
Reducing Data Request Contentions for Improved
Streaming Quality

Yao Liu1 Fei Li1 Lei Guo2 Songqing Chen1

1Department. of Computer Science 2Yahoo! Inc.
George Mason University Sunnyvale, California, USA

{yliud, lifei, sqchen}@cs.gmu.edu lguo@yahoo-inc.com

ABSTRACT

In P2P assisted multi-channel live streaming systems, it
is commonly believed that in unpopular channels, quality
degradation is due to the small number of participating peers
with almost-the-same set of available data; this phenomena
prevents effective data exchanges among peers themselves
and automatically leads to data request contentions once a
new data chunk becomes available. In popular programs,
our measurement on PPLive for a continuous three-month
period at various locations also shows numerous occurrences
of quality degradation because of the even higher ratio (up to
190%) of repetitive data requests for the same data chunks.

These results motivate us to investigate effective data ex-
change strategies to reduce data request contentions for im-
proved streaming quality. IDEA, an Improved peer Data
Exchange Algorithm, is proposed to carefully select chunks
to request from different peers. We conduct extensive sim-
ulations and the results show that IDEA significantly out-
performs the widely used algorithms in deployed systems.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed applications

General Terms

Algorithms, Experimentation

Keywords

P2P Streaming, QoS, RE-request

1. INTRODUCTION
With the demonstrated scalability of many practical P2P

applications, Internet streaming systems have widely adopted
P2P techniques. For example, PPLive [1], UUSee [2] are
both P2P assisted multi-channel Internet streaming systems,
serving hundreds of millions of Internet users with hundreds
of channels daily.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’10, June 2–4, 2010, Amsterdam, The Netherlands.
Copyright 2010 ACM 978-1-4503-0043-8/10/06 ...$10.00.

The increasing Internet streaming services have attracted
significant attention from both research and industrial com-
munities to understand and to improve the performance of
existing systems. For example, CoolStreaming [3] imple-
ments one of the earliest data-driven IPTV systems. Be-
cause the single most concern for clients is the streaming
quality perceived, lots of research [4, 5, 6] has sought to im-
prove the streaming quality from various aspects, such as
topologies, incentive mechanisms and peer churns.

However, in practically deployed P2P assisted multi-channel
live streaming systems, users in unpopular channels still of-
ten suffer un-satisfying playback quality due to poor buffered
content diversity among the participating peers [7]. This
has constrained the peer data exchange among themselves
while the server often has limited amount of bandwidth al-
located for an unpopular channel [8]. Studies have been
conducted to alleviate such quality degradation in unpopu-
lar channels by re-provisioning the server resources [8], us-
ing peers in popular channels to help unpopular ones [9],
etc. However, given limited resource available on the server
and the majority (> 70% on average) of unpopular chan-
nels in a P2P assisted streaming multi-channel system, re-
provisioning could only have limited effect with the increase
of participating clients. On the other side, given that there is
always resource shortage in a P2P system due to free-riders
or physical constraints on the network uploading bandwidth,
leveraging peers in popular channels to help unpopular ones
is counter-effective, since the resource shortage in a popular
channel is often much larger than that in an unpopular one.

In addition, through the Internet based continuous mea-
surement in practically deployed P2P assisted multi-channel
streaming system, PPLive, at various locations (both in
USA and China), we have found that quality degradation
not only commonly exists in unpopular channels, but also
frequently occurs in popular ones because of the very high
(up to 190%) repetitive request ratio (for the same data
chunks). Such a high repetitive request ratio, caused by se-
vere data request contentions, results in ever-increasing lag
of data buffering and the drainage of the playback buffer.

The measurement results motivate us to examine better
peer data buffering and exchange strategies. That is, for
a peer at any time, in what kind of order it should con-
nect with which available neighbors to request which data
chunks. This problem, however, has not been thoroughly in-
vestigated before. Previous studies [3, 4, 5, 10, 11] on data
delivery approaches mainly considered push (often associ-
ated with tree), pull (often associated with mesh), or the
hybrid of pull and push (such as new CoolStreaming [10]).

In these studies, simple or heuristic data exchange strategies
are used, mainly concerning the data chunk selection poli-
cies only, such as local rarest first [3], in which the rarest
chunk among all peers has the higher priority of being dis-
tributed. However, at the stage of fewer copies of chunks,
multiple peers may request the same chunk from the same
parent, which results in higher contentions and eventually
reduces the speed of proliferating copies.

In this work, noticing that peer data buffering and ex-
change are constrained by both the available neighbors and
chunk selection strategies, we propose an Improved peer
Data Exchange Algorithm, called IDEA. IDEA aims to re-
duce the data request contentions so that peers can minimize
their data acquisition time. We conduct extensive simula-
tions in order to compare our scheme with others from differ-
ent perspectives. The results demonstrate that our scheme
consistently outperforms the practically used algorithms in
the deployed systems, such as the sequential strategy used in
the current PPLive (based on our reverse-engineering), and
the local rarest-first used in CoolStreaming for both popular
and unpopular channels.

2. PPLIVE MEASUREMENT
In order to examine the streaming quality in current P2P

streaming systems, we deployed probing hosts in both China
(TeleCom and NetCom) and USA (on university campus)
to view different channels of PPLive. While the playback
continues, we capture all incoming and outgoing packets.
Currently PPLive ranks the channel popularity based on
participating peers, ranging from star-0 to star-5. Figure 1
shows the distribution of the channels with different popu-
larity in two weeks. Apparently, the majority (> 70% on av-
erage) are unpopular channels with star-0 and star-1. In our
measurements, the probing hosts were instructed to watch
both unpopular (star-0) and popular channels (star-5). Due
to page limit, we will only present results observed from
China where most PPLive users reside. Since we captured
the NBA playoff games, a highly popular event, for 4 days,
we also present 4 day results of other unpopular and popular
channels as comparisons. Note that while the unpopular and
popular channels’ streaming rate is 381kbps, the streaming
rate of NBA playoff games is 700kbps.

MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI SAT SUN MON
0

50

100

150

#
 o

f
C

h
a

n
n

e
ls

0−1 star

2−3 star

4−5 star

Figure 1: # of Channels with 0-5 stars (2009/08/24-

2009/09/07)

Table 1 shows the number of unique IP addresses that
were returned in the peer-list reply messages. Although the
result only shows a local view of the total online peers, it
indicates the population difference in different channels.

2.1 Quality Degradation in both Unpopular
and Popular Channels

To analyze the streaming quality received at our probing
hosts, we first examine if the data receiving is fast enough
to catch up the playback. Figures 2, 3, and 4 show the

Table 1: Observed neighbors from probing hosts

Unpopular Popular NBA Playoff (extremely popular)
Day 1 75 1960 7398
Day 2 79 1773 6319
Day 3 63 1755 6268
Day 4 57 1701 11005

0 30 60 90 120
0

0.5

1

1.5

2

2.5

3
x 10

6

Playback (minutes)

R
ec

ei
ve

d
D

at
a

(k
b)

Playback speed

Buffering speed

(a) 04/06/2009

0 30 60 90 120
0

0.5

1

1.5

2

2.5

3
x 10

6

Playback (minutes)

R
ec

ei
ve

d
D

at
a

(k
b)

Playback speed

Buffering speed

(b) 04/07/2009

0 30 60 90 120
0

0.5

1

1.5

2

2.5

3
x 10

6

Playback (minutes)

R
ec

ei
ve

d
D

at
a

(k
b)

Playback speed

Buffering speed

(c) 04/08/2009

0 30 60 90 120
0

0.5

1

1.5

2

2.5

3
x 10

6

Playback (minutes)

R
ec

ei
ve

d
D

at
a

(k
b)

Playback speed

Buffering speed

(d) 04/09/2009

Figure 2: Buffering vs. Playback (Unpopular channel)

0 30 60 90 120
0

0.5

1

1.5

2

2.5

3
x 10

6

Playback (minutes)

R
ec

ei
ve

d
D

at
a

(k
b)

Playback speed

Buffering speed

(a) 04/06/2009

0 30 60 90 120
0

0.5

1

1.5

2

2.5

3
x 10

6

Playback (minutes)

R
ec

ei
ve

d
D

at
a

(k
b)

Playback speed

Buffering speed

(b) 04/07/2009

0 30 60 90 120
0

0.5

1

1.5

2

2.5

3
x 10

6

Playback (minutes)

R
ec

ei
ve

d
D

at
a

(k
b)

Playback speed

Buffering speed

(c) 04/08/2009

0 30 60 90 120
0

0.5

1

1.5

2

2.5

3
x 10

6

Playback (minutes)

R
ec

ei
ve

d
D

at
a

(k
b)

Playback speed

Buffering speed

(d) 04/09/2009

Figure 3: Buffering vs. Playback (Popular channel)

accumulated data received along the playback for unpopular,
popular, and highly popular channels, respectively.

Figure 2 shows the data buffering versus playback in the
unpopular channels from 04/06 to 04/09. Apparently, the
initial playback buffer, commonly around 1 minute in prac-
tice, cannot smooth out the significant buffering lag, indi-
cating the consistent inferior quality in unpopular channels.

In popular channels, Figures 3 and 4 show that compared
to unpopular channels, the buffering lag is significantly re-
duced. One reason might be that in popular channels, there
are more peers available for a peer to contact for data. How-
ever, along the playback, the buffering lag still increases
in practice. While sometimes the buffering lag could be
smoothed out by the initial playout buffer, such as 05/31
for NBA playoff, most of the time, the buffering lag goes be-
yond the initial playback buffer. Also, on our probing hosts,

0 30 60 90 120
0

1

2

3

4

5

6
x 10

6

Playback (minutes)

R
ec

ei
ve

d
D

at
a

(k
b)

Playback speed

Buffering speed

(a) 05/27/2009

0 30 60 90 120
0

1

2

3

4

5

6
x 10

6

Playback (minutes)

R
ec

ei
ve

d
D

at
a

(k
b)

Playback speed

Buffering speed

(b) 05/31/2009

0 30 60 90 120
0

1

2

3

4

5

6
x 10

6

Playback (minutes)

R
ec

ei
ve

d
D

at
a

(k
b)

Playback speed

Buffering speed

(c) 06/10/2009

0 30 60 90 120
0

1

2

3

4

5

6
x 10

6

Playback (minutes)

R
ec

ei
ve

d
D

at
a

(k
b)

Playback speed

Buffering speed

(d) 06/12/2009

Figure 4: Buffering vs. Playback (NBA Playoff)

we have observed frequent short-term fluctuations, making
users frequently experience replaying the buffered content
and ever-increasing playback delay.

2.2 High Data RE-request Rate for the Same
Data Chunks

Buffering lags as shown in the last subsection for both
popular and unpopular channels indicate our probing hosts
could not receive data in time. We thus set to examine
the data requests and find a significant amount of data RE-
requests (for the same piece of data chunks) during our mea-
surement, especially in popular channels. A data RE-request

means a repetitive request for the same playback data chunk
because a previous request was not replied or was not replied
in time.

Table 2: Data RE-request ratio (Unpopular channels)

of # of Received RE-request Same Neighbor
RE-request Unique Pieces Ratio (%) Ratio (%)

04/06 202096 252343 79.7 80.5
04/07 190203 267074 71.1 78.6
04/08 261275 249830 103.5 85.1
04/09 294652 254171 115.5 86.6

Table 3: Data RE-request ratio (Popular channels)

of # of Received RE-request Same Neighbor
RE-request Unique Pieces Ratio (%) Ratio (%)

04/06 506815 286975 176.1 86.9
04/07 425014 280546 150.7 83.8
04/08 480251 283848 168.7 85.0
04/09 453577 286690 157.8 84.3

Table 4: Data RE-request ratio (NBA Playoff)

of # Received RE-request Same Neighbor
RE-request Unique Pieces Ratio (%) Ratio (%)

05/27 689924 467014 147.5 86.0
05/31 865435 449537 190.2 84.8
06/10 740971 452433 162.5 86.7
06/12 728959 450424 160.4 85.0

Tables 2, 3 and 4 show the number of data RE-request
against the unique received chunks for playback and the RE-
request ratio, respectively, in the second, third, and fourth

columns. In unpopular channels, the RE-request ratio, de-
fined as the number of data RE-requests divided by unique
requested data chunks, is around 100%, indicating that al-
most all the data chunks were requested twice. For popular
and highly popular channels shown in Tables 3 and 4, the
RE-request ratio is even higher, reaching 190%. This means
some data chunks were even requested three times. Consider
the significant control overhead of data RE-requests and the
time spent on waiting for data replies, it is not surprising
that there is quality degradation in popular channels. Since
a data RE-request indicates one unsuccessful data pull at-
tempt, the larger the RE-request ratio, the less efficient the
data exchange strategy is. On the other hand, simply in-
creasing the number of reachable neighbors for a peer would
not solve this problem as our probing hosts in popular chan-
nels have many more neighbors than in the unpopular chan-
nels, but have even more request failures. Further analysis
shows that these RE-requests were still mainly sent to the
same neighbor as before, as shown in the last column in the
tables. Thus, the request failure is likely due to the request
contention instead of the sudden neighbor departures.

3. DESIGN OF IDEA
We have shown in Section 2 that the quality degradation,

in both unpopular and popular channels, comes from the
following two underlying reasons: (1) when the number of
peers is small, the requested data chunks are not available
among the neighbors of the requesting peer at that time; (2)
when the number of peers is large, multiple peers requesting
the same data chunk overload the neighbors and result in
high contentions and poor data exchange efficiency. In this
section, we design an Improved Data Exchange Algorithm
(IDEA) for peers requesting data chunks from their neigh-
bors in distributed systems by tackling with both issues. On
one hand, we would like to propagate quickly the data from
the few peers holding them to increase the availability of
each data chunk in the whole system; on the other hand, we
let the peers request copies of chunks in a uniformly random-
ized way such that contention can be reduced significantly.

At time t, we consider a P2P streaming system consisting
of n peers P1, P2, . . . , Pn that are requesting the same set
of data chunks, where n may be changing over time. Here
in our system, a peer employs a sliding window scheme to
buffer a set of chunks of data and after a chunk is played back
by the media player, it is not sharable any more (assuming
the worst case). For simplicity of presentation, we regard
one peer requesting different sets of chunks at different time
as multiple different peers.

At any time, each peer Pj has a vector (which is termed as
a buffermap in P2P streaming systems) Vj = < aj

1
, aj

2
, . . . , aj

m >

to denote the data that it already has, where aj

k ∈ {0, 1} is
the indicator of the availability of the chunk ck for the peer
Pj . For all k = 1, 2, . . . , m, we define

aj

k =



1, if Pj has the chunk ck,
0, otherwise.

We define a matrix A containing the information about
the availability of all chunks of data. Under an ideal sce-
nario, A is known to all the peers.

An×m =

0

@

V1

. . .
Vn

1

A =

0

@

a1

1 a1

2 . . . a1

m

.
an
1 an

2 . . . an
m

1

A . (1)

Given time t, for each peer, we need to specify the order
of its connecting with other peers as well as the sequences of
exchanging data chunks. Each chunk’s data exchange can-
not be preempted. Our target is to balance the distribution
of the respective data chunks over all the system without
jeopardizing individual peers’ performance, defined as the
earliest time of getting the whole set of chunks. Heuristi-
cally, an (almost)-evenly distributed placements of distinct
data chunks and an optimal uniformly permutation over all
copies of the same chunk for peers result in much less con-
tention among peers with limited resources, and potentially
improves the performance of P2P streaming systems.

Following the above heuristics, we sketch the idea of our
algorithm. For each data exchange session, there is one
sender and one receiver. The sender simply follows the First-
Come-First-Serve (FCFS) policy, passing the chunks of data
according to the order specified by the receiver. If there are
multiple receivers’ requests at the same time, ties are bro-
ken randomly. The main technique of our algorithm lies
at the receiver side. (Roughly speaking, our algorithm is a
pull-based one.) Given time t and a peer Pi, our goal is to
design an algorithm specifying a sequence for Pi to connect
with which peer to exchange which data chunk at which
time such that Pi gets the whole set of data S at its earliest
time. Among all such feasible sequences, we prefer Pi to
choose the one which proliferates the rarer chunks faster. In
order to reduce the contention among peers connecting with
the same peer for the same chunk, a (uniformly) random
permutation policy is employed.

Based on our discussion above, we design the algorithm.
Given a time t and a peer Pj , let rj denote the number of
chunks that Pj already has at the current time. rj = I ·VT

j ,

where I = < 1, 1, . . . , 1 > . Then, we define dk
j as the

least remaining time for Pj to share its available data ck
j

in the system. Since peers’ playback points may not be
synchronized, dk

j is defined as the difference between k and
the estimated playback point of Pj divided by the playback
rate of the peer Pj . Let xk =

Pn

j=1
aj

k, k = 1, 2, . . . , m

denote the number of available chunks ck. Let cj

k denote the
chunk k that a peer Pj has. The weight function for chunks
ck is defined as the inverse of the number of available copies.
Thus, the rarest copy has the highest weight.

wk =
1

xk

=
1

Pn

j=1
aj

k

. (2)

For each peer Pj , we initialize a queue with m − rj ar-
ray spaces indicating the sequence of exchanging the chunks
that Pj does not have for now. Then, for these chunks ,
we sort all copies of them in non-increasing weight order
(according to the weight function defined above), with ties
broken in favor of the larger deadline ones. At first, we max-
imize the number of chunks that the peer Pj can get before
these chunks of data become unavailable. We insert a copy
of each chunk ck that the peer Pj does not have currently
in a non-increasing weight order in the queue. Note that
a chunk ck may have multiple copies belonging to multiple
different peers with different deadlines. In the iteration of
examining each chunk ck for Pj , we insert the copy cl

k from
a peer Pl in an empty position no later than dl

k. If cl
k can-

not be inserted without violating any deadline of an existing
copy of chunk in the queue after possible rearrangement over
all chunks in the queue, we discard cl

k; this indicates that

we cannot get cl
k or another chunk before they become un-

available. The feasibility test of cl
k can be done using the

Earliest-Deadline First (EDF) algorithm on all tentatively
selected chunks in the queue (see details in Algorithm 1).
After considering the copy cl

k with the largest-deadline for
the chunk ck, we let all other copies cs

k (if any) have weight
reassigned 0; that is, Pj does not consider any other copy
of the chunk ck). We repeat doing above operations until
all chunks that Pj does not have at time t are considered.
Finally, after Pj maximizes the number of chunks that it can
exchange from other peers, Pj uniformly randomizes the or-
der of selecting copies of these chunks in order to reduce the
contention among peers requesting the same chunk of data
from the same parent. The pseudo-code for a peer Pj works
as in Algorithm 1. For clarity, we do not address the role
of bandwidth in the algorithm. A factor can be multiplied
to the size of the queue storing the chunks unavailable for
the peer to reflect the bandwidth limitation and the speed
of exchanging data.

Procedure 1 IDEA-Receiver(An×m, Pj)

1: Get the buffermap information of all peers (that is, ini-
tialize ai

k).
2: Initialize a queue Q to contain the copies of chunks that

Pj currently does not have.
3: for i = 1, . . . , n do

4: Set dk
i according to estimated playback point and

playback rate of peer Pi.
5: end for

6: for k = 1, . . . , m do

7: xk =
Pn

i=1
ai

k, wk = 1/xk.
8: end for

9: Sort all ai
k in non-increasing weight order wk with ties

broken in favor of larger deadline (di
k) ones.

10: for each chunk ck that is in the queue Q do

11: Run EDF algorithm over all existing chunks with
deadlines di

k in Q.
12: if some copy of chunk existing in Q cannot be aligned

in a position no later than its deadline then

13: Reject cl
k.

14: else

15: Insert a copy cl
k of the chunk ck belonging to a peer

Pl into Q.
16: end if

17: Set all copies of ck weight 0.
18: end for

19: Uniformly random permute the copies (from different
peers) of each chunk in Q with possible replacement un-
der the deadline constraints.

4. PERFORMANCE EVALUATION
To study the performance of our proposed IDEA, in this

section, we evaluate the performance of IDEA against local-
rarest first and sequential algorithms, represented as RAREST
and SEQUENTIAL. The former, used in CoolStreaming, gives
high priority to data chunks that are least available from
neighbors, while the latter, used in PPLive, requests data
chunks according to the sequence number of data chunks.

4.1 Experiment Setup
To thoroughly evaluate the various aspects of the algo-

rithms, we use an open source P2P streaming simulator [12].

The following settings are used in our simulations. The
streaming rate is 300kbps. Each participating peer has up to
25 neighbors, which is based on our findings from the mea-
surement of PPLive. We set the peers’ upload and download
bandwidth based on the measurement results from [13]. We
consider one streaming server and its outgoing bandwidth
is set to 5 Mbps for one channel and the peers’ end-to-end
latency is randomly mapped to a node pair of a 2500 × 2500
matrix from the Meridian data set [14].

In the experiments, peers join the streaming channel with
the rate of 500 peers per second, and the inter-arrival time
follows the exponential distribution. The peers’ online time
distribution follows the measurement results of Gridmedia [12].
Peers exchange buffermaps with their neighbors every 0.5
seconds, and peers request streaming data from neighbors
every 1 second. In each scenario, the peer’s buffer size is set
to 10 seconds, 15 seconds, and 20 seconds of the playback,
respectively. The streaming lasts for 600 seconds. Each test
is repeated 10 times and we calculate the average and the
95% confidence interval of our results across these runs for
each setup with different random seeds.

We evaluated three different popularity scenarios: (i) un-
popular channels in which a total of 50 peers participate in
the streaming; (ii) medium popular channels with a total of
500 peers; and (iii) highly popular channels with 5000 peers.
While various situations have been evaluated, we can only
present the typical results for unpopular, medium popular,
and highly popular channels due to page limit.

4.2 RE-request Ratio
As our measurement results shows, the RE-request ratio

caused by request contentions is the major source of per-
formance degradation. We thus first investigate the effec-
tiveness of our IDEA algorithm in reducing data request
contention.

Figure 5 depicts the RE-request ratio of channels with
different popularity. BUF indicates the initial buffer size
in these figures. Figure 5 (a) shows that the RE-request ra-
tios of both local-rarest first and sequential are prohibitively
high for unpopular channels, reaching about 15. In addi-
tion, Figure 5 also shows that in unpopular channels simply
increasing the buffer size cannot address the performance
degradation. On the contrary, it may actually aggravate the
request contention.

As the channel becomes more popular , Figure 5 (b) shows
that the performance of local-rarest first significantly im-
proves, but is still worse than that of our IDEA algorithm,
while the sequential algorithm performs the worst. The
improvement of local-rarest first is due to the increase of
the number of available peers that a peer can connect with
and request data chunks from. However, when a channel
becomes highly popular, Figure 5 (c) shows that the RE-
request ratio of local-rarest first increases again. This is
because of the faster increase of request contention among
peers than the increase of the available peers to connect with
since each peer can have a limited number of neighbors, up
to 25 in these experiments. Among all the algorithms, IDEA
performs the best in all scenarios.

4.3 Received Quality
While request contention is the cause of playback degra-

dation, the ultimate concern from a user’s perspective is the
playback quality. Figure 6 shows the corresponding overall

quality in different scenarios. The quality here is defined as
the ratio between the amount of playback data received in-
time and the amount of data requested for smooth playback.

In consistency with the lower RE-request ratio, in unpop-
ular channels, Figure 6 (a) shows that the received quality of
our IDEA algorithm is close to 100%, while both local-rarest
first and sequential can only achieve around 80%.

In medium popular channels, Figure 6 (b) shows that
the streaming quality of local-rarest first becomes better
(> 95%), but it is still worse than that of our IDEA al-
gorithm. On the other hand, the streaming quality with the
sequential scheduling algorithm still suffers. In highly pop-
ular channels, as we can see from Figure 6 (c), our IDEA
algorithm constantly achieves nearly 100% streaming qual-
ity. For local-rarest, the quality in the highly popular chan-
nel is worse than that in the medium popular channel due
to the severely increased request contention as indicated by
Figures 5 (b) and (c).

4.4 Packet Propagation Delay
Overall quality presented in the last subsection shows the

playback quality once the playback starts. A playback can
be started later in order to improve the overall quality by
buffering more data. In Section 2, we have observed the
increasing playback lag with time. To analyze this lag, we
investigate the packet propagation delay at the network level
in this subsection. Figure 7 shows the average packet prop-
agation delay calculated over the entire streaming session.
The packet propagation delay is defined as the difference be-
tween the time when a packet is delivered from the streaming
server to the time when the packet actually arrives at a peer.
Figure 7 (a) shows the average packet propagation delay in
unpopular channels. Compared with Figures 7 (b) and (c)
where more peers are participating in the streaming, the
propagation delay in unpopular channels is relatively short.
This is likely due to two factors. On one side, more peers in
the medium and highly popular channels extend the number
of hops of packet traveling. On the other hand, request con-
tention also contributes to the prolonged delay we observe
on these figures.

Figure 7 also shows that the packet propagation delay ac-
tually increases with the increase of the buffer size, although
the effect is less pronounced on the medium and highly pop-
ular channels than the unpopular channels. Nevertheless,
Figure 7 shows that our IDEA algorithm constantly outper-
forms the other two in all three scenarios.

5. OTHER RELATED WORK
Internet streaming systems, particular the P2P assisted

multi-channel systems like PPLive, PPStream, UUSee, are
becoming more and more popular. Along with the increasing
Internet streaming traffic, lots of studies [11, 10] have pro-
posed new schemes to improve the streaming quality. Most
recently, Huang et al. have conducted a large scale measure-
ment to study the PPLive based on-demand streaming [13].
On the other hand, the increasing Internet streaming traffic
has also raised concerns about the Internet resource utiliza-
tion. For example, recently, Wu et al. investigated P2P
streaming topologies in UUSee [15] and found only about
40% of total connected peers are from the same ISP as the
observing peer. Work [8] also aimed to have full ISP aware-
ness to constrain P2P traffic within ISP boundaries.

BUF=10 sec BUF=15 sec BUF=20 sec
0

5

10

15

20

R
E

−r
eq

ue
st

 R
at

io

IDEA

RAREST

SEQUENTIAL

(a) Unpopular (50 Peers)

BUF=10 sec BUF=15 sec BUF=20 sec
0

5

10

15

20

25

R
E

−r
eq

ue
st

 R
at

io

IDEA

RAREST

SEQUENTIAL

(b) Medium popular (500 Peers)

BUF=10 sec BUF=15 sec BUF=20 sec
0

5

10

15

20

R
E

−r
eq

ue
st

 R
at

io

IDEA

RAREST

SEQUENTIAL

(c) Highly popular (5000 Peers)

Figure 5: Overall RE-request Ratio

BUF=10 sec BUF=15 sec BUF=20 sec
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ve

ra
ll

Q
ua

lit
y

(a) Unpopular (50 Peers)

BUF=10 sec BUF=15 sec BUF=20 sec
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ve

ra
ll

Q
ua

lit
y

(b) Medium popular (500 Peers)

BUF=10 sec BUF=15 sec BUF=20 sec
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ve

ra
ll

Q
ua

lit
y

(c) Highly popular (5000 Peers)

Figure 6: Overall Received Quality

BUF=10 sec BUF=15 sec BUF=20 sec
0

5

10

15

20

O
ve

ra
ll

P
ac

k
D

el
ay

 (
se

c)

(a) Unpopular (50 Peers)

BUF=10 sec BUF=15 sec BUF=20 sec
0

5

10

15

20

25

30

35

O
ve

ra
ll

P
ac

k
D

el
ay

 (
se

c)

(b) Medium popular (500 Peers)

BUF=10 sec BUF=15 sec BUF=20 sec
0

10

20

30

40

O
ve

ra
ll

P
ac

k
D

el
ay

 (
se

c)

(c) Highly popular (5000 Peers)

Figure 7: Packet Propagation Delay

6. CONCLUSION
Data buffering and exchange strategies play a key role in

the peer data acquisition, and thus directly determine the
peer inter-connections and impact peers’ perceived stream-
ing quality in the P2P assisted multi-channel live streaming
systems. Existing systems use simple or heuristic schemes
or adopt the effective schemes in P2P file sharing such as
rarest first. The effectiveness of these schemes has not been
carefully researched before. In this study, motivated by the
measurement results from a large scale deployed system, we
investigate the peer data buffering and exchange strategies.
In order to improve the peer exchange opportunities, peers
are equipped with a new peer selection and data chunk selec-
tion scheme. Our evaluation results show that our proposed
algorithm can significantly improve the streaming quality
for clients in both unpopular and popular channels.

7. ACKNOWLEDGEMENT
We appreciate constructive comments from anonymous

referees and help from our shepherd Zhenyu Yang. The work
is partially supported by NSF under grants CNS-0746649,
CCF-0915681, and AFOSR under grant FA9550-09-1-0071.

8. REFERENCES
[1] “PPLive,” http://www.pplive.com.

[2] “UUSee,” http://www.uusee.com.

[3] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum,
“Coolstreaming/donet: A data-driven overlay network for

efficient live media streaming,” in Proc. of IEEE INFOCOM,
2005.

[4] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A
comparative study of live p2p streaming approaches,” in Proc.
of IEEE INFOCOM, 2007.

[5] F. Wang, Y. Xiong, and J. Liu, “mtreebone: A hybrid
tree/mesh overlay for application-layer live video multicast,” in
Proc. of IEEE ICDCS, 2007.

[6] D. Stutzbach and R. Rejaie, “Understanding churn in
peer-to-peer networks,” in Proc. of ACM IMC, 2006.

[7] C. Wu, B. Li, and S. Zhao, “Diagnosing network-wide p2p live
streaming inefficiencies,” in Proc. of IEEE INFOCOM

Mini-Conference, 2009.

[8] C. Wu, B. Li, and S. Zhao, “Multi-channel live p2p streaming:
Refocusing on servers,” in Proc. of IEEE INFOCOM, 2008.

[9] D. Wu, C. Liang, Y. Liu, and K.W. Ross, “View-upload
decoupling: A redesign of multi-channel p2p video systems,” in
Proc. of IEEE INFOCOM, 2009.

[10] B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang,
“Inside the new coolstreaming: Principles, measurements, and
performance implications,” in Proc. of IEEE INFOCOM, 2008.

[11] N. Magharei and R. Rejaie, “Prime: Peer-to-peer
receiver-driven mesh-based streaming.,” in Proc. of IEEE
INFOCOM, 2007.

[12] “P2P Streaming Simulator,”
http://media.cs.tsinghua.edu.cn/ zhangm/.

[13] Y. Huang, T. Fu, D. Chiu, J. Lui, and C.Huang, “Challenges,
design and analysis of a large-scale p2p-vod system,” in Proc.
of ACM SIGCOMM, 2008.

[14] “Meridian node to node latency matrix (2500 × 2500),”
http://www.cs.cornell.edu/People/egs/meridian/data.php.

[15] C. Wu, B. Li, and S. Zhao, “Exploring large-scale peer-to-peer
live streaming,” in IEEE Transactions on Parallel and

Distributed Systems, June 2008.

