
ar
X

iv
:0

90
9.

47
56

v2
 [

cs
.G

T
]

23
 F

eb
 2

01
1

Bayesian Algorithmic Mechanism Design

Jason D. Hartline∗† Brendan Lucier‡

September 3, 2018

Abstract

The principal problem in algorithmic mechanism design is in merging the incentive con-
straints imposed by selfish behavior with the algorithmic constraints imposed by computational
intractability. This field is motivated by the observation that the preeminent approach for de-
signing incentive compatible mechanisms, namely that of Vickrey, Clarke, and Groves; and the
central approach for circumventing computational obstacles, that of approximation algorithms,
are fundamentally incompatible: natural applications of the VCG approach to an approxi-
mation algorithm fails to yield an incentive compatible mechanism. We consider relaxing the
desideratum of (ex post) incentive compatibility (IC) to Bayesian incentive compatibility (BIC),
where truthtelling is a Bayes-Nash equilibrium (the standard notion of incentive compatibility
in economics). For welfare maximization in single-parameter agent settings, we give a general
black-box reduction that turns any approximation algorithm into a Bayesian incentive compat-
ible mechanism with essentially the same1 approximation factor.

1 Introduction

Can any approximation algorithm be converted into an approximation mechanism for selfish agents?
This question is framed by a fundamental incompatibility between the standard economic approach
for the design of mechanisms for selfish agents (the Vickrey-Clarke-Groves (VCG) mechanism) and
the standard algorithmic approach for circumventing computational intractability (approximation
algorithms). The conclusion from this incompatibility, driving much of the field of algorithmic
mechanism design, is that incentive and algorithmic constraints must be dealt with simultaneously
(See e.g., [17]). For a large, important class of problems, we arrive at the opposite conclusion: there
is a general approximation-preserving reduction from mechanism design to algorithm design!

The goal of mechanism design is to construct the rules for a system of agents so that in the
equilibrium of selfish agent behavior a desired objective is obtained. For settings of incomplete
information the standard game theoretic equilibrium concept is Bayes-Nash equilibrium (BNE),
which is defined by mutual best response when the prior distribution of agent payoffs is common
knowledge. The revelation principle [20] suggests that when looking for mechanisms with desirable
Bayes-Nash equilibria, one must look no further than those with truthtelling as a Bayes-Nash

∗Supported in part by NSF Grant CCF-0830773 and NSF Career Award CCF-0846113.
†Northwestern University, Evanston, IL, USA. email: hartline@eecs.northwestern.edu
‡University of Toronto, Toronto, ON, Canada. email: blucier@cs.toronto.edu
1More specifically, we obtain a polynomial time approximation scheme with an ǫ loss that is either additive or

multiplicative, depending on the problem setting. This error term arises from statistical methods that seem necessary
for a black-box reduction.

1

http://arxiv.org/abs/0909.4756v2

equilibrium, also known as Bayesian incentive compatible (BIC) mechanisms. Almost all of the
computer science literature has focused on the BIC subclass of ex post incentive compatible (IC)
mechanisms where truthtelling is a dominant strategy. While IC is aesthetically appealing because
it is congruous with worst-case-style results, it is not generally without loss!

This loss is evident in the computer science theory of IC mechanism design, which is described
most characteristically by impossibility. For instance, for single-minded combinatorial auctions of
m items, the optimal worst-case approximation factor (under standard complexity theoretic as-
sumptions) is

√
m [19]. With such strong lower bounds, a relevant theory must make relaxations.

For many problems within the realm of computer systems; e.g., online auctions (eBay), adver-
tising auctions (Google, Yahoo!, MSN), file sharing (BitTorrent), routing (TCP/IP), scheduling
(SETI@home), and video streaming (YouTube); high volume should enable demand distributions
to be estimated. With demand distributions, the natural algorithmic and mechanism design prob-
lems are Bayesian.

Agent incentives in Bayesian mechanism design are very well understood in single-parameter
settings, where each agent has a single independent private value for receiving a service (see,
e.g, [20]). For the single parameter setting it is known that a mechanism is BIC if and only if (a)
the probability an agent is served (a.k.a. the allocation rule) is monotone non-decreasing in the
agent’s value for service, and (b) the agent’s expected payment (a.k.a. the payment rule) is of a
particular form identified precisely from the allocation rule.2

The main challenge in reducing BIC (or IC) mechanism design to algorithm design is that
approximation algorithms do not generally have monotone allocation rules. Our reduction shows
that in a Bayesian setting we can convert any non-monotone allocation rule into a monotone
one without compromising its social welfare. The main technical observation that enables this
reduction is that, in a Bayesian setting, we can focus on a single agent for whom the allocation rule
is not monotone, apply a transformation that fixes this non-monotonicity (and weakly improves
our objective), and no other agents are affected (in a Bayesian sense). Therefore, we can apply the
transformation independently to each agent. Our reduction is as follows:

1. For each agent, identify intervals in which the agent’s allocation rule is non-monotone. (This
is a property of the distribution and algorithm and can be done prior to considering any agent
bids.)

2. For each agent, if their bid falls in an (above identified) interval, redraw the agent’s bid from
the prior distribution conditioned on being within the interval.

3. Run the approximation algorithm on the resulting bids and output its solution.

Notice that under the assumption that the original values are drawn according to the common
prior, the redrawing of values does not alter this prior.

Three items must be clarified. First, there are many ways one might try to choose intervals in
Step 1 of the reduction and most of them are incompatible with mechanism design. To address this
issue, we develop a monotonizing technique for allocation rules (adapted from the standard ironing
procedure from the field of Bayesian optimal mechanism design [20]). Second, we are unlikely to have
access the functional form of the allocation rule. To address this issue, we estimate the allocation
rule by sampling the distribution and making black-box calls to the algorithm. These estimates

2Probabilities and expectations above are taken with respect to both the distribution of agent values and possible
randomization in the mechanism.

2

can be made precise enough to enable arbitrary small loss in welfare (i.e., a fully polynomial time
approximation scheme). Finally, we must also determine payments for our monotonized allocation
rule. For this, a general approach of Archer et al. [3] suffices.

Our results apply generally to single-parameter agent settings where the designer’s objective is
to maximize the social welfare (e.g., single-minded combinatorial auctions). In the most general
form, such an algorithmic problem can be written as finding an allocation x = (x1, . . . , xn) to
maximize

∑

i vixi − c(x) for agent valuations v = (v1, . . . , vn) and cost function c(·). For instance,
the multicast auction problem of Feigenbaum et al. [14] is the special case where the c(x) is the
sum of the costs of tree edges necessary to connect all agents served by x to the root (generally, the
Steiner tree problem). A special and relevant case occurs when costs are zero for x in some feasible
set system X and all other allocations are infeasible (i.e, c(x) = 0 if x ∈ X and ∞ otherwise). For
the single-item auction, X is the collection of all sets of cardinality at most one; and for single-
minded combinatorial auctions, X contains all sets of agents with non-intersecting desired bundles.
Our most general result does not need any restrictions on the cost function or the set system.
In particular, costs can be arbitrarily non-monotone or the set system non-downward-closed (e.g.
public good or scheduling problems).

For any ǫ, we give a black box reduction that, in polynomial time in the number of agents
and 1/ǫ, converts any approximation algorithm into a BIC mechanism with an additive loss of ǫ
to the social welfare. We also give a pseudo-polynomial time reduction to a BIC mechanism with
a multiplicative loss of ǫ, and a fully polynomial time approximation scheme for the special case
of downward-closed feasibility problems. Thus, the approximation complexity of social welfare in
single-parameter settings is the same for algorithms and BIC mechanisms.

For the most studied single-parameter mechanism design problems, the performance of the
best ex post IC approximation mechanism matches the best approximation algorithm (e.g., single-
minded combinatorial auctions [19] and related machine scheduling [13]). None-the-less, our ap-
proach gives the best known BIC approximation mechanism for many problems, such as auctions
under various graph constraints [2] and auctions of convex bundles [5].

Our result demonstrates that there is no gap between algorithmic approximation and approxi-
mation by BIC mechanisms. The remaining (theoretical) question of gaps in approximation factors
imposed by incentive constraints is thus focused on whether BIC is more powerful than IC for
social welfare maximization. For other non-welfare-maximization objectives (e.g., makespan) the
question of a general reduction remains open.

Related Work The design of ex post IC mechanisms for social welfare problems is well stud-
ied, notably for the specific settings of combinatorial auctions [3, 5, 18, 19]. Lehmann et al. [19]
introduced the problem of polynomial time approximation of social welfare for single-minded com-
binatorial auctions and give a mechanism that matches the best algorithmic approximation factor.
Archer et al. [3] considered the setting where there are many (at least logarithmic) copies of each
item and gave a (1+ǫ)-approximation mechanism. Archer and Tardos [4] gave a (single-parameter)
related machine scheduling mechanism that approximates the makespan. Dhangwatnotai et al. [13]
gave a mechanism for related machine scheduling that approximates makespan and matches the
algorithmic lower bound. All of the above results are for ex post incentive compatible mechanisms.

There has been a large literature on multi-parameter combinatorial auctions and approximation,
but this is only tangentially related to our work so we do not cite it exhaustively.

The literature contains a few reductions from mechanism design to algorithm design of varying

3

degrees of generality. Lavi and Swamy [18] consider IC mechanisms for multi-parameter packing
problems and give a technique for constructing a (randomized) β-approximation mechanism from
any β-approximation algorithm that verifies an integrality gap. Babaioff et al. [6] look at the
equilibrium notion of algorithmic implementation in undominated strategies and gives a technique
for turning a β-algorithm into a β(log vmax)-approximation mechanism. This solution concept
requires that no agent plays a strategy that is dominated by an easy to find strategy. Their
approach applies to single-valued combinatorial auctions and does not require the mechanism to
know which bundles each agent desires.

There have been a few related studies of Bayes-Nash equilibrium. Christodoulou et al. [12]
consider Bayes-Nash equilibria of simultaneous Vickrey auctions in a combinatorial setting and
show that these give a 2-approximation when agents’ valuations are submodular. Gairing et al. [15]
consider Bayes-Nash equilibria of a routing game and study worst-case performance. Borodin
and Lucier [9] study worst-case performance of Bayes-Nash equilibria in combinatorial mechanisms
based on greedy algorithms.

There are many papers on profit maximization that consider Bayesian design settings. These pa-
pers do not tend to consider computational constraints and for many of these (non-computational)
settings the restriction to ex post incentive compatibility is without loss.3 One notable exception is
Bhattacharya et al. [8] which focuses on the problem of selling heterogeneous goods to agents with
linear valuations. They construct a polynomial time 4-approximation mechanism. Their approxi-
mation result requires that the type distributions satisfy the monotone hazard rate assumption. In
a spirit similar to this paper, they make heavy use of the Bayesian setting to obtain a polynomial
runtime.

Organization We describe in detail the model for single-parameter agents, Bayesian approxima-
tion, Bayesian incentive compatibility, and foundational economic theory in Section 2. In Section 3
we give the reduction in an ideal setting where the allocation rule of the algorithm for the given
distribution on agent values is precisely known. This reduction is lossless. In Section 4 we develop
the reduction in the black-box model where we must sample the distribution and run the algorithm
to determine its allocation. Conclusions and open problems are discussed in Section 5.

2 Model and Definitions

Algorithms We consider algorithms for binary single-parameter agent settings. An algorithm in
such a setting must select a set of agents to serve. This allocation is denoted by x = (x1, . . . , xn)
where xi is an indicator for whether or not agent i is served. Agent i has valuation vi for being
served. Without loss for non-negative bounded-support distributions, we will assume vi ∈ [0, 1].4

The vector v = (v1, . . . , vn) of valuations is the valuation profile.
In the general costs setting, the seller may have some cost function c(·) over allocations represent-

ing the cost of serving the allocated set (e.g., Steiner tree problems [14]). The general feasibility
setting is the special case where costs are zero (feasible) or infinity (infeasible). These include
scheduling and public good problems. An important subclass are downward-closed settings where

3One non-computational setting where ex post incentive compatibility is with loss is when the profit maximizing
seller has a strict no-deficit constraint [11].

4The bounded support assumption is unnecessary except for our results using sampling, where we believe it is
realistic.

4

any subset of a feasible set is feasible. Downward closed settings include single-minded combinato-
rial auctions [19] and knapsack auctions [1].

An algorithm A is simply an allocation rule that maps valuation profiles to allocations. The
allocation rule for A we will denote by x(v). Our objective is the social welfare which is A(v) =
∑

i vixi(v) − c(x(v)). We allow A to be randomized in which case xi(v) is a random variable;
A(v) denotes the expected welfare of the algorithm for valuation profile v. OPT(v) will denote
the maximum social welfare.

We will consider these algorithmic problems in a Bayesian (a.k.a. stochastic) setting where the
valuations of the agents are drawn from a product distribution F = F1 × · · · × Fn. Agent i’s
cumulative distribution and density functions are denoted Fi and fi, respectively. The distribution
is assumed to be common knowledge to the agents and designer.

The pair (c(·),F) defines a setting for single-parameter algorithm design which we will take
as implicit. For this setting, the optimal expected welfare is OPT = Ev∼F[OPT(v)] and the
algorithm’s expected welfare is A = Ev∼F[A(v)]. An algorithm is a worst-case β-approximation if
for all v, A(v) ≥ OPT(v)/β. An algorithm is a Bayesian β-approximation if A ≥ OPT /β.

Mechanisms A mechanism M consists of an allocation rule and a payment rule. We denote by
x(v) and p(v) the allocation and payment rule of an implicit mechanism M. We assume agents
are risk neutral and individually desire to maximize their expected utilities. Agent i’s utility for
allocation x and payments p is vixi − pi. We consider single-round, sealed-bid mechanisms where
agents simultaneously bid and the mechanism then computes the allocation and payments.

Our goal is a mechanism that has good social welfare in equilibrium. The standard economic
notion of equilibrium for games of incomplete information is Bayes-Nash equilibrium (BNE). The
revelation principle says that any equilibrium that is implementable in BNE is implementable with
truthtelling as the BNE strategies of the agents.5 Meaning: an agent that believes the other agents
are reporting their values truthfully as given by the distribution has a best response of also reporting
truthfully. A mechanism with truthtelling as a BNE is Bayesian incentive compatible (BIC).6

It will be useful to consider agent i’s expected payment and probability of allocation conditioned
on their value. To this end, denote pi(vi) = Ev,A[pi(v) | vi] and xi(vi) = Ev,A[xi(v) | vi]. The
following theorem characterizes BIC mechanisms.

Theorem 2.1 [20] A mechanism is BIC if and only if for all agents i:

• xi(vi) is monotone non-decreasing, and

• pi(vi) = vixi(vi)−
∫ vi
0 xi(z)dz + pi(0).

Usually, pi(0) is assumed to be zero.

This motivates the following definition:

Definition 2.1 An allocation rule x(·) is monotone for distribution F if xi(vi) is monotone non-
decreasing for all i. An algorithm is monotone if its allocation rule is monotone.

5The revelation principle holds even in computational settings; any BNE for which the agent strategies and the
mechanism can be computed in polynomial time can be converted into a polynomial time BIC mechanism.

6Much of the computer science literature on mechanism design focuses on dominant strategy equilibrium (DSE)
and ex post incentive compatibility (IC). This is not without loss in many settings and therefore should be considered
with care when addressing computational questions in mechanism design.

5

From Theorem 2.1, BIC and monotone are equivalent and we will use them interchangeably for both
algorithms and mechanisms, though we will prefer “BIC” when the focus is incentive properties
and “monotone” when the focus is algorithmic properties.

Computation Our main task in demonstrating that the approximation complexity of algorithms
and BIC mechanisms is the same by giving an approximation-preserving reduction from the BIC
mechanism design problem to the algorithm design problem. In other words, we use the algorithm’s
allocation rule to compute the mechanism’s allocation and payment rules. As we are in a Bayesian
setting this computation will also need access to the distribution.

We consider two models of computation: an ideal model and a black-box model. In the ideal
model, we will assume we have explicit access to the functional form of the distribution and allo-
cation rule and we will assume we can perform calculus on these functions. While this model is
not realistic, we present it for the sake of clarity in explaining the economic theory that drives our
results. In the black-box model we will assume we can query the algorithm on any input and that
we can sample from the distribution on any subinterval of its support. Our philosophy is that the
ideal model is predictive of what is implementable in polynomial time and we verify this philosophy
by instantiating approximately the same reduction under the black-box model.

3 Reduction: Ideal Model

In this section we prove that, in the ideal model, any Bayesian algorithm can be made BIC without
loss of performance.

Theorem 3.1 In the ideal model and general cost settings, a BIC algorithm Ā can be computed
from any algorithm A. Its expected social welfare satisfies Ā ≥ A.

Theorem 3.1 implies an immediate corollary for Bayesian approximation.

Corollary 3.2 In the ideal model and general cost settings, a BIC Bayesian β-approximation Ā
can be computed from any Bayesian β-approximation algorithm, A.

Corollary 3.2 applies in the special case thatA is a worst-case β-approximation, but the resulting
BIC algorithm Ā will not necessarily be a worst-case β-approximation. See Appendix C for a
concrete example.

Let us build some intuition for the requirements of Theorem 3.1. Suppose that we are given
an algorithm A that is monotone for the distribution F. Then A is already BIC and specifies the
allocation rule x(·), so we must only compute the payment rule. In our ideal model this is trivial
given the formula from Theorem 2.1.

Now suppose we have a non-monotone Bayesian β-approximation algorithm A with allocation
rule x(·). We would like to use A to construct a monotone algorithm Ā from which we can obtain
a BIC mechanism by simply computing the payment rule as above. We must make sure that in
doing so we do not reduce the algorithm’s expected welfare. The key property of our approach
which makes it tractable is that we monotonize each agent’s allocation rule independently without
changing (in a Bayesian sense) the allocation rule any other agent faces. This property is also
important for the approximation factor as A is guaranteed to be a Bayesian β-approximation only
for the given distribution F, and may not be a good approximation for some other distribution.

6

0.2 0.4 0.6 0.8 1.0
q

0.2

0.4

0.6

0.8

1.0

g'HqL

gHqL

0.2 0.4 0.6 0.8 1.0
q

0.1

0.2

0.3

0.4

0.5

G'HqL

GHqL

(a) (b)

Figure 1: (a) A non-monotone ironing g′ (solid) of curve g (dashed). (b) The corresponding integral curves
G′ (solid) and G (dashed) in probability space.

In summary, the desiderata for monotonizing agent i are:

D1. monotone x̄i(vi),

D2. (weakly) improved social welfare Evi [vix̄i(vi)] ≥ Evi [vixi(vi)], and

D3. other agents unaffected.

Notice that if we satisfy the last condition we can apply the process simultaneously to all agents.

3.1 Ironing via Resampling

There is a history of fixing non-monotonicities in Bayesian mechanism design. Myerson invented
the technique of ironing which relies on the fact that if an allocation rule is constant over some
interval then any agent within that interval is effectively equivalent to a canonical “average” agent
from that interval. Myerson applied this theory to iron virtual valuation functions which are used
in Bayesian profit maximization [20]. We will apply this theory directly to allocation rules.

Before we describe our ironing procedure in full, let us develop some more intuition. Suppose
allocation rule xi(·) of A is non-monotone for agent i. A simple approach to flattening non-
monotonicities is to choose some interval [a, b] on which x(·) is non-monotone, and to treat the
agent identically whenever on this interval. For example, whenever vi ∈ [a, b] we could choose to
pretend that vi is actually some other fixed value v′ (e.g. v′ = a) and pass this “pretend” value
v′ to the algorithm. Unfortunately, if we take this näıve approach, we would have changed the
distribution of agent i’s input to the algorithm (in particular, the probability of value v′ would be
increased) and violated D3. In order to maintain D3 we make a minor modification: instead of
picking a fixed v′, we will draw v′ from Fi restricted to the interval [a, b]. Thus, we are replacing
vi ∈ [a, b] with v′ drawn from the same distribution. Other agents cannot tell the difference –
this operation does not change the distribution of agent i’s input! Moreover, agent i will indeed
be treated identically whenever vi ∈ [a, b]: the new probability of allocation will be precisely the
distribution weighted average of xi(·) over the interval [a, b].

Let xi
′(·) represent the allocation rule obtained from the following procedure (where v−i ∼ F−i):

• if vi ∈ [a, b], redraw v′ ∼ Fi restricted to [a, b]; else, set v′ = vi.

7

0.2 0.4 0.6 0.8 1.0
q

0.2

0.4

0.6

0.8

1.0

gHqL

gHqL

0.2 0.4 0.6 0.8 1.0
q

0.1

0.2

0.3

0.4

0.5

GHqL

GHqL

(a) (b)

Figure 2: (a) A monotone ironing ḡ (solid) of curve g (dashed). (b) The corresponding integral curves Ḡ
(solid) and G (dashed) in probability space. Note Ḡ is the convex hull of G.

• run A(v′,v−i).

We say that xi
′(·) is the curve xi(·) ironed on interval [a, b]. We note that xi

′(vi) = xi(vi) for
vi 6∈ [a, b] and xi

′(vi) = Ev′∼Fi
[xi(v

′) | v′ ∈ [a, b]] otherwise. Note that we can easily iron along
multiple disjoint intervals, redrawing v′ from whichever interval contains vi

′ (if any).
We now explore a method for choosing intervals on which to iron in order to obtain monotonicity.

It will be instructive to consider the allocation rule in probability space instead of valuation space,
and the cumulative allocation rule (also in probability space).

• Let g(q) = xi(Fi
−1(q)) be the allocation rule in probability space.

• Let G(q) =
∫ q
0 g(z)dz be the cumulative allocation rule.

Notice that monotonicity of xi(·) is equivalent to monotonicity of g(·) which is equivalent to con-
vexity of G(·).

Let xi
′(·) be xi(·) ironed along some interval [a, b], and consider the corresponding curves g′(·)

and G′(·). This ironing procedure corresponds to replacing g(·) with its average on [a, b], or equiv-
alently G(·) with the line segment connecting G(F (a)) to G(F (b)) (See Figure 1).7 This latter line
segment interpretation suggests that we can view our interval selection problem as the problem
of replacing portions of curve G with straight line segments so that the resulting curve Ḡ will be
convex. This is precisely the problem of finding the convex hull of G! Thus the choice of intervals
that monotonizes xi(·) (satisfying D1) is precisely the set of intervals defined by the convex hull of
G(·). See Figure 2.

Finally, since the convex hull of G(·) lies below G(·), this transformation weakly improves
welfare (satisfying D2). Informally speaking, in moving from cumulative allocation rule G(·) to
Ḡ(·), we lower the probability of low-value allocations in exchange for a corresponding increase in
the probability that higher-valued allocations occur. This intuition is made more precise in Lemma
3.4, below.

7Note that the transformation to probability space (from valuation space) is necessary for obtaining this line-
segment interpretation.

8

3.2 The Ironed Algorithm

We are now ready to define our ironed algorithm Ā. Given distribution F and interval I, we will
write F [I] to mean F restricted to I.

Definition 3.1 (Resample (A,II)) Given algorithm A and a profile of disjoint interval sets, II =
{I1, . . . ,In}, the resampled algorithm for A with intervals II is algorithm Resample (A,II):

1. For each agent i, if vi ∈ I ∈ Ii, draw v̄i ∼ Fi[I]; else, set v̄i = vi.

2. Run A(v̄).

Definition 3.2 (MonoInts (x)) The set of monotonizing intervals for x(·) is MonoInts (x) =
(I1, . . . ,In) defined by:

1. Let gi(q) = xi(Fi
−1(q)) be the allocation rule in probability space.

2. Let Gi(q) =
∫ q
0 gi(z)dz be the cumulative allocation rule.

3. Let Ḡi(·) be the convex hull of Gi(·).

4. Let Ii be the set of intervals in valuation space on which Gi(Fi(·)) > Ḡi(Fi(·)).

Definition 3.3 (Ā) The ironed algorithm corresponding to algorithm A is the algorithm Ā =
Resample (A,MonoInts (x)).

Lemma 3.3 Ā is monotone.

Proof: We must show that each agent has a monotone allocation rule. The allocation rule for
agent i is precisely x̄i(vi) = ḡ(Fi(vi)), which is the derivative of a convex function and therefore
monotone. ✷

Lemma 3.4 If A is a Bayesian β-approximation then Ā is a Bayesian β-approximation.

Proof: First notice that the two allocation rules produce the same distribution over allocations
and therefore expected costs are identical. We will show, for a single agent i, that E[vix̄i(vi)] ≥
E[vixi(vi)], from which linearity of expectation implies the result. We have

E[vixi(vi)] =

∫ 1

0
vxi(v)fi(v) dv =

∫ 1

0
F−1
i (q)gi(q) dq

=

∫ 1

0

∫ F−1

i
(q)

0
gi(q) dz dq =

∫ 1

0

∫ 1

Fi(z)
gi(q) dq dz

=

∫ 1

0
(Gi(1) −Gi(Fi(z))) dz

and similarly E[vix̄i(vi)] =
∫ 1
0 (Ḡi(1) − Ḡi(Fi(z)))dz. We conclude E[vix̄i(vi)] ≥ E[vixi(vi)] since

Ḡi(1) = Gi(1) and Ḡi(Fi(z)) ≤ Gi(Fi(z)) for all z ∈ [0, 1]. ✷

Theorem 3.1 follows from Lemmas 3.3 and 3.4.

9

Notes. We make the following notes about our main result. A more detailed discussion is given
in our conclusions.

• The argument fails for non-linear objectives such as makespan. While D2 holds, it will not
lead to an overall bound on the expected performance. See Appendix D for an example.

• Our ironing procedure is distinct from Myerson’s, in the sense that Myerson’s procedure
yields a different mechanism. Myerson irons virtual valuations and allocates to maximize
ironed virtual value. This is not the same as maximizing virtual value and then ironing the
allocation rule where it is non-monotone. See Appendix A for an example.

• Even if A is a worst-case c-approximation, Ā may fail to be a worst-case c-approximation.
See Appendix C for an example.

4 Reduction: Black-Box Model

We now turn to a setting in which we do not have full functional access to allocation rules, but only
black-box access to the given algorithm A and valuation distribution F. We will use the ironing
procedure from the previous section to monotonize an algorithm in this black-box model. Instead
of using direct knowledge of the allocation rule, we must use sampling to estimate it. This sampling
introduces errors in the selection of interval sets for resampling, which must then be dealt with.
Our analysis will proceed in the following steps.

1. We describe a method for computing payments in the black-box model.

2. We describe a method for combining sampling with ironing to obtain a nearly monotone
algorithm. In fact, this algorithm will be ǫ-Bayesian incentive compatible.

3. We show that a convex combination of this nearly monotone algorithm with a blatantly
monotone one will give a monotone algorithm, resulting in a BIC mechanism.

All of these steps approximately preserve social welfare. We obtain the following theorem.

Theorem 4.1 In the black-box model and general cost settings, for any ǫ > 0, a BIC algorithm
A′ can be computed from any algorithm A. Its expected social welfare satisfies A′ ≥ A− ǫ, and its
runtime is polynomial in n and 1/ǫ.

The additive error in Theorem 4.1 can be converted into a multiplicative error whenever the
expected welfare of A is not too small. We obtain the following corollary.

Corollary 4.1 In the black-box model and general cost settings, for any ǫ > 0, a BIC algorithm
A′ can be computed from any algorithm A. Its expected social welfare satisfies A′ ≥ A/(1+ ǫ), and
its runtime is polynomial in n, 1/ǫ, and 1/A′.

Corollary 4.1 gives a construction with a multiplicative error in social welfare, but its runtime
depends on the expected welfare of A. In Appendix F we describe an improvement that removes
this dependency, and implies a fully polynomial reduction for downward-closed settings.

In the remainder of this section we prove of Theorem 4.1.

10

4.1 Computing Payments

Suppose thatA has monotone allocation rules. The problem of designing a mechanism to implement
A then reduces to calculating appropriate payments. These payments are completely determined by
the allocation rule of A, but in the black-box model we do not have direct access to the functional
form of the allocation rule. Archer et al. [3] solve this problem by computing an unbiased estimator
of the desired payment rule using only black-box calls to the algorithm. For completeness we now
summarize their approach.

Definition 4.1 (black-box payments) If algorithm A does not allocate to agent i, then agent i
pays 0. Otherwise, we compute the payment of agent i as follows:

1. Choose vi
′ uniformly from [0, vi]

2. Draw v′
−i ∼ F−i and run A(vi

′,v′
−i)

3. If A allocated to agent i in the previous step set X = vi, otherwise set X = 0.

4. If X 6= 0, repeatedly draw values v′
−i ∼ F−i and run A(vi,v

′
−i) until the algorithm allocates

to player i, and let T be the number of iterations required.

5. Agent i’s payment is pi = vi − TX.

As was shown by Archer et al., this computation attains the appropriate expected payment.

Claim 4.2 (Archer et al. [3]) In the black-box payment procedure, the expected payments are
pi(vi) = vixi(vi)−

∫ vi
0 xi(z)dz.

We note that since we execute this procedure for agent i only if he receives an allocation, which
occurs with probability xi(vi), the expected number of calls to A for each player is at most

xi(vi)
(

1 + 1
xi(vi)

)

≤ 2.

Thus, in expectation, all payments can be computed with 2n calls to A.
Any mechanism paired with the above payment scheme will be individually rational (IR), mean-

ing that a truthtelling agent will never obtain negative utility. This is true even if the allocation
rule is not monotone. This follows immediately from the fact that the payment for an agent that
declares value vi is never greater than vi (indeed, it is defined as vi minus a non-negative value).

4.2 Sampling and ǫ-Bayesian Incentive Compatibility

We will be estimating the allocation rule of a non-monotone algorithm and attempting to iron
it. This will fail to result in an absolutely monotone rule. In this section we show that a nearly
monotone rule results in truthtelling as an ǫ-Bayes-Nash equilibrium (ǫ-BNE): the most an agent
can gain from a non-truthtelling strategy is an additive ǫ. We call such a mechanism ǫ-Bayesian
incentive compatible (ǫ-BIC).

Definition 4.2 (ǫ-BIC) A mechanism is ǫ-Bayesian incentive compatible if truthtelling obtains at
least as much utility as any other strategy, up to an additive ǫ, assuming all other agents truthtell.
That is, for all i, vi, and v′, vixi(vi)− pi(vi) ≥ vix(v

′)− pi(v
′)− ǫ.

11

The main theorem of this section is the following.

Theorem 4.2 In the black-box model and general cost settings, for any ǫ > 0, an ǫ-BIC algorithm
A′ can be computed from any algorithm A. Its expected social welfare satisfies A′ ≥ A− ǫ, and its
runtime is polynomial in n and 1/ǫ.

The resampling procedure from the previous section is the main workhorse for Theorem 4.2.
The construction of algorithm A′ consists primarily of choosing interval sets on which to resample.

4.2.1 ǫ-closeness

We now formalize a closeness property under which an allocation rule that is close to monotone is
ǫ-BIC (for some related ǫ).

Definition 4.3 (ǫ-close) Given allocation rules x(·) and x′(·) are ǫ-close if |x(v)− x′(v)| < ǫ for
all v. Two algorithms or mechanisms are ǫ-close if each agent’s allocation rules are ǫ-close.

Lemma 4.3 If non-monotone A′ is ǫ-close to a monotone A, then A′ is (2ǫ)-BIC.

Proof: Suppose agent i is participating in A′ and has value vi, but claims to have value vi
′.

Assume vi > vi
′; the opposite case is similar. Using the payment rule from Theorem 2.1, agent i’s

gain in utility from declaring vi
′ is:

(vixi
′(vi

′)− pi(vi
′))− (vixi

′(vi)− pi(vi)) = (vi − vi
′)xi

′(vi
′)−

∫ vi

vi′
xi

′(z)dz. (1)

Since xi
′(·) is ǫ-close to a monotone curve, it must be that xi

′(z)+ ǫ ≥ xi
′(vi

′)− ǫ for all z ∈ [vi
′, vi].

Thus
∫ vi
vi′

xi
′(z)dz ≥ (vi−vi

′)(xi
′(vi

′)−2ǫ). This implies that the value in (1) is at most 2ǫ(vi−vi
′),

which is at most 2ǫ. ✷

Lemma 4.4 If A and A′ have the same expected costs8 and are ǫ-close then A′ ≥ A− nǫ.

Proof: For each agent i, E[vixi
′(vi)] ≥ E[vi(xi(vi)− ǫ)] ≥ E[vixi(vi)] − ǫE[vi]. The result then

follows by linearity of expectation. ✷

Lemma 4.5 If algorithms A and A′ are ǫ-close, then for any collection II = {I1, . . . ,In} of interval
sets, resampled algorithms Resample (A,II) and Resample (A′,II) are ǫ-close.

Proof: For any i, let xi and xi
′ be the allocation rules of A and A′, respectively. Let x̄i and x̄′i

be the allocation rules of Resample (A,II) and Resample (A′,II). Then for any I ∈ Ii,

|x̄i(I)− x̄′i(I)| =
∣

∣Ev[x(v) | v ∈ I]− Ev[x
′(v) | v ∈ I]

∣

∣ =
∣

∣Ev[x(v)− x′(v) | v ∈ I]
∣

∣ < ǫ.

✷

Appropriate payments to turn an algorithm that is ǫ-close to monotone into a mechanism that
is 2ǫ-BIC can be computed by the same process we would use for monotone algorithms.

8Recall that the expected cost of an algorithm A with allocation rule x(·) is Ev∼F[c(x(v))].

12

4.2.2 Discretization

A key step in our reduction will be in discretizing the allocation rules of the algorithm. This reduces
the problem of estimating an allocation rule to estimating its value at a polynomial number of
points. Moreover, our resulting allocation will not necessarily be monotone, but there will be only
a polynomial number of points at which it can be non-monotone; we will use this to our advantage
when fixing non-monotonicities in Section 4.3.

Definition 4.4 (Piecewise constant) An algorithm is k-piece piecewise constant if for each i
there is a partition of valuation space into at most k intervals such that the allocation rule for agent
i is constant on each interval.

Definition 4.5 (Discǫ (A)) For a given ǫ > 0 and algorithm A, the discretization of algorithm
A, Discǫ (A), is Resample (A,II), where II = {I1, . . . ,In} is the collection of intervals defined by

Ii = {[0, ǫ)} ∪
{[

ǫ(1 + ǫ)t, ǫ(1 + ǫ)t+1
)}

0≤t≤log1+ǫ
(1/ǫ)

.

Lemma 4.6 Discǫ (A) is log1+ǫ(1/ǫ)-piece piecewise constant and Discǫ (A) ≥ A− 2nǫ.

Proof: Let ẋ(·) denote the allocation rules for Discǫ (A). The allocation curves for Discǫ (A) are
constant on interval [0, ǫ) and all intervals of the form [ǫ(1+ ǫ)t, ǫ(1+ ǫ)t+1), and there are at most
log1+ǫ(ǫ

−1) such intervals over the range [ǫ, 1]. These intervals do, indeed, partition valuation space.
Furthermore, Evi [viẋi(vi)] ≥ (1 − ǫ)Evi [vixi(vi)] − ǫ ≥ Evi [vixi(vi)] − 2ǫ, as algorithm Discǫ (A)
modifies any input value greater than ǫ by at most a factor of (1− ǫ). As the expected costs before
and after discretization are the same, the result follows from linearity of expectation. ✷

4.2.3 Statistical Estimation

We next describe a sampling procedure for estimating an allocation rule. This procedure will not
form an algorithm, but rather generates an estimated allocation curve, which we will denote by
y(·). This estimate behaves like an allocation rule, but is not associated with an actual algorithm
(and, in particular, need not be feasibly implementable).

Definition 4.6 (estimate allocation rule) Given algorithm A which is k-piece piecewise con-
stant and ǫ > 0, an estimated allocation rule for A is a curve y(·) found as follows:

1. for each agent i and valuation-space piece Ij, draw
4
ǫ2
log (2kn/ǫ) samples from F conditional

on vi ∈ Ij, and run A on each of these samples.

2. let yij be the average allocation over the invocations to A above, for each i and j.

3. Define y by yi(v) = yij for all v ∈ Ij

Lemma 4.7 If algorithm A is k-piece piecewise constant then, for any ǫ > 0, an estimated allo-
cation rule y(·) for A is k-piece piecewise constant, and is ǫ

2-close to x(·) with probability at least
1 − ǫ

2 . The number of black-box calls to A used in the construction of y(·) is polynomial in n, k,
and 1/ǫ.

13

Proof: The runtime bound and the fact that y(·) is k-piece piecewise constant follow immediately
from the definition. Choose some i and let Ij denote piece j of the valuation space for agent i in
A, and write xi(Ij) for the (constant) value of xi(v) for any v ∈ Ij . By the Hoeffding-Chernoff

inequality, the probability that |yij −xi(Ij)| > ǫ/2 is at most e−4(ǫ)−2 log (2kn/ǫ)(ǫ/2)2 ≤ ǫ/2kn. Thus,
taking the union bound over all i and j, we conclude that

|yij − xi(Ij)| ≤ ǫ
2

for all i and j with probability at least 1− ǫ
2 . ✷

We now complete the proof of Theorem 4.2 by combining our sampling procedure with the
ironing procedure from the ideal model.

Definition 4.7 (Ironǫ (A)) Given piecewise constant algorithm A, the statistically ironed algo-
rithm for A with error ǫ > 0 is Ironǫ (A) = Resample (A,MonoInts (y)) where y(·) is the
estimated allocation rule for A.

Note that Ironǫ (A) is not simply a resampling ofA, but rather a convex combination of resamplings
since the construction of interval set MonoInts (y) is randomized.

Lemma 4.8 Ironǫ (A) is 2ǫ-BIC and Ironǫ (A) ≥ A− nǫ.

Proof: By Lemma 4.7, yi(·) is k-piece piecewise constant for each i. Let Ay be the (fictional)
algorithm with allocation rule y. Since II is the monotonizing interval set for Ay, if Ay were ironed
according to II, the result would be Āy which is monotone.

By Lemma 4.7, Ay is ǫ
2 -close to A with probability 1 − ǫ

2 . In this case, Lemma 4.5 implies
Resample (A,II) is ǫ

2 -close to Āy. For the remaining probability, ǫ
2 , we note thatResample (A,II)

is trivially 1-close to Āy. Thus, taking expectation over all possible outcomes of the sampling, we
conclude that Ironǫ (A) is ǫ-close to monotone, and is therefore 2ǫ-BIC by Lemma 4.3.

Since, with probability 1− ǫ
2 , Resample (A,II) is ǫ

2 close to Āy and Ay is ǫ
2 close to A, Lemma

4.4 and Lemma 4.6 imply that, with probability 1− ǫ
2 ,

Resample (A,II) ≥ Āy − 1
2nǫ ≥ Ay − 1

2nǫ ≥ A− nǫ.

For the remaining probability, ǫ
2 , we note that trivially Resample (A,II) ≥ 0 = A −A ≥ A − n.

Thus, taking expectation over all possible outcomes of sampling, we conclude Ironǫ (A) ≥ A−nǫ.
✷

Proof of Theorem 4.2: Define A′ to be the algorithm Ironǫ′ (Discǫ′ (A)), where ǫ′ = ǫ/3n.
Then, by Lemmas 4.6 and 4.8, A′ is 2ǫ′-BIC, and hence ǫ-BIC, and A′ ≥ Discǫ′ (A) − nǫ′ ≥
A− 3nǫ′ = A− ǫ. The runtime of A′ (which is dominated by sampling in the construction of y) is
O(nkǫ′−2 log (2kn/ǫ′))) = Õ(n3ǫ−3 log(ǫ−1)), where recall k = 1

ǫ log(1/ǫ) is the number of discrete
intervals in Discǫ′ (A). ✷

4.3 Bayesian Incentive Compatibility

In the previous section we showed how to construct an ǫ-BIC mechanism from any algorithm with
almost no loss to the social welfare. Our goal now is to take such an ǫ-BIC algorithm A and make
it BIC. In other words, we would like to “fix” the (small) non-monotonicities in A. Fortunately,
since each allocation curve of A is discretized, any non-monotonicities must occur only at a small

14

number of predetermined points. Our approach for removing these points of non-monotonicity is
simple: we will construct an alternative algorithm A′ whose allocation curves are stair functions,
with jumps in allocation probability occurring at each of those points. A convex combination of A
and A′ will then be monotone. This convex combination will be our final BIC algorithm.

It is important that this convex combination process not reduce social welfare by too much.
This requires two things. First, we need the convex combination to be mostly A as only it has
provably good welfare. This is possible by taking ǫ so small that the explicit monotonicities in A′

heavily outweigh the non-monotonicities in A (which are at most ǫ). Second, we need to ensure
that the expected social welfare of A′ is not extremely negative.

How should we construct A′? Suppose first that we are in a downward-closed feasibility setting.
In this case, the singleton allocation {i} is feasible for each agent i. The construction of A′ with
stair-function allocation curves is then straightforward: an agent i is chosen uniformly at random
and the algorithm then either allocates to agent i or not, with the probability of allocation following
a stair function. Since A′ only returns feasible outcomes, its expected social welfare must be non-
negative.

We would like to follow this same approach in general cost settings. However, it may be that,
for some i, the particular allocation {i} has an extremely high (or infinite) cost, in which case
the above algorithm may have an extremely negative social welfare. Note, though, that in our
construction we can replace {i} with any allocation that includes agent i. It is therefore sufficient
to find, for each i, some allocation that includes agent i and whose cost is not too high. Once these
allocations are found, we can use them to construct the stair algorithm A′.

In some cases finding low-cost allocations may be highly non-trivial. To get around this problem,
we observe that as long as algorithm A has a reasonable probability of allocating to agent i, there
must exist low-cost allocations that include i that are returned by A. We can therefore find such
allocations by repeatedly sampling outcomes of A. If, on the other hand, we were to take many
samples and not find any allocations that include agent i, then we can safely assume that agent i does
not contribute much to the expected social welfare of A. In this case, we can trivially monotonize
agent i’s allocation curve by ironing on interval [0, 1], removing the need to find allocations that
include him.

4.3.1 The Stair Algorithm

We begin by demonstrating how to combine an ǫ-BIC mechanism with an algorithm whose alloca-
tion rules are stair functions in order to obtain a BIC mechanism.

Definition 4.8 (Stair (A)) Let A be a k-piece piecewise constant algorithm, and suppose S1, . . . , Sn

and T1, . . . , Tn are allocations such that i ∈ Si and i 6∈ Ti for all i. The stair algorithm for A,
Stair (A), does the following:

1. Pick an agent i uniformly from the n agents.

2. If vi is in the jth highest piece of k pieces, allocate to Si with probability (j − 1)/(k − 1) and
Ti otherwise.

Definition 4.9 (Combǫ (A)) Suppose algorithm A is k-piece piecewise constant. Then Combǫ (A)
is the convex combination of A with probability 1 − δ and Stair (A) with probability δ, where
δ = 2(k − 1)nǫ.

15

Lemma 4.9 If A is ǫ-close to a monotone A′, then algorithm Combǫ (A) is BIC.

Proof: We will write x̂i(·) to denote an allocation rule of Combǫ (A). To show Combǫ (A) is
BIC, choose any agent i and any values vi < vi

′; we will show x̂i(vi) ≤ x̂i(vi
′). If vi, vi

′ are in the
same piece of the valuation space then x̂i(vi) = x̂i(vi

′). Otherwise, since A is ǫ-close to monotone
A′, it must be that xi(vi) ≤ xi(vi

′)− 2ǫ. Furthermore, if s(·) is the allocation rule for Stair (A′),
then si(vi) ≤ si(vi

′) + 1/(k − 1)n. We conclude that

x̂i(vi) = (1− δ)xi
′(vi) + δsi(vi)

≤ x̂i(vi
′)− 2ǫ+ δ/(k − 1)n

= x̂i(vi
′)

as required, since δ = 2(k − 1)nǫ. ✷

4.3.2 Bounding Social Welfare: Finding Low-Cost Sets

We now describe the choice of sets S1, . . . , Sn and T1, . . . , Tn for algorithm Stair (A). What we
require is that, for all i, i ∈ Si, i 6∈ Ti, and Si, Ti are feasible (or have sufficiently low cost). In
many settings finding such sets is trivial (e.g., for downward-closed feasibility problems we can take
Si = {i} and Ti = ∅), but for some problems it might be difficult to find feasible (or low-cost)
allocations. Our approach is as follows. Since A never makes an allocation that generates negative
social welfare, we can bound the cost of any allocation made by A. This motivates us to look for
a set Si ∋ i returned by A on some input, for each i. This can be accomplished by sampling. In
the event that we do not find a set Si, it is likely that the probability of allocating to agent i is
very low; we can therefore iron together all intervals for agent i, effectively removing the need for
Si, without causing much loss to the expected welfare. This operation can be viewed as trimming
away agents that are very rarely allocated. The same holds for finding Ti.

Definition 4.10 (Trimǫ (A)) The trimmed algorithm for piece-wise constant A is Trimǫ (A):

1. For each agent i and valuation-space piece Ij ∈ Ii, draw 4
ǫ2
log(2n/ǫ) samples from F condi-

tional on vi ∈ Ij, and run A on each of these samples.

2. If A is the same (always or never allocating) for i on every sample, define I ′
i = {[0, 1]};

otherwise, I ′
i = Ii and we define Si to be any observed allocation that includes agent i and Ti

to be any observed allocation that does not include agent i.

3. Run Resample (A,II ′).

Note that, for each i, either sets Si ∋ i and Ti 6∋ i will be found during the execution of
Trimǫ (A), or else the allocation rule of agent i will be made constant.

Lemma 4.10 Trimǫ (A) ≥ A− nǫ.

Proof: We claim that, with probability at least 1 − ǫ
2 , for each agent i, the allocation rules for

Trimǫ (A) and A will differ only on values vi for which xi(vi) ≤ ǫ
2 . Before proving the claim, let us

see how it implies the desired result. The claim implies that Trimǫ (A) ≥ A−(ǫ2)n with probability

16

1− ǫ
2 . For the remaining probability, we note that Trimǫ (A) ≥ 0 = A−A ≥ A−n trivially. Thus,

over all possible outcomes of sampling, we conclude that

Trimǫ (A) ≥ A− ǫ
2n− ǫ

2n = A− nǫ

as required.
Let us now prove the claim. Choose some agent i and suppose that Trimǫ (A) and A differ

on some interval I with xi(I) ≥ ǫ
2 . Then, by the definition of I ′

i, it must be that no set T ∋ i
was found during the sampling of interval I for agent i. However, since xi(I) ≥ ǫ

2 , there is a
probability of at least ǫ

2 of finding such a set T on each sample. By Chernoff-Hoeffding inequality,
the probability that we do not find even one such set during 4ǫ−2 log(2n/ǫ) samples is at most ǫ

2n .
We conclude that the probability that no set T ∋ i was found during the sampling of interval I is
at most ǫ

2n . This is therefore a bound on the probability that Trimǫ (A) and A differ for agent i
on some interval I with xi(I) ≥ ǫ

2 . By the union bound, the probability that this occurs for any
agent is at most ǫ

2 , as required. ✷

We are now ready to combine our tools into a BIC mechanism, proving Theorem 4.1.

Definition 4.11 (Monoǫ (A)) Given an algorithm A and ǫ > 0, the monotonization of A, denoted
Monoǫ (A), is the algorithm Combǫ (Ironǫ (Trimǫ (Discǫ (A)))).

Lemma 4.11 Monoǫ (A) is BIC, and Monoǫ (A) ≥ A− 6kn2ǫ.

Proof: For notational convenience we define A′ = Trimǫ (Discǫ (A)). Recall that during the
construction of A′ we find sets S1, . . . , Sn with Si ∋ i. Also, Lemma 4.8 implies that Ironǫ (A′)
is ǫ-close to a monotone algorithm. Thus Combǫ (Ironǫ (A′)) is well-defined, and is also BIC by
Lemma 4.9.

Our ironing techniques do not affect the distribution of allocations generated by an algorithm,
so the expected costs of Monoǫ (A) and A are the same. Furthermore, by Lemmas 4.6, 4.8, and
4.10,

Ironǫ

(

A′
)

≥ A′ − nǫ = Trimǫ (Discǫ (A))− nǫ ≥ Discǫ (A)− 2nǫ ≥ A− 4nǫ.

We next claim that one can assume without loss of generality that c(Si) ≤ n for all i. This is
because Si is in the range of A, and we can assume that A never returns an allocation that results
in negative welfare (since otherwise a trivial improvement to A would return the empty allocation
instead). Since valuations lie in [0, 1], non-negative welfare can be generated only by sets with cost
at most n, and thus we can assume c(Si) ≤ n for all i.

This implies that the expected social welfare obtained by Stair (Ironǫ (A′)) is at least (−n).
We conclude

Monoǫ (A) = Combǫ

(

Ironǫ

(

A′
))

= (1− δ)Ironǫ

(

A′
)

− δStair
(

Ironǫ

(

A′
))

≥ A− 4nǫ− (2(k − 1)nǫ)n

≥ A− 6kn2ǫ.

✷

Proof of Theorem 4.1: Let A′ be the monotonized algorithm Monoǫ′ (A), where ǫ′ = ǫ/6kn2.
The result then follows immediately from Lemma 4.11. The runtime, which is dominated by
sampling, is O(kn(ǫ′)−2) = Õ(n

5

ǫ5
log3(1/ǫ)). ✷

17

5 Conclusions

Our main result is for single-parameter agents and the objective of social welfare where we give a
black-box reduction that converts any Bayesian approximation algorithm into a Bayesian incentive
compatible mechanism. For these settings there is no gap separating the approximation complexity
of algorithms and BIC mechanisms.

It is notable that our transformation from an approximation algorithm to a BIC mechanism
cannot be duplicated by the agents acting on their own: there are non-monotone algorithms that,
when coupled with any reasonable payment rule, do not have any BNE with near the expected
welfare as the original algorithm on the true values. A concrete example is given in Appendix B.

While our main theorem is extremely general, the situations not covered by it are of notable
interest.

1. Multi-parameter Bayesian mechanism design is not very well understood, but there is every
reason to believe that approximation (which has not been pursued much by the economics
literature) has a very interesting and relevant role to play in providing positive results. For
the objetive of profit maximization the result of [10] reduces mechanism design to algorithm
design in unit-demand settings with a natural “substitutability” property of the feasibility
constraint, e.g., from matroid set systems. For social welfare maximization, the approach of
this paper was recently generalized to convert any algorithm to a BIC mechanism in multi-
dimensional discrete settings [16]. The same approach gives an ǫ-BIC approximation in general
multi-dimensional settings [7]. These reductions can be applied to the combinatorial public
project problem for which Papadimitriou et al. [21] exhibit a gap separating the approximation
complexity of algorithms and ex post IC mechanisms. These reductions show that the gap is
in fact between BIC and IC mechanisms [7].

2. Our reduction applies to the objective of social welfare maximization. It would be nice to
extend our result more generally to any monotone objective function, e.g., makespan. Unfor-
tunately, our approach fails to preserve the approximation factor of the makespan objective.
A concrete example that shows tha tour ideal reduction does not preserve expected makespan
is given in Appendix D. Is there a polynomial-time reduction that turns any approximation
algorithm for any monotone objective into a BIC mechanism with the same approximation
factor?

3. In the special case where our reduction is applied to a worst-case β-approximation (recall: our
reduction applies more generally to Bayesian β-approximations), the resulting BIC mechanism
is still only a β-approximation in the weaker Bayesian sense. Is there a polynomial-time black-
box reduction that turns any worst-case β-approximation algorithm into a BIC mechanism that
is also a worst-case β-approximation?

4. While Bayes-Nash equilibrium (i.e., BIC) is the standard equilibrium concept for implemen-
tation in economics, the stronger dominant strategy equilibrium (i.e., ex post IC) is the stan-
dard concept in computer science. The main challenge in obtaining a similar reduction for
IC mechanisms is that the valuation space is exponentially big and monotonizing all points
seems to require an exhaustive procedure. One potential approach would be to apply our
ironing technique repeatedly, re-ironing an agent’s curve whenever it is affected by an ironing
of another agent’s curve. Such a procedure will not generally give a monotone allocation

18

rule; A concrete example is given in the full version of the paper. Is there a polynomial-
time reduction for turning any f(n)-approximation (worst-case or Bayesian) algorithm for a
single-parameter domain into an ex post IC mechanism that is a (worst-case or Bayesian)
Θ(f(n))-approximation?

The final question above is a refinement of what we consider to be the main open question of
this work. Is there a gap separating the approximation complexity of implementation by Bayesian
incentive compatible and ex post incentive compatible mechanisms for single-parameter social welfare
maximization?

References

[1] G. Aggarwal and J. Hartline. Knapsack auctions. In Proceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms, 2006.

[2] K. Akcoglu, J. Aspens, B. Dasgupta, and M. Kao. An opportunity-cost algorithm for com-
binatorial auctions. In Applied Optimization: Computational Methods in Decision-Making,
Economics, and Finance, 2002.

[3] A. Archer, C. Papadimitriou, K. Talwar, and E. Tardos. An approximate truthful mechanism
for combinatorial auctions with single parameter agents. In Proc. 14th ACM Symp. on Discrete
Algorithms. ACM/SIAM, 2003.

[4] A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In Proc. 42nd IEEE
Symp. on Foundations of Computer Science, 2001.

[5] M. Babaioff and L. Blumrosen. Computationally-feasible truthful auctions for convex bundles.
In Proc. 7th Intl. Workshop on Approximation Algorithms for Combinatorial Optimization
Problems, 2004.

[6] M. Babaioff, R. Lavi, and E. Pavlov. Single-value combinatorial auctions and algorithmic
implementation in undominated strategies. Journal of the ACM, 2009.

[7] X. Bei and Z. Huang. Bayesian incentive compatibility via fractional assignments. In Proc.
22st ACM Symp. on Discrete Algorithms, 2011.

[8] S. Bhattacharya, G. Goel, S. Gollapudi, and K. Munagala. Budget constrained auctions with
heterogeneous items. In Proc. 41st ACM Symp. on Theory of Computing, 2010.

[9] A. Borodin and B. Lucier. Price of anarchy for greedy auctions. In Proc. 21st ACM Symp. on
Discrete Algorithms, 2010.

[10] S. Chawla, J. Hartline, D. Malec, and B. Sivan. Sequential posted pricing and multi-parameter
mechanism design. In Proc. 41st ACM Symp. on Theory of Computing, 2010.

[11] S. Chawla, J. Hartline, U. Rajan, and R. Ravi. Bayesian optimal no-deficit mechanism design.
In Workshop on Internet and Network Economics (WINE), 2006.

[12] G. Christodoulou, A. Kovács, and Michael Schapira. Bayesian combinatorial auctions. In
Proc. 35st Intl. Colloq. on Automata, Languages and Programming, pages 820–832, 2008.

19

[13] P. Dhangwatnotai, S. Dobzinski, S. Dughmi, and T. Roughgarden. Truthful approximation
schemes for single-parameter agents. In Proc. 49th IEEE Symp. on Foundations of Computer
Science, 2008.

[14] J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast transmissions.
Journal of Computer and System Sciences, 63(1):21–41, 2001.

[15] M. Gairing, B. Monien, and K. Tiemann. Selfish routing with incomplete information. In
Proc. 17th ACM Symp. on Parallel Algorithms and Architectures, 2005.

[16] J. Hartline, R. Kleinberg, and A. Malekian. Bayesian incentive compatibility via matchings.
In Proc. 22st ACM Symp. on Discrete Algorithms, 2011.

[17] R. Lavi. Computationally efficient approximation mechanisms. In N. Nisan, T. Roughgarden,
É. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, chapter 12, pages 301–329.
Cambridge University Press, 2007.

[18] R. Lavi and C. Swamy. Truthful and near-optimal mechanism design via linear programming.
In Proc. 46th IEEE Symp. on Foundations of Computer Science, 2005.

[19] D. Lehmann, L. I. O’Callaghan, and Y. Shoham. Truth revelation in approximately efficient
combinatorial auctions. In Proc. 1st ACM Conf. on Electronic Commerce, pages 96–102. ACM
Press, 1999.

[20] R. Myerson. Optimal auction design. Mathematics of Operations Research, 6:58–73, 1981.

[21] C. Papadimitriou, M. Schapira, and Y. Singer. On the hardness of being truthful. In Proc.
49th IEEE Symp. on Foundations of Computer Science, 2008.

A Ironing Allocation Rules vs. Ironing Virtual Valuations

At the heart of our mechanism construction is an ironing procedure that monotonizes allocation
rules, outlined in Section 3. A similar process is used by Myerson as part of his construction of
(revenue) optimal mechanisms for single-parameter settings [20]. In light of this similarity, we will
now compare these two constructions and highlight their differences.

We first recall Myerson’s optimal mechanism. For each agent i, the mechanism considers the
virtual valuation function φi(·) given by φi(vi) = vi − 1−Fi(vi)

fi(vi)
. This function is monotonized9

using the ironing method described in Section 3; the resulting monotone function is denoted φi(·).
Given a valuation profile v, the mechanism returns the allocation x that maximizes

∑

i φi(vi) ·xi−
c(x). Myerson’s celebrated result is that this allocation rule is revenue-optimal among the class of
incentive compatible allocation rules.

Informally speaking, one can interpret Myerson’s mechanism as first considering the allocation
rule that maximizes social welfare with respect to the profile of virtual values φi(vi). However,
if the virtual valuation function is non-monotone, this allocation rule will also be non-monotone
and hence not incentive compatible. The mechanism addresses this issue by ironing the virtual
valuation function, which effectively monotonizes the allocation rule.

9Note that the virtual valuation function may be non-monotone if Fi does not satisfy the monotone hazard rate
assumption. For instance, bimodal distributions generally have non-monotone virtual valuation functions.

20

0

0.5

1.0

0 0.5 1.0

F (v)

Bid Value

P
ro
b
ab

il
it
y

0

0.5

1.0

0 0.5 1.0

φ(v)

Bid Value

V
ir
tu
al

V
al
u
e

0

0.5

1.0

0 0.5 1.0

φ(v)

Bid Value

V
ir
tu
al

V
al
u
e

Figure 3: The distribution F (v) used in Appendix A, with virtual valuation function φ(v) and
ironed virtual valuation function φ(v).

The motivation for ironing in our construction is quite similar, in that we are given a non-
monotone allocation rule that we wish to make incentive compatible. Furthermore, we address the
issue in a similar way: by ironing the offending non-monotone curve. One might therefore suspect
that these two monotonization procedures are, in fact, equivalent when restricted to the allocation
rule that maximizes virtual welfare. However, as we will now show, this is not the case: the
mechanisms that result from ironing the virtual valuation function and from ironing the allocation
rule are distinct. Thus, our construction does differ, in an essential way, from that of Myerson.

Let us provide an example to illustrate this difference. Consider an auction of a single indivisible
item to multiple bidders with values drawn i.i.d. from distribution F . Consider the following
distribution F : with probability 1/2, the value is drawn uniformly from [38 ,

1
2]; otherwise, it is

drawn uniformly from (12 , 1] (see Figure 3). The virtual valuation function and ironed virtual
valuation function corresponding to this distribution are

φ(v) =

{

2v − 5
8 v ∈

[

3
8 ,

1
2

]

2v − 1 v ∈
(

1
2 , 1

]

.
φ(v) =











2v − 5
8 v ∈

[

3
8 ,

13
32

]

3
16 v ∈

(

13
32 ,

19
32

]

2v − 1 v ∈
(

19
32 , 1

]

.

Suppose A is the allocation rule that assigns the item to the agent with highest virtual value.
We now consider the two incentive compatible variants of A that we wish to compare. Namely,
let A′ be Myerson’s algorithm, which assigns the item to the agent with the highest ironed virtual
value, and let Ā be the ironed algorithm corresponding to A (as in Section 3). Let x(·), x′(·), and
x̄(·) denote the allocation curves corresponding to A, A′, and Ā, respectively10. Our goal is to
show that x̄(·) 6= x′(·).

We observe that the function φ(·) achieves a strict minimum, over its effective range [38 , 1], at
the point v = 3

8 . This implies that x′(38) = 0, since an agent that declares the minimal value can be
awarded an allocation only in the 0-probability event that all other agents report this same value.

On the other hand, it must be that x̄(38) = Ev[x(v) | v ≤ z] for some z ∈ [38 , 1]. We claim that
this value is strictly positive. Indeed, φ(v) > φ(w) for v ∈ [38 ,

1
2] and w ∈ (12 ,

9
16). This implies that

x(v) > 0 for all v ∈ [38 ,
1
2). We must therefore have x̄(38) = Ev[x(v) | v ≤ z] > 0.

We conclude x′(38) 6= x̄(38), and thus the allocation rules A′ and Ā are distinct.

10We drop the usual subscript of agent index since, by symmetry, the allocation curves are the same for each player.

21

B Equilibria of Non-Monotone Algorithms

We have shown how to transform a non-monotone algorithm into a monotone one to obtain a
mechanism that is BIC. It is notable that the agents could not do this on their own: there are non-
monotone algorithms that, when coupled with any individually-rational and no-positive-transfer11

payment rule, do not have any BNE with near the expected welfare as the original algorithm on
the true values.

Choose parameter X ≫ n. Consider an auction of a single indivisible item to n bidders with
values drawn i.i.d. from the following distribution: with probability 1/n the value is X; with the
remaining probability it is drawn uniformly from [0, 1]. Let A allocate to the bidder with the largest
value in

[

0, 1
n2

]

, if any and breaking ties randomly; otherwise it allocates to the bidder with the
largest value.

Consider the expected welfare of A. Since with high probability an agent has value X and no
agent has value 1/n2 or below, A = Ω(X).

Next we show that in any BNE most agents will bid 1/n2 and the expected welfare will be
the average value of the agents which is O(X/n). Thus, the equiligrium is far from the algorithms
Bayesian performance, i.e., the price of stability is linear.

Consider any mechanism that pairs A with an ex-post IR and no-positive-transfer payment
scheme. We claim that in any BNE of such a mechanism, an agent with value greater than 1

n2

would instead report value 1
n2 . To see this, consider a BNE and let p denote the probability that

some agent declares value 1
n2 . Suppose that p < 1− 1

n . If agent i has value vi ∈
[

1
8 ,

3
8

]

and he does
not bid 1

n2 , then his probability of allocation is at most p(3/4 + o(1)) (since otherwise, with high
probability, there will be an agent with value at least 2vi who could improve his utility by copying
agent i’s strategy). The expected utility of agent i is therefore at most p(3vi/4 + o(1)). On the
other hand, agent i could bid 1

n2 for an expected utility of at least p
(

vi − 1
n2

)

> p(vi/2 + o(1))
(since vi ≥ 1/8). Thus any agent with a value in

[

1
8 ,

3
8

]

will bid 1
n2 , so p ≥ 1− 1

n . We conclude by
noting that if p ≥ 1− 1

n , every player with value above 1
n2 maximizes his utility by declaring 1

n2 .

C Failure to Preserve Worst-Case Approximations

We present an example to demonstrate that ideal ironing does not preserve worst-case approxima-
tion ratios. Consider an auction of 2 objects to 2 unit-demand bidders, with the goal of optimizing
social welfare. The private value of agent 1 is drawn uniformly from {1, 100}, and the private value
of agent 2 is drawn uniformly from {10, 1000, 1001}. Let A be an approximation algorithm whose
allocation rule is described in Figure 4.

We note that A is a worst-case 11/10 approximation algorithm (where the optimal solution
is to always allocate to both players). Also, A is not BIC for agent 1: E[x1(1)] = 2/3, whereas
E[x1(100)] = 1/3. The ideal monotonization procedure will draw a new bid v′1 for agent 1 uniformly
from {1, 100}, and run A on (v′1, v2). Call this new algorithm Ā.

Note that if v1 = 100 and v2 = 10, then with probability 1/2 Ā will take v′1 = 1 and choose allo-
cation (0, 1), and with the remaining probability it will take v′1 = 100 and choose allocation (1, 0).
Hence, for this set of input values, the expected welfare obtained by Ā is 100+10

2 = 55. Since 110 is
optimal, Ā is at best a 2-approximation algorithm, whereas A is an 11/10-approximation algorithm.
We conclude that ideal ironing can cause a significant decrease in worst-case approximation ratios.

11No positive transfers implies that losers have zero payment.

22

10 1000 1001

100 1, 0 0, 1 0, 1

1 0, 1 1, 1 1, 1

Figure 4: The allocation rule for algorithm A. The vertical axis corresponds to v1, the horizontal
to v2, and the table entries are of the form “x1, x2”. For example, if (v1, v2) = (100, 10), then
(x1, x2) = (1, 0).

D Beyond Social Welfare

In the ideal model, our general reduction applies to any single-parameter optimization problem and
converts an algorithm into a mechanism with at least the same expected social welfare. Unfortu-
nately, this approach does not preserve other relevant objective values, even monotone ones such
as the makespan. We illustrate this deficiency of the approach with an example.

Consider the problem of job scheduling on related machines where the objective is to minimize
the makespan. Here the machines are agents and each has a (privately-known) speed. The time
a job takes on a machine is the product of its length and the machine’s speed. The goal of the
mechanism is to assign a given set of jobs with varying lengths to the machines so as to minimize
the time until all machines have finished processing their jobs, a.k.a., the makespan.

Consider an instance in which we have 10 unit-length jobs, and 5 machines. We assume a
Bayesian setting, where the speeds of the machines are probabilistic. The first 4 machines are
identical: they all have speed 2 with probability 1. The last machine has either speed 1 or speed
2, each with probability 1/2.

Suppose A behaves in the following way. When s5 = 2, it will choose xi = 2 for all i, resulting
in a makespan of 1. When s5 = 1, A sets x = (6, 1, 0, 0, 3), resulting in a makespan of 3 (whereas
the optimal is 1.5). Thus the average expected makespan achieved by A is 2.

We note that, for this algorithm, the allocation curve for machine 5 is not monotone. Our
monotonization procedure will therefore iron the valuation space of machine 5. The optimal iron-
ing of this curve will draw s′5 uniformly from {1, 2}. This causes 4 equally likely possibilities,
corresponding to (s5, s

′
5) ∈ {1, 2}2.

If s5 = s′5 then A is proceeding as though no ironing occurred: if s5 = s′5 = 1 then the the
makespan is 1, and if s5 = s′5 = 2 the makespan is 3. Suppose s5 = 2, s′5 = 1. Then A forms
allocation x as though machine 5 has speed 1, though it actually has speed 2. Hence we obtain
x = (6, 1, 0, 0, 3), for a makespan of 3. If, on the other hand, s5 = 1, s′5 = 2 then we obtain
x = (2, 2, 2, 2, 2), for a makespan of 2.

We conclude that the expected makespan of the ironed procedure is 1+3+3+2
4 = 2.25, which is

strictly worse than the expected makespan obtained by the original algorithm.

E Recursive Ironing does not Guarantee ex post IC

In order for a mechanism to guarantee ex-post incentive compatibility, it must be that, for all i ∈ [n],
the allocation rule xi is monotone for any choice of v−i. Monotonizing each agent’s allocation rule
independently is insufficient to obtain this goal. Indeed, it is easy to construct examples where
each each agent’s allocation curve is monotone in expectation, but non-monotone for a particular

23

1 2 3 4 5 6

2 0.20 0.60 0.60 0.20 0.20 0.60

1 0.80 0.20 0.82 0.22 0.84 0.24

Figure 5: The allocation rule for algorithm A. The vertical axis corresponds to possible values v1,
the horizontal axis corresponds to possible values v2, and the table entries denote the probability
of allocation to both agents. For example, if (v1, v2) = (1, 4), then (x1, x2) = (0.22, 0.22).

1 2 3 4 5 6

2 0.40 0.40 0.40 0.40 0.40 0.40

1 0.50 0.50 0.52 0.52 0.54 0.54

1 2 3 4 5 6

2 0.45 0.45 0.46 0.46 0.47 0.47

1 0.45 0.45 0.46 0.46 0.47 0.47

(a) (b)

Figure 6: The results of the recursive monotonization procedure for algorithm A, on input (1, 5),
(a) after 1 step, (b) after 2 steps.

choice of the other agents’ bids.
One might imagine the following recursive approach for obtaining ex-post incentive compati-

bility. Begin by assuming that each agents’ input is drawn from the singleton interval Ii = [vi, vi],
and let I denote the cube I1 × I2 × · · · × In. Choose some agent i whose allocation curve is not
monotone, under the assumption that each other agents’ values are drawn from cube I, and iron
that agent’s curve under this assumption. This ironing process may enlarge the interval from which
agent i’s value is drawn; update Ii to be this new interval. Repeat this process, choosing a new
agent on each iteration, until all agents’ curves are monotone.

Unfortunately, as we now demonstrate, the above procedure fails to guarantee ex-post incentive
compatibility. Consider an auction setting with 2 agents, such that either both agents receive an
allocation or neither does. Suppose A is the algorithm with allocation rule described in Figure 5.

Consider the application of our recursive monotonization technique on this algorithm when
(v1, v2) = (1, 5). Suppose we choose to monotonize the allocation curve for agent 2. Applying our
monotonization procedure to the values (0.8, 0.2, 0.82, 0.22, 0.84, 0.24), we obtain ironed intervals
{1, 2}, {3, 4}, and {5, 6}. The resulting allocation rule is shown in figure 6(a).

We next monotonize curve x1 at the point v2 = 5. This curve is non-monotone for agent 1,
and the resulting ironed interval is {1, 2}. The resulting allocation rule is shown in figure 6(b).
After this monotonization, the allocation curves for all agents are monotone. The final expected
allocation probability for both players is 0.47 (the entry at (v1, v2) = (1, 5)).

Next consider the application of this technique when (v1, v2) = (2, 5). Monotonizing agent 2
first, we apply our procedure to values (0.2, 0.6, 0.6, 0.2, 0.2, 0.6) and we obtained ironed interval
{2, 3, 4, 5}. The resulting allocation rule is shown in figure 7(a).

We next monotonize curve x1 at the point v2 = 5. This curve is non-monotone for agent 1, and
the resulting ironed interval is {1, 2}. The resulting allocation rule is shown in figure 7(b). After
this monotonization, the allocation curve for agent 2 is no longer monotone, so we must iron again
over the interval {1, 2, 3, 4, 5, 6}. At this point all agents’ allocation curves are monotone. The final
expected allocation probability for both players is 0.46.

What we have shown is that, given v2 = 5, our recursive monotonization procedure generates

24

1 2 3 4 5 6

2 0.20 0.40 0.40 0.40 0.40 0.60

1 0.80 0.52 0.52 0.52 0.52 0.24

1 2 3 4 5 6

2 0.50 0.46 0.46 0.46 0.46 0.42

1 0.50 0.46 0.46 0.46 0.46 0.42

(a) (b)
1 2 3 4 5 6

2 0.46 0.46 0.46 0.46 0.46 0.46

1 0.46 0.46 0.46 0.46 0.46 0.46

(c)

Figure 7: The results of the recursive monotonization procedure for algorithm A, on input (2, 5),
(a) after 1 step, (b) after 2 steps, (c) after 3 steps.

the allocation rule x1(1) = 0.47 > 0.46 = x1(2) for agent 1. This procedure therefore does not
result in a monotone allocation rule, and hence does not obtain ex-post incentive compatibility.

F Extension to General Valuations

We now show how to modify our construction from Section 4 to obtain a multiplicative error for
many problems of interest, such as downward-closed feasibility settings. To see how this contrasts
with Theorem 4.1, consider a setting in which the expected valuation of each agent is exponentially
small12. In this case, any additive error ǫ such that ǫ−1 is polynomial will dominate the expected
welfare of algorithm A. We therefore require a more general theorem in order to obtain meaningful
results in this setting.

To this end, let µmax = maxi E[vi] be the maximum expected valuation of any agent. The
following is a tightened version of Theorem 4.1 in which the loss in social welfare is scaled by µmax.

Theorem F.1 In the black-box model and general cost settings, for any ǫ > 0, a BIC algorithm A′

can be computed from any Bayesian algorithm A. Its social welfare satisfies A′ ≥ A− ǫµmax, and
its runtime is polynomial in n, 1/ǫ, and log(1/µmax).

For the special case of downward-closed set systems for feasibility problems, we can assume that
A ≥ µmax, since the trivial algorithm that simply allocates to the single player with the highest
input value attains this value. This implies the following corollary.

Corollary F.1 In the black-box model and downward-closed feasibility settings, for any ǫ > 0,
a BIC Bayesian β(1 + ǫ)-approximation algorithm A′ can be computed from any Bayesian β-
approximation algorithm A. Its runtime is polynomial in n, 1/ǫ, and log(1/µmax).

To prove Theorem F.1, we first consider the following variant of Theorem 4.2:

Theorem F.2 In the black-box model and general cost settings, for any ǫ > 0, an ǫ-BIC algorithm
A′ can be computed from any Bayesian algorithm A. Its social welfare satisfies A′ ≥ A − ǫµmax,
and its running time is polynomial in n, 1/ǫ, and log(1/µmax).

12Since values are scaled to lie in [0, 1], this situation can occur whenever the expected valuations of the agents are
bounded, but agents can have exponentially larger values with positive probability.

25

The proof of Theorem F.2 follows the proof of Theorem 4.2 from Section 4.2 almost exactly.
Indeed, the only changes required are to replace instances of the inequality E[vi] ≤ 1 with E[vi] ≤
µmax throughout, and to alter the definition of the discretization of an algorithm A, Definition 4.5,
so that discretization occurs on the intervals

Ii = {[0, ǫµmax)} ∪
{[

ǫµmax(1 + ǫ)t, ǫµmax(1 + ǫ)t+1
)}

0≤t≤log1+ǫ
(1/ǫµmax)

.

We omit further details of the proof of Theorem F.2.
We now turn to proving Theorem F.1 from Theorem F.2. Our approach will be the same as

the proof of Theorem 4.1 from Theorem 4.2 in Section 4.3: we consider a convex combination of
the almost-monotone algorithm from Theorem F.2 with the blatantly monotone stair algorithm.
Recall that in Section 4.3 some care was necessary when finding sets S1, . . . , Sn. This task becomes
much more difficult when we wish to keep our error bounded by ǫµmax (rather than ǫ). We describe
our approach in the next two subsections: we first give an algorithm for general cost settings, then
present an optimization for the special case of feasibility settings.

F.1 Implementing the Stair Algorithm in General Cost Settings

In general cost settings, algorithm Stair (A) may incur negative value if, for some i, the cost of
set Si is large relative to vi. To bound the expected welfare of Combǫ (A) we must therefore limit
the costs of sets S1, . . . , Sn. Our upper bound on cost will depend on the following quantity, which
relates to the structure of the piecewise constant intervals for algorithm A.

Definition F.1 Suppose A has piece-wise constant allocation rules, where Ii = {I1, I2, . . . } are the
constant intervals for agent i. The stair threshold for agent i, wA

i , is defined as wA
i := max I1 if

|Ii| > 1; otherwise wA
i := ∞. That is, wA

i is the upper endpoint of the first valuation space interval
for agent i, assuming the presence of multiple intervals.

We can now relate the value of Combǫ (A) to the cost of sets S1, . . . , Sn and the stair thresholds
of algorithm A.

Lemma F.2 If there exists X ≥ 0 such that c(Si) ≤ wA
i + X for all i, then Combǫ (A) ≥ A −

δ(nµmax +X).

Proof: By construction, Combǫ (A) = (1 − δ)A + δStair (A). Recall that Stair (A) chooses
some i uniformly at random, and then either allocates Si or ∅. Moreover, Stair (A) will always
allocate ∅ if vi is in the first piece of the valuation space; that is, if vi < wA

i . We therefore
conclude that Stair (A) ≥ 1

n

∑

imin{wA
i − c(Si), 0} ≥ −X. Also, A ≤ nµmax trivially. Thus

Combǫ (A) ≥ A− δnµmax + δ(−X)) = A− δ(nµmax +X). ✷

Our goal will be to find sets Si with c(Si) ≤ wA
i + nµmax/

√
ǫ, then apply Lemma F.2 with

X = nµmax/
√
ǫ. To find such sets, we will apply the same sampling techniques used in the

construction of Ironǫ (A). That is, for each i and each piece of the valuation space, we will run
A on many sample inputs. As long as xi(I) is not too small on a given interval I, we are very
likely to find some valid allocation that includes agent i during the sampling process! Moreover,
we will show that not all sets discovered in this way can have high cost, so with high probability
we will find a set Si with cost at most nµmax/

√
ǫ. To relate the cost of set Si with wA

i , we will also
iron together all left-most intervals for which a low-cost set was not found. These ironed-together
intervals will then act like a single piece of valuation space, which will allow us to relate the cost
of any set Si we do find to the stair threshold for the (modified) algorithm.

26

Definition F.2 (Trimǫ (A)) Given piece-wise constant algorithm A, the stair-compatible algo-
rithm for A, Trimǫ (A), is as follows:

1. For each agent i:

2. Let Ii = {I1, . . . , Ik} be the constant valuation space intervals for agent i.

3. For each Ij ∈ Ii, draw 4ǫ−2 log(2n/ǫ) samples from F conditional on vi ∈ Ij , and run A
on each of these samples.

4. Let ji be the minimal index such that, for some sample of interval Iji, A allocated a set Ti

with Ti ∋ i and c(Ti) ≤ min Iji + nµmax/
√
ǫ. Choose Si to be any such Ti.

5. If no such set Ti was returned for any interval, take ji = k + 1 and Si = {i}.

6. Define I ′
i = {I1 ∪ . . . ∪ Iji−1, Iji , . . . , Ik}.

7. Run Resample (A,II ′).

Note that, as part of the execution of Trimǫ (A), a set Si ∋ i will be found for each i, which is
taken to be any set satisfying the conditions on line 4 for interval Iji (or {i} if no sets were found).

In summary, Trimǫ (A) samples each constant interval for agent i, searching for an appropriate
set Si. We take Iji to be the leftmost interval for which such a set Si was found. All intervals to
the left of Iji are then ironed together. Thus, regardless of the sampling outcome, Iji will be the

second valuation space piece for agent i in algorithm ĀII′ . Thus c(Si) ≤ w
Trimǫ(A)
i + nµmax/

√
ǫ.

Lemma F.3 The stair compatible algorithm Trimǫ (A) for A (Definition F.2) and stair thresholds

wTrimǫ(A) (Definition F.1) satisfy c(Si) ≤ w
Trimǫ(A)
i + nµmax/

√
ǫ for all i.

Proof: For each i, if no set satisfying the conditions on line 4 of Trimǫ (A) was found during
the sampling of any interval, then ji = k + 1 and all intervals of A are ironed together in II ′.

In this case w
Trimǫ(A)
i = ∞, so c(Si) ≤ w

Trimǫ(A)
i trivially. Otherwise, by line 4 of Trimǫ (A),

c(Si) ≤ min Iji + nµmax/
√
ǫ. However, since all intervals to the left of Iji are ironed together in

II ′, Iji will be the second piecewise constant interval of Trimǫ (A), and hence min Iji = w
Trimǫ(A)
i .

Thus c(Si) ≤ minw
Trimǫ(A)
i + nµmax/

√
ǫ as required. ✷

Lemma F.4 Trimǫ (A) ≥ A− 2nµmax
√
ǫ.

Proof: We claim that, with probability at least 1 − ǫ
2 , for each agent i, the allocation rules for

Trimǫ (A) and A will differ only on values vi for which xi(vi) ≤
√
ǫ+ ǫ

2 . Before proving the claim,
let us see how it implies the desired result. The claim implies that Trimǫ (A) ≥ A− (

√
ǫ+ ǫ

2)nµmax

with probability 1− ǫ
2 . For the remaining probability, we note that Trimǫ (A) ≥ A−A ≥ A−nµmax

trivially. Thus, over all possible outcomes of sampling, we conclude that

Trimǫ (A) ≥ A−
(√

ǫ+
ǫ

2

)

nµmax −
ǫ

2
nµmax ≥ A− 2nµmax

√
ǫ

as required.

27

Let us now prove the claim. Choose some agent i and suppose that Trimǫ (A) and A differ
on some interval I with xi(I) ≥ √

ǫ + ǫ
2 . Let I be the leftmost such interval. For the remainder

of the proof we will say that a set T has low cost for I if c(T) ≤ min I + nµmax/
√
ǫ. Then, by

the definition of I ′
i, it must be that no set T ∋ i with low cost was found during the sampling of

interval I for agent i. Let us bound the probability of this event. Given v ∼ F, let B(v) be the
event [xi(v)∧

∑

i vi ≤ min I+nµmax/
√
ǫ]. If event B(v) occurs for some sample v, this means that

A returned some allocation T ∋ i and furthermore
∑

i vi ≤ min I + nµmax/
√
ǫ. But note that this

allocation must generate non-negative profit (otherwise it would never be allocated), and hence T
must have low cost for I. Thus B(v) is precisely the event that A returns a set T ∋ i with low cost
for I.

Consider the probability of B(v). By Markov’s inequality, Prv

[

∑

j 6=i vj > nµmax/
√
ǫ
]

<
√
ǫ.

Thus, since vi ≥ min I with probability 1 conditional on vi ∈ I, Prv[
∑

i vi > min I + nµmax/
√
ǫ] <√

ǫ. Also, Prv[¬xi(v) | vi ∈ I] = 1 − xi(I) ≤ 1 − (
√
ǫ + ǫ

2). The union bound then implies that
Prv[¬B(v)] ≤ 1− (

√
ǫ+ ǫ

2) +
√
ǫ = 1− ǫ

2 , so Prv[B(v)] ≥ ǫ
2 .

By Chernoff-Hoeffding inequality, the probability that event B does not occur even once during
ǫ−2 log(2n/ǫ) samples is at most ǫ

2n . We conclude that the probability that no set T ∋ i with low
cost was found during the sampling of interval I is at most ǫ

2n . This is therefore a bound on the
probability that Trimǫ (A) and A differ for agent i on some interval I with xi(I) ≥

√
ǫ + ǫ

2 . By
the union bound, the probability that this occurs for any agent is at most ǫ

2 , as required. ✷

We are now ready to describe the algorithm used to prove Theorem F.1.

Definition F.3 (Monoǫ (A)) Given an algorithm A and any ǫ > 0, the monotonization of A,
Monoǫ (A), is Combǫ (Ironǫ (Trimǫ (Discǫ (A)))).

Lemma F.5 Monoǫ (A) is BIC, and Monoǫ (A) ≥ A− 9kn2√ǫµmax.

Proof: For notational convenience define A′ = Trimǫ (Discǫ (A)). Lemma 4.8 implies that
Ironǫ (A′) is ǫ-close to a monotone algorithm, and during the construction of A′ we find sets
S1, . . . , Sn with Si ∋ i. Thus Combǫ (Ironǫ (A′)) is well-defined and, by Lemma 4.9, is BIC.

We note that costs are not affected by our ironing techniques, and, by Lemma F.4,

Ironǫ

(

A′
)

≥ A′ − nǫµmax = Trimǫ (Discǫ (A))− nǫµmax

≥ Discǫ (A)− nǫµmax − 2nµmax

√
ǫ ≥ A− 5

√
ǫnµmax.

Also, c(Si) ≤ wA′

i + nµmax/
√
ǫ ≤ w

Ironǫ(A′)
i + nµmax/

√
ǫ for all i by Lemma F.3. Thus, by Lemma

F.2,

Monoǫ (A) = Combǫ

(

Ironǫ

(

A′
))

≥ Ironǫ

(

A′
)

− δ(nµmax + nµmax/
√
ǫ)

≥ A− 5n
√
ǫµmax − (2(k − 1)nǫ)2nµmax/

√
ǫ

≥ A− 9kn2√ǫµmax.

✷

Theorem F.1 now follows immediately from Lemma F.5 by considering algorithm Monoǫ′ (A),
where ǫ′ = (ǫ/9kn2)2 = ǫ2/81k2n4. The runtime, which is dominated by sampling, is O(kn(ǫ′)−2) =
Õ(n9ǫ−9 log5(vmax/ǫµmax)).

28

F.2 Feasibility Settings

In general feasibility settings, where costs are either 0 or infinite, the performance of algorithm
Monoǫ (A) improves significantly. Specifically, we can improve Lemma F.4 as follows:

Lemma F.6 In feasibility settings, Trimǫ (A) ≥ A− ǫnµmax.

Proof: Consider some agent i and interval I ∈ I, and suppose xi(I) ≥ ǫ
2 . Consider the probability

of finding an allocation with cost at most min I +nµmax/
√
ǫ when sampling for this interval. Since

costs are either 0 or ∞, this is precisely the probability of finding an allocation that includes agent
i, which is xi(I) ≥ ǫ

2 . By Chernoff-Hoeffding inequality, the probability that this event does not
occur even once in ǫ−2 log(n/2ǫ) samples is at most ǫ/2n. We will therefore successfully find a set
Si ∋ i with probability at least 1− ǫ/2n.

For each i, let Iji denote the leftmost interval on which xi(I) ≥ ǫ. By the union bound, with
probability 1 − ǫ/2 we will find a set Si ∋ i when sampling interval Iji , for all i. In this case, the
behavior of algorithms Trimǫ (A) and A differ only on intervals I to the left of Iji , all of which
satisfy xi(I) <

ǫ
2 . Thus, conditioning on an event of probability 1 − ǫ

2 , Trimǫ (A) ≥ A(1 − ǫ
2) ≥

A−nµmaxǫ. For the remaining probability, ǫ
2 , we note that A ≤ nµmax trivially. We conclude that

Aǫ ≥ A− ǫnµmax unconditionally. ✷

Using Lemma F.6 instead of Lemma F.4 in the analysis of Monoǫ (A), we find that the state-
ment of Lemma F.5 improves to show thatMonoǫ (A) > A−8kn2ǫµmax in feasibility settings. Thus,
in feasibility settings, we can improve the runtime of the algorithm in Theorem F.1 by taking A′ to
be Monoǫ′ (A) with ǫ′ = 8kn2ǫ, which has a runtime of O(kn(ǫ′)−2) = Õ(n5ǫ−5 log3(vmax/ǫµmax)).

29

