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Abstract

Caches were designed to amortize the cost of memory accesses by
moving copies of frequently accessed data closer to the processor.
Over the years the increasing gap between processor speed and
memory access latency has made the cache a bottleneck for pro-
gram performance. Enhancing cache performance has been instru-
mental in speeding up programs. For this reason several hardware
and software techniques have been proposed by researchers to opti-
mize the cache for minimizing the number of misses. Among these
are compile-time data placement techniques in memory which im-
prove cache performance. For the purpose of this work, we concern
ourselves with the problem of laying out data in memory given the
sequence of accesses on a finite set of data objects such that cache-
misses are minimized. The problem has been shown to be hard to
solve optimally even if the sequence of data accesses is known at
compile time. In this paper we show that given a direct-mapped
cache, its size, and the data access sequence, it is possible to iden-
tify the instances where there are no conflict misses. We describe an
algorithm that can assign the data to cache for minimal number of
misses if there exists a way in which conflict misses can be avoided
altogether. We also describe the implementation of a heuristic for
assigning data to cache for instances where the size of the cache
forces conflict misses. Experiments show that our technique results
in a 30% reduction in the number of cache misses compared to the
original assignment.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors - Memory Management

General Terms Algorithms, Measurement, Performance

Keywords Offline Algorithms, Memory Management, Cache
Consciousness, Cache Optimization, Data Placement in Cache

1. Introduction

Latencies from the memory hierarchy have a significant impact on
program performance. Caches were designed to improve memory
access times by copying frequently accessed data into relatively
smaller on-chip storage that is readily accessible to the proces-
sor. As the gap between processor speed and memory access speed
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widened, caches became the bottleneck for program performance.
A significant amount of research has been done to reduce the im-
pact of cache misses on program performance. Both hardware and
software techniques have been employed to this end. Hardware en-
hancements to caches include increased associativity for reducing
conflicts between objects mapped to the same block, multibanked
caches to increase cache bandwidth and multi-level caches to re-
duce miss penalty, among others [16].

Software techniques, including compile-time optimizations as
well as run-time optimizations, have also been useful in reducing
cache misses. Among the most well known ones are prefetching
[18], loop interchange [25], code and data rearrangement [12, 22],
and blocking [17]. More recent works have focussed on more
accurately computing reference locality of objects [6, 13, 15, 23,
26-28] and on reorganizing objects in memory using an intelligent
memory manager [7-10].

The number of cache misses depends on how the data in mem-
ory is accessed. A cache miss occurs when an object is accessed
for the first time by a program and that object had not been pre-
viously fetched into the cache. This is called a compulsory miss.
Prefetching is a technique that is employed to reduce the number
of compulsory misses. When an object in the cache is replaced by
another object mapped to the same line in the cache and the origi-
nal object is accessed again, a conflict miss occurs. In cases where
the objects accessed by the program do not fit in the cache, capac-
ity misses are a result. One of the ways in which performance can
be improved is to layout the data in memory such that it minimizes
conflict misses. The problem of placing data in memory such that
conflict misses are minimized has been known to be hard for some
time and has been a topic of NP-hardness studies by Thabit [24]
and Petrank et al. [20]. Calder et al [4] used profiling to place data
in memory via intelligent heuristics to reduce conflict misses in the
cache.

In this paper we consider the offline problem of minimizing
cache misses in direct mapped caches as formulated in [21]. This is
the most interesting and the most difficult case among problems in
cache conscious data placement and the results from this problem
can be extended to t-way associative caches. The problem for fully-
associative caches is known to have a trivial solution. The problem
considered in this paper can be formalized as follows:

Let O = {01, - ,0m}, be the set of objects accessed by a
given program where we assume that each object fits in a single
cache line. Given a cache of k lines and a data access sequence
o= (o1, ++ ,0n) where o; € Oforalli € {1,--- ,n}, we want
to assign each object to a cache line such that misses are minimized.
The access sequence can be obtained by profiling the program.
The problem can now be considered as a mapping problem for all
objects in O where the domain of o; € Ois {1,--- ,k} for all ¢
where 1 < ¢ < m. A valid solution is an assignment of values
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Figure 1. A set of intervals and the interval graph defined by it.

to all the objects in 0. An optimal assignment would entail that
cache misses are minimum for the given sequence o. We assume
that any data object in memory can be assigned to any one of the k
cache lines. The objective is to find a coloring of the data conflict
graph such that each object 0;, ¢ € {1,--- ,m} can be placed in
a memory block that maps to a cache line indicated by that color
and results in the fewest possible cache misses. The problem can
be defined as:

DEFINITION 1 (Minimum k-cache Misses Problem). Given a set
of objects O and a sequence of accesses o find a mapping f :
O — {1, ,k} such that Misses((O, o), f) is minimized.

In this paper we describe an algorithm for solving the Minimum
k-cache Misses Problem. We use results from graph theory to
show that for instances where the objects in a given sequence can
be laid out in memory without any conflict misses, an optimal
solution can be found. For other instances we heuristically reduce
the problem and apply the same algorithm to optimize for the
number of cache misses. To apply this approach, a program is
first profiled to record the order of its data accesses. The profile
information thus gathered is used by the algorithm to construct a
conflict graph for the program. This conflict graph is then used
by the algorithm to determine a cache assignment to all objects
which reduces the number of misses. This assignment is then used
to guide the memory manager to create a placement for objects in
memory such that it complies with the assignment determined by
our algorithm.

The rest of the paper is organized as follows. The next section
gives an overview of the necessary background material. In Section
3 we describe our solution to the cache conscious data placement
problem. In Section 4 we present results on selected benchmarks.
In Section 5 we give an overview of some related work. In Section
6 we discuss some of the issues related to the problem and analyze
our solution. Finally, in Section 7 we conclude with a summary of
our work.

2. Background

This section gives an overview of the relevant results from graph
theory which are used in our solution to the data placement algo-
rithm. For more on interval graphs see [14]. Here we also describe
the construction of the data conflict graph from a sequence of ac-
cesses. The graph representation used in our algorithm is similar to
the proximity graph described in [24] and the temporal relationship
graph described in [4].

2.1 Graph Theory

Given a set of intervals Z = {I1,--- , I, } on areal line a vertex
v; can be defined for each interval I}, and an edge (v;, vy ) exists if
and only if the two corresponding intervals intersect, i.e. I; N I, #

0.

DEFINITION 2 (Interval Graph). A graph G is called an interval
graph if it is the intersection graph of some intervals.

Given an undirected graph G = (V, E), where v; € V, a
vertex order (v1, - - ,Um) can be obtained by directing each edge

(vi,v;) € Easv;, — v;ift < jand v; — v; if ¢ > j. This
means that each edge is directed from left to right in the order
(vi,-+ ,vm). If v; — wv; is an edge implied by the vertex order,
then v; € predecessor(vj).

DEFINITION 3 (Perfect Elimination Order). A perfect elimination
order is a vertex ordering (v1,--- ,vm) such that for all i €
{1, ,m}, the set {v;} U predecessors(v;) forms a clique.

THEOREM 1. Every interval graph has a perfect elimination order:

Proof: If the vertices of an interval graph are ordered by the left
end-point of the intervals then the set {v;} U predecessors(v;)
forms a clique for any ¢. This means that if an interval intersects
with v; and is a predecessor of v;, it must intersect v; at the left most
endpoint of v; where it also intersects all the other predecessors of
v; (as illustrated in 2).
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Figure 2. Perfect elimination order of an interval graph. All the
predecessors of v; intersect v; at its leftmost end-point c,,. All
v; € predecessors(v;) also intersect with each other at the points
between o, and aw,; + € where € is smaller than the shortest
possible length of an interval.

O

THEOREM 2. For a graph G where the vertices in G can be or-
dered into a perfect elimination order, the chromatic number x(QG)
can be determined in linear time.

Proof: Given the vertex order (v1,--- ,vm), scan the vertices in
order and color each vertex v; with the smallest color not used in
predecessors(v;).

The number of incoming edges incident on vertex v; are given
by indegree(v;). Since a vertex v; has indegree(v; ) predecessors,
at least one of the colors {1,--- ,indegree(v;) + 1} is not used
among the predecessors. The algorithm finds a coloring with at
most maz; {indegree(v;) + 1} colors.

Let v;= be the vertex with the largest number of incoming
edges. So, x(G) < indegree(vi=) + 1. Since, (vi, - ,vm)
is a perfect elimination order, the set predecessors(vs+) form a
clique. All these predecessors are also adjacent to v+, so {v= } U
predecessors(v;=) forms a clique. If w(G)is the maximum clique
of G then w(G) > indegree(v;<) + 1. But, x(G) > w(G), so
X(G) = w(G) = indegree(v;+) + 1, which implies that this is an
optimal coloring.

O



THEOREM 3. For a graph G where the vertices in G can be or-
dered into a perfect elimination order, the maximal cliques can be
Sfound in linear time.

The proof of this theorem is given in [14] which gives an
algorithm to find all the maximal cliques in the graph.

DEFINITION 4 (Edge Contraction). Given an edge e = (u,v) in
graph G, contracting the edge e results in an induced subgraph G’
in which the edge e is removed and the two vertices u and v are
merged. All edges incident to u and v in G become incident to the
merged vertex.

THEOREM 4. An induced subgraph G’ of an interval graph G,
resulting from contracting an edge, is also an interval graph.

Proof: Let (u, v) be the edge to be contracted in G. Consider the
interval representation of G where I, and I, represent the two
intervals corresponding to w and v. Replace the intervals I, and
I, with I,,,, where the left end-point of I, is the left-most point in
I, or I,, and the right-most end point of I, is the right-most point
in I, or I,. Now remove [, and I, and add [, to the interval
representation. The intersection graph of the new set of intervals is
G

O

2.2 Conflict Graph

DEFINITION 5 (Data Conflict Graph). For a given program, let
O = {o1, -+ ,0om} be the set of objects accessed by it. For
a sequence of accesses o0 = (o1, ,0n) where o; € O for
all i € {1,---,n}, the data conflict graph can be given by
G = (V,E) where |V| = m and each vertex v; € V repre-
sents the memory object o; and an edge (vi,v;) € E exists if and
only if mapping o; and oj to the same cache line results in one or
more conflict misses.

Figure 3. The conflict graph of a program for an access sequence
g :{ o1, 02, 03, 01, 02, 03, 01, 02, 01, 04, 01, 04, 01, 04, 01, O4, 03,
02, 05, 02, 05, 02, 05, 02, 05, 02, 04, 05, 05, 04, 05, 04, O5 }.

An edge between two vertices v; and v; means that there is
a subsequence of o of the form o; = (04, ,05, - ,0;) or
g = (O.j?"' y Oiy ot 70j)'

DEFINITION 6 (Conflict Graph Edge Weight). Each edge (v;,v;) €
E in the data conflict graph can be assigned a weight which is an
integer value denoting the number of unique instances of the sub-
sequence (v, - -+ ,v;) in the sequence o.

The edge weight of (v;,v;) represents the number of times
the two objects will be swapped out of the cache if they were
assigned to the same cache line. These weights can be computed
by counting the number of alternate occurrences of the two objects
in the sequence. The data conflict graph for a given access sequence
can be constructed in time linear in the length of the sequence.

EXAMPLE 1. Consider a program which accesses objects in the
set O = {o1,- -, 05} where the access sequence is given by o.
The conflict graph is illustrated in Figure 3. The first access of
an object results in a compulsory miss and is not represented in
the edge weight. After the first access, each alternating access of a
conflicting object is counted as a miss.

Note that the sum of all edges in the graph or even in a subgraph
may not represent the total number of misses if all the objects are
assigned to the same cache line. Thus if two or more objects are
assigned to some cache line the sum of all the edges in between
these objects is greater than or equal to the actual number of conflict
misses that would result in this case. Consider the example with
O ={o1, - ,04} and o = {01, 02,03, 04,01, 02, 03, 04 }, Where
the sum of all edge weights in the conflict graph is 12 but the total
number of conflict misses is 4 if all the objects are assigned to the
same cache line.

It is also worth noting that the sum of all edge weights is an
upper-bound on the total number of conflict misses.

3. Data Assignment to Cache

In this section, we describe our solution to the data placement prob-
lem for minimizing cache misses. We use a methodology similar to
[4] with an application of results from graph theory. Our optimiza-
tion framework consists of (1) the profiler, (2) the data placement
algorithm and (3) a cache simulator to determine the number of
misses for a given assignment.

Cache conscious data placement of objects attempts to assign
objects to different cache lines if the profile data indicates that
there would be a large number of misses if they were assigned
to the same cache line. By assigning highly conflicting objects to
different cache lines we aim to achieve fewer cache misses leading
to improved performance.

3.1 Profiler

The objective of profiling is to develop a data conflict graph for
the given program. We developed our profiler to record memory
allocations and accesses. When memory is allocated on the stack or
the heap, an id is assigned to the object and a record is created for
the object location and size. Every access to an object is recorded
by the profiler. The profiler also implements certain optimizations
to compress the data sequence without losing any information.
These include treating consecutive accesses of the same object as a
single access.

The program which is to be profiled is instrumented by inserting
calls to the profiler at each instance of memory allocation and
access. The instrumented program when run generates the sequence
of accesses to the data objects.

3.2 Conflict Graph

The conflict graph construction from a given access sequence was
discussed in the last section. Here we classify the data conflict
graph as an interval graph and use this classification to simplify
the problem of data placement.

THEOREM 5. Given a sequence of data accesses, the data conflict
graph of a program is an interval graph.

Proof: Given that o is a finite and totally ordered sequence, each
object has a well defined first and last occurrence in o. Also given
that exactly one object occupies each position in the sequence o,
each object can be represented by a unique interval from the first to
the last occurrence of that object in .

Since each object can be represented by an interval given an
access sequence ¢ and a conflict miss only occurs if two intervals



intersect, the data conflict graph is an intersection graph of inter-
vals.
O
Since the data conflict graph is an interval graph, the results
which are applicable to interval graphs can also be applied to the
data conflict graph. This means that problems like colorability and
max-clique can be computed easily for the data conflict graph. The
most relevant result which can be applied here is given by the
following theorem.

THEOREM 6. Colorability of a data conflict graph of any program
can be determined in linear time.

Proof: Since we have already established that the data conflict
graph is an intersection graph of intervals and interval graphs can
be represented by a perfect elimination order and the chromatic
number for a graph represented by a perfect elimination order can
be determined in linear time. By transitivity the chromatic number
of a data conflict graph can be determined in linear time.
O
Using the given results we can find the chromatic number for
the conflict graph.

COROLLARY 1 The chromatic number for the conflict graph gives
us the number of cache lines required to achieve zero conflict misses
for a given sequence.

Consider the example in Figure 3 where the chromatic number
is four. Thus if we have four lines to assign the five objects a
placement can be found which would result in zero conflict misses.

COROLLARY 2 For a placement that creates no cache conflicts, the
sum of edges in the subgraph for the objects assigned to the same
line for each cache line is zero.

This means that if there is a placement that results in zero
conflict misses there are no edges between objects which have been
assigned to the same cache line.

3.3 Our Approach

The data placement algorithm uses the profiled sequence and the
configuration of the cache to determine an assignment for each
object to a cache line while minimizing misses. Algorithm 1 gives
an outline of our data placement technique. The algorithm returns
a mapping for each object to a line within the cache.

Algorithm 1 Data Placement (O, o, k)

1: G — CreateCon flictGraph(O, o)
2: if Colorable(G, k) then
3:  return a mapping based on the coloring of G

4: else

5:  while |[MazimumClique(G)| > k do

6: C «— MazimalClique(G) of size > k
7: e « e € C, that minimizes % inGg
8: G « Contract(e)

9: G « update edge weights in G

10:  end while
11:  return a mapping based on the coloring of G
12: end if

First we generate a data conflict graph using the sequence from
the profiler. The rest of the algorithm has two main phases. We use
the classification of the data conflict graph as an interval graph to
find the chromatic number for the graph. If the number of lines in
the cache, given by k, is atleast the chromatic number then we are
done. We simply color the graph (by assigning numbers from 1 — k

as colors) and return the coloring as the mapping to cache lines.
This coloring algorithm is linear in the number of vertices in the
graph. However, if the chromatic number of the data conflict graph
is greater than the number of cache lines available, we heuristically
merge vertices in the graph until it becomes colorable. The objec-
tive of this exercise is to merge vertices with the smallest number
of conflicts among them.

In order to achieve our goal we need to systematically decrease
the size of large cliques. This is because the chromatic number of an
interval graph is equal to the size of the largest clique in it. Thus we
create a list of all the maximal cliques that are of size greater than k
(which is the size of the cache) and iteratively merge edges in each
one of these cliques until the maximum clique in the reduced graph
is of size k. A maximal clique is not the maximum clique in the
graph but it is not a part of a larger clique. The maximal cliques in
an interval graph can be listed in linear time. In our algorithm we
iteratively reduce each large maximal clique to a smaller clique.

Once we have a clique of size greater than k (line 6), the next
step is to chose the best possible edge to contract (merge the two
vertices connected by it) and reduce the size of the clique by one.
To find the edge which would be the overall optimal choice is a
hard problem if there are two or more cliques of size greater than k
in the data conflict graph and are sharing edges. We chose an edge e
which minimizes the fraction ;}c((?) where w(e) is the weight of the
edge and gy (e) are the number of cliques larger than size k£ which
include e as an edge. Once the edge is contracted the weights of
all the edges adjacent to the contracted edges are recomputed. This
recomputation reflects the change in the number of misses between
the newly combined objects and other objects. The resulting graph
is still an interval graph because the contraction of an edge can be
seen as merging two intervals. The process is repeated by choosing
another edge until the size of the reduced clique is equal to k.

After all the large cliques have been reduced to size k, the
resulting graph (which is still an interval graph) can be colored
using the interval graph coloring algorithm. In this scenario all the
objects represented by merged vertices are given the same color.
This coloring is used to generate a mapping for each object to a
cache line.

3.4 Cache Simulation

We developed a simple cache simulator which consumes a se-
quence, cache size and an assignment of objects to cache lines and
outputs the number of misses resulting from the given assignment.
The simulator computes the misses for each cache line by looking
up the objects assigned to the line and traversing the data access
sequence. It adds up the misses from all the cache lines to get the
total number of misses.

4. Evaluation

In this section we present the performance results from the experi-
ments on a variety of benchmarks.

4.1 Methodology

We evaluate our algorithm for the number of cache misses com-
pared to the original assignment of objects. The original assign-
ment evenly distributes objects over the cache lines simply by a
modulo operation on the virtual address of the location of an object
in memory. For comparison purposes we assume that objects are
evenly assigned to the cache.

We collected profile information from six C benchmarks, for
three different inputs each. Two of these benchmarks (bisort and
mst) are part of the Olden benchmark suite which has been popu-
lar for data structure layout and data prefetching studies. fft is part
of the benchFFT benchmarks, fir is a part of the trimaran bench-
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Figure 5. Experimental results for the fir benchmark.

mark suite, whereas mm is a matrix multiplication benchmark and
cachekiller was posted to usenet where it generated some discus-
sion for its effect on cache performance on different machines.
These benchmarks were specifically chosen from various sources
to test the algorithm on a variety of programs. Table 4.1 gives the
size of the instances (number of objects and the size of the access
sequence) for each benchmark. A brief description of each bench-
mark is given below along with the primary data structure used in

Benchmark Instance |O] o]
fft fft.1 1123 38363
fft.2 2148 73636
fft.3 2396 360126
fir fir.1 1030 200784
fir.2 1518 221851
fir.3 2054 194425
mm mm. 1 1200 18800
mm.2 2700 60300
mm.3 4800 139200
mst mst. 1 1150 159994
mst.2 1534 280533
mst.3 2288 630988
bisort bisort. 1 1023 1352132
bisort.2 2047 307060
bisort.3 4095 687600
cachekiller  cachekiller.1 811 4846
cachekiller.2 1579 9454
cachekiller.3 2603 15598

Table 1. Benchmark instances used for evaluation

them. It should also be noted that we do not make any assumptions
about the order of access of the array elements, and thus we treat
each element in the array as a separate object.

fft computes the fourier transform or inverse transform of its
complex inputs to produce complex outputs. It uses several floating
point arrays for doing fourier transforms and inverse Fourier trans-
forms and optimizes for trignometric calculations.
fir selectively filters an input signal to remove unwanted noise and
distortion. The benchmark implements a digital filter using floating
point arrays.
mm creates and multiplies two matrices and sums up all the ele-
ments of the resulting matrices. This benchmark implements the
matrices as list of lists.
mst performs a hash-based search, with the linked lists originating
from the indices of the hash table to compute the minimum span-
ning tree of a graph. It uses an array of singly-linked lists.
bisort conducts a forward and backward sort of integers using two
disjoint bitonic sequences which are merged to get the sorted result.
The main data structure in bisort is a binary tree.
cachekiller is a 2D image processing program. It reads the pixels of
an image, performs a 1D filter and writes to an output image. This
benchmark uses two dimensional integer arrays for the images.

4.2 Empirical Analysis

Figures 4 - 9 show the performance of our data placement algorithm
compared to the original placement in terms of the cache miss rate.
Results are shown for the original cache misses (MOD) and for
our cache conscious placement (CCP) algorithm. Cache misses are
given as a percentage of the total number of data accesses. Each
benchmark instance was run for 32 to 1024 cache lines.



mm.1 mm.2 mm.3
8 5MOD 100 B MOD % mMOD
] 90 A 80
W 70 " ccp " ccP
2 ccp g 80 - 3 70 |
2 60 2 o0 2
2 50 - = S 60 -
5 5 60 1 S 50 -
& 40 1 & 50 1 % 40 |
3 g 40 A g
e 30 A € < 30
@ g 30 - o 7
g 20 4 2 2
o g 20 - o 20 A —
-9 -9 a
10 10 - . 10 - |
0 A 0 4 0 4
32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
Number of Cache Lines Number of Cache Lines Number of Cache Lines
Figure 6. Experimental results for the mm benchmark.
mst.1 mst.2 mst.3
20 20
J mMOD i
»n 18 7 18 m MOD »n
2 16 A 2 16 + 2
2 14 4 CccpP 2 14 4 a
= = ccp =
5 12 + 5 12 + 5
g 10 - g 10 4 &
g 84 g 8- 3
< < c
g ° g 61 g
& 47 & 47 &
2 4 2 4
0 + 0 -
32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
Number of Cache Lines Number of Cache Lines Number of Cache Lines
Figure 7. Experimental results for the mst benchmark.
bisort.1 bisort.2 bisort.3
25 25 25
mMOD | MOD
m MOD
g 20 - " 20 - g 20 -
2 CCP 2 2 ccp
s s £
2 15 - 2 15 2 15 -
(=] o (=]
() (] ()
[ oo ao
[y} o ©
2 10 £ 10 - 2 10 |
Q w Q
o e 2
& & &
5 5 5
0 0 - 0 -
32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
Number of Cache Lines Number of Cache Lines Number of Cache Lines
Figure 8. Experimental results for the bisort benchmark.

The fft benchmark results in Figure 4 show that the miss rate
achieved by our algorithm for all three instances is the same for 32
cache lines and 1024 cache lines. For this benchmark our algorithm
was able to find a placement for all the objects without incurring
any conflict misses even for a cache with 32 lines. This shows that
the working set of array elements in the fft benchmark does not
exceed 32 at any point during its execution. Our algorithm was thus
able to achieve an overall 78% reduction in the number of cache
misses for the fft benchmark.

Figure 5 shows the results for the fir benchmark. Our algorithm
performs relatively better on the small instance (fir.1) compared
to the larger instances (fir.2 and fir.3). It is interesting to note
that for the smaller instance and with 512 cache lines the original

assignment gives lower cache misses than our algorithm. In this
case our heuristic performs badly which is likely due to several
edges with equally low weights being shared among many cliques.
This results in some bad decisions made by the reduction heuristic
early on which cannot be taken back in the current implementation.
On the larger instances our algorithm performs relatively better
than the original placement on caches with more lines rather than
fewer lines. In these instances the strategy of evenly distributing
objects over the cache lines seems to be ineffective most likely
because of the existence of large cliques in the data conflict graph
with similar weights on the edges.

The matrix multiplication benchmark is a cache intensive pro-
gram and has a very high miss rate because of the access pat-
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terns resulting from matrix multiplication. As the results in Figure
6 show, our algorithm consistently outperforms the original data
placement to reduce the cache misses by 25% on average over all
the instances.

The results for the mst benchmark shown in Figure 7 give an
interesting picture. For all three instances, our algorithm was able
to optimally assign objects to cache lines for more than 256 lines.
But, for smaller sized caches it was not able to do so, because there
are cliques in the data conflict graph of size close to 300. Still the
heuristic performed better than the original placement by 22%. mst
has the lowest miss rates among the selected benchmarks which
makes it difficult to further reduce the miss rates.

Figure 8 shows the results for the data placement algorithms on
bisort instances. The results show a reduction of 29% in the number
of cache misses over the original placement and performs better
than the original placement in every single instance even though
the miss rate is fairly low for this benchmark.

The cachekiller benchmark, for which the results are shown
in Figure 9, really tests our algorithm. The miss rates for most
instances on this benchmark are extremely high and our algorithm
performs poorly when the number of cache lines are few. The
original placement gives better miss rates simply by distributing
the objects evenly over the cache lines for fewer lines and our
algorithm performs better for caches of larger sizes. This is again
because of the large working set of objects with approximately the
same conflicts between the objects. Overall, for this benchmark our
algorithm reduces the number of misses by 3%.

The results show that our data placement algorithm performs
well in most cases. Over the given instances of benchmarks it
improves upon the original placement by 30% on average. The
algorithm does particularly well when the data conflict graph has
edges with a diversity in weights rather than homogeneity.

5. Related Work

Cache conscious data placement is known to be a hard problem and
has been studied for more than three decades.

Thabit [24] was the first to study the hardness of the problem.
He discussed the problem of minimizing cache misses by construct-
ing a proximity graph where objects are represented by vertices and
the edge weight between two vertices is determined by the number
of times the two objects appear adjacent to each other in the access
sequence. He formulated the optimal placement as a partitioning
problem such that if the proximity graph could be partitioned into
subgraphs of equal size while minimizing the edges between the
partitions, an optimal placement could be found. Petrank et al. [20]
further improved on the theoretical results for the data placement
problem by showing that the oft-line version of cache conscious

optimization cannot be approximated reasonably. Essentially their
result shows that cases where there are a small number of misses
cannot be distinguished from those where there are a large number
of misses. They show that there does not even exist a sub-linear
approximation algorithm to solve the problem. We use their for-
mulation to describe the problem in this paper. Furthermore, we
do not dispute their results but give an alternate heuristic solution.
In terms of finding the best solution, Bixby et al. [3] presented a
framework to find a data placement using state-of-the art 0-1 in-
teger programming. Calder et al. [4] used profiling to determine
the data access pattern of programs and optimized data placement
in memory for improved cache performance. They assumed that
the programs generally have similar data access patterns even with
varying inputs. The problem is then solved via some smart heuris-
tics. Their approach is similar to ours but lacks formalism. Parts of
their solution can be augmented with ours to extend our solution
for a profile based approach. Recent attempts at improving cache
performance have turned their focus on regrouping and splitting
data in objects such that objects with greater affinity appear in the
same line of the cache [7-10, 19]. Parallel efforts have been made
to improve available information on temporal and spatial locality
[6, 13, 15, 23, 26-28].

6. Discussion and Limitations

In this section we would like to discuss some of our design deci-
sions and limitations of our implementation to the data placement
problem.

Firstly, the assumption that all objects are of the same size and
fit the cache line is not realistic. This problem can be solved in a
real data placement framework by integrating existing techniques
like the ones given in [7, 8, 11, 13] to utilize cache lines better by
coalescing conflicting objects or splitting larger objects to group
conflicting fields. Since most objects are much smaller than lines
in a cache, the coalescing of objects would dramatically reduce
the size of the data conflict graph and hence the complexity of the
problem.

Secondly, we do not distinguish between data objects created on
the stack and the heap. This was thoroughly discussed by Calder
et al. [4] and a detailed solution was given for placement of ob-
jects allocated on the heap and handling objects which do not occur
in the profile. Our algorithm can be integrated into the framework
given by Calder et al. [4] to evaluate the practicality of our algo-
rithm.

Thirdly, a program rarely repeats the same sequence of alloca-
tion and accesses twice and profiling for a representative sequence
is a challenge in itself. A practical solution would create the con-
flict graph from a small set of trial executions of the program and



employ some approximation to reasonably handle objects not ap-
pearing in the profile.

Lastly, other techniques such as smart prefetching and more ac-
curate calculations for spatial and temporal locality can comple-
ment our solution for better miss rates and the solution can easily
be extended for associative caches by incorporating a reasonable
replacement policy.

In this work we highlight some of the theoretical issues related
to cache-conscious data placement. However, we acknowledge that
the implementation is not very practical in its current state but we
consider it as the first step on the road to practicality.

7. Conclusions

Cache conscious placement of data in memory has been shown to
be a difficult problem in the past. Earlier attempts at the problem
lack proper formalization and their impact has been limited. In
this paper we have shown that given the access sequence and the
configuration of the cache we can assign each object to a cache
line for minimum number of misses if there exists an assignment
with no conflict misses. For other instances we have described a
heuristic algorithm based on a graph theoretic solution which has
been shown to reduce cache misses of a diverse set of benchmarks
by a significant number.
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