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Abstract
We present a novel technique that identifies the source compiler
of program binaries, an important element of program provenance.
Program provenance answers fundamental questions of malware
analysis and software forensics, such as whether programs are gen-
erated by similar tool chains; it also can allow development of de-
bugging, performance analysis, and instrumentation tools specific
to particular compilers. We formulate compiler identification as a
structured learning problem, automatically building models to rec-
ognize sequences of binary code generated by particular compilers.
We evaluate our techniques on a large set of real-world test bina-
ries, showing that our models identify the source compiler of binary
code with over 90% accuracy, even in the presence of interleaved
code from multiple compilers. A case study demonstrates the use of
inferred compiler provenance to augment stripped binary parsing,
reducing parsing errors by 18%.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers,code generation; I.5.1 [Pattern
Recognition]: Models—statistical

General Terms Languages, Security

Keywords program provenance, forensics, static binary analysis

1. Introduction
Program binaries are often the subject of analysis in the areas of
computer security, performance modeling, and program instrumen-
tation and debugging. Security analysts and antivirus vendors are
confronted daily with malicious programs whose behavior they
must analyze and understand, and whose origins and relationships
to existing threats are of paramount importance. Developers of de-
bugging, performance analysis, and instrumentation software must
design tools useful in the face of myriad variations of source lan-
guages, programming idioms, and diverse compiler families and
types of optimizations. The question of binary program prove-
nance—of the characteristics of a program that derive from its path
from source code to executable form—informs many aspects of bi-
nary analysis. The utility of program provenance can be straight-
forward, as in the case of software forensics where authorship and
code similarity are key details [8]. In other domains it can be more
subtly useful, aiding the development of binary tools and analy-
sis capabilities targeted at specific compilers or source languages
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[2, 14]. When presented with only with a program binary or a snip-
pet of binary code, details of program provenance are not readily
apparent. The black box between the program author and the pro-
gram binary affords little foothold for tailored tools or analyses.

We have developed a novel method for identifying the source
compiler of program binaries, a major element of program prove-
nance. We formulate compiler identification as a structured learn-
ing task, automatically building models that classify sequences of
binary code by the generating compiler. Because our approach re-
lies only on characteristics of the binary code and not on meta-data
or other details of program headers, it is applicable even when such
information has been stripped or is otherwise unavailable. Further-
more, because our method classifies sequences of code instead of
whole binaries, it can be used even when codes produced by multi-
ple compilers coexist within a program binary, such as statically
linked library code. Our tool extracts compiler provenance with
high accuracy even in such complex programs.

Our previous research into precise static parsing of stripped pro-
gram binaries—a foundational technique for binary code analysis—
used compiler-specific models of code at function entry points to
extend traditional parsing techniques that perform poorly with-
out debugging symbols [14]. The existing approach requires prior
knowledge of the source compiler, which may not be available.
We augment the binary code parser to relax the known-compiler
requirement, and show that adding inferred source compiler labels
improves the precision of analysis for binaries of unknown prove-
nance. While the high accuracy of the existing parser allows only
small improvement in absolute terms, adding compiler provenance
reduces parsing errors by 18%.

The remainder of this paper is structured as follows. We
first briefly describe characteristics of binary code that influence
the way we approach the compiler inference problem. We then
present a model of binary code that captures characteristics of
compiler provenance and evaluate our approach first on single-
provenance binaries, and then on binaries containing a mixture
of code from multiple compilers. We present a case study of
provenance-augmented static parsing, then conclude with a review
of related work and a discussion of our approach.

2. Binary Code Characteristics
The compiler is a critical part of producing almost all program bi-
naries. Although the exact sequence of translations between origi-
nal program source code and the program binary is often unknown,
a compiler was almost certainly part of that process. If the choice
of compiler has an effect on the resulting binary—as compiler ven-
dors have been at such pains to convince us—then these differences
should be manifest in the executable code produced by the transla-
tion process. These code features reflect design and implementa-
tion decisions by compiler designers, and can be key indicators of
program provenance. Compiled programs have several properties
that make compiler-specific features prevalent. The Intel IA-32 ar-
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Figure 1. Layout of executable code in a typical binary. At the
highest level of abstraction, the program’s executable code resides
in a contiguous segment of the binary, e.g. the .text segment in
ELF binaries (a). Under closer consideration, there often exist non-
executable bytes between functions (b) and even within functions
(c).

chitecture, our target platform, is a particularly rich source of such
features.

The IA-32 has an expressive instruction set wherein multiple in-
struction sequences can perform the same operation. For example,
a simple programmatic idiom like adding the constant 5 to a vari-
able could be encoded by both the instruction lea eax,[edi+5]
and the sequence mov eax,edi; add eax,5. The choice of one
sequence or the other is ultimately determined by the compiler de-
sign choices. Factors like hardware characteristics or trade-offs in
code size and performance optimizations influence these choices.
Differences in compiler output thus depend on a specific set of of-
ten proprietary code generation and optimization policies. System-
atic differences in binary code among different compilers reflect
such distinguishing characteristics, providing evidence of program
provenance.

Binary characteristics that reflect compiler provenance extend
beyond the domain of executable instructions. Interpreting the ex-
ecutable code region of a binary solely as a sequence of instruc-
tions is often misleading. As illustrated in Figure 1, binaries fre-
quently exhibit gaps between functions. These gaps may contain
data such as jump tables or string constants, or they may contain
regular padding instructions or arbitrary bytes. Such gaps even exist
within individual functions, often due to performance-directed lay-
out of branch targets. While the content of these gaps is sometimes
dependent on the functionality of the program—for example, string
constants or the addresses in jump tables—often the non-executable
bytes in gaps or the very existence of gaps express compiler charac-
teristics. One compiler might pad space for branch alignment with
a sequence of 0x90, the nop instruction, while another might use a
different but semantically equivalent instruction of the appropriate
length like lea esi,[esi], use random byte values, or elide the
padding altogether. The compiler provenance model we describe
in the following section uses these characteristics to represent the
content and structure of program binaries.

3. Source Compiler Modeling
Our objective is to accurately label the source compiler of subse-
quences of the binary. We assume that binaries are composed of
interleaved sections of either code produced by one or more com-
pilers or of non-code in the form of data or random bytes. For ex-
ample, a binary containing statically linked code from several li-
braries might contain code from both the Intel C compiler (icc) and
the GNU C compiler (gcc). The general idea of our approach is to
learn the parameters of a probabilistic model of source compiler la-

gcc icc data gcc

beling in binaries, and to use this model to perform inference over a
particular binary, labeling each byte with the most likely compiler.

The properties of binary code make probabilistic graphical
models—models that capture the conditional dependence of many
variables—well suited to our compiler inference task. Interleaved
code and non-code requires a common representation of the fea-
tures that describe each byte in the binary. Subsequences of the
binary containing executable instructions should be labeled con-
sistently: adjacent instructions are likely generated by the same
compiler. This consistency extends beyond immediate neighbors;
we expect code connected through intraprocedural control flow
(i.e., branches) to originate from the same compiler. This combi-
nation of independent local features and dependency relationships
between adjacent and distant labels encourages viewing compiler
inference as a structured classification problem.

The program binary representation must capture the character-
istics of the code and the non-code regions of the binary. While
abstracting the program as a sequence of executable instructions
is most natural, it is not sensible to label non-code regions con-
sisting of data or random bytes as instructions. Furthermore, doing
so requires statically identifying all instruction boundaries, itself a
challenging task. We therefore model the binary uniformly as a se-
quence of bytes representing executable instructions intermingled
with non-code. Our features are designed to capture the character-
istics of the bytes underlying instructions and data in the same way.

Let the program binary P be a sequence of bytes at offsets
x1 . . . xn in the binary. Our task is to assign labels y1 . . . yn to
each byte, where each yi ∈ C corresponds to a particular source
compiler (e.g. gcc, icc, or msvs) or the special ‘data’ label.
The choice of features to represent the binary at each offset xi

has significant impact on the power of the model. Our previous
experience with modeling function entry idioms—code sequences
at and around function entry points—has demonstrated the power
of idiom features: short sequences of instructions, similar to n-
grams with optional single-instruction wildcards, that elide details
such as literal arguments and memory offsets. For example, the
idiom

u1 = (push ebp | * | mov esp,ebp)

would match offset xi in the binary if disassembly from xi yielded
the sequence (push ebp | push edi | mov esp,ebp). In this
case, we use idiom features to capture patterns indicative of com-
piler provenance. Importantly, idiom features can represent the bi-
nary not only at actual instruction offsets, but at any point including
in data regions. This striking observation derives from the proper-
ties of the IA-32 instruction set that we described in the previous
section. The architecture’s opcode space is very dense; almost any
byte is a valid opcode or beginning of a multi-byte opcode. This
leads to the self-repairing property of IA-32 illustrated in Figure 2.
Idiom features can be produced by disassembling from any offset
in the binary, including in data regions. Spanning multiple bytes,
these features implicitly incorporate information about multiple lo-
cations in the binary without the increased complexity of an arbi-
trarily structured graphical model.

We model the compiler label probability over the entire binary
as a Conditional Random Field [9] with nodes y1:n representing the
labels of every byte in the program. Because the binary consists of
subsequences of bytes produced by individual compilers (or non-
code bytes), each node yi is connected to its neighbors yi−1 and
yi+1. Each node is associated with one or more idiom features as
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Figure 2. Self-repairing disassembly. Each instruction sequence
(column) is produced by parsing from a particular offset within the
bytes depicted on the left. Note that two of the sequences align
within one instruction, and all three align within three instructions.

indicated by a feature function. We define one such function for
each idiom u ∈ U and compiler c ∈ C pair as

fI(u,c)(xi, yi,P) =

(
1 if yi = c and idiom u matches P

at offset xi
0 otherwise.

The transition relation between a label node and its neighbor is
similarly defined as

fT (c,c′)(yi,P) =


1 if yi = c and yi+1 = c′

0 otherwise.

Taken together, the unary idiom feature functions fI and the
binary transition features fT define a linear chain CRF [11] over
the binary, as illustrated in Figure 3. The conditional probability
of each label node is determined by the idiom features present at
that node and by the labels of adjacent nodes. We define the joint
probability of these labels (eliding the program parameter P for
clarity) as

P (y1:n|x1:n) =
1

Z
exp
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where λI(u,c), λT (c,c′) are weights associated with each of the
feature functions and Z is the partition function that normalizes
(1) to a conditional probability distribution. We discuss the training
of the weights in Section 4.

Formulating our model as a linear chain CRF is attractive be-
cause it fulfills most of our modeling requirements while allow-
ing tractable parameter estimation and inference, which is not true
of general structure graphical models. However, the model in (1)
does not capture the intraprocedural labeling consistency that we
expect from compiled code. That is, the compiler label assigned to
a branch instruction has no impact on the label assigned to its tar-
get. We therefore extend our model with long range edges between
intraprocedural control flow instructions and their targets.

...
yi−1 yi yi+1

...
yj−1 yj yj+1

...

... ...

... ...

yi−1 yi yi+1

xi−1 xi xi+1 xi+2 xi+3

Figure 3. Byte labeling as a linear-chain Conditional Random
Field. Each byte position xi in the binary is paired with a label
node yi indicating its source compiler. The label nodes are associ-
ated with idiom features that represent the instructions spanning a
range of bytes beginning at xi (the shaded areas). The bytes con-
stituting idiom features overlap for nearby label nodes. The model
captures the association both between idioms and labels and be-
tween adjacent labels.

We define a new binary feature function

fCF (yi, yj ,P) =


1 if xi branches to xj and yi 6= yj

0 otherwise.

to encode these branch consistency constraints. Adding this feature
to the model of (1) yields the final model

P (y1:n|x1:n) =
1

Z
exp
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where the weight λCF is expected to be strongly negative. Note
that with the introduction of of the control flow edges, this model
no longer has the form of a linear chain CRF with its efficient
parameter estimation and inference algorithms. In practice, we use
model (1) and heuristically approximate the branch consistency
component of this model as a hard constraint, as we describe in
Section 5. This approximation is sensible as we expect the labeling
consistency across intraprocedural branches to hold under all but
the mosty highly contrived circumstances.

4. Model Training
The central insight of our research into extracting compiler prove-
nance is that while most of the characteristics of binary code de-
pend primarily on the functionality of the program, features that
vary across compilers become apparent when sufficiently many bi-
naries are examined. By defining templates that expand into many
idiom feature functions and training our model on hundreds of bi-
naries, we obtain parameters that closely capture the differences
among several different compilers. The goal of training is to learn
the model parameters λI(u,c) such that the linear-chain CRF model
(1) assigns high probability to correct compiler provenance label-
ings. The training process involves establishing a training set, se-
lecting the features for the model, and estimating the model param-
eters from the training set.

We have collected a corpus of 1,285 binaries from three differ-
ent compilers: 616 from the GNU C Compiler (GCC), 226 from
the Intel C Compiler (ICC), and 443 from the Microsoft compiler
(MSVS). The GCC and MSVS data sets were collected from de-
partment Linux and Microsoft Windows workstations, respectively;
we compiled a variety of open source software packages with the
Intel C and C++ compiler to produce the ICC binaries. Debugging
symbol information is available for all of the programs in our cor-



pus. These binaries range in size from a few tens of kilobytes to
26MB.

All of the binaries except for the ICC data set are assumed
to be generated by a single compiler. The ICC programs some-
times contain statically linked library code produced by the GCC
compiler; this is an artifact of their compilation on platforms with
GCC-compiled system libraries, and accounts for a tiny fraction of
the code in each binary. These mixed compiler binaries have been
hand annotated where necessary to reflect the ground truth compiler
provenance.

We represent each program binary as a sequence of byte loca-
tions described by a set of idioms as follows. We first exhaustively
disassemble each program using the Dyninst binary analysis and
instrumentation tool [5, 13]. Exhaustive disassembly decodes an
instruction at each byte offset, rather than following a linear chain
of instructions or traversing the instruction control flow. Each posi-
tion in the binary is then described by the idiom feature abstractions
ocurring at that point. We establish ground truth labels at each point
by parsing the binaries in our corpus using traditional recursive
traversal parsing with full symbol information. The ground truth
label at each point is either the particular compiler (for bytes con-
sitituting executable instructions) or the data label for all other
bytes.

In principle we would like to use as much training data as
possible, as doing so leads to more precise parameter estimates.
However, the scale of our task constrains how much data we can
use, given that a single example (that is, a binary) can comprise
millions of idiom features. The primary limiting factor for our
experiments is memory usage. To keep space requirements and
training time reasonable, we randomly select a subset of 20 binaries
from each compiler, reserving the remainder for evaluation. While
additional training data could be used (at the cost of additional
resources), the improvement would likely be subject to diminishing
returns.

There are over two million unique idiom features represented in
our training data. While the power of the CRF model that we se-
lected is in its ability to represent many features, many of these fea-
tures are redundant or have little predictive power for our compiler
inference task. We perform a simple feature selection process to re-
duce the number of idiom features in the model. The goal of feature
selection is to choose the features that give the model the most pre-
dictive power—those that appear very frequenly in one compiler
class, for example, and not others. Our process makes use of the
mutual information between idioms U and compiler labels C

MI(U , C) =
X
u∈U

X
c∈C

p(u, c)log

„
p(u, c)

p(u)p(c)

«
,

where p(u, c) is the joint probability of observing an idiom un-
der compiler c and p(u) and p(c) are the marginal probabilities
of observing particular idioms and compilers, respectively. These
probabilities can be easily estimated from population statistics of
the training set. Mutual information measures how dependent two
random variables are on one another. In this case, it represents the
co-occurrence of an idiom and a particular label: that is, how of-
ten code from a compiler displays that idiom. Mutual information
is non-negative; it is zero only if two variables are statistically in-
dependent, and increases in value the more one value depends on
the other. We select the 20,000 features with the highest compiler
mutual information for training. See Appendix A for a discussion
of features and learned model parameters.

We train the parameters of the linear-chain model (1) with the
MALLET package [12]. MALLET is a Java-based framework that
supports parameter estimation and inference in linear-chain Condi-
tional Random Fields. Parameter estimation over the 60 training bi-
naries takes approximately 220 minutes on a 2.27GHz Intel Xenon

workstation. Training is a one-time cost in our compiler provenance
inference system.

5. Evaluation
We evaluate our compiler provenance inference techniques by mea-
suring the accuracy of our models in labeling each byte of the
binary. Our test corpus comprises two sets of binaries that exer-
cise our technique in different ways. The first set is composed of
the remaining 1,225 single-compiler binaries we held back from
the training process. Evaluating our tool’s accuracy on this set al-
lows us to test the broad applicability of compiler inference over a
large number of real-world binaries. The second data set was artifi-
cially constructed to evaluate our inference technique on the more
difficult case of binaries containing code from several compilers.
These binaries interleave code from the GCC and ICC compilers to
simulate programs statically linked against libraries with varying
provenance, such as may occur when using commericial or legacy
libraries. We discuss the generation of multiple-compiler binaries
below. Both testing sets are evaluated using the compiler prove-
nance model trained as described in the previous section.

We begin testing by using MALLET to label each byte in the
binary with the most likely compiler label, one of gcc, icc, msvs,
or the special data label using the parameters estimated during
training of the linear chain CRF given by equation (1). We then
heuristically approximate the control flow consistency component
of equation (2) by propagating compiler labels across control flow
as determined by the Dyninst tool. This approximation is equivalent
to setting the control flow consistency weight λCF in (2) to − inf .
Each inferred label is compared against the ground truth labeling
to determine accuracy of our technique.

5.1 Single Source Compiler
The binaries in the single compiler testing set are drawn from the
same corpus as the training binaries. Each binary is assumed to
contain code generated by a single compiler, except for a limited
portion of the ICC data set as noted in the previous section; the id-
iom feature representation and ground truth labels are also obtained
as previously described. Statistics for this data set are listed in Table
1.

Compiler Binaries Code bytes Data bytes

GCC 559 32,102,222 9,030,390
ICC 174 14,490,581 5,265,195
MSVS 386 15,952,368 5,045,413

Table 1. Single compiler data set.

Compiler provenance label accuracy over this data set is 0.925.
The accuracies over binaries produced by each compiler are listed
in Table 2. In addition to labeling accuracy, we list error rate broken
down by the type of error: ‘comp-comp’ for erroneously labeling
the source compiler of a byte, ‘comp-data’ for bytes labeled data
incorrectly, and ‘data-comp’ for data bytes labeled as originating
from a compiler. While the test set accuracy is a good metric
for evaluating compiler provenance inference, the type of error
may have more or less impact depending on applications of this
provenance.

For example, if compiler provenance is used to group programs
by toolchain characteristics or to distinguish library code from
program code, mislabeling code as data or vice versa may be less
important than mislabeling the specific compiler. We discuss the
impact of labeling errors further in the case study of Section 6.

As illustrated by the results in Table 2, ‘data-code’ mislabel-
ing constitutes the majority of labeling errors, particularly on the
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Figure 4. Multiple compiler binary code generation. Each source
file is compiled by GCC ( ) or ICC ( ) at random and linked to
form the program binary Pk. Debugging information in the binary
associates functions with a source file and compiler.

MSVS data set. The reasons for this are twofold. First, there is
a fundamental disparity between the number of ‘code’ and ‘data’
bytes in program binaries; in our data sets the ratio falls between
1.8:1 and 4.2:1 for most programs. This population disparity man-
ifests itself as a bias in the learned models. The higher error rate
for the MSVS data set is likely due to noise in our testing data. The
public symbol files we use to parse the ground truth for the MSVS
data set are partially stripped to hide type information, resulting in
potentially incomplete parses of these binaries. It is likely that some
regions of the binaries with ground truth label data are incorrect,
contributing to the inflated error ‘data-code’ error rate.

5.2 Multiple Source Compilers
To evaluate our compiler provenance inference techniques in a true
multiple-compiler setting, we implemented a build system that can
generate binaries containing code from two or more compilers.
We replace the compiler in standard Makefile-based build environ-
ments with a utility that invokes a compiler chosen at random; for
this evaluation we chose the GCC and ICC compilers. Our util-
ity records which compiler was used for each source file. After
the build process completes, we extract mappings from functions
to source files from the compiler-emitted DWARF debugging in-
formation. Merging this mapping with the source file record, we
derive precise ground truth provenance for multiple compiler bina-
ries as illustrated in Figure 4. One limitation of this approach is that
statically linked library code or other system code may not be di-
rectly associated with the compiler record generated by our utility.
We therefor omit all regions of the binary for which we lack precise
ground truth provenance for testing.

Error rate

Compiler Acc comp-comp comp-data data-comp

GCC .932 .044 .001 .147
ICC .969 .006 .000 .101
MSVS .870 .036 .035 .315

Table 2. Single compiler evaluation. Error rates are computed over
the relevant subset of bytes (e.g., ‘data-comp’ is the error rate over
all ground truth data bytes). The error rates for different types of
labeling errors may have greater or lesser impact depending on the
use of inferred compiler provenance.

We constructed a test set of 10 binaries for evaluation from
the GNU coreutils distribution. Each binary was compiled 10
times with the random compiler system. Compiler provenance la-
bels were applied to each binary using the same model and pro-
cedure described in the previous section, with those regions of the
binary with unknown provenance omitted. Compiler provenance la-
bel accuracy over the entire data set was 0.938. Table 3 summarizes
labeling accuracy and error types over this data set.

The accuracy of our compiler provenance inference techniques
for both the single- and multiple-compiler data sets demonstrates
the feasibility of extracting provenance from program binaries.
The low rate of mistaken compiler errors—where executable code
created by one compiler is assigned the label of another—allows
us for the first time to attribute sequences of code to a particular
compiler. In the following section, we present a case study that
uses inferred compiler provenance to extend a previously compiler-
specific approach to stripped binary parsing.

6. Stripped Binary Parsing
Parsing a program binary—extracting the instructions and control
flow graph from the underlying bytes—is foundational for any bi-
nary analysis. When the locations of functions are known through
symbol or debug information this task is trivial. In circumstances
where symbols are not available, such as malicious programs, com-
mercial software, and legacy codes, the parsing task is more dif-
ficult. The standard approach of recursive traversal parsing [16]
often fails to completely parse programs due to the prevalence of
indirect control flow. We addressed this problem in previous work
that used compiler specific Function Entry Point (FEP) models to
automatically detect functions in stripped binary code [14]. Our ap-
proach offered significant improvements over existing state-of-the-
art parsing techniques, but relied on knowledge of the source com-
piler that made it unsuitable for binaries of unknown provenance
or those containing mixed-compiler code. We have addressed this
limitation by relaxing the known-compiler requirement, augment-
ing the existing entry point modeling approach to apply to bina-
ries regardless of source compiler. The compiler provenance infer-
ence technique described in this paper increases the precision of
this more general stripped binary parser.

The FEP identification problem is similar to compiler inference,
insofar as we represent the binary as a sequence of bytes and assign
labels to each position. Whereas compiler inference models the
binary as subsequences of byte offsets with the same label, this
task is to find a very sparse set of byte offsets where functions
begin. Each position in the binary x1 . . . xn will be assigned a
label yi of function entry (1) or non-entry (−1). Our goal, as
with compiler inference, is to learn parameters of a probabilistic
graphical model—in this case, one that will assign high likelihood
to a correct labeling of function entry points.

Each point in the binary is characterized by idiom features iden-
tical to those described in Section 3. The idiom feature functions
and associated weights λ used here, however, are parameterized by
the source compiler label `i assigned by compiler provenance in-
ference.

fI(u,`)(xi, yi, `i,P) =

(
1 if yi = 1 and idiom u matches P

at offset xi and `i = `
0 otherwise.

Conceptually, this model uses the compiler labels to determine
which subset of idioms to use for inference. We also define two
features that capture structural characteristics of the binary. The call
feature



Label Accuracy Average error rate

Program Source files Average Spread comp-comp comp-data data-comp

0.74 0.99

chcon 38 0.981 0.012 0.006 0.023
cp 74 0.893 0.126 0.007 0.019
date 25 0.907 0.109 0.008 0.046
df 48 0.972 0.021 0.010 0.015
dir 33 0.977 0.015 0.006 0.028
du 52 0.934 0.064 0.006 0.062
mv 64 0.887 0.129 0.008 0.022
sort 44 0.899 0.013 0.003 0.213
stat 20 0.961 0.015 0.021 0.048
tail 29 0.971 0.022 0.005 0.033

Table 3. Multiple compiler evaluation. Each program was compiled 10 times with GCC or ICC randomly chosen for each source file. The
chosen compiler has an impact on code size and the availability of debug information used for ground truth labeling, contributing to the
variability of label accuracy depicted by the box plot.

fc(xi, xj , yi, yj ,P) =

(
1 if yi = 1, yj = −1 and the func-

tion starting at xi calls xj

0 otherwise.

discourages inconsistent assignment of negative labels to callees of
a positively labeled function. The conflict feature

fo(xi, xj , yi, yj ,P) =

(
1 if yi = yj = 1 and xi, xj incon-

sistently overlap
0 otherwise.

is intended to prevent inconsistent labelings of functions that over-
lap: if two candidate FEPs disassemble to overlapping instructions
streams over the same bytes, they are mutually exclusive. Neither
of these structural features depend on the inferred compiler label.
For further details and a formal specification of the model, refer to
our previous work [14].

The procedure for incorporating compiler provenance inference
into FEP identification is to (a) learn weights λI(u,`) using ground
truth compiler labels over training binaries; (b) label test binaries
with inferred compiler provenance; and (c) label function entry
points using the augmented FEP model. We perform feature se-
lection and training in the same manner as described in Section
4. We break from the expensive feature selection technique of our
previous FEP identification work and adopt the mutual informa-
tion approach. This approach allowed us to quickly select many
thousands of features for a provenance-free reference model as we
discuss below.

We evaluated the provenance-augmented FEP identification tool
on 972 of the binaries in our data set. Because this is a two-class
classification task, evaluation in terms of precision and recall for
the positive entry class is appropriate. Furthermore, the populations
of the entry and non-entry classes are extremely skewed, as there
are many more bytes than functions in a binary. In our data set there
are 256,832 FEPs out of 84,188,324 bytes. Accuracy is a poor met-
ric for classifier performance in such a skewed data set, as it can be
very high while admitting many false positive function identifica-
tions. We therefore adopt the commonly-used F1 measure, which
represents the harmonic mean of precision and recall.

Table 4 summarizes the results of our experiments. In addition
to comparing FEP identification with and without compiler prove-
nance inference, we also evaluated the tool with the ground truth
compiler labels to quantify the maximum contribution of prove-
nance inference for this task. We obtain a modest increase in the F1

measure when using the inferred provenance labels. Though slight,
this increase is statistically significant across our sample popula-
tion and represents a more than 18% decrease in the number of
false positives returned.

Adding inferred compiler provenance to the FEP identification
task has only modest impact in part because the FEP identification
tool is already very powerful: by comparison, the industry standard
IDA Pro disassembler [3] has an aggregate F1 of 0.818 and per-
forms significantly worse on the ICC data set (F1 = 0.540). One
open question is whether compiler provenance could be used to
simplify the task while maintaining high accuracy. Without prove-
nance labels, we were only able to extend our FEP identifica-
tion techniques to the multiple-compiler setting by adding tens
of thousands of features beyond our original approach, signifi-
cantly increasing model complexity. More work is needed to de-
termine whether adding inferred provenance labels could allow us
to achieve comparable results with far fewer features.

7. Related work
To our knowledge, no other technique has been proposed to extract
source compiler or other provenance characteristics from program
binaries. Our approach bears some similarity to existing work in
code comparison and malware identification that use probabilistic
models of programs to attempt to classify malicious software or de-
tect similarities between programs [6, 10]. These approaches repre-
sent binaries as n-grams of bytes and attempt to classify the entire
binary; by contrast, the technique we use for compiler inference
incorporates structural characteristics and disambiguates compiled
code and non-code at a fine-grained level within a binary.

Experiment FP F1 F1 spread

0.86 1.0

No compiler labels 6,871 0.956
Inferred labels 5,585 0.959
Ground truth labels 2,414 0.969

Table 4. Evaluation of stripped binary parser performance with
compiler inference. Using imperfectly inferred compiler prove-
nance contributes a small but significant increase in the precision
of the tool. Total false positive errors are reduced by 18% over the
no-provenance case.



Instruction abstractions similar to those in our idiom features
have been used to assign a score to candidate instruction sequences
in obfuscated binaries [7]. Instructions or pairs of instructions are
assigned a score based on the frequency of occurrence in a binary
code corpus; the scores of all instructions in a sequence are added
to form the sequence score. Our idiom sequence CRF differs in
that the contribution of each idiom in the sequence is based on
learned parameters that allow discrimination between different la-
bels within a sequence of bytes rather than distinguishing between
two alternative sequences of instructions.

One element of program provenance that continues to receive
attention is authorship attribution [4, 15]. All existing work has fo-
cused on the problem of source code attribution, using course statis-
tics such as comment to code ratio or average line length to differ-
entiate among several authors. Whether distinguishing characteris-
tics of the toolchain used to produce a binary code artifact could
yield authorship-revealing information remains an open question.

8. Discussion
We have introduced the task of source compiler inference, and
presented a novel technique that extracts the compiler provenance
from program binaries using only the binary code and data bytes.
Our technique represents the program as a sequence of idiom fea-
tures, abstractions of instructions that are evaluated at each byte
offset in the binary, not at the actual executable instruction loca-
tions. Using idiom features and structural characteristics of binary
code such as source compiler consistency across intraprocedural
control flow, we learn parameters of a conditional random field
model of binary code. This model allows us to accurately label the
most likely compiler of subsequences of code in binaries. Our tests
demonstrate byte labeling accuracy above 90% for a large corpus
of real-world binaries. The inference technique applies equally well
to binaries containing code from several compilers, yielding results
consistent with those of the single-compiler data set.

We applied our compiler inference technique to the task of func-
tion entry point identification in stripped binary code, which previ-
ously had required prior knowledge of the source compiler. First
extending this technique to elide the known-compiler requirement,
we then showed that adding inferred provenance labels acheives a
modest but significant improvement in parser precision. Our ex-
tension allowed the function entry modeling algorithm to asso-
ciate code features with particular compilers in a single model, tak-
ing advantage of compiler-specific characteristics without requir-
ing compiler-specific models. More research is needed to determine
whether the information supplied by source compiler inference can
be used to decrease the complexity of function entry point identifi-
cation, for example by reducing the number of features needed.

The extent to which differences in the code produced by dif-
ferent versions of the same compiler impacts the compiler identi-
fication task is outside the scope of this study. Given that the code
generated by different compiler families exhibits significant varia-
tion, it is reasonable to expect that binaries generated by substan-
tially different versions of a compiler (e.g. GCC 3.x vs GCC 4.x
or different editions of Microsoft Visual Studio) would differ under
the representations we present here. We have completed a prelimi-
nary study of code variance in the GCC compiler that supports this
assumption; however, the extent to which such version-dependent
code characteristics impacts the compiler family identification task
is an open question.

The ability to infer compiler provenance from the contents of
a program binary enables tool-specific binary analysis like our
function entry point identification case study or recognition and
understand of compiler-specific idioms like the implementation of
switch statements [1]. Source compiler inference also can provide
information relevant to forensic analysis and reverse engineering

by giving insight into a major component in the binary production
toolchain. If we pull back from our focus on the source compiler
and instead view the entire binary production process—compiler,
compiler optimizations, linker, link-time optimizations, post-link
processing—as a black box, it is reasonable to ask whether other
program provenance characteristics might be extracted besides the
identity of the source compiler. The extent to which this question
can be answered is itself an open question, and is the focus of our
ongoing work.

A. Idiom Feature Details
The feature selection procedure we used for the experiments de-
scribed in this paper simply ranked idiom features by the mutual
information between the idiom and class variables. The following
idioms represent the top in our training data for the single-compiler
data set when ranked by mutual information.

Idiom MI(U , C)

test ebp,esp 0.0004485
test ebp,esp |adc ebx,ebx 0.0003902
* |adc ebx,ebx 0.0003502
adc esi,esi 0.0002985
adc esi,esi |test ebp,esp |adc esp,esp 0.0002741
adc esi,esi |test ebp,esp 0.0002741
adc esi,esi |* |adc esp,esp 0.0002741
* |test ebp,esp |adc esp,esp 0.0002643
* |* |adc esp,esp 0.0002528
* |test ebp,esp 0.0002454

When we train the compiler inference model, each idiom is as-
signed a weight for each label transition such as gcc → data or
icc → icc. The following are pairs of label transitions and id-
iom features with the largest absolute value weights in the single-
compiler model.

Idiom Label transition Weight

adc data→ data 3.94
test ebp,esp |* |adc esp data→ data 3.548
* |* |and data→ data 2.624
and data→ data 2.522
test ebp,esp data→ data -2.415
* |adc ebx,ebx data→ data -2.249
* |* |push gcc→ data 2.19
* |and data→ data 2.113
* |* |push mem,eax data→ data -1.992
adc edx,mem |sbb data→ gcc 1.984
adc ecx,mem |* |sbb ecx gcc→ data 1.972
* |* |sub data→ data 1.941
* |* |adc esi,esi data→ data -1.94
* |* |xor data→ data 1.882
sbb eax |sbb data→ gcc 1.841
* |and |sbb data→ data -1.786
* |add |adc esi,esi data→ data -1.757
sbb |* |push gcc→ data 1.683
adc esp data→ gcc 1.673
* |adc data→ data -1.669
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[8] C. Krügel, E. Kirda, D. Mutz, W. K. Robertson, and G. Vigna. Poly-
morphic worm detection using structural information of executables.
In Eighth International Symposium on Recent Advances in Intru-
sion Detection (RAID 2005), pages 207–226, Seattle, WA, September
2005.

[9] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In
Proc. 18th International Conf. on Machine Learning, 2001.

[10] W.-J. Li, K. Wang, S. J. Stolfo, and B. Herzog. Fileprints: identifying
file types by n-gram analysis. In Sixth IEEE Information Assurance
Workshop (IAW ’05), pages 64–71, June 2005.

[11] A. McCallum. Efficiently inducing features of conditional random
fields. In Proceedings of the 19th Conference in Uncertainty in
Artificial Intelligence, Acapulco, Mexico, August 2003.

[12] A. K. McCallum. Mallet: A machine learning for language toolkit.
http://www.cs.umass.edu/ mccallum/mallet, 2002.

[13] Paradyn Project. Dyninst: An application program interface for run-
time code generation. http://www.paradyn.org, 2010.

[14] N. Rosenblum, X. Zhu, B. P. Miller, and K. Hunt. Learning to analyze
binary computer code. In Proceedings of the twenty-third conference
on Artificial Intelligence (AAAI-08), Chicago, IL, July 2008.

[15] E. H. Spafford and S. A. Weeber. Software forensics: Can we track
code to its authors? Technical Report Purdue Technical Report CSD-
TR-92-010 / SERC Technical Report SERC-TR-110-P, 1992. URL
citeseer.ist.psu.edu/spafford92software.html.

[16] H. Theiling. Extracting safe and precise control flow from binaries. In
RTCSA ’00, page 23, Washington, DC, USA, 2000. IEEE Computer
Society. ISBN 0-7695-0930-4.


