitives ‘ ‘ :SecureManager

connect()
waitRdw()

ch = generateChallenge()

:GroupManager

SendMessage
(TYPE_AUTH,ch)

Figure 3: (Client) Authentication sequence dia-
gram: authBroker primitive.

‘:DiscoverFunctions ‘ :SecureManager H :CryptoManager

l res = generate
challengeResponse(ch)

sid =generateSID()

¢ = getCredential() getCredential()

sendMessage
(TYPE_AUTH_RES resc, sid) |

Figure 4: (Broker) Authentication sequence dia-
gram: authRequest function.

ure 3). The broker, responds to the challenge by signing
the data and sending its own credentail. A sufficiently long
(128-160 bits) session identifier SID is also generated and
sent (Figure 4). Finally, the client peer verifies the challenge
signature and the credential. If the signature is correct and
the credentail valid, it can be assumed that a connection to
a legitimate broker has been achieved. Both the SID and
the broker’s credential are locally stored in the client peer
(Figure 5)

3.2.2 Secure login

Once a connection to a broker has been established, the
client peer may try to authenticate via the login primitive,
sending its end-user username and password to the broker
to be validated against JXTA-Overlay’s database. The mes-
sage sent to the broker executes the login function at the
broker side. Depending on the username and password check
result, a response is sent back to the client, executing either
the loginOk or loginError function. The login primitive is
usually called as soon as the connect primitive finish event
is generated.

The secure version of this primitive is named secureLogin.
It maintains the message exchange, but signs and encrypts
the username and password sent to the broker, together with
the session identifier, SID, obtained from the previous au-
thBroker primitive call. The message is encrypted using the
broker’s public key, retrieved during broker authentication,
when its credential was retrieved. The session identifier and
the signature are used to avoid replay attacks, since just
encryption does not protect against them. Furthermore, a

:DiscoverFunctions ‘ ‘ :SecureManager H :CryptoManager

validateChallenge(res) =$
storeSID(sid)

storeCredential

storeBrokerCredential(c)
{c, brokerID)

Figure 5: (Client) Authentication sequence dia-
gram: authResponse function.

credential is requested to the broker, which may be used at
a later stage to authenticate to other client peers and as
a means to transport and publish public key information.
All this information is processed at the broker-side function
securelLogin.

The sequence diagrams for the secureLogin primitive and
function are shown in Figures 6 and 7, respectively.

‘ :DiscoverPrimitives ‘ ‘ :SecureManager H :CryptoManager

J. sReq = generate
CredentialReq()

sk = getPrivateKey()

pk = getPublicKey()

new
(user,psw,pk)

CredentialRequest

sign(sk)

b = serialize()

I encrypt(b)

sendMessage
(TYPE_SEC_LOGIN,sReq, sid)

Figure 6: (Client) Login sequence diagram: secureL-
ogin primitive.

During this protocol exchange, an instance of the Creden-
tialRequest class is used to encapsulate all data related to
the credential request, as well as the username and pass-
word. The actual format of this class is transparent to both
the control layer and JXTA messaging, since it is serialized.
This serialized form is then encrypted and Base64 encoded,
thus becoming an ordinary String as far as message trans-
port is concerned (see Figure 7).

3.2.3 Secure instant messaging

Once client peers are connected to the JXTA-Overlay net-
work in a secure manner, possessing of a credential and the
corresponding cryptographic keys, they are able to exchange
secure messages. As a proof of concept, the instant messag-
ing primitives, sendMessage and sendGroupMessage, have
been extended with secure versions. The following primi-
tives have been added:

e secureSendMessage: A simple text message is sent to
another user. This secure version encrypts data us-

‘ :SecureManager ‘

l sReq = process J
CredentialReq(encReq)

‘ :DiscoverPrimitives ‘

b = decrypt(sReq)

new(b) N
sReq:CredentialRequest
validate() [

:CryptoManager

¢ = generateCredential(sReq

SendMessage
(TYPE_LOGIN_OK c)

checkSID(sid)

¢ = generateCredential(sReq)

Figure 7: (Broker) Login sequence diagram: se-
cureLogin function.

ing the destination’s public key via a wrapped key ap-
proach.

Once the data is encrypted, it is encoded back to a
String using the Base64 algorithm, and then uses the
original non-secure version to transmit the data.

e secureSendGroupMessage: This method just iteratively
calls secureSendMessage to transmit encrypted data
to all members of a group.

3.3 Advertisement security and key distribu-
tion
Client peers’ credentials must be distributed to other group
members, before it is effectively possible to secure data ex-
changes (for example, in messenger primitives), since they
contain each client peer’s public key. The credential dis-
tribution method must take into account the fact that in a
P2P network nodes may go online and offline at any moment,
as well as allowing credential updates in the case that, for
some reason, a new one must be generated. To achieve this
end, we apply the scheme defined in [2], based on XMLd-
sig, where the credential is included into an advertisement,
piggybacking on JXTA-Overlay’s pipe advertisements prop-
agation mechanism. The reasons for this choice are twofold.

First of all, all JXTA-Overlay’s messaging capabilities be-
tween group members rely on the input pipes, as explained
in section 2.3, which can only be accessed by previously re-
trieving its associated advertisement. Therefore, client peers
cannot exchange messages unless they have each others’ pipe
advertisement. Consequently, by publishing credentials us-
ing this advertisement type, it is always guaranteed that
both parties have each others’ public key before any mes-
sage exchange begins. This approach also avoids relying on
additional protocols for credential distribution.

Additionally, the scheme allows the signature of pipe adver-
tisements, providing effective protection against advertise-
ment forgery, as exposed in section 2.4. It must be heavily
remarked that each client peer’s input pipe is very impor-
tant for its operation within the network. Once a broker
has granted access to a client peer, absolutely all incoming
messages are received via this pipe. Therefore, it is very im-
portant to secure the distribution of each client peer’s pipe
advertisement to avoid that a malicious peer may publish

a forged advertisement, claiming that its own input pipe is
assigned to some other peer identifier. In that scenario, all
messages outbound to that peer identifier would be auto-
matically redirected to the malicious peer.

A crucial advantage offered by this XMLdsig-based scheme,
instead of JXTA’s Signed Advertisement, apart from obviat-
ing the need for PSE, is its capability to become invisible to
standard JXTA-Overlay operation, instead of adding a new
advertisement type, completely opaque to advertisement in-
dexing and retrieval services (all advertisement fields disap-
pear). In this manner, JXTA-Overlay’s standard mechanism
of searching for some peer or end-user’s pipe advertisement
via the Name and Desc fields is not interfered.

3.3.1 Integration to JXTA classes

Pipe advertisements are instantiated at the control layer,
managed by the PipeOv class, and propagated across the
network at using the JXTA layer. Therefore, advertisement
signature and credential encapsulation should be invisible to
both layers to minimize their impact on the base libraries.
We define secure advertisements as the SignedPipeAdver-
tisement class, an extension of JXTA’s pipe advertisement.

JXTA advertisements are instantiated using a Factory de-
sign pattern, via the AdvertisementFactory class. We take
advantage of this fact to define a secure advertisement in-
stantiator, which is registered to the advertisement factory
replacing the original one. Furthermore, a Proxy design
pattern is applied on SignedPipeAdvertisement, so its be-
haviour and type is exactly the same as an original pipe
advertisement. The general class diagram for secure adver-
tisements using this strategy is shown in Figure 8. The Pi-
peAdvertisement class is abstract, specifying the expected
behaviour of a pipe advertisement (from the jxta.net pack-
age) whereas the PipeAdv class is the actual implementation
(from the jxta.net.impl package). It is not possible to
simply apply inheritance from the pipe advertisement im-
plementation, since its constructors are private.

Advertisement

ExtendableAdvertisement

SignedAdvertisement
<<interface>>

PipeAdvertisement

® AdvertisementFactory H PipeAdvinstantiator

Figure 8: Signed pipe advertisement class diagram
with JXTA classes.

As a result, new the advertisement type is invisible to both
the JXTA and control layers, since they are still able to op-
erate with PipeAdvertisement instances, ignoring the addi-
tional signature and credential encapsulation.

The class diagram with all classes related to secure advertise-
ment generation is shown in Figure 9. Just like in the case for
secure primitives in section 3.2, the CryptoManager instance
is used as the main interface to cryptographic modules. In
the case of secure advertisements, the CryptoManager also
performs some extra tasks related to XML signature gener-
ation and processing.

CryptoManager
<<interface>> KeySelector

7\

1 [
. | <<creates>>

|

|

|

AdvertisementSigner ModularKeySelector

-CryptoManager: cr

- yInfo ki): it
+setCr E yptoManager: cr) —» +getCredential():Object
+sign(Advertisement: a) +getPublicKey(): PublicKey

a)

<<uses>>

SignedAdvertisement
<<interface>>

SignatureResult
-result: int
-signer: String

+getResult(): int
— ® +getSigner(): String

+sign() <<yses>>
+validate():SignatureResult _
+getResult(): SignatureResult

Figure 9: Secure pipe advertisement class diagram
detail with related classes.

The class responsibilities are:

e SignedAdvertisement: Specifices the generic behaviour
of any secure advertisement, so it is possible to ex-
tend security to different advertisement types at a later
stage.

e SignatureResult: Encapsulates the signature valida-
tion result, defining a set of constants for different out-
comes: VALID, INVALID, ERROR, NO_SIGNATURE, NOT_-
AUTHENTIC, NOT_VALIDATED, MISSING_KEY. The signer
identifier as well as some additional information (such
as the error cause, for an ERROR result) are also in-
cluded.

e AdvertisementSigner: Manages all details related to
XML signature generation and validation.

e ModularKeySelector: Retrieves the credential from an
XML signature. The detalis on the purpose of this
class will be shortly explained in the following subsec-
tion 3.3.2.

3.3.2 Advertisement signature generation and vali-

dation
Pipe advertisements may be instantiated at any time in the
JXTA libraries using the AdvertisementFactory, via the
newAdvertisement method. However, this method is over-
loaded to take into account two different possibilities. One
of them uses no parameters and is always used by JXTA-
Overlay’s control layer to create a new advertisement, so it
can be transmitted across the network. The other possibility
is using an XML document as a parameter, so an advertise-
ment may be instantiated from some received data. This
method is exclusively used by the JXTA layer when adver-
tisements are searched, processing incoming data. JXTA-
based applications always operate with PipeAdvertisement
instances. We use this fact to tie advertisement signature

and credential encapsulation to the former newAdvertise-
ment overload, and advertisement validation and credential
retrieval to the latter one.

The sequence diagram for pipe advertisement generation and
signing at the PipeOv class is shown in Figure 10. Since the
signature must be generated after all advertisement fields
have been properly initialized (using setter methods, setXX),
the sign method is called at the control layer. It is the only
modification to the original PipeOv class.

. :Advertisement
Factory

dvertisenient()

adv
SignedPipeAdvertisement

:PipeAdv

setXXX

sign() - ‘

[|

sign(adv) I

Pr=g)
ki = createKeylnfo()
sm = getSignatureMethod(;

new(sm) ‘ySI—‘
new(pr.adv) et DOMContext

| new(sik) .| xmLsignature
sign(ctx)

Figure 10: Signed pipe advertisement instantiation:
new advertisement sequence diagram.

Since the CryptoManager arbitrates credentials and is the
only class aware of the real credential’s format, one of its
tasks during the signature generation process is providing
all the credential-dependant XML signature fields, via the
getSignatureMethod and createKeyInfo methods.

The sequence diagram for pipe advertisement reception and
validation is shown in Figure 11.

In contrast with signature generation, validation may be au-
tomatically executed upon advertisement instantiation from
retrieved XML data. Therefore, the validate method is
executed in the factory instantiator. The ensuing signa-
ture validation result remains available accessible using the
SignedAdvertisements’s getSignatureResult method.

During signature validation, the encapsulated credential must
be retrieved and stored within the CryptoManager, as well
as included into the SignatureResult instance. However,
the real credential format should be transparent to the Ad-
vertisementSigner class. This goal is achieved with help
of the ModularKeySelector class, a KeySelector implemen-
tation. The KeySelector interface is provided by the XML
signature libraries, the javax.xml.crypto.dsig package, to
retrieve the public key from the signature body via a callback
to the select method, so the signature may be properly val-
idated. An the implementation must be provided according
to the expected XML signature format. Therefore, we use
this expected behaviour during XML signature validation,
storing the retrieved credential for later processing.

4. CONCLUSIONS

:Advertisement
Factory

newAdvertisement
(xml)

adv :
SignedPipeAdvertisement

res = validate()
| oo | [‘comomne |

cady) |

ks =)

XMLSignature

verify(ks)

ks :Modular
KeySelector

sr= select(.)

verify(sr)

getCredential()

res :Sif

Figure 11: Signed pipe advertisement instantiation:
retrieved advertisement sequence diagram.

An extension of the JXTA-Overlay libraries has been pro-
posed and developed, in order to provide a basic secure layer
to an already implemented framework. Even though the sys-
tem design hardly took into account security mechanisms,
it was possible to provide a baseline with minor modifica-
tions to the base code and keeping a low coupling between
the original classes and the ones in the secure layer. Secure
message exchanges are invisible to JXTA’s underlying layer.
The main contributions form this experience are twofold.

First of all, effective secure credential distribution is pro-
vided by judicious use of design patterns. Pipe advertise-
ments are secured, using standard JXTA-Overlay and JXTA
procedures for publication and update, guaranteeing that
keys are always available whenever messages must be ex-
changed between peers. As a result key distribution becomes
invisible to the control and JXTA layers and end-user appli-
cation developers need not concern himself about how the
key distribution mechanism works.

Finally, the proposed framework is completely modular and
can be adapted to different scenarios (different types of cre-
dentials or cryptographic modules) suitable to the applica-
tion developers’ needs. This is also an improvement over the
security mechanisms provided by JXTA, which tie end-user
applications to a very specific credential and cryptographic
module type. In our implementation, public/private keys
are used, and credentials are issued in the form of X509 cer-
tificates, but the system accepts any cryptographic module
and credential type in a modular way via different Cryp-
toManager implementations. Once the basic blocks of the
security layer have been deployed, it is easy to extend JXTA-
Overlay’s primitives and functions with secure alternatives.

Further work goes towards extending the security layer to
additional primitives deemed sensitive to attacks, in a man-
ner that they complement existing ones, but not forcibly
replace them. Of special note are those of the executable
set of primitives, related to remote code execution.

S. REFERENCES
[1] Jxta 2.5 rcl, June 2007.
http://download. java.net/jxta/build.

2]

[10]

[11]

[14]

[15]

J. Arnedo-Moreno and J. Herrera-Joancomarti.
Persistent interoperable security for jxta. In
Proceedings of the Second International Workshop on
P2P, Parallel, Grid and Internet Computing (3PGIC)
2008, pages 354-359. IEEEPress, 2008.

J. Arnedo-Moreno and J. Herrera-Joancomarti. A
survey on security in jxta applications. Journal of
Systems and Software, page To be published, 2009.

D. Bailly. Cbjx: Crypto-based jxta (an internship
report), July 2002.

CCITT. The directory authentication framework.
recommendation, 1988.

B. Cohen. Incentives build robustness in bittorrent.
1st Workshop on the Economics of Peer-2-Peer
Systems, 2003.

G. C. et al. Wireshark, 1998.
http://www.wireshark.org/.

K. Matsuo, L. Barolli, F. Xhafa, A. Koyama, and

A. Durresi. Implementation of a jxta-based p2p
e-learning system and its performance evaluation.
International Journal of Web Information Systems,
4(3):352-371, 2008.

E. S. Josefsson. Ietf rfc 3548 - the basel6, base32, and
base64 data encodings, 2003.
http://wuw.ietf.org/rfc/rfc3548.txt.

D. Sax. Dns spoofing (malicious cache poisoning),
2003.
http://www.sans.org/rr/firewall/DNS_spoof .php.
W. Simpson. Ppp challenge handshake authentication
protocol (chap), 1996.
http://tools.ietf.org/html/rfc1994.

SUN Microsystems Inc. Jxta v2.0 protocols
specification, 2007. https://jxta-spec.dev. java.
net/nonav/JXTAProtocols.html.

SUN Microsystems Inc. Java cryptography
architecture (jca), 2008.
http://java.sun.com/javase/6/docs/technotes/
guides/security/crypto/CryptoSpec.html.

C. A. T. Dierks. Ietf rfc 2246: The tls protocol version
1.0, 1999. http://wuw.ietf.org/rfc/rfc2246.txt.
F. Xhafa, R. Fernandez, T. Daradoumis, L. Barolli,
and S. Caballe. Improvement of jxta protocols for
supporting reliable distributed applications in p2p
systems. In International Conference on
Network-Based Information Systems (NBiS), pages
345-354, 2007.

