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Abstract

Given a simplicial complex with weights on its simplices, and a nontrivial cycle on it, we are inter-
ested in finding the cycle with minimal weight which is homologous to the given one. Assuming that the
homology is defined with integer (Z) coefficients, we show the following (Theorem5.2):

For a finite simplicial complexK of dimension greater thanp, the boundary matrix[∂p+1] is
totally unimodular if and only ifHp(L,L0) is torsion-free, for all pure subcomplexesL0, L
in K of dimensionsp andp + 1 respectively, whereL0 ⊂ L.

Because of the total unimodularity of the boundary matrix, we can solve the optimization problem, which
is inherently an integer programming problem, as a linear program and obtain an integer solution. Thus
the problem of finding optimal cycles in a given homology class can be solved in polynomial time. This
result is surprising in the backdrop of a recent result which says that the problem is NP-hard underZ2

coefficients which, being afield, is in general easier to deal with. Our result implies, among other things,
that one can compute in polynomial time an optimal(d − 1)-cycle in a given homology class for any
triangulation of an orientable compactd-manifold or for any finite simplicial complex embedded inRd.
Our optimization approach can also be used for various related problems, such as finding an optimal
chainhomologous to a given one when these are not cycles. Our result can also be viewed as providing
a topological characterization of total unimodularity.

1 Introduction

Topological cycles in shapes embody their important features. As a result they find applications in scientific
studies and engineering developments. A version of the problem that often appears in practice is that given
a cycle in the shape, compute the shortest cycle in the same topological class (homologous). For example,
one may generate a set of cycles from a simplicial complex using the persistence algorithm [10] and then
ask to tighten them while maintaining their homology classes. For two dimensional surfaces, this problem
and its relatives have been widely studied in recent years; see, for example, [2, 3, 5, 6, 8]. A natural question
is to consider higher dimensional spaces which allow higher dimensional cycles such as closed surfaces
within a three dimensional topological space. High dimensional applications arise, for example, in the
modeling of sensor networks by Vietoris-Rips complexes of arbitrary dimension [7, 20]. Not surprisingly,
these generalizations are hard to compute which is confirmed by a recent result of Chen and Freedman [4].
Notwithstanding this negative development, our result shows that optimal homologous cycles in any finite
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dimension are polynomial time computable for a large class of shapes if homology is defined with integer
coefficients.

Let K be a simplicial complex. Informally, ap-cycle inK is a collection ofp-simplices whose bound-
aries cancel mutually. One may assign a non-zero weight to eachp-simplex inK which induces a weighted
1-norm for eachp-cycle in K. For example, the weight of ap-simplex could be its volume. Given any
p-cycle c in K, our problem is to compute ap-cycle c∗ which has the minimal weighted 1-norm in the
homology class ofc. If some of the weights are zero the problem can still be posed and solved, except
that one may not call it weighted 1-norm minimization. The homology classes are defined with respect to
coefficients in an abelian group such asQ, R, Z, Zn etc. Often, the groupZ2 is used mainly because of
simplicity and intuitive geometric interpretations.

Chen and Freedman [4] show that underZ2 coefficients, computing an optimalp-cyclec∗ is NP-hard for
p ≥ 1. Moreover, their result implies that various relaxations may still be NP-hard. For example, computing
a constant factor approximation ofc∗ is NP-hard. Even if the rank of thep-dimensional homology group is
constant, computingc∗ remains NP-hard forp ≥ 2. The only settled positive case is a result of Chambers,
Erickson, and Nayyeri [3] who show that computing optimal homologous loops for surfaces with constant
genus is polynomial time solvable though they prove the problem is NP-hard if the genus is not a constant.

The above negative results put a roadblock in computing optimal homologous cycles in high dimensions.
Fortunately, our result shows that it is not so hopeless – if we switch to the coefficient groupZ instead ofZ2,
the problem becomes polynomial time solvable for a fairly large class of spaces. This is a little surprising
given thatZ is not afield and so seems harder to deal with thanZ2 in general. For example,Z2-valued
chains form a vector space, butZ-valued chains do not.

The problem of computing an optimal homologous cycle (or more generally, chain) can be cast as a lin-
ear optimization problem. Consequently, the problem becomes polynomial time solvable if the homology
group is defined over the reals, since it can be solved by linear programming. Indeed this is the approach
taken by Tahbaz-Salehi and Jadbabaie [20]. However, in general the optimal cycle in that case may have
fractional coefficients for its simplices, which may be awkward in certain applications. One advantage of
usingZ is that simplices appear with integral coefficients in the solution. On the other hand, the linear
programming has to be replaced by integer programming in the case ofZ. Thus, it is not immediately clear
if the optimization problem is polynomial time solvable. One issue in accommodatingZ as the coefficient
ring is that integral coefficients other than0, 1, or−1 do not have natural geometric meaning. Neverthe-
less, our experiments suggest that optimal solutions in practice may contain coefficients only in{−1, 0, 1}.
Furthermore, as we show later, we can put a constraint in our optimization to enforce the solution to have
coefficients in{−1, 0, 1}.

Our main observation is that the optimization problem that we formulate can be solved by linear pro-
gramming under certain conditions, although it is inherently an integer programming problem. It is known
that a linear program provides an integer solution if and only if the constraint matrix has a property called
total unimodularity. A matrix is totally unimodular if and only if each of its square submatrices has a de-
terminant of0, 1, or −1. We give a precise topological characterization of the complexes for which the
constraint matrix is totally unimodular. For this class of complexes the optimal cycle can be computed in
time polynomial in the number of simplices. Totally unimodular matrices have a well-known geometric
characterization – that the corresponding constraint polyhedron is integral [15, Theorem 19.1]. Our result
provides a topological characterization as well.

We can allow several variations to our problem because of our optimization based approach. For ex-
ample, we can probe into intermediate solutions; we can produce the chain that bounds the difference of
the input and optimal cycles, and so forth. In fact, we can also find an optimal chain homologous to a
given one when the chains are not cycles. In other words, we can leverage the flexibility of the optimiza-
tion formulation by linking results from two apparently different fields, optimization theory and algebraic
topology.
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2 Background

Since our result bridges the two very different fields of algebraic topology and optimization, we recall some
relevant basic concepts and definitions from these two fields.

2.1 Basic definitions from algebraic topology

Let K be a finite simplicial complex of dimension greater thanp. A p-chain withZ coefficients inK is a
formal sumof a set of orientedp-simplices inK where the sum is defined by addition inZ. Equivalently, it is
an integer valued function on the orientedp-simplices, which changes sign when the orientation is reversed
[14, page 37].

Two p-chains can be added by adding their values on correspondingp-simplices, resulting in a group
Cp(K) called thep-chain group ofK. The elementary chain basisfor Cp(K) is the one consisting of
integer valued functions that take the value 1 on a single orientedp-simplex,−1 on the oppositely oriented
simplex, and 0 everywhere else. For an orientedp-simplexσ, we useσ to denote both the simplex and the
corresponding elementary chain basis element. The groupCp(K) is free and abelian. The boundary of an
orientedp-simplexσ = [v0, . . . , vp] is given by

∂p σ =
p∑

i=0

(−1)i[v0, .., v̂i, .., vp] ,

wherev̂i denotes that the vertexvi is to be deleted. This function onp-simplices extends uniquely [14, page
28] to theboundary operatorwhich is a homomorphism:

∂p : Cp(K) → Cp−1(K) .

Like a linear operator between vector spaces, a homomorphism between free abelian groups has a unique
matrix representation with respect to a choice of bases [14, page 55]. The matrix form of∂p will be denoted
[∂p]. Let {σi}m−1

i=0 and{τj}n−1
j=0 be the sets of oriented(p − 1)- andp-simplices respectively inK, ordered

arbitrarily. Thus{σi} and{τj} also represent the elementary chain bases forCp−1(K) andCp(K) respec-
tively. With respect to such bases[∂p] is anm× n matrix with entries 0, 1 or−1. The coefficients of∂p τj

in theCp−1(K) basis become the columnj (counting from 0) of[∂p].
The kernelker ∂p is called the group ofp-cyclesand denotedZp(K). The imageim ∂p+1 forms the

group of p-boundariesand denotedBp(K). Both Zp(K) and Bp(K) are subgroups ofCp(K). Since
∂p ◦ ∂p+1 = 0, we have thatBp(K) ⊆ Zp(K), that is, allp-boundaries arep-cycles though the converse is
not necessarily true. Thep dimensional homology group is the quotient groupHp(K) = Zp(K)/Bp(K).
Two p-chainsc andc′ in K arehomologousif c = c′ + ∂p+1 d for some(p + 1)-chaind in K. In particular,
if c = ∂p+1 d, we sayc is homologous to zero. If a cyclec is not homologous to zero, we call it anon-trivial
cycle.

For a finite simplicial complexK, the groups of chainsCp(K), cyclesZp(K), andHp(K) are all finitely
generated abelian groups. By the fundamental theorem of finitely generated abelian groups [14, page 24]
any such groupG can be written as a direct sum of two groupsG = F ⊕ T whereF ∼= (Z⊕ · · · ⊕ Z) and
T ∼= (Z/t1 ⊕ · · · ⊕ Z/tk) with ti > 1 andti dividing ti+1. The subgroupT is called thetorsionof G. If
T = 0, we sayG is torsion-free.

Let L0 be a subcomplex of a simplicial complexL. The quotient groupCp(L)/Cp(L0) is called the
group ofrelative chainsof L moduloL0 and is denotedCp(L,L0). The boundary operator∂p : Cp(L) →
Cp−1(L) and its restriction toL0 induce a homomorphism

∂ (L,L0)
p : Cp(L,L0) → Cp−1(L,L0) .
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As before, we have∂ (L,L0)
p ◦ ∂

(L,L0)
p+1 = 0. Writing Zp(L,L0) = ker ∂

(L,L0)
p for relative cyclesand

Bp(L,L0) = im ∂
(L,L0)
p+1 for relative boundaries, we obtain therelative homology groupHp(L,L0) =

Zp(L,L0)/Bp(L,L0). Sometimes, to distinguish it from relative homology, the usual homologyHp(L) is
called theabsolute homology groupof L.

2.2 Total unimodularity and optimization

Recall that a matrix istotally unimodularif the determinant of each square submatrix is0, 1, or−1. The
significance of total unimodularity in our setting is due to the following result:

Theorem 2.1. [24] Let A be anm × n totally unimodular matrix andb an integral vector, i.e.,b ∈ Zm.
Then the polyhedronP := {x ∈ Rn | Ax = b, x ≥ 0} is integral, meaning thatP is the convex hull of
the integral vectors contained inP. In particular, the extreme points (vertices) ofP are integral. Similarly
the polyhedronQ := {x ∈ Rn | Ax ≥ b} is integral.

The following corollary shows why the above result is significant for optimization problems. Consider
an integral vectorb ∈ Zm and a real vector of cost coefficientsf ∈ Rn. Consider theintegerlinear program

min fTx subject to Ax = b, x ≥ 0 andx ∈ Zn . (1)

Corollary 2.2. LetA be a totally unimodular matrix. Then the integer linear program(1) can be solved in
time polynomial in the dimensions ofA.

Proof. Relax the integer linear program (1) to a linear program by removing the integrality constraintx ∈
Zn. Then an interior point method for solving linear programs will find a real solutionx∗ in polynomial
time [15] if it exists, and indicates the unboundedness or infeasibility of the linear program otherwise. In
fact, since the matrixA has entries 0, 1 or−1, one can solve the linear program in strongly polynomial time
[21, 22]. That is, the number of arithmetic operations do not depend onb andf and solely depends on the
dimension ofA. One still needs to show that the solutionx∗ is integral.

If the solution is unique then it lies at a vertex of the polyhedronP and thus it will be integral because
of Theorem2.1. If the optimal solution set is a face ofP which is not a vertex then an interior point method
may at first find a non-integral solution. However, by [1, Corollary 2.2] the polyhedronP must have at least
one vertex. Then, by [1, Theorem 2.8] if the optimal cost is finite, there exists a vertex ofP where that
optimal cost is achieved. Following the procedure described in [12], starting from the possibly non-integral
solution obtained by an interior point method one can find such an integral optimal solution at a vertex in
polynomial time.

3 Problem formulation

Let K be a finite simplicial complex of dimensionp or more. Given an integer valuedp-chain x =∑m−1
i=0 x(σi) σi we usex ∈ Zm to denote the vector formed by the coefficientsx(σi). Thus,x is the

representation of the chainx in the elementaryp-chain basis, and we will usex andx interchangeably. For
a vectorv ∈ Rm, the1-norm(or `1-norm)‖v‖1 is defined to be

∑
i |vi|. LetW be any realm×m diagonal

matrix with diagonal entrieswi. Then, the 1-norm ofW v, that is,‖W v‖1 is
∑

i |wi||vi|. (If W is a general
m ×m nonsingular matrix then‖W v‖1 is called theweighted 1-normof v.) The norm or weighted norm
of an integral vectorv ∈ Zm is defined by consideringv to be inRm. We now state in words the problem
of optimal homologous chains and later formalize it in (2):

Given ap-chainc in K and a diagonal matrixW of appropriate dimension, the optimal ho-
mologous chain problem (OHCP) is to find a chainc∗ which has the minimal 1-norm‖Wc∗‖1

among all chains homologous toc.
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Remark3.1. In the natural case where simplices are weighted and the optimality of the chains is to be
determined with respect to these weights, we may takeW to be diagonal withwi being the weight of
simplexσi. In our formulation some of the weights can be 0. Notice that the signs of the simplex weights
are ignored in our formulation since we only work with norms.

Remark3.2. In Section1 we surveyed the computational topology literature on the problem of finding
optimal homologouscycles. The flexibility of our formulation allows us to solve the more general, opti-
mal homologouschain problem, with the cycle case being a special case requiring no modification in the
equations, algorithm, or theorems.

Remark3.3. The choice of 1-norm is important. At first, it might seem easier to pose OHCP using 2-
norm. Then, calculus can be used to pose the minimization as a stationary point problem when OHCP is
formulated with only equality constraints which appear in (2) below. This case can be solved as a linear
system of equations. By using 1-norm instead of 2-norm, we have to solve a linear program (as we will
show below) instead of a linear system. But in return, we are able to get integer valued solutions when the
appropriate conditions are satisfied.

The formulation of OHCP is theweighted̀ 1-optimizationof homologous chains. This is very general
and allows for different types of optimality to be achieved by choosing different weight matrices. For
example, assume that the simplicial complexK of dimension greater thanp is embedded inRd, where
d ≥ p + 1. Let W be a diagonal matrix with thei-th diagonal entry being the Euclideanp-dimensional
volume of ap-simplex. This specializes the problem to theEuclideaǹ 1-optimizationproblem. The resulting
optimal chain has the smallestp-dimensional volume amongst all chains homologous to the given one. IfW
is taken to be the identity matrix, with appropriate additional conditions to the above formulation, one can
solve thè 0-optimizationproblem. The resulting optimal solution has the smallestnumberof p-simplices
amongst all chains homologous toc, as we show in Section3.2.

The central idea of this paper consists of the following steps: (i) write OHCP as an integer program
involving 1-norm minimization, subject to linear constraints; (ii) convert the integer program into an integer
linear program by converting the 1-norm cost function to a linear one using the standard technique of
introducing some extra variables and constraints; (iii) find the conditions under which the constraint matrix
of the integer linear program is totally unimodular; and (iv) for this class of problems, relax the integer linear
program to a linear program by dropping the constraint that the variables be integral. The resulting optimal
chain obtained by solving the linear program will be an integer valued chain homologous to the given chain.

3.1 Optimal homologous chains and linear programming

Now we formally pose OHCP as an optimization problem. After showing existence of solutions we refor-
mulate the optimization problem as an integer linear program and eventually as a linear program.

Assume that the number ofp- and (p + 1)-simplices inK is m andn respectively, and letW be a
diagonalm × m matrix. Given an integer valuedp-chainc the optimal homologous chain problem is to
solve:

min
x,y

‖W x‖1 such that x = c + [∂p+1] y, andx ∈ Zm, y ∈ Zn . (2)

In the problem formulation (2) we have given no indication of the algorithm that will be used to solve the
problem. Before we develop the computational side, it is important to show that a solution to this problem
always exists.

Claim 3.4. For any givenp-chainc and any matrixW , the solution to problem(2) exists.

Proof. Define the set

Uc := {‖W x‖1 | x = c + [∂p+1] y, x ∈ Zm andy ∈ Zn} .
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We show that this set has a minimum which is contained in the set. Consider the subsetU ′
c ⊆ Uc defined by

U ′
c = {‖W x‖1 | ‖W x‖1 ≤ ‖W c‖1, x = c + [∂p+1] y, x ∈ Zm andy ∈ Zn} .

This setU ′
c is finite sincex is integral. Therefore,inf Uc = inf U ′

c = minU ′
c.

In the rest of this paper we assume thatW is a diagonal matrix obtained fromweightson simplices
as follows. Letw be a real-valued weight function on the orientedp-simplices ofK and letW be the
corresponding diagonal matrix (thei-th diagonal entry ofW is w(σi) = wi).

The resulting objective function‖W x‖1 =
∑

i |wi| |xi| in (2) is not linear inxi because it uses the
absolute value ofxi. It is however, piecewise-linear in these variables. As a result, (2) can be reformulated
as an integerlinear program in the following standard way [1, page 18]:

min
∑

i

|wi| (x+
i + x−

i )

subject to x+ − x− = c + [∂p+1] y (3)

x+, x− ≥ 0

x+, x− ∈ Zm, y ∈ Zn .

Comparing the above formulation to the standard form integer linear program in (1), note that the vector
x in (1) corresponds to[x+, x−, y]T in (3) above. Thus the minimization is overx+, x− andy, and the
coefficients ofx+

i andx−
i in the objective function are|wi|, but the coefficients corresponding toyj are zero.

The linear programming relaxation of this formulation just removes the constraints about the variables being
integral. The resulting linear program is:

min
∑

i

|wi| (x+
i + x−

i )

subject to x+ − x− = c + [∂p+1] y (4)

x+, x− ≥ 0 .

To use the result about standard form polyhedron in Theorem2.1 we can eliminate the free (unrestricted
in sign) variablesy by replacing these byy+ − y− and imposing the non-negativity constraints on the
new variables [1, page 5]. The resulting linear program has the same objective function, and the equality
constraints:

x+ − x− = c + [∂p+1] (y+ − y−) , (5)

and thus the equality constraint matrix is
[
I −I −B B

]
, whereB = [∂p+1]. We now prove a result

about the total unimodularity of this matrix.

Lemma 3.5. If B = [∂p+1] is totally unimodular then so is the matrix
[
I −I −B B

]
.

Proof. The proof uses operations that preserve the total unimodularity of a matrix. These are listed in [15,
page 280]. IfB is totally unimodular then so is the matrix

[
−B B

]
since scalar multiples of columns of

B are being appended on the left to get this matrix. The full matrix in question can be obtained from this
one by appending columns with a single±1 on the left, which proves the result.

As a result of Corollary2.2and Lemma3.5, we have the followingalgorithmicresult.

Theorem 3.6. If the boundary matrix[∂p+1] of a finite simplicial complex of dimension greater thanp is
totally unimodular, the optimal homologous chain problem(2) for p-chains can be solved in polynomial
time.
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Proof. We have seen above that a reformulation of OHCP (2), without the integrality constraints, leads
to the linear program (4). By Lemma3.5, the equality constraint matrix of this linear program is totally
unimodular. Then by Corollary2.2the linear program (4) can be solved in polynomial time, while achieving
an integral solution.

Remark3.7. One may wonder why Theorem3.6 does not work whenZ2-valued chains are considered
instead of integer-valued chains. We could simulateZ2 arithmetic while using integers or reals by modify-
ing (2) as follows:

min
x,y

‖W x‖1 such that x + 2u = c + [∂p+1] y, andx ∈ {0, 1}m, u ∈ Zm, y ∈ Zn . (6)

The trouble is that the coefficient2 of u destroys the total unimodularity of the constraint matrix in the linear
programming relaxation of the above formulation, even when[∂p+1] is totally unimodular. Thus we cannot
solve the above integer program as a linear program and still get integer solutions.

Remark3.8. We can associate weights with(p + 1)-simplices while formulating the optimization prob-
lem (2). Then, we could minimize‖Wz‖1 wherez = [x,y]T . In that case, we obtain ap-chainc∗ ho-
mologous to the given chainc and also a(p + 1)-chaind whose boundary isc∗ − c and the weights ofc∗

andd together are the smallest. If the given cyclec is null homologous, the optimaly would be an optimal
(p + 1)-chain bounded byc.

Remark3.9. The simplex method and its variants search only the basic feasible solutions (vertices of the
constraint polyhedron), while choosing ones that never make the objective function worse. Thus if the
polyhedron is integral, one could stop the simplex method at any step before reaching optimality and still
obtain an integer valued homologous chain whose norm is no worse than that of the given chain.

3.2 Minimizing the number of simplices

The general weighted̀1-optimization problem (2) can be specialized by choosing different weight matrices.
One can also solve variations of the OHCP problem by adding other constraints which do not destroy the
total unimodularity of the constraint matrix. We consider one such specialization here – that of finding a
homologous chain with the smallestnumberof simplices.

If the matrix W is chosen to be the identity matrix, then one can solve the`0-optimization problem
by solving a modified version of thè1-optimization problem (2). One just imposes the extra condition
that every entry ofc andx be in {−1, 0, 1}. With this choice ofW = I and withc ∈ {−1, 0, 1}m, the
problem (2) becomes:

min
x,y

‖x‖1 such that x = c + [∂p+1] y, andx ∈ {−1, 0, 1}m, y ∈ Zn . (7)

Theorem 3.10. For any givenp-chain c ∈ {−1, 0, 1}m, a solution to problem(7) exists. Furthermore,
amongst allx homologous toc, the optimal homologous chainx∗ has the smallest number of nonzero
entries, that is, it is thè0-optimal homologous chain.

Proof. The proof of existence is identical to the proof of Claim3.4. The condition thatc takes values in−1,
0, 1 ensures that at leastx = c can be taken as the solution if no other homologous chain exists. For the
`0-optimality, note that since the entries of the optimal solutionx∗ are constrained to be in{−1, 0, 1}, the
1-norm measures the number of nonzero entries. Thus the 1-norm optimal solution is also the one with the
smallest number of non-zero entries.

Remark3.11. Note that even with the given chainc taking values in{−1, 0, 1}, without the extra constraint
thatx ∈ {−1, 0, 1}m (rather than justx ∈ Zm), the optimal 1-norm solution components may take values
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outside{−1, 0, 1}. For example, consider the simplicial complexK triangulating a cylinder which is shaped
like an hourglass. Letc1 andc2 be the two boundary cycles of the hour glass so thatc1 +c2 is not trivial. Let
z be the smallest cycle around the middle of the hour glass which is homologous to each ofc1 andc2. Since
c1 + c2 = 2z, the optimal cycle homologous toc1 + c2 has values2 or−2 for some edges even ifc1 andc2

have values only in{−1, 0, 1} for all edges. It may or may not be true that the number of nonzero entries
is minimal in such an optimal solution. We have not proved it either way. But Theorem3.10provides a
guarantee for computing̀0-optimal solution when the additional constraints are placed onx.

The linear programming relaxation of problem (7) is

min
∑

i

(x+
i + x−

i )

subject to x+ − x− = c + [∂p+1] y (8)

x+, x− ≤ 1

x+, x− ≥ 0 .

One can show the integrality of the feasible set polyhedron by using slack variables to convert the inequal-
ities x+ ≤ 1 andx− ≤ 1 to equalities and then using theP form of the polyhedron from Theorem2.1.
Equivalently, all the constraints can be written as inequalities and theQ polyhedron can be used. For a
change we choose the latter method here. Writing the constraints as inequalities, in matrix form the con-
straints are 

−I I B −B
I −I −B B

−I 0 0 0
0 −I 0 0
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I




x+

x−

y+

y−

 ≥



−c
c

−1
−1

0
0
0
0


, (9)

whereB = [∂p+1]. Then analogously to Lemma3.5and Theorem3.6the following are true.

Lemma 3.12. If B = [∂p+1] is totally unimodular then so is the constraint matrix in(9).

Theorem 3.13. If the boundary matrix[∂p+1] of a finite simplicial complex of dimension greater thanp
is totally unimodular, then given ap-chain that takes values in{−1, 0, 1}, a homologousp-chain with the
smallest number of non-zeros taking values in{−1, 0, 1} can be found in polynomial time.

In subsequent sections, we characterize the simplicial complexes for which the boundary matrix[∂p+1]
is totally unimodular. These are the main theoretical results of this paper, formalized as Theorems4.1, 5.2,
and5.7.

4 Manifolds

Our results in Section5.1are valid foranyfinite simplicial complex. But first we consider a simpler case –
simplicial complexes that are triangulations of manifolds. We show that for finite triangulations of compact
p-dimensionalorientablemanifolds, the top non-trivial boundary matrix[∂p] is totally unimodular irrespec-
tive of the orientations of its simplices. We also give examples of non-orientable manifolds where total
unimodularity does not hold. Further examination of why total unimodularity does not hold in these cases
leads to our main results in Theorems5.2.
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4.1 Orientable manifolds

Let K be a finite simplicial complex that triangulates a(p + 1)-dimensional compact orientable manifold
M . As before, let[∂p+1] be the matrix corresponding to∂p+1 : Cp+1(K) → Cp(K) in the elementary chain
bases.

Theorem 4.1. For a finite simplicial complex triangulating a(p+1)-dimensional compact orientable man-
ifold, [∂p+1] is totally unimodular irrespective of the orientations of the simplices.

Proof. First, we prove the theorem assuming that the(p + 1)-dimensional simplices ofK are oriented
consistently. Then, we argue that the result still holds when orientations are arbitrary.

Consistent orientation of(p+1)-simplices means that they are oriented in such a way that for the(p+1)-
chainc, which takes the value 1 on each oriented(p + 1)-simplex inK, ∂p+1 c is carried by the topological
boundary∂ M of M . If M has no boundary then∂p+1 c is 0. It is known that consistent orientation
of (p + 1)-simplices always exists for a finite triangulation of a compact orientable manifold. Therefore,
assume that the given triangulation has consistent orientation for the(p + 1)-simplices. The orientation of
thep- and lower dimensional simplices can be chosen arbitrarily.

Eachp-faceτ is the face of either one or two(p + 1)-simplices (depending on whetherτ is a boundary
face or not). Thus the row of[∂p+1] corresponding toτ contains one or two nonzeros. Such a nonzero entry
is 1 if the orientation ofτ agrees with that of the corresponding(p + 1)-simplex and−1 if it does not.

Heller and Tompkins [13] gave a sufficient condition for the unimodularity of{−1, 0, 1}-matrices whose
columns have no more than two nonzero entries. Such a matrix is totally unimodular if its rows can be di-
vided into two partitions (one possibly empty) with the following condition. If two nonzeros in a column
belong to the same partition, they must be of opposite signs, otherwise they must be in different row par-
titions. Consider[∂p+1]T , the transpose of[∂p+1]. Each column of[∂p+1]T contains at most two nonzero
entries, and if there are two then they are of opposite signs because of the consistent orientations of the
(p + 1)-dimensional simplices. In this case, the simple division of rows into two partitions with one con-
taining all rows and the other empty works. Thus[∂p+1]T and hence[∂p+1] is totally unimodular.

Now, reversing the orientation of a(p + 1)-simplex means that the corresponding column of[∂p+1]
be multiplied by−1. This column operation preserves the total unimodularity of[∂p+1]. Since any arbi-
trary orientation of the(p + 1)-simplices can be obtained by preserving or reversing their orientations in a
consistent orientation, we have the result as claimed.

As a result of the above theorem and Theorem3.6we have the following result.

Corollary 4.2. For a finite simplicial complex triangulating a(p + 1)-dimensional compact orientable
manifold, the optimal homologous chain problem can be solved forp-dimensional chains in polynomial
time.

The result in Corollary4.2when specialized toRp+1 also appears in [19] though the reasoning is differ-
ent.

4.2 Non-orientable manifolds

For non-orientable manifolds we give two examples which show that total unimodularity may not hold in
this case. We also discuss the role of torsion in these examples in preparation for Theorem5.2.

Our first example is the M̈obius strip and the second one is the projective plane. Simplicial complexes
for these two non-orientable surfaces are shown in Figure1. The boundary matrices[∂2] for these simplicial
complexes are given in the Appendix in (11) and (12).

Let M be the M̈obius strip. We consider its absolute homologyH1(M) and its relative homology
H1(M,∂ M) relative to its boundary. Consult [14, page 135] to see how the various homology groups are
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Figure 1: Triangulations of two non-orientable manifolds, shown as abstract simplicial complexes. The left figure
shows a triangulation of the M̈obius strip and the right one shows the projective plane. The numbers are the edge and
triangles numbers. These correspond to the row and column numbers of the matrices (11) and (12).

calculated using an exact sequence. We note thatH1(M) ∼= Z, that is, itsH1 group has no torsion. This can
be seen by reducing the matrix (11) in the Appendix to Smith normal form (SNF). The SNF for the matrix
consists of a6× 6 identity matrix on the top and a zero block below, which implies the absence of torsion.

Let K be the simplicial complex triangulatingM . Consider a submatrixS of the matrix[∂2] shown in
Appendix as (11). This submatrix is formed by selecting the columns in the order 5, 4, 3, 2, 1, 0. From
the matrix thus formed, select the rows 0, 3, 8, 9, 10, 2 in that order. This selection of rows and columns
corresponds to all the triangles and the edges encountered as one goes from left to right in the Möbius
triangulation shown in Figure1. The resulting submatrix is

S =



1 0 0 0 0 1
−1 1 0 0 0 0

0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 1 −1


The determinant of this matrix is−2 and this shows that the boundary matrix is not totally unimodular.

The SNF for this matrix, it turns out,doesreveal the torsion. This matrixS is the relative boundary matrix
∂

(L,L0)
2 whereL = K andL0 are the edges in∂ M . The SNF has 1’s along the diagonal and finally a 2. This

is an example where there is no torsion in the absolute homology but some torsion in the relative homology
and the boundary matrix is not totally unimodular. We formulate this condition precisely in Theorem5.2.

The matrix[∂2] given in Appendix as (12) for the projective plane triangulation is much larger. But it is
easy to find a submatrix with determinant greater than 1. This can be done by finding the Möbius strip in the
triangulation of the projective plane. For example if one traverses from top to bottom in the triangulation of
the projective plane in Figure1 the triangles encountered correspond to columns 6, 9, 3, 8, 4 of (12) and the
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edges correspond to rows 5, 11, 13, 12, 7. The corresponding submatrix is

S =


−1 0 0 0 −1
−1 1 0 0 0

0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1


and its determinant is−2. Thus the boundary matrix (12) is not totally unimodular. Again, we observe
that there is relative torsion inH1(L,L0) for the subcomplexes corresponding to the selection ofS from
[∂2]. HereL consists of the triangles specified above, which form a Möbius strip in the projective plane.
The subcomplexL0 consists of the edges forming the boundary of this strip. This connection between
submatrices and relative homology is examined in the next section.

5 Simplicial complexes

Now we consider the more general case of simplicial complexes. Our result in Theorem5.2 characterizes
the total unimodularity of boundary matrices for arbitrary simplicial complexes. Since we do not use any
conditions about the geometric realization or embedding inRn for the complex, the result is also valid for
abstract simplicial complexes. As a corollary of the characterization we show that the OHCP can be solved
in polynomial time as long as the input complex satisfies a torsion-related condition.

5.1 Total unimodularity and relative torsion

Let K be a finite simplicial complex of dimension greater thanp. We will need to refer to its subcomplexes
formed by the union of some of its simplices of a specific dimension. This is formalized in the definition
below.

Definition 5.1. A pure simplicial complexof dimensionp is a simplicial complex formed by a collection of
p-simplices and their proper faces. Similarly, apure subcomplexis a subcomplex that is a pure simplicial
complex.

An example of a pure simplicial complex of dimensionp is one that triangulates ap-dimensional man-
ifold. Another example, relevant to our discussion, is a subcomplex formed by a collection of somep-
simplices of a simplicial complex and their lower dimensional faces.

Let L ⊆ K be a pure subcomplex of dimensionp + 1 andL0 ⊂ L be a pure subcomplex of dimension
p. If [∂p+1] is the matrix representing∂p+1 : Cp+1(K) → Cp(K), then the matrix representing the relative
boundary operator

∂
(L,L0)
p+1 : Cp+1(L,L0) → Cp(L,L0) ,

is obtained by firstincludingthe columns of[∂p+1] corresponding to(p + 1)-simplices inL and then, from
the submatrix so obtained,excludingthe rows corresponding to thep-simplices inL0 and any zero rows.
The zero rows correspond top-simplices that are not faces of any of the(p + 1)-simplices ofL.

As before, let[∂p+1] be the matrix of∂p+1 in the elementary chain bases forK. Then the following
holds.

Theorem 5.2. [∂p+1] is totally unimodular if and only ifHp(L,L0) is torsion-free, for all pure subcomplexes
L0, L of K of dimensionsp andp + 1 respectively, whereL0 ⊂ L.

11



Proof. (⇒) We show that ifHp(L,L0) has torsion for someL,L0 then [∂p+1] is not totally unimodular.

Let
[
∂

(L,L0)
p+1

]
be the corresponding relative boundary matrix. Bring

[
∂

(L,L0)
p+1

]
to Smith normal form using

the reduction algorithm [14][pages 55–57]. This is a block matrix[
D 0
0 0

]
whereD = diag(d1, . . . , dl) is a diagonal matrix and the block row or column of zero matrices shown above
may be empty, depending on the dimension of the matrix. Recall thatdi are integers anddi ≥ 1. Moreover,
sinceHp(L,L0) has torsion,dk > 1 for some1 ≤ k ≤ l. Thus the productd1 . . . dk is greater than 1. By a
result of Smith [17] quoted in [15, page 50], this product is the greatest common divisor of the determinants

of all k× k square submatrices of
[
∂

(L,L0)
p+1

]
. But this implies that some square submatrix of

[
∂

(L,L0)
p+1

]
, and

hence of[∂p+1], has determinant magnitude greater than 1. Thus[∂p+1] is not totally unimodular.

(⇐) Assume that[∂p+1] is not totally unimodular. We will show that then there exist subcomplexesL0

andL of dimensionsp and(p + 1) respectively, withL0 ⊂ L, such thatHp(L,L0) has torsion. LetS be
a square submatrix of[∂p+1] such that|det(S)| > 1. Let L correspond to the columns of[∂p+1] that are
included in S and letBL be the submatrix of[∂p+1] formed by these columns. This submatrixBL may
contain zero rows. Those zero rows (if any) correspond top-simplices that do not occur as a face of any of
the(p+1)-simplices inL. In order to formS from BL, these zero rows can first be safely discarded to form
a submatrixB′

L. This is becausedet(S) 6= 0 and so these zero rows cannot occur inS.
The rows inB′

L correspond top-simplices that occur as a face of some(p + 1)-simplex inL. Let L0

correspond to rows ofB′
L which areexcludedto formS. Now S is the matrix representation of the relative

boundary matrix∂ (L,L0)
p . ReduceS to Smith normal form. The normal form is a square diagonal matrix.

Since the elementary row and column operations preserve determinant magnitude, the determinant of the
resulting diagonal matrix has magnitude greater than 1. Thus at least one of the diagonal entries in the
normal form is greater than 1. But then by [14, page 61]Hp(L,L0) has torsion.

Remark5.3. The characterization appears to be no easier to check than the definition of total unimodularity
since it involves checkingeveryL,L0 pair. However, it is also noharder to check than total unimodularity.
This leads to the following result of possible interest in computational topology and matroid theory.

Corollary 5.4. For a simplicial complexK of dimension greater thanp, there is a polynomial time algo-
rithm for answering the following question: IsHp(L,L0) torsion-free forall subcomplexesL0 and L of
dimensionsp and(p + 1) such thatL0 ⊂ L?

Proof. Seymour’s decomposition theorem for totally unimodular matrices [16],[15, Theorem 19.6] yields a
polynomial time algorithm for deciding if a matrix is totally unimodular or not [15, Theorem 20.3]. That
algorithm applied on the boundary matrix[∂p+1] proves the above assertion.

Remark5.5. Note that the naive algorithm for the above problem is clearly exponential. For every pairL,L0

one can use a polynomial time algorithm to find the Smith normal form. But the number ofL,L0 pairs is
exponential in the number ofp and(p + 1)-simplices ofK.

Remark5.6. The same polynomial time algorithm answers the question : DoesHp(L,L0) have torsion for
somepairL,L0 ?
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5.2 A special case

In Section4 we have seen the special case of compact orientable manifolds. We saw that the top dimensional
boundary matrix of a finite triangulation of such a manifold is totally unimodular. Now we show another
special case for which the boundary matrix is totally unimodular and hence OHCP is polynomial time
solvable. This case occurs when we ask for optimald-chains in a simplicial complexK which is embedded
in Rd+1. In particular, OHCP can be solved by linear programming for2-chains in3-complexes embedded
in R3. This follows from the following result:

Theorem 5.7. LetK be a finite simplicial complex embedded inRd+1. Then,Hd(L,L0) is torsion-free for
all pure subcomplexesL0 andL of dimensionsd andd + 1 respectively, such thatL0 ⊂ L.

Proof. We consider the(d+1)-dimensional relativecohomology groupHd+1(L,L0) (See [14] for example).
It follows from the Universal Coefficient Theorem for cohomology [14, Theorem 53.1] that

Hd+1(L,L0) = Hom(Hd+1(L,L0), Z)⊕ Ext(Hd(L,L0), Z)

whereHom is the group of all homomorphisms fromHd+1(L,L0) to Z andExt is the group of all of
extensions betweenHd(L,L0) andZ. These definitions can be found in [14, Chapter 5 and 7]. The main
observation is that ifHd(L,L0) has torsion,Ext(Hd(L,L0), Z) has torsion and henceHd+1(L,L0) has
torsion.

On the other hand, by Alexander Spanier duality [18, page 296]

Hd+1(L,L0) = H0(Rd+1 \ |L0|, Rd+1 \ |L|)

where|L| denotes the underlying space ofL. Since0-dimensional homology groups cannot have torsion,
Hd+1(L,L0) cannot have torsion. We reach a contradiction.

Corollary 5.8. Given ad-chain c in a weighted finite simplicial complex embedded inRd+1, an optimal
chain homologous toc can be computed by a linear program.

Proof. Follows from Theorem5.7, Theorem5.2, and Theorem2.2.

5.3 Total unimodularity and M öbius complexes

As another special case, we provide a characterization of the total unimodularity of(p+1)-boundary matrix
of simplicial complexes in terms of a forbidden complex called Möbius complex, forp ≤ 1. In contrast to
the previous characterization (in terms of relative homology ofK), we directly employ certain results on
totally unimodular matrices to derive this characterization in terms of submatrices called cycle matrices. We
show in Theorem5.13that the(p + 1)-boundary matrix of a finite simplicial complex forp ≤ 1 is totally
unimodular if and only if the input complex does not have a(p + 1)-dimensional M̈obius complex as a
subcomplex. In particular, this observation along with Theorem5.2 implies that a2-complex does not have
relative torsion if and only if it does not have a Möbius complex in it. We also demonstrate by example that
this result does not generalize to higher values ofp.

Definition 5.9. A (p + 1)-dimensionalcycle complexis a sequenceσ0, . . . , σk−1 of (p + 1)-simplices such
thatσi andσj have a common face if and only ifj = (i+1) (mod k) and that common face is ap-simplex.
Such a cycle complex triangulates a(p + 1)-manifold. We call it a(p + 1)-dimensionalcylinder complexif
it is orientable and a(p + 1)-dimensionalMöbius complexif it is nonorientable.
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Definition 5.10. Fork ≥ 2, ak × k matrixC is called ak-cycle matrix (k-CM) if Cij ∈ {−1, 0, 1}, andC
has the following form up to row and column permutations and scalings by−1:

C =



1 0 0 · · · 0 0 β
1 1 0 · · · 0 0 0
0 1 1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 1 0 0
0 0 0 · · · 1 1 0
0 0 0 · · · 0 1 1


, β = ±1. (10)

A k-CM with β = (−1)k is termed acylinder cycle matrix(k-CCM), while one withβ = (−1)k+1 is
termed aMöbius cycle matrix(k-MCM). We will refer to the form shown in (10) as thenormal formcycle
matrix.

As an example, consider a triangulationK of a Möbius strip withk ≥ 5 triangles shown in Figure2. Let
K0 be the complex for the boundary of the Möbius strip. In the figure,K0 consists of the horizontal edges.

Then the relative boundary matrix
[
∂

(K,K0)
2

]
of the Möbius stripK modulo its edgeK0 is ak-MCM. The

orientations of triangleτk−1 and that of the terminal edgee0 are opposite ifk is even, but the orientations
agree ifk is odd, givingβ = (−1)k+1. Note that in Section4.2, the submatrixS of the boundary matrix of
the Möbius strip was such a relative boundary matrix and it is an example of a 6-MCM. Another example in
that section was the 5-MCM obtained from the boundary matrix of the projective plane.

Similarly, we observe ak-CCM as the relative boundary-2 matrix of a cylinder triangulated withk
triangles, modulo the cylinder’s edges. Reversing the orientation of an edge or a triangle results in scaling
the corresponding row or column, respectively, of the boundary matrix by−1. These examples motivate the
names “M̈obius” and “cylinder” matrices – a cycle matrix can be interpreted as the relative boundary matrix
of a Möbius or cylinder complex. So, we have the following result.

Lemma 5.11.LetK be a finite simplicial complex of dimension greater thanp. The boundary matrix[∂p+1]
has nok-MCM for anyk ≥ 2 if and only ifK does not have any(p + 1)-dimensional M̈obius complex as a
subcomplex.

τ0 τ2

τk−1

τk−2τ4

τ1 τ3

e0 e0

e5e3

e2

e1

ek−2

ek−1

e4

Figure 2: Triangulation of a M̈obius strip withk triangles.

It is now easy to see that the absence of Möbius complexes is a necessary condition for total unimodu-
larity. We show that this condition is also sufficient for2- or lower dimensional complexes. We first need
the simple result that an MCM is not totally unimodular.

Lemma 5.12. LetC be ak-CM. Thendet C = 0 if it is a k-CCM, and|det C| = 2 if it is a k-MCM.

Proof. The matrixC can always be brought into the normal form with a series of row and column exchanges
and scalings by−1. Note that these operations preserve the value of|det C|. Now assume thatC has
been brought into the normal form and call that matrixC ′. We expand along the first row ofC ′ to get
det C ′ = 1 + (−1)k+1β, and the claim follows.
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Theorem 5.13. For p ≤ 1, [∂p+1] is totally unimodular if and only if the simplicial complexK has no
Möbius subcomplex of dimensionp + 1.

Proof. (⇒) If there is a M̈obius subcomplex of dimensionp + 1 in K, then by Lemma5.11 an MCM
appears as a submatrix of[∂p+1]. That MCM is a certificate for[∂p+1] not being totally unimodular since
its determinant has magnitude 2 by Lemma5.12.

(⇐) Let K have no M̈obius subcomplexes of dimensionp+1. Then by Lemma5.11, there are no MCMs as
submatrices of[∂p+1]. Truemper [23, Theorem 28.3] has characterized all minimally non-totally unimodular
matrices, i.e., matrices that are not totally unimodular, but their every proper submatrix is totally unimodular.
These matrices belong to two classes, which Truemper denotes asW1 andW7. MCMs constitute the first
classW1. A minimally non-totally unimodular matrixW is in W7 if and only if W has a row and a column
containing at least four nonzeros each [23, Cor. 28.5]. Sincep ≤ 1, no column of[∂p+1] can have four or
more nonzeros, and hence no matrix from the classW7 can appear as a submatrix. Hence[∂p+1] is totally
unimodular ifK has no(p + 1)-dimensional M̈obius subcomplexes.

The necessary condition in Theorem5.13extends beyond2-complexes as Remark5.14indicates. How-
ever, we cannot extend the sufficiency condition; Remark5.15presents a counterexample.

Remark5.14. Note that the absence of M̈obius subcomplexes is a necessary condition for[∂p+1] to be totally
unimodular forall p. More precisely, if the simplicial complexK of dimension greater thanp has a M̈obius
subcomplex of dimensionp + 1 then[∂p+1] is not totally unimodular. By Lemma5.11, an MCM appears as
a submatrix of[∂p+1] in this case. Its determinant has magnitude 2 by Lemma5.12, trivially certifying that
[∂p+1] is not totally unimodular.

Remark5.15. The characterization in Theorem5.13does not hold for higher values ofp. We present a3-
complex which does not have a3-dimensional M̈obius subcomplex, but whose[∂3] is not totally unimodular.
Consider the simplicial complex consisting of the following seven tetrahedra formed from seven points
numbered0–6: (0, 1, 2, 3), (0, 1, 2, 4), (0, 1, 2, 5), (0, 1, 2, 6), (0, 1, 3, 4), (0, 2, 3, 5), (1, 2, 3, 6). It can be
verified that the19× 7 boundary matrix[∂3] of this simplicial complex has the7× 7 matrix

W =



−1 −1 −1 −1 0 0 0
1 0 0 0 −1 0 0

−1 0 0 0 0 −1 0
1 0 0 0 0 0 −1
0 1 0 0 1 0 0
0 0 −1 0 0 1 0
0 0 0 1 0 0 1


as a submatrix wheredet(W ) = −2, certifying that[∂3] is not totally unimodular. In fact,W is theonly
submatrix of[∂3] which is not totally unimodular, and it belongs to the classW7 of minimally non-totally
unimodular matrices.

6 Experimental Results

We have implemented our linear programming method to solve the optimal homologous chain problem. In
Figure3 we show some results of preliminary experiments.

The top row in Figure3 shows the computation of optimal homologous 1-chains on the simplicial com-
plex representation of a torus. The longer chain in each torus figure is the initial chain and the tighter shorter
chain is the optimal homologous chain computed by our algorithm. The bottom row shows the result of the
computation of an optimal 2-chain on a simplicial complex of dimension 3. The complex is the tetrahedral
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triangulation of a solid annulus – a solid ball from which a smaller ball has been removed. Two cut-away
views are shown. The outer surface of the sphere is the initial chain and the inner surface is computed as the
optimal 2-chain.

In these experiments we used the linear program (4). The initial chains used had values in{−1, 0, 1} on
the simplices. In the torus examples for instance, the initial chain was 0 everywhere except along the initial
curve shown. The curve was given an arbitrary orientation and the values of the chain on the edges forming
the curve were+1 or−1 depending on the edge orientation. In these examples, the resulting optimal chains
were oriented curves, with values of±1 on the edges along the curve. This is by no means guaranteed
theoretically, as seen in the hour glass example in Remark3.11. The only guarantee is that of integrality.
However if it is essential that the optimal chain has values only in{−1, 0, 1} then the linear program (8) or
it’s Euclidean variant can be used, imposing the additional constraint on the values of the optimal solution
x as shown in linear program (8).

Figure 3: Some experimental results. See text for details on what is being computed here.

7 Discussion

Several questions crop up from our problem formulation and results. Instead of 1-norm‖W x‖1, we can
consider minimizing

∑
i wi xi. In this case, the weights appear with signs and solutions may be unbounded.

Nevertheless, our result in Theorem3.6 remains valid. Of course, in this case we do not need to introduce
x+

i andx−
i since the objective function usesxi rather than|xi|. We may introduce more generalization in the

OHCP formulation by considering a general matrixW instead of requiring it to be diagonal and then asking
for minimizing ‖W x‖1. We do not know if the corresponding optimization problem can be solved by a
linear program. Can this optimization problem be solved in polynomial time for some interesting classes of
complexes?

We showed that OHCP underZ coefficients can be solved by linear programs for a large class of topo-
logical spaces that have no relative torsion. This leaves a question for the cases when there is relative
torsion. Is the problem NP-hard under such constraint? Taking the cue from our results, one can also ask
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the following question. Even though we know that the problem is NP-hard underZ2 coefficients, is it true
that OHCP in this case is polynomial time solvable at least for simplicial complexes that have no relative
torsions (considered underZ)? The answer is negative since OHCP for surfaces inR3 is NP-hard underZ2

coefficients [3] even though they are known to be torsion-free.
Even if the input complex has relative torsion, the constraint polyhedron of the linear program may still

have vertices with integer coordinates. In that case, the linear program may still give an integer solution
for chains that steer the optimization path toward such a vertex. In fact, we have observed experimentally
that, for some2-complexes with relative torsion, the linear program finds the integer solution for some input
chains. It would be nice to characterize the class of chains for which the linear program still provides a
solution even if the input complex has relative torsion.

A related question that has also been investigated recently is the problem of computing an optimal
homology basis from a given complex. Again, positive results have been found for low dimensional cases
such as surfaces [11] and one dimensional homology for simplicial complexes [5, 9]. The result of Chen
and Freedman [4] implies that even this problem is NP-hard for high dimensional cycles underZ2. What
aboutZ? As in OHCP, would we have any luck here?
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Appendix

Boundary matrices for non-orientable surfaces

The boundary matrices[∂2] for the Möbius strip and projective plane triangulations shown in Figure1 are
given below. The row numbers are edge numbers and the column numbers are triangle numbers which are
displayed in Figure1.

[∂2] for Möbius strip :

0 : 1 : 2 : 3 : 4 : 5 :

0 : 1 0 0 0 0 1
1 : 0 0 0 0 −1 0
2 : −1 1 0 0 0 0
3 : 0 0 0 0 1 −1
4 : 0 −1 0 0 0 0
5 : 1 0 0 0 0 0
6 : 0 0 0 0 0 1
7 : 0 0 −1 0 0 0
8 : 0 0 0 1 −1 0
9 : 0 0 1 −1 0 0
10 : 0 1 −1 0 0 0
11 : 0 0 0 1 0 0



(11)

[∂2] for projective plane :

0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 :

0 : −1 0 0 0 0 −1 0 0 0 0
1 : 0 1 1 0 0 0 0 0 0 0
2 : 1 −1 0 0 0 0 0 0 0 0
3 : 0 0 −1 0 0 0 0 1 0 0
4 : 0 0 0 0 0 1 0 −1 0 0
5 : 0 0 0 0 −1 0 −1 0 0 0
6 : −1 0 0 0 0 0 0 0 1 0
7 : 0 0 0 0 1 0 0 0 −1 0
8 : 0 0 0 0 0 −1 1 0 0 0
9 : 0 1 0 0 0 0 0 0 0 −1
10 : 0 0 1 0 −1 0 0 0 0 0
11 : 0 0 0 0 0 0 −1 0 0 1
12 : 0 0 0 −1 0 0 0 0 1 0
13 : 0 0 0 1 0 0 0 0 0 −1
14 : 0 0 0 −1 0 0 0 1 0 0



(12)
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