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Abstract

A strong direct product theorem says that if we want to compute k independent instances of
a function, using less than k times the resources needed for one instance, then the overall success
probability will be exponentially small in k. We establish such a theorem for the randomized
communication complexity of the Disjointness problem, i.e., with communication const - kn the
success probability of solving k instances can only be exponentially small in k. We show that
this bound even holds in an AM communication protocol with limited ambiguity.

The main result implies a new lower bound for Disjointness in a restricted 3-player NOF
protocol, and optimal communication-space tradeoffs for Boolean matrix product.

Our main result follows from a solution to the dual of a linear programming problem, whose
feasibility comes from a so-called Intersection Sampling Lemma that generalizes a result by
Razborov [Raz92].

We also discuss a new lower bound technique for randomized communication complexity
called the generalized rectangle bound that we use in our proof.

1 Introduction

1.1 Direct product theorems

One of the fundamental questions that can be asked in any model of computation is how well
computing several instances of the same problem can be composed. Are significant savings possible
when computing the same function on k independent inputs? How do the resources needed for
computing k independent instances of f scale with the resources needed for one instance and with
k7?7 “Resources” may refer to any complexity measure. Similarly we need to define what we mean
by “computing f”.

In this paper we consider randomized communication complexity. A protocol between players
Alice and Bob is given k inputs (z1,%1),..., (2%, yx), and has to output the vector of k answers
f(x1,y1)s .-+, f(zk,yk). The issue is how the protocol can optimally distribute its resources among
the k instances it needs to compute. We focus on the relation between the total amount of com-
munication and the best-achievable success probability o (in the worst-case).

If every protocol with communication ¢ must have some constant error probability when com-
puting just one instance of f, then for computing k instances with communication ¢ we expect
a constant error to occur on each instance and an exponentially small success probability for the
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k-vector as a whole. If this is really the case for all functions, we say that a weak direct product
theorem holds.

However, even if we allow our protocol to use communication kc, on average it still has only
communication ¢ available per instance. So even in this more generous case we might expect to
incur constant error per instance and overall an exponentially small success probability (unless a
protocol could somehow correlate its computation on several instances for all possible choices of
inputs). If such a statement is true we call it a strong direct product theorem (SDPT).

Strong direct product theorems are usually hard to prove and sometimes not even true. In
particular Shaltiel [Sha01] exhibits a general setup in which strong direct product theorems cannot
be expected. His main argument is that in the distributional complexity setting one can construct
functions for which there is a hard core” of some size € that cannot be ignored when allowing only
error probability €/3 (making computing one instance hard), yet given k instances only roughly
an ek of them will be in the hard core, and we can re-allocate most of our resources to those, and
easily solve the other instances (the function is defined to be almost trivial outside the hard core),
altogether using around ek times the resources for one instance while having small overall error.

An incomplete list of examples of ”positive” results about DPT’s are Nisan et al. 's [NRS94]
strong direct product theorem for “decision forests”, Parnafes et al.’s [PRW97] direct product the-
orem for “forests” of communication protocols, Shaltiel’s strong direct product theorems for “fair”
decision trees and for the discrepancy bound for communication complexity under the uniform
distribution [ShaOl], Lee et al.’s analogous result for arbitrary distributions [LSS08], Viola and
Wigderson’s extension to the multiparty case [VW08], Ambainis et al.’s SDPT for the quantum
query complexity of symmetric functions [ASW09|, Jain et al.’s SDPT for subdistribution bounds
in communication complexity [JKNOS|, Ben-Aroya et al.’s SDPT for the quantum one-way com-
munication complexity of the Index function [BRWO8| and several more. In a similar vein are
"XOR”-lemmas like Yao’s [Yao82]. ”Direct Sum” results which state that k times the resources
are needed without the success probability deterioration are also important in communication com-
plexity, see [KN97].

In this paper we focus on the Disjointness problem in communication complexity. Suppose Alice
has an n-bit input « and Bob has an n-bit input y. These x and y represent sets, and DISJ,,(z,y) = 1
iff those sets are disjoint. Note that DISJ,, is the negation of NDISJ,, = OR,,(z Ay), where x Ay is
the n-bit string obtained by bitwise AND-ing z and y. In many ways, NDISJ,, plays a central role
in communication complexity. In particular, it is “NP complete” [BFS86] in the communication
complexity world. The communication complexity of NDISJ,, has been well studied: e.g. it takes
©(n) bits of communication classically [KS92, [Raz92] and O(y/n) quantumly [AA03| Raz03].

For the case where Alice and Bob want to compute k instances of Disjointness, we establish a
strong direct product theorem in Section

SDPT for randomized communication complexity:
Every randomized protocol that computes NDISJ%) using T' < Bkn bits of communi-

cation has worst-case success probability o = 27k).

Previously, Klauck et al. [KSW07] proved that the same success probability bound holds when
the communication is Sky/n (but even in the quantum case). The same result was obtained by
Beame et al. [BPSWO06|], who actually give an SDPT for the rectangle/corruption bound under
product distributions (under such distributions DISJ,, has complexity /n). Klauck [K04] also
showed a weak DPT for the rectangle/corruption bound under all distributions, which implies that
with communication Gn the success probability goes down exponentially in k.



Our approach is as follows. First we massage the problem in a very similar manner as in
[KSWO07]. This leads to the problem of finding k elements in the intersection of two N bit strings.
Since these can easily be verified, we can assume that the protocol either gives up or produces
correct outputs. We are interested in the tradeoff between success probability and communication.

The next step is to formulate a linear program that corresponds to a relaxation of an integer
program that expresses a convex combination of partitions of the communication matrix with the
desired acceptance probabilities. Similar programs have been considered before by Lovasz [L90]
and by Karchmer et al. [KKN95], but have been rarely used to bound randomized communication
complexity. The program expresses, that we can detect inputs with intersection £ with ”high” prob-
ability, while not accepting inputs with smaller intersection at all, and, trivially but importantly,
accepting the remaining inputs with probability at most 1. This extra constraint expresses the fact
that we do not talk about covers of the communication matrix, but partitions. Unsurprisingly we
prove the lower bound by exhibiting a solution to the dual.

To prove feasibility of the solution we provide a new lemma that we call the intersection sampling
lemma. This lemma is a generalization of Razborov’s main lemma from [Raz92] and follows from it
by a rather simple induction argument. The lemma states that any rectangle that is large among
the disjoint x,y is also large for inputs that have intersection size k for every k under a suitable
distribution (losing a 2* factor).

1.2 Applications
1.2.1 Communication-Space Tradeoffs

Our main result has some applications to other problems. First, we consider communication-space
tradeoffs. Research on communication-space tradeoffs has been initiated by Lam et al. [LTT92] in a
restricted setting, and by Beame et al. [BTY94] in a general model of space-bounded communication
complexity. In the setting of communication-space tradeoffs, players Alice and Bob are modeled
as space bounded circuits, and we are interested in the communication cost when given particular
space bounds.

We study the problems of Boolean matriz-vector product and Boolean matriz product. In the
first problem there are an N x N matrix A (input to Alice) and a vector b of dimension N (input
to Bob), the goal is to compute the vector ¢ = Ab, where ¢; = Vi (A[i, j] A bj). In the problem of
matrix multiplication two input matrices have to be multiplied with the analogous Boolean product.

Time-space tradeoffs for Boolean matrix-vector multiplication have been analyzed in an average
case scenario by Abrahamson [Abr90], whose results give a worst case lower bound of T'S = Q(N 3/ ?)
for classical algorithms. He conjectured that a worst case lower bound of T'S = Q(N 2) holds, which
was later confirmed by [KSWO07].

Beame et al. gave tight lower bounds for the communication-space tradeoffs for the matrix-
vector product and matrix product over GF(2), but stated the complexity of Boolean matrix-vector
multiplication as an open problem. Klauck [K04] generalized these results to the quantum case, but
also showed the following classical lower bounds for the Boolean product and randomized protocols:
for matrix-vector product C'S? = Q(N 2), and for matrix-matrix product CS? = Q(N 3). Using
our direct product result we are now able to show that any randomized protocol for matrix-vector
product satisfies C'S = Q(N 2), for matrix-matrix product C'S = Q(N 3). These bounds match the
trivial upper bounds.



1.2.2 Multiparty Communication

Consider the Nondisjointness problem in the 3 player number-on the forehead setting, i.e., Alice
sees inputs y, z Bob sees z, z and Charlie sees x,y. They have to decide whether there is an index 4
such that z; = y; = z; = 1. Lee and Shraibman [LS09] show that the randomized complexity of this
problem is Q(n!/%). Prior to that result larger bounds were shown for models in which the inter-
action between the players is restricted. In particular, in the model with one-way communication,
Viola and Wigderson show a Q(y/n) lower bound [VW07], and in the model, where Charlie sends a
single message, followed by an arbitrary protocol between Alice and Bob, Beame et al. [BPSW06]
show an Q(n'/3) lower bound, which was later simplified by de Wolf [BRW0S]. Using our main
theorem we can show that the latter type of protocol actually needs communication (y/n).

1.3 The Generalized Rectangle Bound

Our main result is proved by giving a solution to the dual of a linear program. While this program
is tailor made for the problem at hand, this is a general approach described e.g. in [L90]. In
Section 5 we investigate the LP given by Lovasz and show that its objective function equals the
rectangle/corruption bound (see [BPSWO06, [K03]).

Adding another, seemingly trivial constraint gives us a more powerful lower bound method (via
the dual), which goes beyond the power of the rectangle bound by using that protocols partition
the inputs into rectangles instead of covering them. The lower bound method is similar to the
rectangle bound, but allows the use of negative weights for a small fraction of the 1-inputs. In this
it is very similar to the way the generalized discrepancy method [SO08, [K07] relates to the standard
discrepancy bound (both the latter methods are lower bounds on quantum communication). The
new method has the potential to overcome limitations of the rectangle bound (e.g., in the situation
when the nondeterministic communication complexity is small).

We can also pinpoint the power of the generalized rectangle bound more closely by showing
that it actually lower bounds unambiguous AM-protocols. Indeed our main result also holds for
AM-protocols with ambiguity 2. Note that NDISJ, has very efficient nondeterministic proto-
cols (and so does its k-fold), so the lower bound really comes from the partition constraints. In
particular we show that any unambiguous AM-protocol for NDISJ,, needs linear communication
(while nondeterministic protocols need communication O(logn). This shows that the generalized
rectangle bound goes beyond the standard one.

2 Preliminaries

In this section we give some definitions of some of the models of communication we study. We refer
to [KN97|] for more background in communication complexity. Note that this section has nothing
to offer to readers interested only in our main result.

2.1 Some Definitions on Communication Complexity

The randomized protocols we consider are all public coin protocols. Success probability of a protocol
is defined to be the probability over the coins to compute the correct output for a worst case input.

A nondeterministic protocol for a Boolean function f is a cover of the communication matrix of f
with 1-chromatic rectangles, its cost is the logarithm of the number of rectangles used. Alternatively,



a nondeterministic protocol can be viewed as a proof system, in which a prover sends a proof
to Alice, after which Alice and Bob verify the proof. In a valid protocol for all 1-inputs there
exists a proof that is accepted, and for no O-input any proof is accepted. The cost is the amount
of communication between Alice and Bob. A nondeterministic protocol with ambiguity ¢ is a
nondeterministic protocol in which each 1-input has no more than ¢ different proofs. For t = 1
protocols are called unambiguous.

Karchmer et al. [KNSW94] have shown that nondeterministic protocols with ambiguity ¢ have
complexity at least Q(y/D(f)/t). Also the rank lower bound holds for unambiguous protocols.

In the case that we want to compute a k-tuple of Boolean functions by a nondeterministic
protocol, we assume that the prover wants to convince Alice and Bob of the fact that f(z;,y;) =1
for as many i as possible. Such a protocol is correct, if for all 1,1, ..., zk, yg such that f(x;, z;) =1
foralli e I C{1,...,k} there is a proof such that Alice and Bob agree on output oy,..., 0, with
0; =1 <= 1 € I, while for no ¢ ¢ I there exists a proof such that o; = 1 will be an output.
Note that in this definition we never require the prover to convince Alice and Bob of the fact that
f(xs,y;) = 0 for any position ¢, so this is a genuine one-sided nondeterminism for many-output
problems.

In other words every nondeterministic protocol with ambiguity ¢ is a collection of at most 2°¢
rectangles each labeled by an output sequence such that for each input z1,¥1,..., g, yr and each
rectangle R with output o1, ..., 0 containing that input: o; < f(x;,y;) for all 7, and there exists a
rectangle containing the input where o; = f(x;,y;) for all i. Furthermore each input is contained
in at most ¢ such rectangles. The communication cost is then c.

An Arthur-Merlin communication protocol (first suggested in [BFS86]) with ambiguity ¢ and
communication ¢ is a convex combination of a set of nondeterministic protocols P;, each occurring
with probability p;. FEach nondeterministic protocol is a collection of at most 2¢ rectangles each
labeled by an output sequence and each input is contained in at most ¢ such rectangles per P;.
We require that for each input z1,y1,..., %k, yp with probability at least 1 — € the protocol P;
has x1,91, ..., 2k, Yk in some rectangle labeled f(x1,41),..., f(2k, yx), whereas with probability at
most € a P; contains the input in a rectangle labeled with o; = 1 while f(xj,y;) = 0 for some i. An
AM-protocol with ambiguity 1 is called unambiguous (note that for different values of the public
coin different proofs are allowed for the same input).

2.2 Communicating Circuits

In the standard model of communication complexity Alice and Bob are computationally unbounded
entities, but we are also interested in what happens if they have bounded memory, i.e., they work
with a bounded amount of storage. To this end we model Alice and Bob as communicating circuits.
In short, these circuits place no restrictions on local gates, but require the number of bits stored
locally to be bounded. Communication is the number of wires crossing between Alice and Bob’s
part of the circuit.

A pair of communicating circuits is actually a single circuit partitioned into two parts. The
allowed operations are local computations and access to the inputs. Alice’s part of the circuit may
read single bits from her input, and Bob’s part of the circuit may do so for his input. Otherwise
arbitrary gates (of any fan-in) on the locally available bits can be used.

The communication C between the two parties is simply the number of wires carrying bits that
cross between the two parts of the circuit. A pair of communicating circuits uses space S, if the
whole circuit works on S bits.



In the problems we consider, the number of outputs is much larger than the memory of the
players. Therefore we use the following output convention. The player who computes the value of
an output sends this value to the other player at a predetermined point in the protocol, who is then
allowed to ”forget” the output. Outputs have to be made in some specified order in the circuit,
i.e., we expect the ith output to be made at a specific gate.

3 The Direct Product Theorem

In this section we formally state and prove our main result.

3.1 Massaging the Problem

In this section we bring the k-fold NDISJ,, problem into anther form that will be easier to handle.
More precisely, we will consider the following three problems. We freely associate strings z € {0, 1}"
with the sets they are the characteristic vectors of.

Definition 1 1. NDISJng) is the problem, given k pairs of strings x;,y; of length n each, to
compute the k-tuple of function values of NDISJ,, on these.

2. Searchglk) 1s the problem, given k pairs of strings x;,y; of length n each, to find indices
1y Jk, Such that x; and y; intersect in j;. If x; and y; are disjoint, output 0 for posi-
tion 4.

3. Search(N) s the problem, given two strings x,y of length N, to find k indices j1, ..., ji, such
k
that x and y intersect in all j;. If |x Ny| < k output 0.

We will prove that problem 3) is hard in the following subsections and state the result now.

Lemma 1 (Main) There are constants 0 < o, 8,7 < 1 such that any randomized protocol with
communication SN for the problem Search(w) with k < YN has success probability at most 2-°F.
k

We now establish that the first two problems are also at least as hard as 3) by reductions very
similar to the analogous ones in [KSWOT].

Theorem 2 (SDPT for Search) There are constants 0 < o',3 < 1 such that any randomized
)

protocol with communication Bkn for the problem Searchgk has success probability at most 2~F.

Proof. We show that a protocol for Searchslk) can be used to solve Search( N ) Set N = kn, fix a

ak/4
protocol P for Searchslk) with success probability . Now consider the following protocol that acts
on N-bit inputs z, y:

1. Apply a random permutation 7 to x and to y.
2. Run P on 7(z), (y).

3. If P makes at least ak/4 outputs # 0, then output any ak/4 of them (undoing 7 before).



4. Otherwise output 0.

This uses the same communication as before. Note that the above protocol will work correctly and

solve Search( N ) whenever P works, and when at least ak/4 positions ¢ with z; = y; = 1 end up
ak/4

in different blocks after the permutation, so they can be produced by P (assuming that ak/4 such
positions exist).

The probability of at least ak/4 positions ¢ with z; = y; = 1 being in different blocks (assuming
that so many exist) is at least

N N-n N—a(k/9n+1_ (N—alk/4n)*" .
N'N—l"'N—a(k/4)+12< N > > (1—a/4)*".

So the success probability is at least o - (1 — a/4)**/* which defines our o/ via
2—a-(ak/4) > 2—a’k . (1 _ a/4)ak/4.

This gives an o/ > 0, since (1 — a/4)%/* > 27°°/8 for 0 < a < 1.

The above argument only works, if ak/4 < YN <= n > a/(4y). Since these are constants
the opposite case can be covered by assuming n = O(1), i.e., we now have to show that solving
many size O(1) instances is hard. So when the communication is less than ek = ©(kn), it can
easily be shown via an information theoretic argument, that it is impossible to solve Searchslk) with
better success than 2~%*): under the uniform distribution the players don’t communicate enough
to agree on a set of k outputs of sufficient entropy. O

Theorem 3 (SDPT for NDISJ,)) There exist constants 0 < o', 8" <1 such that every random-
1zed protocol for NDISJ%) with B"kn communication has success probability o < 27"k,

Proof. A protocol P for NDISJgﬂ) with success probability o and communication C < 3”kn can

be used to build a protocol P’ for Searchslk) with slightly worse success probability:

1. Run P on the original inputs and remember which blocks are accepted.

2. Run simultaneously (at most k) binary searches on the accepted blocks. Iterate this s =
2log(1/4") times. Each iteration is computed by running P on the parts of the blocks that
are known to contain a position j with z;(j) = y;(j) = 1, halving the remaining instance size
each time.

3. Run the trivial protocol on each of the remaining parts of the instances to look for an inter-
section there (each remaining part has size n/2%).

This new protocol P’ uses (s+1)C'+kn/2° = O(8” log(1/8")kn) communication. With probability
)

at least 0°T!, P succeeds in all iterations, in which case P’ solves Searchglk .
So setting 8" such that 8 > O(3"log(1/8")) and o = o'/(s + 1) we get the desired reduction.
Od



3.2 The Linear Program

In this section we provide a linear program, whose value gives a lower bound on the communication
complexity of solving Search(z\r) with success probability o. This will be our tool to establish
k

Lemma Il
So consider any protocol for Search(zv) with success probability 0. We can assume that the

protocol either rejects, or outputs i1, ... ,kz'k. In the latter case we require that the inputs z,y do
actually intersect on those positions, or the other way around, that wrong outputs of this form
have probability 0. This we can assume, because Alice and Bob can simply check an output, before
making it ”official”. The communication overhead is just two bits to agree on the output being
correct. Furthermore, at an additional cost of klog IV bits of communication we can make sure
that every message sequence has a fixed particular set of outputs that Alice and Bob agree on, i.e.,
for any rectangle that corresponds to a leaf of the communication tree for any value of the random
coins there are k different positions i1,...,4; such that the inputs z,y intersect on them, or the
protocol rejects.

We can change such a protocol to a protocol with binary output in which inputs with intersection
size k are accepted with probability > o, whereas all inputs with intersection size smaller than k
are accepted with probability 0. Furthermore on all inputs acceptance happens with probability
at most 1. This latter trivial constraint is important in our proof. The linear program is now as
follows. We have variables wg for all rectangles R C {0,1}" x {0,1}".

minZwR s.t. (1)
R

for all z,y with |[zNy| <k : Z wr =0 (2)
R:z,yeER

for all x,y with |[zNy| =k : Z wWR >0 (3)
R:x,yeR

for all z,y with [z Ny| >k : Z wr <1 (4)
R:z,yER

wr >0 (5)

It is obvious that any randomized protocol with communication ¢ and success probability o for
the problem of accepting & intersection input and rejecting smaller intersection inputs perfectly can
be used to create a solution to this program with cost 2¢: A randomized protocol is a convex com-
bination of deterministic protocols Py, ..., P, with probabilities p1, ..., py, and each deterministic
protocol corresponds to a partition of the inputs into rectangles. We restrict our attention to the
rectangles on which protocols accept. The weight wg of a rectangle R is the sum of the p; over
all P; in which R occurs as accepting rectangle. Then for all input z,y the value RewyeR WR 1S
simply the acceptance probability of the protocol.

Recall that we required not only that the protocol accepts inputs x, y that intersect in exactly &
positions with some probability > o, but that also for each accepting message sequence (i.e., each
accepting rectangle R) there is a set of positions I C [n], |I| = k such that all inputs z,y € R we
have I C xNy. Denote by R, the set of all rectangles R for which there is an I C [n], |I| = k such
that all z,y € R satisfy I C x Ny. We can hence restrict the rectangles R to come from R, in our
LP. This also makes the constraints (2) superfluous.



We now take the dual of the program (with restricted rectangle set) and show a lower bound
by exhibiting a feasible solution of high cost.

max Z OQpy + Yoy s.t. (6)
.y
Poy 20 (7)
Yoy <0 (8)
if |z Ny| # k then ¢y, =0 9)
forall RERy: > Guy+thay <1 (10)
T, yeER

The program asks us to put weights on the inputs, where intersection k£ inputs should receive
positive weights, and some other inputs negative weights, such that all rectangles in R, are either
small or contain at least as many negative weights as positive weights (we will discuss this approach
further in Section 5), but we can only afford overall negative weight which is smaller by a factor
exponential in & compared to the overall positive weight. Negative weights make it easier to satisfy
the rectangle constraints (10), but deteriorate the cost function.

Intuitively the LP formulation states that it is hard to cover the inputs with intersection size k
while keeping the partition constraints (4) satisfied. Note that the primal without (4), but keeping
(2) has a very simple solution of cost exp(klogn), even for o = 1. The problem with that solution
is that it corresponds to a nondeterministic protocol, but not to a randomized one.

3.3 The Solution

Having found a dual program which will allow us to prove a lower bound, we start by defining
distributions on inputs with different intersection sizes in a similar way to [Raz92].

Definition 2 For I = {iy,...,i;} C [n] with |I| = k denote by St the set of inputs x,y such that
xNy = {i1,...,i}. Furthermore let Ty, ,, = U 1|=kS1,n denote the set of all inputs with intersection
size k.

Lenm U8 a distribution on {0,1}" x {0,1}". All z,y & T}, have probability 0. Inputs in Ty,
that also satisfy |z| = |y| = m are chosen uniformly, i.e., with probability

Lemma 4
() ;o
N2k,n+k,m+k(xa y) = (nTk) : Nk,n,m(x Y )7
2k

1
Nk,n—l—k,m—l—k(xa y) = (nTk) : NO,n,m(xla y/)a
k

1
Pkenm (T, 1) = ﬁ : ,uo,n_km_k(x/,y/),
k



n—=k
,U/k—l—l,n,m(xa y) = 7T nN ,Ufl,n—k,m—k(x,y y,)7
(k1)

where 'y’ are inputs resulting from x,y, when k intersecting positions are removed.

The solution to the dual program is based on the following intuition. Since the problem is sym-
metric, we should assign weights uniformly for all inputs with a given intersection size. Naturally
we put a good amount of weight on the intersection k inputs, and these are the only inputs with
positive weights. We do not need to put negative weights on inputs with smaller intersections,
since we already restricted the set of viable rectangles to those with intersection size at least k. All
we need to do is to find a set of inputs to assign negative weights to (the overall weight we can
distribute to those is exponentially smaller in k) so that all the rectangle constraints are satisfied.
It turns out the 2k intersection inputs work just fine. This is because the 2k intersection inputs
end up in many more rectangles than their weight suggests compared to the k intersection inputs.

So we define a solution as follows (the input length is set to n + k):

e The positive weight inputs are in T}, 1 ;. Their weight is defined as ¢, = 25",uk,n+k7m+k(:n, Y).
e The negative weight inputs are in Thy, ;4. Their weight is 9, , = —26"2_aku2k,n+k7m+k(x, Y).

e For all other inputs z,y : ¢z y = 9z, = 0.

B,a > 0 are some constants that we choose later. We can right away compute the value of this
solution, before checking its feasibility. If we set ¢ = 2=*¢*+1_ then the value is

Z Ugbx,y + ¢x,y = Z UZBnluk,n—i-k,m—i-k(:Ea y) - Z 25”2_akﬂ2k,n+k,m+k($a y) = 25712—0519’

z,y Y€, itk T,YE€Tok ntk

since both p’s are distributions. So for ak being less than (5/2)n we get a linear lower bound on
the communication, and we will require k£ < yn/2 for some v <  and set a = 1/2.

The ”sign” constraints (7,8,9) are obviously satisfied, so the only thing we need to check are
the rectangle constraints (10). The following lemma is the main ingredient of the proof.

Lemma 5 (Intersection Sampling Lemma) There is a constant v > 0, such that for each
rectangle R = A x B C {0,1}" x {0,1}" with pionm(R) > 277" and all k < yn/2 we have
Nk,n,m(R) > ﬂO,n,m(R)/2k+l-

This lemma is a generalization of Razborov’s main lemma in [Raz92], which is essentially the
same statement for £ = 1. We shall give the proof in the next section, however, now it’s time to
show that our solution to the dual program is feasible.

So let us check the rectangle constraints. If R is a rectangle first suppose that jeg pir m+k(R) <
2787 In this case Zz,yER Gz < vayERﬁTk,n+k QB"Mkm_i_k’m_i_k(;p,y) <1

Hence we need only worry about large rectangles in R,. All inputs in R intersect on some
positions I = {i1,...,ix}. If we remove those positions from the universe {1,...,n + k} (I is
actually unique for all rectangles that contain inputs with positive weights at all) we can consider
R as a rectangle R in {0,1}" x {0,1}". Clearly ponm(R') > pgn+km+k(R), since all inputs in

RNTj, 41 have a corresponding input in R'NTp 5, and for each @, y:100,n,m (T, ¥) = ke ntkm-+k- (”:k)

10



So the intersection sampling lemma is applicable to R’ as long as we set 8 = and k < yn/2. The
lemma tells us that iy s m(R) > ponm(R')/28L
Consequently,

(1)

ok kb mik(R) = penm(R) - (11)

(")
> ,UO,n,m(R/) : % (12)
n\ (n+k
= fhntkmtk(R) - % (13)
> ik nikmik(R) - Q25 /VE), (14)

where (11) and (13) follow from Lemma 4, (12) from Lemma 5, and (14) using Sterling approxi-
mation.

So, surprisingly, the intersection sampling lemma lets us conclude that R contains a lot more
weight on 2k intersections than on k intersections. Of course this is really a consequence of the fact
that we forced the original protocol to be correct in its outputs, and hence the fact that rectangles
we consider have one set of & positions that all their inputs intersect in.

So
—ak
Z (bx,y + wx,y = Z 2ﬁnﬂk,n+k,m+k(xa y) - Z 2Bnﬂ2k,n+k,m+k(x7 y)2 o <0.
z,yER 2,y€ERNT Y oy z,yeRNToy p

The rectangle constraints are satisfied and our program is indeed feasible. We have the constants
B=r,and 0 =27+ and o = 1/2 as well as k < yn/2. Overall our solution to the dual proves,
that each protocol with communication Sn cannot solve the SEARCH (") with success better

k

than o, as long as k < yn/2. By adjusting constants this proves Lemma 1.

3.4 The Intersection Sampling Lemma

In this section we prove Lemma 5 which we have used to establish the feasibility of the solution to
the linear program exhibited in the previous section.

The base of the induction proof will be provided by Razborov’s main lemma from [Raz92]
restated as follows:

Fact 6 There is a constant 6 > 0, such that for allm € {n/4—on,...,n/4} and for each rectangle
R C {0,1}" x {0,1}" with ponm(R) > 27°" we have p1 nm(R) > ponm(R)/(3/2).

The factor 3/2 corresponds to error 2/5 in the original statement, but it can be seen easily,
that any error 1/2 — € can be achieved in Razborov’s proof by reducing the size of the rectangles
considered suitably (i.e., by lowering the communication bound én considered). Also Razborov
fixes m = n/4, but slightly smaller sets can be accommodated in the proof

We prove the following statement by induction.

IThe proof needs to be adjusted in several ways. First of all, instead of mixing the distributions on intersection
size 1 and 0 in the proportions 1/4 and 3/4 we need to mix them uniformly. Secondly, the constant 1/3 in the
definition of z-bad can be replaced with a constant close to 1, and consequently the numbers in Claims 3 and 4 need
to be adjusted. A bit more troublesome is allowing m to be slightly smaller than n/4, since this makes Fact 2 false,
although it remains approximately true, tilting all other estimates by 1+ § factors.
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Lemma 7 There is a constant v > 0, such that for m = n/4 and each rectangle R = A x B C

{0,1}" x {0,1}" with popnm(R) > 277" and all k < yn/2 we have pgpm(R) > ponm(R)/2F — k-
2—5(n—k+1)'

Setting v = /3 (as well as k < yn/2) implies Lemma 5 as stated in the previous subsection.

Clearly the base of the induction over k is true by Fact 6. So consider any rectangle R, such
that o nm(R) > 277" and k < yn/2.

For all I : |I| = k let’s denote by Ry the rectangle that is the intersection of R with the rectangle
that fixes x; = y; =1 forall i € I. Now RN{T},,U---UT,,} = Ur.7j= 1. Furthermore each
input x,y € Ti41,, N R lies in exactly k + 1 rectangle Ry, while all inputs in z,y € T}, N R lie in
exactly one R;. Hence

Nk—l—l,n,m(R) = Z Nk—l—l,n,m(RI)/(k + 1)
I:|I|=k

Again we can reinterpret the R as rectangles R} in {0,1}"% x {0,1}"~*, because each R has
all its inputs intersecting on the set I, so we only consider what happens on the other positions.

Note that 110 n—km—k(Ry) = tknm(Rr) - (Z), so we can conclude that (g n—km—k(R}) is large
whenever py, , m(Rr) is.

Let T={I:|I| =k A pon—tm—r(R}) <27} Then

n b(n—
Z,uk,n,m(RI) < Zﬂo,n—k,m—k(Rif)/<k> <2 a k) (15)
IeT 1€z
Now
Pertnm(B) = D prrram(R)/(k+1) (16)
I:|I|=k
n—=k
= Nl,n—k,m—k(Rif) YT (17)
Lg::k (k-i-l) ’ (k + 1)
n—=k
> Z :ufl,n—k,m—k(R}) TN /L 1) (18)
I|I|=kATZT (k1) - (k+1)
n—k
> NO,n—k,m—k(R}) ‘TTn (19)
I:I:Zk;\IQI (k42) - (k+1)-3/2
(n—k) (%)
> Pknm(RI) - 7 (20)
I:I:zk:/\IQI (k) - (k1) -2
1
= > tkmm(RI)- 3 (21)
I|I|=kAI¢T
1
> > pknm(Rr)- 5~ 27(n=k) (22)
I:|I|=k
1 §(n—
> Z 1o,n,m (R1) - oFFT (k+1)27°0), (23)
I:|I|=k
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(17), (20) are via Lemma 4, (19) uses Fact 6, (22) is from (15), and (23) uses the induction
hypothesis. O

4 Applications

4.1 Communication-Space Tradeoffs for Boolean Matrix Products

In this section use the strong direct product result for the communication complexity of Disjointness
Theorem [B] to prove tight communication-space tradeoffs.

Theorem 8 FEvery bounded-error protocol in which Alice and Bob have bounded space S and that
computes the Boolean matriz-vector product, satisfies C'S = Q(N 2).

Theorem 9 FEvery bounded-error protocol in which Alice and Bob have bounded space S and that
computes the Boolean matriz product, satisfies C'S = Q(N 3).

Proof of Theorem [8. Alice receives a matrix A, and Bob a vector b as inputs. Given a circuit
that multiplies these with communication C' and space S and success probability 1/2, we proceed
to slice it. A slice of the circuit is a set of consecutive gates in the circuit containing a limited
amount of communication. In communicating circuits the communication corresponds to wires
carrying bits that cross between Alice’s and Bob’s part of the circuit. Hence we may cut the circuit
after SN bits have been communicated and so on. Overall there are C'/BN such circuit slices.
Each starts with an initial state computed by the previous part of the circuit. This state on at
most S bits may be replaced by the uniform distribution on S bits. The effect is that the success
probability decreases to (1/2) - 1/25.

We want to employ the direct product theorem for the communication complexity of NDISJ
(for some k) to show that a protocol with the given communication has success probability at most
exponentially small in the number of outputs it produces, and so a slice can produce at most O(.S)
outputs. Combining these bounds with the fact that N outputs have to be produced gives the
tradeoff: C/BN -O(S) > N.

To use the direct product theorem we restrict the inputs in the following way: Suppose a
protocol makes k outputs. We partition the vector b into k blocks of size N/k, and each block
is assigned to one of the k rows of A for which an output is made. This row is made to contain
zeroes outside of the positions belonging to its block, and hence we arrive at a problem where
Nondisjointness has to be computed on k instances of size N/k. With communication SN, the
success probability must be exponentially small in & due to Theorem Bl Hence k& = O(S) is an
upper bound on the number of outputs produced per slice. O

Proof of Theorem [l The proof uses the same slicing approach as in the other tradeoff result.
Note that we can assume that S = o(V), since otherwise the bound is trivial. Each slice contains
communication SN, and as before a direct product result showing that k£ outputs can be computed
only with success probability exponentially small in &k leads to the conclusion that a slice can only
compute O(S) outputs. Therefore (C/BN)-O(S) > N2, and we are done.

Consider a protocol with SN bits of communication. We partition the universe {1,..., N} of
the Disjointness problems to be computed into k£ mutually disjoint subsets U (i, j) of size N/k, each
associated to an output (7,7), which in turn corresponds to a row/column pair A[éi], B[j] in the
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input matrices A and B. Assume that there are ¢ outputs (i,j1),...,(i,j¢) involving A[i]. Each
output is associated to a subset of the universe U(i, j;), and we set Ali] to zero on all positions that
are not in one of these subsets. Then we proceed analogously with the columns of B.

If the protocol computes on these restricted inputs, it has to solve k instances of Disjointness
of size n = N/k each, since A[i] and B[j] contain a single block of size N/k in which both are not
set to 0 if and only if (4, 7) is one of the k outputs. Hence Theorem Bl is applicable. O

4.2 Multiparty

Theorem 10 In the model where Charlie sends one message, followed by an arbitrary interaction
between Alice and Bob, the 3-party Disjointness problem has randomized complexity Q(v/n).

Proof. This proof idea is due to Ronald de Wolf [BRWO0S§|. Let P be a protocol for the 3-party
NDISJ,, problem with ey/n communication and error 1/3.

We partition {1,...,n} into \/n blocks of size y/n. Charlie’s input z is restricted to contain 1’s
in one particular block, and 0’s elsewhere. So in effect z chooses one of y/n instances of NDISJ N
problems given to Alice and Bob. Since Charlie’s message does not depend on z, Alice and Bob
may reuse it in y/n runs of P in order to determine, for all of the y/n possible z, the value of all of
their NDISJ 5 problems with overall communication en. For each block the error probability is at
most €. The expected number of blocks where the protocol fails is at most 2ey/n with probability
at least 1/2 by the Markov inequality. So for every input z,y to Alice and Bob there is a message
from Charlie which will make them give the wrong answer for at most 2e,/n blocks with probability
at least 1/2.

We may now simply replace Charlie’s message by a uniformly random string which will dete-
riorate the probability of having at least (1 — 2¢)y/n blocks correct to 2-¢V™ . 1/2. We have found
a 2 player protocol with communication en and the mentioned success probability to compute
(1 — 2¢)4/n instances of Nondisjointness correctly. In [BRWOS| a general argument is given that
relates the success probabilty in this situation to the standard situation of an SDPT (in which
success means all the outputs are correct). For small enough e this contradicts our main result. O

5 The Linear Programming Bound, the Rectangle Bound, and
Limited Ambiguity

In this section we take a closer look at the method behind our main result. Lower bound methods
usually strip away some aspects of the computation involved. In communication complexity almost
all lower bound methods strip away the specific tree structure of protocols and instead consider
partitions of the inputs into rectangles (it is known that bounds for partitions are polynomially
tight at least for total Boolean functions). Our method is no different. However, most other general
methods are only considering the properties of single rectangles, while our approach brings in the
fact that they have to form a partition.

A major tool to prove randomized communication complexity bounds is the rectangle /corruption
bound (see [K03, BPSW0G]). It was originally introduced by Yao [Y83], and its most prominent
but by no means only use is in Razborov’s Disjointness bound [Raz92]. We will show that the
method is in fact the solution to a dual LP, and then proceed to define a stronger lower bound
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method. The rectangle/corruption bound states that all rectangles in the communication matrix
are either small or have large error (under some hard distribution).

Let us define the one-sided rectangle/corruption bound. f : {0,1}" x {0,1}" — {0,1} is a
function. Let ug be a probability distribution on f~!(0) and yu; be a probability distribution on
f7H1). Let 1 > s > 0 be the maximum number such that for all rectangles R with ui(R) > s
it is true that po(R) > p1(R) - €. This means that under the distribution 1/2 - (g + p1) all large
1-rectangles have error at least €/(1+¢€). The one-sided rectangle bound is bound(f,1,¢) = —log s.

In [L90] Lovasz describes the following LP to bound randomized communication complexity.

minZwR s.t. (24)
R
for all x,y with f(x,y) =1: Z wr>1—¢ (25)
R:z,yeR
for all x,y with f(x,y) =0: Z wr < € (26)
R:z,yeR
wr >0 (27)

He takes the dual.

max Z (1 —€)pay + Z €bay s.t. (28)

z,y:f(z,y)=1 z,y:f(z,y)=0
for all z,y with f(z,y) =1: ¢,y >0 (29)
for all z,y with f(z,y) =0: ¢, <0 (30)
forall R: »  ¢py <1 (31)
T, yeER

Note that here R ranges over all rectangles in the communication matrix. One can now prove
a lower bound by exhibiting a solution to the dual. Let ¢(x,y) describe such a solution.

We now show that the optimum of this program is characterized by the one-sided rectangle
bound.

First assume that bound(f,1,0) = —logs. Then all rectangles larger than s have large error
under a distribution pu = 1/2 - (ug + p1). We create a solution to the dual as follows. We set

¢(x,y) = p(z,y)/s if f(x,y) =1. For f(z,y) =0 we set ¢(z,y) = —po(x,y)/(ds).
Now clearly the sign constraints (29-10) are satisfied, and for every rectangle smaller than s
under f the rectangle constraints (31) are trivially true. For larger rectangles we have

Nobwy= >, m@y/s— > uolwy)/(6s) <0,

z,y€R z,yER, f(z,y)=1 r,yeR, f(z,y)=0

The cost function is

Yo -omy)/s—e > polz,y)/(ds) =1/(3s)

:c,y:f(x,y):l xvy:f(xvy):()

for e <0/3 and 0 < 1.

15



Now conversely assume that ¢ defines a solution to the dual LP, with cost c.
We define two distributions, p; is on the 1-inputs of f, and is simply given by

Nl(xvy) :¢($,y)/ Z (Zﬁ(l',y)

z,y: f(z,y)=1

Note that t; =) d(z,y) > ¢/(1 —€). uo is on the O-inputs of f, and is given by

z,y: f(z,y)=1

po(z,y) = d(zy)/ >, b=y
2.2 () =0

Note that to = = 3", . (2420 YT ¥) < D0 4 pw)=1(1 — €)@(@,y) /€, since ¢ > 0.
Consider any rectangle R. Now

po(R) to=— > by = D> blzy) —1=t(m(R) —1/k).

z,yER: f(x,y)=0 z,yER:f(z,y)=1

Since t1/ty > €/(1 — €) we have po(R) > (¢/(1 — €))p1(R) — €/c. This means that all rectangles
with p1(R) > 2/c must satisfy po(R) > (€/2)pu1(R) and hence bound(f,1,¢/2) > log(c/2).
This completes our proof that the rectangle/corruption bound is equivalent to Lovasz’s LP.
Instead of proceeding like Lovasz, who relaxes (31) (and obtains the operator norm bound,

which can be exponentially smaller), we note the absence of the ”trivial” constraint

for all x,y with f(x,y)=1: Z wr < 1. (32)
R:z,yeR

We propose the primal Lovasz LP augmented with (32) as a new lower bound on randomized
communication. Consider the dual of the augmented program.

max Y (1=€duy+ D, buyt D>ty st (33)

xvyf(xvy):]- :(:7yf(x,y):0 x,yf(:v,y)zl
for all z,y with f(z,y) =1: ¢gy > 0;1P5, <0 (34)
for all z,y with f(z,y) =0: ¢py < 0,595,y =0 (35)
forall R: > ¢py+thay < 1 (36)
z,yER

In this program we are still choosing a hard distribution and a threshold, but we are also
allowed to create negative weights for a small portion of 1-input. This facilitates satisfying (36) but
deteriorates the cost function quickly. We call the resulting bound the generalized rectangle bound
due to the similarity of this approach to the generalized discrepancy bound [S08, [K03]. In fact it is
easy to see that the discrepancy bound and the generalized discrepancy bound can also be defined
in a similar LP fashion, by allowing positive and negative weights for rectangles, and the difference
between the two again boils down to on the presence of a constraint of the type (32).

Now is the generalized rectangle bound really stronger than the standard one? Let us find out
the strongest type of communication protocol that we can still lower bound. Consider unambiguous
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AM-protocols (i.e., convex combinations of partitions with bounded error, see Section 2. Combi-
natorially inclined people might prefer the name randomized partition number). It is easy to see
that the LP with constraint (32) lower bounds such protocols.

We can now give a partial answer to our question by showing a linear lower bound for the
Nondisjointness problem and unambiguous AM-protocols. Note that since N(NDISJ,,) = O(logn),
also AM(NDISJ,,) = O(logn). Only the extra partition constraint (32) leads to the lower bound.
While this does not prove in principle that the generalized rectangle bound beats the rectangle
bound (we could just work with DISJ,, and use the rectangle bound), it demonstrates the difference
between the bounds nicely. Ultimately we would like to show a linear lower bound for the TRIBES
function (i.e., a fan-in /n AND of NDISJ o broblems, for which the rectangle bound can only
provide O(y/n) bounds on both the function and its complement). Such a bound holds, but has so
far only been established using information theoretic techniques [JKS03].

So let us prove that the generalized rectangle bound is large for NDISJ,,. Again we can restrict
the set of rectangles to R, = {R:3Ji:z,y € R =i € x Ny}. We define a solution to the dual as
follows:

e Inputs in Ty, have weight ¢, , = —o0.

e Inputs in 7', have weight ¢, , = 26",u17n(x, Y).

e Inputs in 75, have weight v, = —26"/12,”(% y) - 3/4.
e All other inputs have weight 0.

All other inputs have weight 0.
The cost is 2°7((1 — €) — 3/4). The sign constraints are satisfied. Now consider a rectangle
R € R,. Let R denote the rectangle in which we ignore its intersection position . Then

(B = pieama(R)- 0= 1)/(3) (37)

> ot () (- 0/15(} ) 39

— nl®)- (0= 11/05()) (39)
> /Ll,n,m(R) ’ 4/3' (40)

We use that jig.,_1(R') >n- 1 o(R) > n2~fn > 2°"=1) and of course Fact 6 in (38).
Then

ST beyt Y ey <2l y)(1 - 3/4-4/3) =0,

z,y€ER: f(x,y)=1 z,y€R: f(z,y)=0

This shows that any unambiguos AM-protocol for NDISJ,, needs communication Q(n). It is
known [KNSW94] that nondeterministic protocols with ambiguity ¢ need communication /D(f)/t
for the deterministic complexity D, and the rank lower bound is also known to hold for unambiguous
nondeterministic protocols. However, these methods do not allow errors, and the first bound cannot
achieve linear lower bounds at all (and the approximate rank cannot give better bounds than /n
either since it lower bounds quantum protocols ([Raz03]).

We can also generalize our main result Theorem 3 in a similar fashion:
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Theorem 11 Assume an AM-protocol with ambiguity 2% computes k instances of NDIS.J,. Then
the success probability of the protocol (over the random bits) is at most 22=K) ynless the commu-
nication is at least Skn.

The proof of this statement is practically identical to the proof of Theorem 3. Going through
the reductions in section 3 we see that they need only a constant repetition of the original protocol,
and a polynomial increase in the ambiguity.

When we come to the search problem and the linear programming formulation note that we
have to replace the right hand side of constraint (4) by < 2. In the dual this increases the gap
between ¢’s and 1’s in the objective function, but that gap is already exponentially large in k, so
nothing in the construction really changes.

Note that this bound is quite tight, since with ambiguity 2°* we can reduce the communication
to any fraction of kn, and with ambiguity n* the communication collapses to O(k logn) even without
any error.

6 Conclusions

In this paper we have proved a strong direct product theorem for Disjointness. One ingredient of
the proof is a new lower bound technique for randomized communication complexity, that relates
to the standard rectangle/corruption bound like the generalized discrepancy bound relates to the
discrepancy bound. Instead of lower bounding the function itself we consider the rectangle bound for
some function which is close, or, similarly, we allow hardness to be proved under a distribution that
allows negative weights. This is a way to express the partition constraint inherent in communication,
that is not fully exploited by both the rectangle and discrepancy bounds. So in particular we
are able to show that the Nondisjointness problem has no efficient unambiguous AM-protocols,
whereas nondeterministic protocols are very efficient (and large 1-rectangles without error exist).
We believe our lower bound method may prove to be general enough to tackle problems like the
TRIBES function, for which the standard rectangle bound fails.

A long standing open problem is whether the rectangle bound is polynomially tight for random-
ized communication complexity (it is well known to be quadratically tight in the O-error case). A
new approach might be to show tightness of the generalized rectangle bound instead (which might
in fact be tight within a constant factor).

Last but not least, every lower bound method that goes beyond the level of arguing about
single rectangles is welcome, since progress in several areas of complexity seems to be stalled at
the rectangle level of argumentation. In particular we believe that the question of separating the
polynomial hierarchy in communication complexity deserves more attention.
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