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Abstract
Many analysis techniques have been proposed to determine when a
potentially null value may be dereferenced. But we have observed
in practice that not every potential null dereference is a “bug” that
developers want to fix. In this paper we discuss some of the chal-
lenges of using a null dereference analysis in practice, and reasons
why developers may not feel it necessary to change code to pre-
vent ever possible null dereference. We revisit previous work on
XYLEM, an interprocedural null dereference analysis for Java, and
discuss the challenge of comparing the results of different static
analysis tools. We also report experimental results for XYLEM,
Coverity Prevent, Fortify SCA, Eclipse and FindBugs, and observe
that the different tools tradeoff the need to flag all potential null
dereferences with the need to minimize the number of cases that
are implausible in practice. We conclude by discussing whether it
would be useful to extend the Java type system to distinguish be-
tween nullable and nonnull types, and prohibit unchecked derefer-
ences of nullable types.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
Analysis; D.2.4 [Software Engineering]: Software/Program veri-
ficationReliability

General Terms Reliability, Security

Keywords Static analysis, null pointer dereference

1. Introduction
Static analysis to detect potential null pointer dereferences is a well
studied field. However, in memory-safe languages such as Java,
a potential null pointer dereference isn’t necessarily a sign of de-
fective code. In some cases, the potential null pointer dereference
could occur only in situations believed to be impossible by the de-
veloper, or in situations in which expected preconditions or invari-
ants are violated. In such cases, the immediate “fix” to avoid deref-
erencing a null pointer would be to throw some other kind of run-
time exception (e.g., an illegal argument exception). Recall that the
Java coding standard recommends that if null is supplied for a pa-
rameter that is required to be nonnull, a NullPointerException
should be thrown. So a dereference of potentially null parameter
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and an explicit throw if the parameter is null both result in the same
behavior (although an explicitly thrown exception might include a
message that names the parameter that is null). Even in cases where
it might be appropriate to throw some other runtime exception, such
a fix would likely have little or no impact on user observed execu-
tion behavior, although it could expedite debugging of executions
in which an exception did occur.

In this paper, we review some examples of potentially null
dereferences that are flagged as defective by some static analy-
sis tools but not others. We compare the outputs of XYLEM [9],
Coverity Prevent, Fortify SCA, Eclipse and FindBugs. Of the tools
studied, XYLEM is the best tool for finding as many potential null
dereferences as possible with minimal false positives. But we ob-
serve that many potential null dereferences that pass initial soft-
ware testing do not cause subsequent null dereference failures, and
reviewing all potential null dereferences is often not as important
as many other undone software quality tasks.

We also reviewed some of the experimental data previously re-
ported on XYLEM [9], and found some mistakes in their summary
of the data. One of those mistakes removed some of the experi-
mental support for one of the conjectures of the paper, that the null
pointer issues they find are more important than the null pointer
issues found by FindBugs.

We also discuss whether it would be useful to extend the Java
type system to distinguish between nullable and nonnull types,
and prohibit unchecked dereferences of nullable types. As part of
this discussion, we present statistics on invocations of Map.get, a
method that is widely used and is defined to return null if either
the key has no mapping, or is mapped to a null value. We also
discuss cases where one might prefer a null pointer exception
(and subsequent program failure) over more subtle bugs that might
otherwise occur.

“I’ve checked it very thoroughly,”, said the computer, ”and
that quite definitely is the answer. I think the problem, to be
quite honest with you, is that you’ve never actually known
what the question is.”

1.1 What is a bug?
Several researchers have noted [9, 10] that their static analysis
techniques find more “null pointer bugs” than FindBugs, a static
analysis tool developed at the University of Maryland. FindBugs
does relatively simple analysis, so the fact that other tools could
find more potential null dereferences is unsurprising. But on closer
examination, some researchers tend to be conflating the concepts
of “null pointer bug” and “potential null pointer dereference” in a
way that obscures certain important points.

Some researchers seem to assume that any feasible null deref-
erence is, by definition, a bug. But such a definition doesn’t take
into account the circumstances under which a null dereference can



/**
* Deletes the directory at dirName and all its files.
* Fails if dirName has any subdirectories.
*/

public static void deleteDir(File dir) {
File[] files = dir.listFiles();
for (int i = 0; i < files.length; i++) {

files[i].delete();
}
dir.delete();

}

Figure 1. A potential null pointer dereference

occur (e.g., perhaps it can occur only when method preconditions
are violated) and whether a null dereference would produce a func-
tional difference compared with the behavior of the code modified
to avoid the potential null dereference.

We propose that a “bug” or “defect” in code is an issue that an
informed developer would want to resolve by changing the code.
Some “defects” are more important than others: a potential SQL
injection might be considered far more important than an issue
that results in incorrect logging. This classification is subjective,
depending on both the project and the developer. A developer
might want to resolve some issues just to make the code easier
to understand and maintain, even if those issues can’t result in
application misbehavior. We want tools and techniques to help
developers and projects find defects in a cost effective way, as too
much effort on one path to finding defects may come at the expense
of other techniques that are more effective at finding important
defects.

For example, consider the code in Figure 1. Michael Ernst cited
[10] this code as containing a null pointer bug missed by FindBugs.
The issue is that the listFiles() method is defined to return null
if the File object it is invoked on does not refer to a readable
directory. There is an unstated precondition to the deleteDir
method that dir should refer to a readable directory, and if this
precondition is violated, a null pointer exception will be thrown.

Obviously, any execution that results in something other than
a readable directory being passed to the deleteDir method is
erroneous, but in such an execution it would seem that the most
significant defect would be outside of the deleteDir method.
Within the deleteDir method, the only reasonable “fix” is to
throw an IllegalArgumentException if dir is not a readable
directory. This would be more helpful in debugging erroneous
executions, since the exception would more clearly indicate the
problem and could include the value of the dir parameter as part
of the exception message. However, it seems unlikely that there are
situations in which this “fix” would make an application behave
correctly.

The deleteDir method is written as a public utility method
in a library. Having such a method throw a NullPointerException
because an invalid argument was provided would be extremely
confusing, so changing it would assist the debugging of code that
invoked that method. On the other hand, if deleteDir were a
private method used only within a specific application, and any
potential null pointer exception would only be visible to code
within the application, changing the code might not be important
unless there was evidence the exception was occurring in practice.
If it were to happen, the developers could be reasonably expected
to track down the exception and understand why it was occurring.

The point of this discussion isn’t to say that it is wrong to state
that deleteDir contains a null pointer bug, but to say that the
term “null dereference bug” is a vaguely defined term, subject to
different interpretations. Clearly, the deleteDir method contains
a potential null pointer dereference, and from a program analysis

Null dereference warnings
for Ant versions

1.5.0
true false 1.6.0 1.6.5

[9] 82 4 130 82
corrected 75 11 110 62

Table 1. Corrections of XYLEM results from [9]

point of view, it would be more precise to talk about algorithms
for finding potential null pointer dereferences. The question of
whether code should be modified to prevent a potential null pointer
dereference is a different question and subjective judgment call.
Every software project and developer has a limited budget. Every
change made to the code introduces a possibility, however slight, of
introducing a new error, and takes time away from other software
quality efforts.

In fact, there is an issue with the deleteDir method that is
potentially more serious than the null pointer issue. The delete()
method returns false if the deletion was not successful, and the
deleteDir method ignores this return value. As a result, the
deleteDir method might delete some but not all files in the di-
rectory and not provide any warning or signal that the deletion was
incomplete.

2. Static analysis
We revisit the result of the XYLEM static analysis tool [9], discuss
the challenges of consistency of analysis results across versions,
evaluate reasons why potential null dereferences found by static
analysis may be impossible, implausible or of little concern in
practice, and compare the results from different static analysis
tools.

2.1 Revisiting XYLEM data
Nanda and Sinha presented a paper [9] at ICSE 2009 describing
XYLEM, a static analysis tool to detect potential null pointer deref-
erences. We’ve described FindBugs as looking for “low hanging
fruit”, and have always been interested in understanding the differ-
ence between what could be found by tools such as FindBugs and
techniques that look for fruit higher up the tree. The approach de-
scribed by Nanda and Sinha is quite sophisticated, and their paper
reported that they found many more issues than FindBugs with a
very low false positive rate, and that the issues found by their tool
tended to be removed at a higher rate [9, Section 4.4] than the issues
found by FindBugs and thus might be more important.

Mangala Nanda graciously shared the raw data from her exper-
iments with us. In reviewing that data, we found a number of data
analysis errors in the results presented in [9]. We have worked with
the authors to understand those errors, and present results from a
newer version of XYLEM that we believe correct the errors.

Table 1 gives the data originally presented by [9], and necessary
revisions based on our review of the raw data from that experiment.
The XYLEM tool presented in [9] generates as output a text file
with one line per potential null dereference, and the authors made
several mistakes in their manual review of the output files. But these
mistakes do not significantly change the results.

Nanda and Sinha [9, Section 4.4] cited the fact that 26%
of the null pointer dereferences reported by XYLEM in Ant
were deleted in later versions as evidence those issues were im-
portant defects since the software was changed to “fix” them.
They reported [9, corrected] 110 null pointer dereferences in Ant
1.6.0, of which 57 were not reported in Ant 1.6.5. In Ant the
Project.createTask(String) returns null when the argument
to createTask isn’t associated with a class that implements the



Task interface. 30 of the 110 warnings in Ant 1.6.0 are places
where a constant naming a well known ant task (e.g., "ant" or
"move") is supplied to createTask, and the result is derefer-
enced without being checked for null. We will return (in Section
2.4) to the question of whether or not this is a coding mistake.
But more relevant at the moment is the fact that none of these is-
sues are reported by XYLEM in Ant 1.6.5; they account for 30
of the 57 issues that were “removed” between Ant 1.6.0 and Ant
1.6.5. However, the semantics of Project.createTask(String)
didn’t change between 1.6.0 and 1.6.5; it is still clearly specified
to return null if the parameter doesn’t match a known task defini-
tion. However, between the 1.6.0 and 1.6.5, the implementation of
Project.createTask(String) introduced an additional level of
indirection, which pushed the potential null dereference beyond the
analysis horizon of XYLEM.

This removes some of the experimental support for the con-
jecture ([9, Section 4.4]) that the issues reported by XYLEM in
Ant are important. Such data is tricky to interpret. The fact that
an issue is no longer reported might not reflect whether the code
was changed in order to remove the potential null dereference.
For example, most of the potential null dereferences of the re-
turn value of createTask were eliminated in Ant 1.7.0, when the
code was changed to directly invoke constructors to create stan-
dard tasks. Thus, the potential null dereferences disappeared. Were
they “fixed”, or was the elimination of the potential null derefer-
ences a side effect of a refactoring with another purpose (perhaps
performance or code clarity)? Even if a potential dereference is de-
liberately removed, the removal doesn’t indicate whether the po-
tential null dereference was important or occurring in practice. All
10 of the null dereference issues reported by FindBugs in Ant 1.6.5
were removed in Ant 1.7.0 or Ant 1.7.1; these were removed be-
cause Dave Brosius, a contributor to the FindBugs project, submit-
ted patches to Ant that corrected mistakes pointed out by FindBugs.
But there is no indication that these potential dereferences were
causing field failures.

While it would be possible to further dissect the raw data pub-
lished previously [9], the authors have provided us with output from
a newer version of XYLEM. In addition to correcting a number of
issues with the analysis, the new output format is significantly more
detailed, providing additional information to help understand the is-
sues. We wrote a tool to convert the new output format of XYLEM
into FindBugs XML format. This allows us to use the FindBugs
tool chain to review issues and automatically trace the occurrences
of issues across different versions of software (e.g., across differ-
ent versions of Ant). Table 2 gives the number of issues found by
XYLEM in various versions of Ant. For example, the “as reported”
columns show that XYLEM reported 69 issues in Ant 1.6.0, and of
the 76 issues reported in Ant 1.5.4, 39 were no longer reported in
Ant 1.6.0 (e.g., “disappeared”).

Although XYLEM is accurate, it isn’t sound and complete. A
change that doesn’t actually affect whether a null dereference is
feasible can influence what interprocedural paths are explored, and
whether or not a potential null dereference is reported. In followups
to conversations on the topic, Nanda and Sinha have improved
XYLEM to try to make it more consistent, but it still suffers from
some inconsistencies. For example, of the 39 issues no longer
reported by XYLEM in Ant 1.6.0, only 14 are gone forever; 25 of
them are reported again in some later version. Manually examining
those 25, there is no obvious code change that would appear to
be responsible for them disappearing and then reappearing. The
right two columns of Table 2 show the results with “resurrections”,
where if an issue was reported in one version of the code and a later
version of the code, we assume it was present in all intervening
versions, even if XYLEM didn’t report it in those versions. In
some cases, there may have actually been a change that makes

as with
Ant reported resurrections
version disappeared present disappeared present
1.3 33 33
1.4.0 6 51 4 53
1.4.1 2 49 2 51
1.5.0 16 72 15 75
1.5.1 2 75 2 78
1.5.2 7 70 3 77
1.5.3-1 4 72 1 78
1.5.4 1 76 0 79
1.6.0 39 69 14 95
1.6.1 3 69 1 97
1.6.2 4 72 3 101
1.6.3 8 104 6 109
1.6.4 8 101 6 105
1.6.5 4 104 3 105
1.7.0 54 89 53 90
1.7.1 10 84 10 84

Table 2. XYLEM issues reported in versions of Ant

the null dereference impossible, and then another later change that
reintroduced it.

Note that the version in which issues “disappear” only to be later
resurrected can change from version to version of XYLEM, the
static analysis tool. For the results published in the ICSE 2009 pa-
per [9], the issues involving the null return from Project.createTask
were reported in Ant 1.5.4 and Ant 1.6.0, but not Ant 1.6.5. Using
the most recent version of XYLEM, they were reported in Ant 1.5.4
and Ant 1.6.5, but not in Ant 1.6.0.

2.2 The challenge of consistency
We’ve previously [11] discussed the issue of consistency of static
analysis results, and our subsequent experience in production de-
ployments and conversations with static analysis tool vendors has
only reinforced our belief in the importance of that issue.

XYLEM is performs effort-limited interprocedural analysis. As
such, it isn’t sound and complete, but this is a commonly accepted
tradeoff in static analysis for bug detection. However, our examina-
tion of the XYLEM results suggest that any form of effort-limited
interprocedural analysis may suffer from inconsistency problems
that may limit the use of such techniques in production. We need to
worry about consistency across

• different versions of the software artifact,
• different versions of the static analyzer, and
• different runs of the same version of the artifact and analyzer

By consistency, we mean that unless there is a good reason
for the results to change, we report the same issues from run to
run, and that we can identify a correspondence between the issues
reported in one run and those reported in another. Doing any kind of
effort-limited analysis (only searching interprocedural paths up to a
certain depth or until a timer expires) can introduce inconsistencies
as program or analysis changes change what is detected within
the allowed effort. In theory, trivial changes in memory layout
or timing can change the order in which hash table entries are
enumerated, causing inconsistencies from run to run of the same
analysis version on the same artifact version.

Consistency also requires that we be able to track the correspon-
dence of issues between versions. Most production static analysis
deployments don’t insist on a “no issues” standard. Instead, they
generally strive for either a “no unreviewed issues” or a “no un-
reviewed new issues” policy. Many tools will sometimes (or fre-



// JonasDeploymentTool.java
File f = new File(outputdir + File.separator + key);
// warning that f.getParentFile() might return null
f.getParentFile().mkdirs();

// Expand.java
zf = new ZipFile(srcF, encoding);
Enumeration e = zf.getEntries();
while (e.hasMoreElements()) {

ZipEntry ze = (ZipEntry) e.nextElement();
// warning that zf.getInputStream(ze) might return null
extractFile(... zf.getInputStream(ze) ... )

}

// XMLCatalog.java
InputStream is = loader.getResourceAsStream(location);
if (is != null) {

source = new InputSource(is);
URL entryURL = loader.getResource(location);
// warning that loader.getResource might return null
String sysid = entryURL.toExternalForm();
...

// JJTree.java
while (root.getParent() != null)

// warning that getParentFile might return null
root = root.getParentFile();

Figure 2. Impossible dereferences reported by Coverity Prevent

quently) generate warnings for which no code change is appropri-
ate. It may be important or required to review all new issues. But
once an issue has been reviewed and marked as “harmless”, “bad
analysis” or “will not fix”, it is important for the system to be able
to associate that review with issues generated from rerunning the
analysis. We discussed [11] two different techniques used for this
in FindBugs. Fortify SCA and Coverity Prevent all use variants of
one of the methods described (computing a hash value for each is-
sue that is hoped will be invariant).

2.3 Impossible dereferences
Figure 2 shows some impossible dereferences reported by Coverity
Prevent in Ant 1.6.5. In each case, the tool warns about a method
that might return a null value which would be subsequently deref-
erenced. In each case, due logic associated with each API, the re-
turn value at that call site is guaranteed to be nonnull. XYLEM
doesn’t analyze methods defined by the JDK for possible null re-
turn values, so the experimental results we have don’t say whether
XYLEM would be confused by similar situations in user code.

For the JonasDeploymentTool code, getParentFile returns
null if the File doesn’t contain any instances of the File.separator
character, but the line above it guarantees that it does. In Ex-
pand.java , zf.getInputStream(ze) returns null if there is no
matching entry in the ZipFile. But since we got the ZipEntry by
enumerating the entries contained in the file, we are sure to get a
nonnull value. In XMLCatalog, if loader.getResourceAsStream
returns a nonnull value for a particular argument, loader.getResource
is guaranteed to do so as well. In JJTree.java, if root.getParent
returns a nonnull value, root.getParentFile is guaranteed to do
so as well.

2.4 Implicit nonnull assertions
We also found a fair number of places where a return value was
being dereferenced without a null check, the method might return
null in some circumstance, and it wasn’t easy to prove that the
method invocation couldn’t return null. Yet, it seemed like it would
be unlikely to be null in any reasonable circumstance. For example,
the Ant code expects that when the createTask method is invoked
with a constant string specifying one of the set of standard ant
tasks, the createTask method will always return a nonnull value.

Tool Total Plausible Implausible Impossible
Coverity 46 17 15 14
Eclipse 31 11 1 20
FindBugs 11 11 0 0
Fortify 44 14 1 29
XYLEM 57 35 15 7

Table 3. Null dereferences reported in Ant 1.6.5

# review why
15 plausible clear coding mistakes

7 plausible plausible error condition not handled
13 plausible seems plausible, but not clear what situ-

ation would cause it to arise
15 implausible calls to Project.createTask with well

known String constant
4 impossible coupled variables
1 impossible call context guarantees nonnull return

value
2 impossible value previously dereferenced and thus

can’t be null

Table 4. Review of XYLEM warnings in Ant 1.6.5

If fact, if Ant is started with a corrupted properties file, it may not
find some of these task definitions. But it seems reasonable to not
require explicit null checks in this instance.

In our review of static analysis results in 2.5, we manually clas-
sified each reported issue as to whether it seemed impossible under
any execution, implausible or impossible in any non-corrupted ex-
ecution. The ones not so classified might or might not be ones that
could occur in practice; local inspection didn’t provide any reason
to believe them to be infeasible.

2.5 Static analysis results
Table 3 lists warnings reported against Ant 1.6.5 by Coverity Pre-
vent 4.5.0, Eclipse 3.5.0, FindBugs 1.3.8, Fortify 360 SCA 2.1.0
and XYLEM (November, 2009). The XYLEM analyzer reported
(roughly) twice as many plausible null pointer dereferences than
any other analysis engine, but our evaluation was that only 60%
of the issues reported by XYLEM were plausible. Table 4 gives
a more detailed breakdown/description of our (subjective) evalua-
tions of the warnings reported by XYLEM. All of the issues re-
ported by FindBugs seems to be clear coding mistakes, but it also
found the fewest number of plausible issues. None of the plausible
issues in Table 3 are known to have caused any field failures (one
reported by XYLEM in Ant 1.5.0 is known to have caused a field
failure: Bug 10360).

For consistency, we only report issues where a value is known to
be or checked against being equal to null, and later dereferenced.
Some tools also report other kinds of null pointer issues, such as
checking a value to see if it is null after it has been dereferenced.
For each tool, we report how many issues we believe are implausi-
ble (Section 2.4) and impossible (Section 2.3).

Fortify SCA reports the combined results of FindBugs and their
own analysis engine. On the recommendation of Andy Chou of
Coverity, we enabled an undocumented and unsupported effects
analysis feature in Coverity Prevent. Without this feature, signifi-
cantly more results, all impossible, were reported for Coverity Pre-
vent.

Details of our experimental results are available at http://
findbugs.sourceforge.net/publications.html.

https://issues.apache.org/bugzilla/show_bug.cgi?id=10360
http://findbugs.sourceforge.net/publications.html
http://findbugs.sourceforge.net/publications.html


3. Annotations for nullness
There have been many proposals to introduce annotations that
specify whether values or types are allowed to be null [2–4, 10].
Most proposals simply allow for one of two annotations: that either
a value or type is never allowed to be null, or that it is allowed to be
null and that a warning or error should be generated if such a value
is dereferenced without a null check.

In some proposals [3], the annotations can be provided to
generic type parameters. Thus, for a List of nonnull strings, the
get(int) method returns a nonnull value, while for a list of nul-
lable strings, the same method may return a null value.

The problem with these proposals is that there are many existing
methods that return null under some circumstances, but particular
invocation sites may be reasonably expected to always return a non-
null value except under erroneous conditions that should lead to a
runtime exception. Section 2.3 discusses some examples of meth-
ods in the Java libraries that return null under some circumstances,
but are sometimes invoked in circumstances under which they can’t
possibly return null. Papi et al. [10] describe this phenomenon as a
type system weaknesses, and as “application invariants”. More so-
phisticated systems [5, 7, 8] for specifying method contracts may
allow for compile time checking of such invariants, but uptake of
such approaches in production environments has been slow.

A particularly common such situation is the Map.get method,
discussed in Section 3.1. Similar situations also frequently occur in
application code, such as the createTask method in Ant.

Arguably, many APIs would be better if they were more re-
served in their use of null, and if they allowed a more consistent
labeling of return values and parameters as either not allowing null
or needing to be checked for null. None the less, an annotation sys-
tem must serve the needs of existing APIs, as well as assist in the
documentation and type checking of new APIs.

To handle nullness, static analysis tools have some advantages
over type system extensions. Static analysis can look into methods,
and attempt to discern provable conditions under which null will
not be returned. They can also perform statistical modeling of
which values are null checked: in one context, the return value of a
particular method might be frequently dereferenced without a null
check. In another context or project, the value might always (or
almost always) be null checked before being dereferenced.

This isn’t to say that annotations systems for nullness aren’t
useful. Just that they may benefit from allowing more flexibility
than “never null” or “should always be checked for null”. FindBugs
allows for one of three nullness types: “never null” , “null in some
circumstance”, and “should always be checked for null”. In most
cases, dereferencing a value that is “null in some circumstance”
will not generate a FindBugs warning. In theory, many refinements
of “null in some circumstance” are possible, but the advantages of
using more are not clear.

An alternative possibility is to use strict nullness type annota-
tions, but provide for a very concise syntax to cast to a nonnull
type. It has been proposed [6] that Java be extended with a null
safe dereference operator ( ?.). In this proposal, expression x?.y
is defined to be null if x is null, and x.y if it is not. Perhaps Java
should provide a dereference operator (perhaps !.) that includes
an implicit precondition or assertion that the left hand side value is
nonnull, and another operator that acts on a concise cast to a non-
null value. Where a method is called and the developer believes
the return value should never be null in this calling context, they
can concisely express that belief in the code. The JSR308 checker
framework [12, Section 3.4.2] suggests several ways to suppress
nullness warnings in cases where the developer believes the null
dereference cannot occur:

null unconditional
Software invocations checked dereferences
JDK 1.7.0 2516 1040 325
JBoss 5.1.0 3095 1680 105
Glassfish v3 1225 1672 90

Table 5. Invocations of Map.get

• An annotation to suppress warnings about nullness
(e.g., @SuppressWarnings("nullness"))

• An explicit check for nullness, throwing an exception if it is
null.

• An assertion that the value is nonnull.
• Invoking NullnessUtils.castNonNull(...) to cast the

value to a nonnull value.

In addition, with a static analysis framework that supports persis-
tent reviews of issues, the issue could be marked as “not a bug”.

However, we think each of these is inferior to some new con-
cise syntax. It is desirable to have all of the nullness assertions ex-
pressed in the source code and to be able to review them. However,
if the syntax for such assertions is verbose, it can get in the way of
developers who are just trying to understand the logic of the code.

3.1 Uses of Map.get()
Many methods that return null in some context are often invoked in
situations where they are never expected to return null. Due to the
ubiquitous use of the Map interface in Java, Map.get() seems to
account for a plurality of such method invocations (although it may
not be a majority of such invocations). Thus, it seemed reasonable
to study the how invocations of Map.get deal with the possibility
of a null return value.

We want to examine results we would get from a static analysis
tool that generated a warning every time the result of Map.get was
dereferenced without first being nullchecked. Looking at the warn-
ings generated, we can try to evaluate how many of them might
be logically impossible due to other considerations, and whether it
would be possible or desirable to build those considerations into a
static analyzer.

We used FindBugs to examine the invocations of Map.get
in several software artifacts, and report the results in Table 5.
We report the total invocations of Map.get, and the number of
invocations for which there was an explicit null check within the
same method. We also modified FindBugs to report the number of
unconditional dereferences of the return value of Map.get

We manually reviewed the 325 places in the JDK where the
return value of Map.get was unconditionally dereferenced. Look-
ing over these, we found that many of these warnings seemed to
be false positives, except in truly pathological cases. But most
of the false positive warnings were also examples of question-
able or inefficient coding idioms. For example, the calls to get
in Figure 3 can reasonably expect that id is contained in the map
collectedReferences, due to the call to containsKey (in the-
ory, that expectation could fail if the map was modified between
the two calls). But the code in Figure 3 performs 4 lookups in
the collectedReferences data structure, which is inefficient and
could confuse a developer examining the code. The code would be
better if it were transformed as shown in Figure 4, which makes
one atomic call to get to determine if id is contained in the map
and to obtain the value it is associated with in the map.

Reviewing the 325 warnings, there were three common idioms
that would seem to guarantee that at a call to Map.get, the key
supplied was contained in the map:



// com.sun.codemodel.internal.JFormatter, lines 295-305
if ( collectedReferences.containsKey(id) ) {

if ( !collectedReferences.get(id).getClasses().isEmpty() ) {
for ( JClass type : collectedReferences.get(id).getClasses() ) {

if ( type.outer() != null ) {
collectedReferences.get(id).setId(false);
return this;

}
}

}
collectedReferences.get(id).setId(true);

}

Figure 3. “unchecked” dereferences of Map.get()

ReferenceList refs = collectedReferences.get(id);
if ( refs != null ) {

for( JClass type : refs.getClasses() )
if ( type.outer() != null ) {

refs.setId(false);
return this;

}
refs.setId(true);

}

Figure 4. Improved version of code in Figure 3

num preceding check
91 iterating through keySet
55 call to containsKey
46 previous check if get() != null

133 no obvious common idiom; null deference might
be feasible

Table 6. Idioms used to ensure key present for Map.get call

• The code contained a loop over the keys in the map, and for
each key was calling Map.get.

• The code contained an earlier call to Map.containsKey
• The code contained an earlier call to Map.get with the same key.

Of course, such idioms are useless if another thread might re-
move keys from the map. But even assuming that no other threads
modify the map, doing such an analysis would be challenging. In-
stead, we wanted to implement a quick and dirty analysis to decide
the landscape of coding idioms that would have to be recognized in
order to correctly identify such cases. Our results are in Table 6.

Now, it is possible to augment a static analysis checker to un-
derstand some of these idioms, and deduce places where the return
value of get on a Map with nonnull values can be expected to al-
ways be nonnull. In fact, the nullness checker developed as part
of the JSR 308 effort does recognize some of these idioms. But
in our examination, more than one third of the unchecked derefer-
ences didn’t correspond to any recognized idiom. Due to the num-
ber of such warnings involving Map.get, providing special han-
dling might be worthwhile. But there are many such methods (such
as those described in Section 2.3 and Figure 2), and trying to con-
struct special idiom recognition for all of them seems impractical.

4. When NPE is Better
In reviewing some of the potential null dereferences reported by
various tools, we sometimes found that a null dereference was
impossible, but that the issue reflected a significant defect in the
code. In other cases, the null deference was feasible, but the more

// ...apache.xalan....xsltc.dom.DocumentCache
synchronized void replaceDocument(String uri,

CachedDocument doc) {
CachedDocument old =

(CachedDocument)_references.get(uri);
if (doc == null)

insertDocument(uri, doc);
else

_references.put(uri, doc);
}

Figure 5. Mistake in Xalan DocumentCache

common and severe manifestation of the defect occurred when no
null dereference occurred. One such situation is the code fragment

if (out == null) out.close();

Variations on this have shown up in a number of software
projects, including in Ant 1.6.5 (MAudit.java, line 303). In this
case, if out is null, a null pointer exception will be thrown. How-
ever, the real worry about this defect is what happens when out is
nonnull; no exception will be logged or reported and the resource
won’t be closed (which can cause serious problems). Mistakes that
manifest themselves by throwing exceptions are generally prefer-
able to manifestations that silently and occasionally generate cor-
rupted data or performance bottlenecks.

Another example is shown in Figure 5. This code is part of the
Apache Xalan project, and has been included in Sun’s JDK since
Java 1.5. FindBugs reports that the call to insertDocument is in-
correct, since insertDocument requires that its second argument
be nonnull. The null check should have been if (old == null).

A more sophisticated static analyzer might detect that at the one
place where replaceDocument is called, the second argument is
always nonnull, and thus decide replaceDocument cannot, in fact,
pass a bad null parameter to insertDocument.

However, it would be useful for a static analysis tool to gen-
erate a warning about the fact that replaceDocument will never
call insertDocument. This could be potentially significant, since
insertDocument contains logic to cap the size of the cache.
Calls to replaceDocument could cause entries to be added to
_references without bound.

Fortunately, replaceDocument is only called in one place
where we’ve already determined that _references contains an
entry for uri. Thus, unless the entry is removed by another thread
between the earlier check and the call to replaceDocument, both
old and doc will be nonnull, and the fact that we are null-testing
the wrong value will have no impact.

In general, static analyzers can detect not only potential null
dereferences, but also inconsistent handling of null. It can be tricky
to figure out when such redundant checks should be reported.
Sometimes, they are performed after a value has already been
dereferenced, reflecting a dangerously inconsistent understanding
of whether the value can be null. At Google, over a 9 month period,
572 of 815 such warnings were removed from the codebase [1]. On
the other hand, sometimes they represent a conservative nullcheck
of a value that never can be null. At Google, over the same 9 month
period, only 301 of 2189 such warnings were removed from the
codebase. In some cases, such as shown in 5, they can be important
even though a null pointer exception is impossible.

5. Conclusions
Overall, the results of our study are that there are no silver bullets,
and that the data is intriguing but frustratingly hard to interpret.
While null dereferences do cause some execution failures, many



potential null dereferences never manifest themselves in execution.
This may be partially due to a “survivor” effect we have noticed in
applying static analysis tools in practice. If a potential issue doesn’t
cause problems in practice, it is more likely to “survive” to the next
version of the software. Issues that do cause real problems are more
likely to get noticed and fixed, either before the code containing
the issue is ever released, or shortly after it is released and used in
production. If an issue has persisted in the code for a long period
of time, it is likely that it has survived for so long because it isn’t
causing problems. This is particularly true for potential null pointer
exceptions, which tend to leave clear signs when they fail. This
contrasts with other defects that silently cause computation to be
less efficient than intended or the wrong answer to be computed.

This isn’t to say that static analysis isn’t important. Just that
when applying it to stable code that has been thoroughly tested and
used in production, finding the mistakes that matter is difficult.
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