Optimal Homologous Cycles, Total Unimodularity,
and Linear Programmirig

Tamal K. Dey  Anil N. Hiranit  Bala Krishnamoorthy

Abstract

Given a simplicial complex with weights on its simplices, and a nontrivial cycle on it, we are inter-
ested in finding the cycle with minimal weight which is homologous to the given one. Assuming that the
homology is defined with integeZj coefficients, we show the following (Theorest):

For a finite simplicial complexs of dimension greater thap, the boundary matrifd, 1] is

totally unimodular if and only iff,,(L, L) is torsion-free, for all pure subcomplexés, L

in K of dimension® andp + 1 respectively, wheré, C L.
Because of the total unimodularity of the boundary matrix, we can solve the optimization problem, which
is inherently an integer programming problem, as a linear program and obtain an integer solution. Thus
the problem of finding optimal cycles in a given homology class can be solved in polynomial time. This
result is surprising in the backdrop of a recent result which says that the problem is NP-har@sinder
coefficients which, being field, is in general easier to deal with. Our result implies, among other things,
that one can compute in polynomial time an optirial- 1)-cycle in a given homology class for any
triangulation of an orientable compatimanifold or for any finite simplicial complex embeddedRA.
Our optimization approach can also be used for various related problems, such as finding an optimal
chainhomologous to a given one when these are not cycles. Our result can also be viewed as providing
a topological characterization of total unimodularity.

1 Introduction

Topological cycles in shapes embody their important features. As a result they find applications in scientific
studies and engineering developments. A version of the problem that often appears in practice is that given
a cycle in the shape, compute the shortest cycle in the same topological class (homologous). For example,
one may generate a set of cycles from a simplicial complex using the persistence algtfamd then

ask to tighten them while maintaining their homology classes. For two dimensional surfaces, this problem
and its relatives have been widely studied in recent years; see, for exayfle,[6, 8]. A natural question

is to consider higher dimensional spaces which allow higher dimensional cycles such as closed surfaces
within a three dimensional topological space. High dimensional applications arise, for example, in the
modeling of sensor networks by Vietoris-Rips complexes of arbitrary dimengjd&0]. Not surprisingly,

these generalizations are hard to compute which is confirmed by a recent result of Chen and Frégdman [
Notwithstanding this negative development, our result shows that optimal homologous cycles in any finite
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dimension are polynomial time computable for a large class of shapes if homology is defined with integer
coefficients.

Let K be a simplicial complex. Informally, a-cycle in K is a collection ofp-simplices whose bound-
aries cancel mutually. One may assign a non-zero weight togeathplex in K which induces a weighted
1-norm for eachp-cycle in K. For example, the weight of asimplex could be its volume. Given any
p-cycle ¢ in K, our problem is to compute @acycle ¢* which has the minimal weighted 1-norm in the
homology class ot. If some of the weights are zero the problem can still be posed and solved, except
that one may not call it weighted 1-norm minimization. The homology classes are defined with respect to
coefficients in an abelian group such@sR, Z, Z,, etc. Often, the grouf.s is used mainly because of
simplicity and intuitive geometric interpretations.

Chen and Freedmad][show that unde¥., coefficients, computing an optimadcyclec* is NP-hard for
p > 1. Moreover, their result implies that various relaxations may still be NP-hard. For example, computing
a constant factor approximation @f is NP-hard. Even if the rank of thedimensional homology group is
constant, computing* remains NP-hard fogp > 2. The only settled positive case is a result of Chambers,
Erickson, and Nayyerid] who show that computing optimal homologous loops for surfaces with constant
genus is polynomial time solvable though they prove the problem is NP-hard if the genus is not a constant.

The above negative results put a roadblock in computing optimal homologous cycles in high dimensions.
Fortunately, our result shows that it is not so hopeless — if we switch to the coefficientginsigad ofZ,,
the problem becomes polynomial time solvable for a fairly large class of spaces. This is a little surprising
given thatZ is not afield and so seems harder to deal with tl#anin general. For exampleéZ,-valued
chains form a vector space, if#valued chains do not.

The problem of computing an optimal homologous cycle (or more generally, chain) can be cast as a lin-
ear optimization problem. Consequently, the problem becomes polynomial time solvable if the homology
group is defined over the reals, since it can be solved by linear programming. Indeed this is the approach
taken by Tahbaz-Salehi and Jadbabai@.[ However, in general the optimal cycle in that case may have
fractional coefficients for its simplices, which may be awkward in certain applications. One advantage of
using Z is that simplices appear with integral coefficients in the solution. On the other hand, the linear
programming has to be replaced by integer programming in the caaeldfus, it is not immediately clear
if the optimization problem is polynomial time solvable. One issue in accommodatagjthe coefficient
ring is that integral coefficients other than1, or —1 do not have natural geometric meaning. Neverthe-
less, our experiments suggest that optimal solutions in practice may contain coefficients{fonly in1}.
Furthermore, as we show later, we can put a constraint in our optimization to enforce the solution to have
coefficients in{—1,0, 1}.

Our main observation is that the optimization problem that we formulate can be solved by linear pro-
gramming under certain conditions, although it is inherently an integer programming problem. It is known
that a linear program provides an integer solution if and only if the constraint matrix has a property called
total unimodularity A matrix is totally unimodular if and only if each of its square submatrices has a de-
terminant of(0, 1, or —1. We give a precise topological characterization of the complexes for which the
constraint matrix is totally unimodular. For this class of complexes the optimal cycle can be computed in
time polynomial in the number of simplices. Totally unimodular matrices have a well-known geometric
characterization — that the corresponding constraint polyhedron is inté§raltheorem 19.1]. Our result
provides a topological characterization as well.

We can allow several variations to our problem because of our optimization based approach. For ex-
ample, we can probe into intermediate solutions; we can produce the chain that bounds the difference of
the input and optimal cycles, and so forth. In fact, we can also find an optimal chain homologous to a
given one when the chains are not cycles. In other words, we can leverage the flexibility of the optimiza-
tion formulation by linking results from two apparently different fields, optimization theory and algebraic

topology.



2 Background

Since our result bridges the two very different fields of algebraic topology and optimization, we recall some
relevant basic concepts and definitions from these two fields.

2.1 Basic definitions from algebraic topology

Let K be a finite simplicial complex of dimension greater thamA p-chain withZ coefficients inK is a
formal sunof a set of orienteg-simplices inK where the sum is defined by additionZn Equivalently, itis

an integer valued function on the orientegdimplices, which changes sign when the orientation is reversed
[14, page 37].

Two p-chains can be added by adding their values on correspopesimgplices, resulting in a group
Cp(K) called thep-chain group ofK. The elementary chain basi®or C,(K) is the one consisting of
integer valued functions that take the value 1 on a single orientahplex,—1 on the oppositely oriented
simplex, and 0 everywhere else. For an orientesimplexo, we uses to denote both the simplex and the
corresponding elementary chain basis element. The gtufy) is free and abelian. The boundary of an
orientedp-simplexo = [vy, ..., v,] is given by

p

Opo = (=1)[vo, ., Bi, . 0],

1=0

wherev; denotes that the vertex is to be deleted. This function gnsimplices extends uniquelyt4, page
28] to theboundary operatowhich is a homomorphism:

8,1 Co(K) — Cpy(K).

Like a linear operator between vector spaces, a homomorphism between free abelian groups has a unique
matrix representation with respect to a choice of basésjage 55]. The matrix form ai,, will be denoted
[0p). Let{o;}1"" and{r;}"—; be the sets of oriente — 1)- andp-simplices respectively ik, ordered
arbitrarily. Thus{o;} and{;} also represent the elementary chain baseg¢’for () andC,(K) respec-
tively. With respect to such basgs,] is anm x n matrix with entries 0, 1 or-1. The coefficients o0, 7;
in theC),_1 (K) basis become the columyn(counting from 0) of9,].

The kernelker 0, is called the group of-cyclesand denotedZ,,(K). The imageim 0,1 forms the
group of p-boundariesand denoted3,(K’). Both Z,(K) and B,(K) are subgroups of’,(K). Since
0po0p+1 = 0, we have thaB,,(K) C Z,(K), that is, allp-boundaries arg-cycles though the converse is
not necessarily true. Thedimensional homology group is the quotient graip(K) = Z,(K)/B,(K).
Two p-chainsc andc’ in K arehomologousf ¢ = ¢ + 0,41 d for some(p + 1)-chaind in K. In particular,
if ¢ = 0,41 d, we sayc is homologous to zero. If a cycteis not homologous to zero, we call in@n-trivial
cycle

For a finite simplicial complex<, the groups of chains),(K), cyclesZ,(K), andH,(K) are all finitely
generated abelian groups. By the fundamental theorem of finitely generated abelian gvhyage 24]
any such groug- can be written as a direct sum of two groups= F' & 7' whereF = (Z @ --- & Z) and
T=(Z/ti ®--- @ Z/ty) with t; > 1 andt; dividing ;1. The subgroud is called thetorsionof G. If
T = 0, we sayG istorsion-free

Let Ly be a subcomplex of a simplicial compléx The quotient groug,(L)/C,(Lo) is called the
group ofrelative chainsof L modulo L, and is denoted’,(L, Ly). The boundary operatat,: C,(L) —
Cp—1(L) and its restriction td. induce a homomorphism

a\k0): Cy(L, Lg) — Cp-1(L, Lo) -
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As before, we haved)y" " 00" = 0. writing Z,(L, Lo) = keray""

B,(L,Ly) = imazgif‘)) for relative boundarieswe obtain therelative homology grougd, (L, Ly) =
Zy(L, Lo)/By(L, Lg). Sometimes, to distinguish it from relative homology, the usual homolggiyl) is
called theabsolute homology groupf L.

for relative cyclesand

2.2 Total unimodularity and optimization

Recall that a matrix isotally unimodularif the determinant of each square submatri®,id, or —1. The
significance of total unimodularity in our setting is due to the following result:

Theorem 2.1.[24] Let A be anm x n totally unimodular matrix and an integral vector, i.e.b € Z™.
Then the polyhedro® := {x € R” | Ax = b, x > 0} is integral, meaning thaP is the convex hull of
the integral vectors contained iA. In particular, the extreme points (vertices)Bfare integral. Similarly
the polyhedror@ := {x € R" | Ax > b} is integral.

The following corollary shows why the above result is significant for optimization problems. Consider
an integral vectob € Z™ and a real vector of cost coefficiefte R™. Consider théntegerlinear program

min f7x subjectto Ax=b, x > 0andx € Z". (1)

Corollary 2.2. Let A be a totally unimodular matrix. Then the integer linear progréljican be solved in
time polynomial in the dimensions df

Proof. Relax the integer linear prograrh)(to a linear program by removing the integrality constraint
Z"™. Then an interior point method for solving linear programs will find a real solutioin polynomial
time [15] if it exists, and indicates the unboundedness or infeasibility of the linear program otherwise. In
fact, since the matrixl has entries 0, 1 or 1, one can solve the linear program in strongly polynomial time
[21, 22]. That is, the number of arithmetic operations do not depend andf and solely depends on the
dimension ofA. One still needs to show that the solutiehis integral.

If the solution is unique then it lies at a vertex of the polyhedPoand thus it will be integral because
of Theorem2.1 If the optimal solution set is a face &f which is not a vertex then an interior point method
may at first find a non-integral solution. However, ly Corollary 2.2] the polyhedro® must have at least
one vertex. Then, byl] Theorem 2.8] if the optimal cost is finite, there exists a verte®ofhere that
optimal cost is achieved. Following the procedure describedid tarting from the possibly non-integral
solution obtained by an interior point method one can find such an integral optimal solution at a vertex in
polynomial time. O

3 Problem formulation

Let K be a finite simplicial complex of dimensiom or more. Given an integer valuggchainz =
Z;’;Bl x(0;) o; we usex € Z™ to denote the vector formed by the coefficiem{®;). Thus,x is the
representation of the chainin the elementary-chain basis, and we will useandz interchangeably. For
avectorv € R™, thel-norm(or ¢*-norm)||v||; is defined to b&", |v;|. Let W be any reain x m diagonal
matrix with diagonal entries);. Then, the 1-norm ofV’ v, thatis,|W v||1 is >, |w;||v;|. (If W is a general
m X m nonsingular matrix thefW v||; is called theweighted 1-nornof v.) The norm or weighted norm
of an integral vectoxr € Z™ is defined by considering to be inR™. We now state in words the problem
of optimal homologous chains and later formalize it2 (

Given ap-chainc in K and a diagonal matrixV of appropriate dimension, the optimal ho-
mologous chain problem (OHCP) is to find a chafnwhich has the minimal 1-norffiV c* ||,
among all chains homologous ¢o



Remark3.1 In the natural case where simplices are weighted and the optimality of the chains is to be
determined with respect to these weights, we may fdkéo be diagonal withw; being the weight of
simplexco;. In our formulation some of the weights can be 0. Notice that the signs of the simplex weights
are ignored in our formulation since we only work with norms.

Remark3.2 In Sectionl we surveyed the computational topology literature on the problem of finding
optimal homologougycles The flexibility of our formulation allows us to solve the more general, opti-
mal homologoughain problem, with the cycle case being a special case requiring no modification in the
equations, algorithm, or theorems.

Remark3.3. The choice of 1-norm is important. At first, it might seem easier to pose OHCP using 2-
norm. Then, calculus can be used to pose the minimization as a stationary point problem when OHCP is
formulated with only equality constraints which appear2h lfelow. This case can be solved as a linear
system of equations. By using 1-norm instead of 2-norm, we have to solve a linear program (as we will
show below) instead of a linear system. But in return, we are able to get integer valued solutions when the
appropriate conditions are satisfied.

The formulation of OHCP is theveighted/!-optimizationof homologous chains. This is very general
and allows for different types of optimality to be achieved by choosing different weight matrices. For
example, assume that the simplicial compl€xof dimension greater thap is embedded iR?, where
d > p+ 1. Let W be a diagonal matrix with théth diagonal entry being the Euclideardimensional
volume of gp-simplex. This specializes the problem to Bgclidean’ -optimizationproblem. The resulting
optimal chain has the smallgstdimensional volume amongst all chains homologous to the given oié. If
is taken to be the identity matrix, with appropriate additional conditions to the above formulation, one can
solve the/-optimizationproblem. The resulting optimal solution has the smalteshberof p-simplices
amongst all chains homologousdpas we show in SectioB.2

The central idea of this paper consists of the following st€pswrite OHCP as an integer program
involving 1-norm minimization, subject to linear constraints; (ii) convert the integer program into an integer
linear program by converting the 1-norm cost function to a linear one using the standard technique of
introducing some extra variables and constraints; (iii) find the conditions under which the constraint matrix
of the integer linear program is totally unimodular; and (iv) for this class of problems, relax the integer linear
program to a linear program by dropping the constraint that the variables be integral. The resulting optimal
chain obtained by solving the linear program will be an integer valued chain homologous to the given chain.

3.1 Optimal homologous chains and linear programming

Now we formally pose OHCP as an optimization problem. After showing existence of solutions we refor-
mulate the optimization problem as an integer linear program and eventually as a linear program.

Assume that the number @f and (p + 1)-simplices inK is m andn respectively, and letV be a
diagonalm x m matrix. Given an integer valuegchainc the optimal homologous chain problem is to
solve:

min [|[Wx|[; suchthat x =c+[0p41] y, andx € Z™, y € Z". 2
X7y

In the problem formulation?) we have given no indication of the algorithm that will be used to solve the
problem. Before we develop the computational side, it is important to show that a solution to this problem
always exists.

Claim 3.4. For any giverp-chainc and any matrixi/’, the solution to problen?) exists.

Proof. Define the set

Ue :={|[Wx|:1 | x=c+[0pt1]y, x € Z" andy € Z"} .
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We show that this set has a minimum which is contained in the set. Consider thelSukiséf. defined by
Ue={IWx[l1 [ [[Wx[l1 <[[Well1, x=c+[0pt1] y, x € Z™ andy € Z"}.
This setU/ is finite sincex is integral. Thereforenf U, = inf U, = min U, O

In the rest of this paper we assume thiftis a diagonal matrix obtained fromeightson simplices
as follows. Letw be a real-valued weight function on the orienjedimplices of K and leti¥ be the
corresponding diagonal matrix (tlie¢h diagonal entry ofV is w(o;) = w;).

The resulting objective functiofW x|l = >, |ws| |z;| in (2) is not linear inz; because it uses the
absolute value of;. It is however, piecewise-linear in these variables. As a re)ltgn be reformulated
as an integelinear program in the following standard wa¥,[page 18]:

min Z lw;| (x] + ;)
%
subjectto xt —x" =c+ [Opt1] Yy (3)
xT, x” >0
+

x,x €Z™ yeZ.

Comparing the above formulation to the standard form integer linear prograf), inate that the vector

x in (1) corresponds téx*, x~, y]7 in (3) above. Thus the minimization is over, x~ andy, and the
coefficients ofr;” andz;” in the objective function argy; |, but the coefficients correspondingitpare zero.

The linear programming relaxation of this formulation just removes the constraints about the variables being
integral. The resulting linear program is:

min Z lw;| (x + )
i

subjectto x" —x~ =c+ [0p11]y (4)
Tt x >0.

X,

To use the result about standard form polyhedron in Theddmve can eliminate the free (unrestricted
in sign) variablesy by replacing these by — y~ and imposing the non-negativity constraints on the
new variables], page 5]. The resulting linear program has the same objective function, and the equality
constraints:

X" —x" =c+ [Op] (v —¥7), (5)

and thus the equality constraint matrix[iE -1 —-B B], whereB = [0,+1]. We now prove a result
about the total unimodularity of this matrix.

Lemma 3.5. If B = [0,1] is totally unimodular then so is the matrix —I —B B].

Proof. The proof uses operations that preserve the total unimodularity of a matrix. These are lidtgd in [
page 280]. IfB is totally unimodular then so is the matr[%B B} since scalar multiples of columns of

B are being appended on the left to get this matrix. The full matrix in question can be obtained from this
one by appending columns with a singté on the left, which proves the result. O

As a result of CorollarR.2and Lemma3.5, we have the followinglgorithmicresult.

Theorem 3.6. If the boundary matriXd, 1] of a finite simplicial complex of dimension greater thars
totally unimodular, the optimal homologous chain problé for p-chains can be solved in polynomial
time.



Proof. We have seen above that a reformulation of OHER Without the integrality constraints, leads
to the linear program4). By Lemmag3.5, the equality constraint matrix of this linear program is totally
unimodular. Then by Corollar®.2the linear programd) can be solved in polynomial time, while achieving
an integral solution. O

Remark3.7. One may wonder why Theoref\6 does not work wherZs-valued chains are considered
instead of integer-valued chains. We could simulatearithmetic while using integers or reals by modify-
ing (2) as follows:

min ||[Wx|[[; suchthat x+2u=c+ [0p+1]y, andx € {0,1}"", ue Z™, y € Z". (6)
x7y

The trouble is that the coefficieRtof u destroys the total unimodularity of the constraint matrix in the linear
programming relaxation of the above formulation, even wiggn, | is totally unimodular. Thus we cannot
solve the above integer program as a linear program and still get integer solutions.

Remark3.8 We can associate weights witl + 1)-simplices while formulating the optimization prob-
lem (2). Then, we could minimizé|Wz||; wherez = [x,y]?. In that case, we obtain @chainc* ho-
mologous to the given chainand also gp + 1)-chaind whose boundary is* — ¢ and the weights of*
andd together are the smallest. If the given cyelis null homologous, the optimagl would be an optimal
(p + 1)-chain bounded by.

Remark3.9. The simplex method and its variants search only the basic feasible solutions (vertices of the
constraint polyhedron), while choosing ones that never make the objective function worse. Thus if the
polyhedron is integral, one could stop the simplex method at any step before reaching optimality and still
obtain an integer valued homologous chain whose norm is no worse than that of the given chain.

3.2 Minimizing the number of simplices

The general weighteét -optimization problemZ) can be specialized by choosing different weight matrices.
One can also solve variations of the OHCP problem by adding other constraints which do not destroy the
total unimodularity of the constraint matrix. We consider one such specialization here — that of finding a
homologous chain with the smallesimberof simplices.

If the matrix 1V is chosen to be the identity matrix, then one can solve/theptimization problem
by solving a modified version of thé& -optimization problemZ). One just imposes the extra condition
that every entry ot andx be in{—1,0, 1}. With this choice of" = I and withc € {-1,0,1}"™, the
problem @) becomes:

min ||x|; suchthat x =c+ [0p41] y, andx € {—1,0,1}™, y € Z". (7)
x7y

Theorem 3.10. For any givenp-chainc € {—1,0,1}"™, a solution to problen{7) exists. Furthermore,
amongst allx homologous tac, the optimal homologous chaix® has the smallest number of nonzero
entries, that is, it is thé’-optimal homologous chain.

Proof. The proof of existence is identical to the proof of Cle@md. The condition that takes values in-1,

0, 1 ensures that at least= ¢ can be taken as the solution if no other homologous chain exists. For the
%-optimality, note that since the entries of the optimal solutidrare constrained to be 1,0, 1}, the

1-norm measures the number of nonzero entries. Thus the 1-norm optimal solution is also the one with the
smallest number of non-zero entries. O

Remark3.11 Note that even with the given chadrtaking values if—1, 0, 1}, without the extra constraint
thatx € {—1,0,1}™ (rather than jusk € Z™), the optimal 1-norm solution components may take values
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outside{—1, 0, 1}. For example, consider the simplicial complExXriangulating a cylinder which is shaped
like an hourglass. Let; andc, be the two boundary cycles of the hour glass sodhatcs is not trivial. Let

z be the smallest cycle around the middle of the hour glass which is homologous to eaemndt,. Since

c1 + co = 2z, the optimal cycle homologous tg + ¢, has value® or —2 for some edges evendf andc,

have values only if—1,0, 1} for all edges. It may or may not be true that the number of nonzero entries
is minimal in such an optimal solution. We have not proved it either way. But The8r&fprovides a
guarantee for computing-optimal solution when the additional constraints are placeg.on

The linear programming relaxation of problei®) {s

min Z (xF + ;)
i

subjectto xt —x~ =c+ [Opt1] Y (8)
xT, x" <1
xT, x>0

One can show the integrality of the feasible set polyhedron by using slack variables to convert the inequal-
itiesx™ < 1 andx~ < 1 to equalities and then using tt form of the polyhedron from Theorez 1
Equivalently, all the constraints can be written as inequalities andtipelyhedron can be used. For a
change we choose the latter method here. Writing the constraints as inequalities, in matrix form the con-
straints are

I I B -B e
I -I -B B c

I 0 0 0| [xt -1

0 -1 0 0 X~ -1

I 0o o0 oll|yt| =] ol )
o I 0o of|y 0

0o 0 I 0 0

0 o0 o0 I L o]

whereB = [0p11]. Then analogously to Lemn@a5and Theoren3.6the following are true.
Lemma 3.12. If B = [0,+1] is totally unimodular then so is the constraint matrix(8).

Theorem 3.13. If the boundary matriXod, 1] of a finite simplicial complex of dimension greater than
is totally unimodular, then given g-chain that takes values ifi—1,0, 1}, a homologoug-chain with the
smallest number of non-zeros taking value$-, 0,1} can be found in polynomial time.

In subsequent sections, we characterize the simplicial complexes for which the boundary@pattix
is totally unimodular. These are the main theoretical results of this paper, formalized as Thédreh
and5.7.

4 Manifolds

Our results in Sectiob.1are valid foranyfinite simplicial complex. But first we consider a simpler case —
simplicial complexes that are triangulations of manifolds. We show that for finite triangulations of compact
p-dimensionabrientablemanifolds, the top non-trivial boundary matfix,] is totally unimodular irrespec-

tive of the orientations of its simplices. We also give examples of non-orientable manifolds where total
unimodularity does not hold. Further examination of why total unimodularity does not hold in these cases
leads to our main results in Theores



4.1 Orientable manifolds

Let K be a finite simplicial complex that triangulatega+ 1)-dimensional compact orientable manifold
M. As before, lefd,+1] be the matrix corresponding &1 : Cp11(K) — C,(K) in the elementary chain
bases.

Theorem 4.1. For a finite simplicial complex triangulating @ + 1)-dimensional compact orientable man-
ifold, [0p+1] is totally unimodular irrespective of the orientations of the simplices.

Proof. First, we prove the theorem assuming that ¢pe+ 1)-dimensional simplices of are oriented
consistently Then, we argue that the result still holds when orientations are arbitrary.

Consistent orientation @p+1)-simplices means that they are oriented in such a way that fgpthé)-
chaine, which takes the value 1 on each orienfed- 1)-simplex inK, 9,1 c is carried by the topological
boundaryo M of M. If M has no boundary thefi,,;c is 0. It is known that consistent orientation
of (p + 1)-simplices always exists for a finite triangulation of a compact orientable manifold. Therefore,
assume that the given triangulation has consistent orientation f@p thel )-simplices. The orientation of
the p- and lower dimensional simplices can be chosen arbitrarily.

Eachp-facer is the face of either one or tw@ + 1)-simplices (depending on whetheis a boundary
face or not). Thus the row ¢d,1] corresponding te contains one or two nonzeros. Such a nonzero entry
is 1 if the orientation of- agrees with that of the correspondifig+ 1)-simplex and-1 if it does not.

Heller and Tompkins13] gave a sufficient condition for the unimodularitypf 1, 0, 1 }-matrices whose
columns have no more than two nonzero entries. Such a matrix is totally unimodular if its rows can be di-
vided into two partitions (one possibly empty) with the following condition. If two nonzeros in a column
belong to the same patrtition, they must be of opposite signs, otherwise they must be in different row par-
titions. Considefd,+1]7, the transpose db,+1]. Each column ofd,+1]7 contains at most two nonzero
entries, and if there are two then they are of opposite signs because of the consistent orientations of the
(p + 1)-dimensional simplices. In this case, the simple division of rows into two partitions with one con-
taining all rows and the other empty works. THas, ;] and hencéd, ] is totally unimodular.

Now, reversing the orientation of @ + 1)-simplex means that the corresponding columridyf, ]
be multiplied by—1. This column operation preserves the total unimodularitjogf ]. Since any arbi-
trary orientation of thép + 1)-simplices can be obtained by preserving or reversing their orientations in a
consistent orientation, we have the result as claimed. O

As a result of the above theorem and Theofe6we have the following result.

Corollary 4.2. For a finite simplicial complex triangulating & -+ 1)-dimensional compact orientable
manifold, the optimal homologous chain problem can be solveg-ftimensional chains in polynomial
time.

The result in Corollarg.2when specialized t&?*! also appears in] though the reasoning is differ-
ent.

4.2 Non-orientable manifolds

For non-orientable manifolds we give two examples which show that total unimodularity may not hold in
this case. We also discuss the role of torsion in these examples in preparation for Thebrem

Our first example is the Bbius strip and the second one is the projective plane. Simplicial complexes
for these two non-orientable surfaces are shown in Figiufidhe boundary matricg®| for these simplicial
complexes are given in the Appendix il and (2).

Let M be the Mdbius strip. We consider its absolute homoloHy(A/) and its relative homology
Hy(M,0 M) relative to its boundary. Consult4, page 135] to see how the various homology groups are
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Figure 1: Triangulations of two non-orientable manifolds, shown as abstract simplicial complexes. The left figure
shows a triangulation of the &bius strip and the right one shows the projective plane. The numbers are the edge and
triangles numbers. These correspond to the row and column numbers of the méatjces((12).

calculated using an exact sequence. We notefih&d/) = Z, that is, itsH; group has no torsion. This can
be seen by reducing the matrik1j in the Appendix to Smith normal form (SNF). The SNF for the matrix
consists of & x 6 identity matrix on the top and a zero block below, which implies the absence of torsion.
Let K be the simplicial complex triangulatiny/. Consider a submatrig of the matrix[02] shown in
Appendix as {1). This submatrix is formed by selecting the columns in the order 5, 4, 3, 2, 1, 0. From
the matrix thus formed, select the rows 0, 3, 8, 9, 10, 2 in that order. This selection of rows and columns
corresponds to all the triangles and the edges encountered as one goes from left to right dbithe M
triangulation shown in Figur&. The resulting submatrix is

0
0
0
1
-1
0

SO OO ==
OO O R, RO
|
OO == OO
_ -0 O O O
_ o O o O

The determinant of this matrix is2 and this shows that the boundary matrix is not totally unimodular.
The SNF for this matrix, it turns outioesreveal the torsion. This matriX is the relative boundary matrix
62(L’L°) whereL = K andL are the edges il M. The SNF has 1's along the diagonal and finally a 2. This
is an example where there is no torsion in the absolute homology but some torsion in the relative homology
and the boundary matrix is not totally unimodular. We formulate this condition precisely in Th&2em

The matrix[02] given in Appendix as¥2) for the projective plane triangulation is much larger. But it is
easy to find a submatrix with determinant greater than 1. This can be done by findinglesMtrip in the
triangulation of the projective plane. For example if one traverses from top to bottom in the triangulation of
the projective plane in Figurkthe triangles encountered correspond to columns 6, 9, 3, 8,142paNd the
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edges correspond to rows 5, 11, 13, 12, 7. The corresponding submatrix is

-1 0 0 -
-1 1 0
S=| 0 -1 1

0 -1

0 O

0
0

=0 O O
— o O O =

and its determinant is-2. Thus the boundary matrixL®) is not totally unimodular. Again, we observe
that there is relative torsion i (L, Ly) for the subcomplexes corresponding to the selectiof &bm

[02]. HereL consists of the triangles specified above, which form@bMs strip in the projective plane.
The subcomplex.y consists of the edges forming the boundary of this strip. This connection between
submatrices and relative homology is examined in the next section.

5 Simplicial complexes

Now we consider the more general case of simplicial complexes. Our result in ThBdteharacterizes

the total unimodularity of boundary matrices for arbitrary simplicial complexes. Since we do not use any
conditions about the geometric realization or embedding’irfor the complex, the result is also valid for
abstract simplicial complexes. As a corollary of the characterization we show that the OHCP can be solved
in polynomial time as long as the input complex satisfies a torsion-related condition.

5.1 Total unimodularity and relative torsion

Let K be a finite simplicial complex of dimension greater thaiWe will need to refer to its subcomplexes
formed by the union of some of its simplices of a specific dimension. This is formalized in the definition
below.

Definition 5.1. A pure simplicial complewf dimensiorp is a simplicial complex formed by a collection of
p-simplices and their proper faces. Similarlypare subcompleis a subcomplex that is a pure simplicial
complex.

An example of a pure simplicial complex of dimensioris one that triangulates;adimensional man-
ifold. Another example, relevant to our discussion, is a subcomplex formed by a collection ofpsome
simplices of a simplicial complex and their lower dimensional faces.

Let L C K be a pure subcomplex of dimensipa- 1 and Ly C L be a pure subcomplex of dimension
p. If [0p41] is the matrix representing,; : Cp11(K) — Cp(K), then the matrix representing the relative
boundary operator

oM Cpya (L, Lo) — Cy(L, Lo) .

is obtained by firsincludingthe columns ofd,.1] corresponding t@p + 1)-simplices inL and then, from
the submatrix so obtainedxcludingthe rows corresponding to thesimplices inLy and any zero rows.
The zero rows correspond tesimplices that are not faces of any of tfhe+ 1)-simplices ofL.

As before, let0,1] be the matrix 0f0, in the elementary chain bases far. Then the following
holds.

Theorem 5.2.[0,+1] is totally unimodular if and only iff,,(L, L) is torsion-free, for all pure subcomplexes
Ly, L of K of dimension® andp + 1 respectively, wheré, C L.

11



Proof. (=) We show that ifH, (L, Lo) has torsion for somé, L, then[0,1] is not totally unimodular.

Let {Qﬁ’f“) be the corresponding relative boundary matrix. Br[@éi’f‘))} to Smith normal form using

the reduction algorithml][pages 55-57]. This is a block matrix

D 0

0 0
whereD = diag(dy, ..., d;) is a diagonal matrix and the block row or column of zero matrices shown above
may be empty, depending on the dimension of the matrix. Recalliiteae integers and; > 1. Moreover,

sinceH,(L, Ly) has torsiond;, > 1 for somel < k < [. Thus the produat, ... d; is greater than 1. By a
result of Smith 17] quoted in [L5, page 50], this product is the greatest common divisor of the determinants

of all k x k square submatrices ZfﬁiLO)] . But this implies that some square submatri{@ﬁfoq , and

hence ofl0,1], has determinant magnitude greater than 1. Thyis, | is not totally unimodular.

(«) Assume thafd,] is not totally unimodular. We will show that then there exist subcompléxes
and L of dimensiong and(p + 1) respectively, withL, C L, such thatH,(L, L) has torsion. LetS be
a square submatrix @9, | such thatdet(S)| > 1. Let L correspond to the columns @, ] that are
includedin S and letB;, be the submatrix 0fd, ] formed by these columns. This submati% may
contain zero rows. Those zero rows (if any) correspongtsomplices that do not occur as a face of any of
the (p+ 1)-simplices inL. In order to formS from B, these zero rows can first be safely discarded to form
a submatrixB} . This is becausdet(.S) # 0 and so these zero rows cannot occufin

The rows inB/, correspond tg-simplices that occur as a face of sofpe+ 1)-simplex inL. Let Lo
correspond to rows aB; which areexcludedo form.S. Now S is the matrix representation of the relative

boundary matri>6,§L’L°). ReduceS to Smith normal form. The normal form is a square diagonal matrix.
Since the elementary row and column operations preserve determinant magnitude, the determinant of the
resulting diagonal matrix has magnitude greater than 1. Thus at least one of the diagonal entries in the
normal form is greater than 1. But then 4] page 61])H,(L, Lo) has torsion. O

Remarkb.3. The characterization appears to be no easier to check than the definition of total unimodularity
since it involves checkingveryL, Lq pair. However, it is also nbarderto check than total unimodularity.
This leads to the following result of possible interest in computational topology and matroid theory.

Corollary 5.4. For a simplicial complex” of dimension greater thap, there is a polynomial time algo-
rithm for answering the following question: B8,(L, L) torsion-free forall subcomplexeg and L of
dimensiong and (p + 1) such thatLy C L?

Proof. Seymour’s decomposition theorem for totally unimodular matri@€k[[L5, Theorem 19.6] yields a
polynomial time algorithm for deciding if a matrix is totally unimodular or nd5,[ Theorem 20.3]. That
algorithm applied on the boundary matf&, 1] proves the above assertion. O

Remarks.5. Note that the naive algorithm for the above problem is clearly exponential. For evety, gair
one can use a polynomial time algorithm to find the Smith normal form. But the numlder/gf pairs is
exponential in the number gfand(p + 1)-simplices ofK.

Remark5.6. The same polynomial time algorithm answers the question : Bhgg, Ly) have torsion for
somepair L, Ly ?
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5.2 A special case

In Sectiord we have seen the special case of compact orientable manifolds. We saw that the top dimensional
boundary matrix of a finite triangulation of such a manifold is totally unimodular. Now we show another
special case for which the boundary matrix is totally unimodular and hence OHCP is polynomial time
solvable. This case occurs when we ask for optithahains in a simplicial complek” which is embedded

in R, In particular, OHCP can be solved by linear programmingfohains in3-complexes embedded

in R3. This follows from the following result:

Theorem 5.7. Let K be a finite simplicial complex embeddedrifit!'. Then,H (L, L) is torsion-free for
all pure subcomplexeb, and L of dimensiongl andd + 1 respectively, such thdt, C L.

Proof. We consider théd-+1)-dimensional relativeohomology groupl (L, Ly) (See [L4] for example).
It follows from the Universal Coefficient Theorem for cohomolo@y,[Theorem 53.1] that

H*™Y(L, Ly) = Hom(Hy 1 (L, Lo), Z) & Ext(Hy(L, L), Z)

whereHom is the group of all homomorphisms froi ;1 (L, L) to Z and Ext is the group of all of
extensions betweeH (L, L) andZ. These definitions can be found it4 Chapter 5 and 7]. The main
observation is that if7;(L, Lo) has torsionExt(Hy(L, Lo), Z) has torsion and hencH*!(L, Ly) has
torsion.

On the other hand, by Alexander Spanier dualitg, [page 296]

HY(L, Lo) = Ho(R*™\ | Lo|, R*T1\ |L])

where|L| denotes the underlying space of Since0-dimensional homology groups cannot have torsion,
H1(L, Ly) cannot have torsion. We reach a contradiction. O

Corollary 5.8. Given ad-chainc in a weighted finite simplicial complex embeddedRifir!, an optimal
chain homologous to can be computed by a linear program.

Proof. Follows from Theoren®.7, Theorenb.2, and Theoren2.2 O

5.3 Total unimodularity and M d8bius complexes

As another special case, we provide a characterization of the total unimoduldpity- @f-boundary matrix

of simplicial complexes in terms of a forbidden complex calleddilis complex, fop < 1. In contrast to

the previous characterization (in terms of relative homology9f we directly employ certain results on
totally unimodular matrices to derive this characterization in terms of submatrices called cycle matrices. We
show in Theorenb.13that the(p + 1)-boundary matrix of a finite simplicial complex for< 1 is totally
unimodular if and only if the input complex does not havépat+ 1)-dimensional Mbius complex as a
subcomplex. In particular, this observation along with Theoseimplies that &2-complex does not have
relative torsion if and only if it does not have adldius complex in it. We also demonstrate by example that
this result does not generalize to higher values.of

Definition 5.9. A (p + 1)-dimensionaktycle complexs a sequencey, . .., 01 Of (p + 1)-simplices such
thato; ando; have a common face if and onlyjif= (i +1) (mod k) and that common face isasimplex.
Such a cycle complex triangulate$;a+ 1)-manifold. We call it &ap + 1)-dimensionaktylinder complexf
it is orientable and & + 1)-dimensionaMobius complexf it is nonorientable.
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Definition 5.10. Fork > 2, ak x k matrix C' is called ak-cycle matrix £-CM) if C;; € {—1,0,1}, andC
has the following form up to row and column permutations and scalingslby

100 -~ 008
110 - 000
11 - 000
C=1|+ ¢+ =~ 1 1, ==+l (10)
000 - 100
000 - 110
000 -~ 01 1]

A k-CM with 3 = (—1)¥ is termed acylinder cycle matrixk-CCM), while one with3 = (—1)**! is
termed avidbius cycle matriXk-MCM). We will refer to the form shown in10) as thenormal formcycle
matrix.

As an example, consider a triangulatihof a Mobius strip withk > 5 triangles shown in Figurg. Let
K, be the complex for the boundary of thedlius strip. In the figureky consists of the horizontal edges.

Then the relative boundary matr{X?Q(K’KO) of the Mobius strip/K” modulo its edges is ak-MCM. The

orientations of triangle_; and that of the terminal edgg are opposite i% is even, but the orientations
agree ifk is odd, giving3 = (—1)**1. Note that in Sectiod.2, the submatrixS of the boundary matrix of

the Mobius strip was such a relative boundary matrix and it is an example of a 6-MCM. Another example in
that section was the 5-MCM obtained from the boundary matrix of the projective plane.

Similarly, we observe &-CCM as the relative boundag/matrix of a cylinder triangulated witl
triangles, modulo the cylinder’s edges. Reversing the orientation of an edge or a triangle results in scaling
the corresponding row or column, respectively, of the boundary matrixibyr hese examples motivate the
names “Mdbius” and “cylinder” matrices — a cycle matrix can be interpreted as the relative boundary matrix
of a Mobius or cylinder complex. So, we have the following result.

Lemma 5.11. Let K be a finite simplicial complex of dimension greater tpafhe boundary matrijo, 1]
has nok-MCM for anyk > 2 if and only if K does not have anfp + 1)-dimensional Nbbius complex as a
subcomplex.

€L T

BORNENERE S

Figure 2: Triangulation of a Mbbius strip withk triangles.

It is now easy to see that the absence d@fldilis complexes is a hecessary condition for total unimodu-
larity. We show that this condition is also sufficient fror lower dimensional complexes. We first need
the simple result that an MCM is not totally unimodular.

Lemma 5.12. LetC be ak-CM. Thendet C' = 0 if it is a k-CCM, and|det C| = 2 if it is a k-MCM.

Proof. The matrixC' can always be brought into the normal form with a series of row and column exchanges
and scalings by-1. Note that these operations preserve the valugl@fC|. Now assume thaf’ has
been brought into the normal form and call that matttk We expand along the first row @’ to get
det C' = 1 + (—1)*+13, and the claim follows. O
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Theorem 5.13. For p < 1, [0p4+1] is totally unimodular if and only if the simplicial complex has no
Mobius subcomplex of dimensipnt 1.

Proof. (=) If there is a Mdbius subcomplex of dimensign+ 1 in K, then by Lemmé&.11an MCM
appears as a submatrix @f, ). That MCM is a certificate fofd, 1] not being totally unimodular since
its determinant has magnitude 2 by Lemma2

(«) Let K have no Mbbius subcomplexes of dimensipr- 1. Then by Lemm&.11, there are no MCMs as
submatrices 0f0,,+1]. Truemper 23, Theorem 28.3] has characterized all minimally non-totally unimodular
matrices, i.e., matrices that are not totally unimodular, but their every proper submatrix is totally unimodular.
These matrices belong to two classes, which Truemper denot#$ asd #7. MCMs constitute the first
class#4. A minimally non-totally unimodular matri¥V' is in #7 if and only if W has a row and a column
containing at least four nonzeros ea@3,[Cor. 28.5]. Since < 1, no column of{0,+1] can have four or

more nonzeros, and hence no matrix from the cléssan appear as a submatrix. Hendg, ] is totally
unimodular if K has no(p + 1)-dimensional Mbius subcomplexes. O

The necessary condition in Theor&m 3extends beyoné-complexes as Rematk14indicates. How-
ever, we cannot extend the sufficiency condition; Rendatls presents a counterexample.

Remarks.14 Note that the absence ofddius subcomplexes is a necessary conditiofifpr; ] to be totally
unimodular forall p. More precisely, if the simplicial compleX of dimension greater thanhas a Mbius
subcomplex of dimensiop+ 1 then[d,11] is not totally unimodular. By Lemm&.11, an MCM appears as
a submatrix 0fd,41] in this case. Its determinant has magnitude 2 by Lerri3 trivially certifying that
[Op+1] is not totally unimodular.

Remark5.15 The characterization in Theorenl3does not hold for higher values pf We present &-
complex which does not have3edimensional Mbius subcomplex, but who§@s] is not totally unimodular.
Consider the simplicial complex consisting of the following seven tetrahedra formed from seven points
numbered—6: (0,1,2,3), (0,1,2,4), (0,1,2,5), (0,1,2,6), (0,1,3,4), (0,2,3,5), (1,2,3,6). It can be
verified that thel9 x 7 boundary matriXds] of this simplicial complex has thex 7 matrix

-1 -1 -1 -1 0 0 ©0

1 0 0 0 -1 0 O

-1 0 0 0 0 -1 0

W = 1 o o o0 0 0 -1
0 1 0 O 1 0 O

0O o0 -1 0 0 1 0

.0 0 0 1 0 0 1]

as a submatrix wheréet(W) = —2, certifying that[0s] is not totally unimodular. In facti}’ is theonly

submatrix of[03] which is not totally unimodular, and it belongs to the cl#sof minimally non-totally
unimodular matrices.

6 Experimental Results

We have implemented our linear programming method to solve the optimal homologous chain problem. In
Figure3 we show some results of preliminary experiments.

The top row in Figure8 shows the computation of optimal homologous 1-chains on the simplicial com-
plex representation of a torus. The longer chain in each torus figure is the initial chain and the tighter shorter
chain is the optimal homologous chain computed by our algorithm. The bottom row shows the result of the
computation of an optimal 2-chain on a simplicial complex of dimension 3. The complex is the tetrahedral
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triangulation of a solid annulus — a solid ball from which a smaller ball has been removed. Two cut-away
views are shown. The outer surface of the sphere is the initial chain and the inner surface is computed as the
optimal 2-chain.

In these experiments we used the linear progrdmThe initial chains used had values{ir 1,0, 1} on
the simplices. In the torus examples for instance, the initial chain was 0 everywhere except along the initial
curve shown. The curve was given an arbitrary orientation and the values of the chain on the edges forming
the curve werer-1 or —1 depending on the edge orientation. In these examples, the resulting optimal chains
were oriented curves, with values &fl on the edges along the curve. This is by no means guaranteed
theoretically, as seen in the hour glass example in Re®drk The only guarantee is that of integrality.
However if it is essential that the optimal chain has values onfy-im, 0, 1} then the linear progran8) or
it's Euclidean variant can be used, imposing the additional constraint on the values of the optimal solution
x as shown in linear prograng)
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Figure 3: Some experimental results. See text for details on what is being computed here.

7 Discussion

Several questions crop up from our problem formulation and results. Instead of 1jidrd;, we can
consider minimizing_, w; ;. In this case, the weights appear with signs and solutions may be unbounded.
Nevertheless, our result in Theoreh® remains valid. Of course, in this case we do not need to introduce
z; andz; since the objective function usesrather tharjz;|. We may introduce more generalization in the
OHCP formulation by considering a general matifixinstead of requiring it to be diagonal and then asking
for minimizing ||V x||;. We do not know if the corresponding optimization problem can be solved by a
linear program. Can this optimization problem be solved in polynomial time for some interesting classes of
complexes?

We showed that OHCP undgrcoefficients can be solved by linear programs for a large class of topo-
logical spaces that have no relative torsion. This leaves a question for the cases when there is relative
torsion. Is the problem NP-hard under such constraint? Taking the cue from our results, one can also ask
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the following question. Even though we know that the problem is NP-hard ufideoefficients, is it true

that OHCP in this case is polynomial time solvable at least for simplicial complexes that have no relative
torsions (considered und&)? The answer is negative since OHCP for surfacé’iis NP-hard undez.,
coefficients B] even though they are known to be torsion-free.

Even if the input complex has relative torsion, the constraint polyhedron of the linear program may still
have vertices with integer coordinates. In that case, the linear program may still give an integer solution
for chains that steer the optimization path toward such a vertex. In fact, we have observed experimentally
that, for some-complexes with relative torsion, the linear program finds the integer solution for some input
chains. It would be nice to characterize the class of chains for which the linear program still provides a
solution even if the input complex has relative torsion.

A related question that has also been investigated recently is the problem of computing an optimal
homology basis from a given complex. Again, positive results have been found for low dimensional cases
such as surfaced]] and one dimensional homology for simplicial complexgs9]. The result of Chen
and Freedmard] implies that even this problem is NP-hard for high dimensional cycles uAgleiWhat
aboutZ? As in OHCP, would we have any luck here?
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Appendix

Boundary matrices for non-orientable surfaces

The boundary matricel$)| for the Mobius strip and projective plane triangulations shown in Fiduage
given below. The row numbers are edge numbers and the column numbers are triangle numbers which are
displayed in Figurd.

[02] for Mdbius strip :

[ 0: 1: 2: 3: 4: 5:]
0: 1 0 0 0 0 1
1: 0 0 0 0 —1 0
2. -1 1 0 0 0 0
3: 0 0 0 0 1 -1
4: 0 -1 0 0 0 0
5: 1 0 0 0 0 0 (11)
6 : 0 0 0 0 0 1
7 0 0 -1 0 0 0
8: 0 0 0 1 -1 0
9: 0 0 1 -1 0 0
10 : 0 1 -1 0 0 0

|11 0 0 0 1 0 0]

[02] for projective plane :

i 0: 1: 2: 3: 4: 5: 6: 7: 8: 9:]
0: -1 0 0 0 0 -1 0 0 0 0
1: 0 1 1 0 0 0 0 0 0 0
2: 1 -1 0 0 0 0 0 0 0 0
3: 0 0 —1 0 0 0 0 1 0 0
4: 0 0 0 0 0 1 0 —1 0 0
5: 0 0 0 0 —1 0 -1 0 0 0
6: —1 0 0 0 0 0 0 0 1 0 (12)
7: 0 0 0 0 1 0 0 0 —1 0
8 : 0 0 0 0 0 -1 1 0 0 0
9: 0 1 0 0 0 0 0 0 0 —1
10 : 0 0 1 0 -1 0 0 0 0 0
11: 0 0 0 0 0 0 —1 0 0 1
12 0 0 0 -1 0 0 0 0 1 0
13: 0 0 0 1 0 0 0 0 0 —1

|14 : 0 0 0 -1 0 0 0 1 0 0]
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