
Complexity Theory for Operators in Analysis

Akitoshi Kawamura
University of Toronto

kawamura@cs.toronto.edu

Stephen Cook
University of Toronto

sacook@cs.toronto.edu

ABSTRACT
We propose a new framework for discussing computational com-
plexity of problems involving uncountably many objects, such as
real numbers, sets and functions, that can be represented only by
approximation. The key idea is to use a certain class of string func-
tions, which we call regular functions, as names representing these
objects. These are more expressive than infinite sequences, which
served as names in prior work that formulated complexity in more
restricted settings. An important advantage of using regular func-
tions is that we can define their size in the way inspired by higher-
type complexity theory. This enables us to talk about computation
on regular functions whose time or space is bounded polynomi-
ally in the input size, giving rise to more general analogues of the
classes P, NP, and PSPACE. We also define NP- and PSPACE-
completeness under suitable many-one reductions.

Because our framework separates machine computation and se-
mantics, it can be applied to problems on sets of interest in analysis
once we specify a suitable representation (encoding). As prototype
applications, we consider the complexity of functions (operators)
on real numbers, real sets, and real functions. The latter two can-
not be represented succinctly using existing approaches based on
infinite sequences, so ours is the first treatment of them. As an in-
teresting example, the task of numerical algorithms for solving the
initial value problem of differential equations is naturally viewed as
an operator taking real functions to real functions. As there was no
complexity theory for operators, previous results could only state
how complex the solution can be. We now reformulate them to
show that the operator itself is polynomial-space complete.

Categories and Subject Descriptors
F.1.3 [Computation by Abstract Devices]: Complexity Measures
and Classes

General Terms
Theory

This is a preprint. The official version will appear in the Proceedings of the
42nd ACM Symposium on Theory of Computing (STOC 2010), June 5–8,
2010, Cambridge, Massachusetts, USA.

Keywords
computable analysis, computational complexity, higher-type com-
plexity, second-order polynomials

1. INTRODUCTION
Computable analysis [19] studies problems involving real num-

bers, sets and functions from the viewpoint of computability. Un-
countably many objects (such as real numbers) are represented by
infinite sequences of approximations and processed by Turing ma-
chines. This framework is applicable not only to the real num-
bers but also with great generality to other spaces arising naturally
in mathematical analysis. There is a unified way to discuss com-
putability of real functions, sets of real numbers, operators taking
real functions as inputs, and so on.

In contrast, the application of this approach to computational
complexity has been limited in generality. For example, although
there is a widely accepted notion of polynomial-time computable
real functions f W Œ0; 1�! R on the compact interval that has been
studied extensively [14], the same approach does not give a nice
class of real functions on R. Most of the complexity results in
computable analysis to date (with a few exceptions [6, 18, 20])
are essentially limited to the complexity of either real functions
with compact domain or of bounded subsets of R. They do not
address the complexity of, say, an operator F that takes real func-
tions f W Œ0; 1�! R to another real function F.f /. There are many
results [12] about such operators, but typically the positive and neg-
ative results are stated in the form

if f is in the (small) complexity class X , then F.f / is
in complexity class Y , and
there is f in complexity class X such that F.f / is
hard for Z.

More direct (and preferable) statements would be the “construc-
tive” or “effectivized” form

the operator F is in class Y , and
the operator F is Z-hard,

where Y and Z are the “higher-order versions” of Y and Z. At the
level of computability, it is common to ask, as soon as we see an
ineffective result, whether it can be effectivized. For complexity,
we cannot even ask this question because we do not know how to
formulate Y and Z . This limitation has been widely recognized;
see, for example, [12, pp. 57–58], [20], and [3, p. 484].

The present paper addresses this problem. We start with the ob-
servation (Section 2) that the aforementioned limitation has to do
with the fact that traditional formulations of computable analysis
do not take into account the “size” of the infinite sequences given

to the machine as input. We then propose (Section 3) an extension
on the machine model by replacing infinite sequences by what we
call regular functions from strings to strings. An important advan-
tage of regular functions is that we can define their size in the way
suggested by type-two complexity theory [16, 7]. This enables us
to measure the growth of running time (or space) in terms of the
input size—exactly what we do in the usual (type-one) Complex-
ity Theory. We thus obtain the complexity classes analogous to P,
NP, PSPACE (and function classes FP and FPSPACE) by bound-
ing the time or space by second-order polynomials in the input
size. Analogues of many-one reductions and NP- and PSPACE-
hardness will also be introduced.

We apply this framework to a few specific problems in analy-
sis by using suitable representations of real numbers, real sets, and
real functions (Section 4). For real numbers, the induced complex-
ity notions turn out to be equivalent to what has been studied by
Ko–Friedman [10] and Hoover [6]. For sets and functions, our ap-
proach seems to be the first to provide complexity notions in a uni-
fied manner. This is of particular interest, because many numerical
problems in the real world are naturally formulated as operators
taking sets or functions. For example, consider the operator F that
finds the solution F.f / of the differential equation (of a certain
class) given by a function f . As mentioned above, the existing in-
effective results [11, 8] only tell us how complex the solution F.f /
can be when f is easy; precisely, they say that if f is polynomial-
time computable, F.f / is polynomial-space computable and can
be polynomial-space hard. But the practical concern for numeri-
cal analysis would be how hard it is to compute F (i.e., to compute
F.f / given f). We formulate and prove the first result of this kind:
F itself is a polynomial-space complete operator. Our contribution
is in introducing the framework making such formulations possible,
solving an important open problem as explained above. The techni-
cally hard parts of the proofs of the specific results are already done
in the proofs of the ineffective versions, and all we need to do is to
check that they effectivize in our sense. The original ineffective
versions are now corollaries of the effectivized statements.

2. TYPE-TWO THEORY OF
EFFECTIVITY

Computable Analysis dates back at least to Grzegorczyk [5],
and there have been several equivalent formulations. Weihrauch’s
Type-Two Theory of Effectivity (TTE) is a powerful framework. In
this section, we briefly introduce computable analysis through TTE
and clarify its limitations in dealing with complexity.

2.0 Multi-functions
Before discussing TTE, we begin with a few words about multi-

valued functions, or multi-functions. A multi-function F from a
set X to a set Y is formally a subset of X � Y . For x 2 X , we
write F Œx� for the set of y 2 Y such that .x;y/ belongs to this
subset. These y are the “allowable outputs” on input x. We denote
by dom F the set of x 2 X for which F Œx� is nonempty. When F Œx�
is a singleton, its unique element is denoted by F.x/, as usual. If
F Œx� is a singleton for all x 2 dom F , we say that F is a partial
function. When in addition dom F D X , we say that F is a total
function, or simply a function.

Like some authors, we regard the so-called “function problems”
(also called search problems) as multi-functions. The classes FP
and FPSPACE are the sets of multi-functions from strings to strings
that are computed by a machine whose time/space is polynomially
bounded. Here, the word “compute” is interpreted according to
the “allowable outputs” semantics of multi-functions: A machine

is said to compute F if, on any input x 2 dom F , it outputs some
element of F Œx�. The classes FP2 and FPSPACE2 that we will
define later will also consist of multi-functions.

Note that we do not care what happens on inputs outside dom F ,
unlike some authors who require that such inputs be rejected explic-
itly. Thus, a multi-function can be easy to compute while having a
nasty domain. We also note, however, that allowing dom F to be
smaller than X is not so important in the context of time- or space-
bounded computation, because a machine that runs past the time
bound for some inputs can be modified so that it keeps track of the
time and outputs an error message when it has run out of time.

2.1 Computability
In the usual Computability Theory, we introduce computability

for functions from ˙� to ˙� under some machine model, where
˙� is the set of strings. To discuss computation on other sets X ,
we specify an encoding of X —that is, a rule for interpreting an
element of ˙� as an element of X .

TTE roughly follows the same path. But since the countable
set ˙� cannot encode uncountable sets, such as the set R of real
numbers, TTE uses the set ˙N of infinite sequences.

Computability of functions from˙N to˙N is defined using Tur-
ing machines. The machine has an input tape, an output tape and
a work tape, each of which is infinite to the right. We also assume
that the output tape is one-way, that is, the only instruction for the
output tape is “write a 2 ˙ in the current cell and move the head
to the right”. The difference from the usual setting is in the conven-
tion by which the machine reads the input and delivers the output.
The input is now an infinite string a0a1 : : : 2 ˙N, and is written
on the input tape before the computation starts (with the tape heads
at the leftmost cell). We say the machine outputs an infinite string
b0b1 : : : 2 ˙N if it never halts and writes the string indefinitely
(that is, for each n 2 N, it eventually writes b0 : : : bn�1 into the first
n cells) on the output tape. This defines a class of (possibly partial)
computable functions (without any time or space bound) from ˙N

to ˙N. The definition can be extended to multi-functions A: We
say that a machine M computes A if M , on any input ' 2 dom A,
always outputs some element of AŒ'�.

A representation
 of a set X is formally a partial function from
˙N to X which is surjective—that is, for each x 2 X , there is at
least one ' 2 ˙N with
 .'/ D x. We say that ' is a
 -name
of x. Using representations, computability of multi-functions on
represented sets is defined as follows.

Definition 2.1. Let
 and ı be representations of sets X and Y , re-
spectively. We say that a machine .
; ı/-computes a multi-function
A from X to Y if it computes the multi-function ı�1 ı A ı
 given
by

.ı�1
ı A ı
 /Œ'�

D

(
f 2 dom ı W ı. / 2 AŒ
 .'/� g if ' 2 dom
;

; otherwise:
(1)

In other words, whenever the machine is given a
 -name of an
element x 2 dom A, it must output some ı-name of some element
of AŒx� (Figure 1).

As an example, we define a representation �R of R, the set of
real numbers. First, for each n 2 N, let Dn denote the set of strings
of form

sx=1 00 : : : 0„ ƒ‚ …
n

; (2)

where s 2 fC;�g and x 2 f0; 1g�. Let D D
S

n2N Dn. A string
in D encodes a rational number in the obvious sense (read (2) as a

˙N //

²²

˙N

ı
²²

X
A

// Y

Figure 1: .
; ı/-computing a multi-function A.

fraction whose numerator and denominator are integers written in
binary with leading zeros allowed). We write JuK for the rational
number encoded by u 2 D. We define a representation �R of R
by saying that an infinite string ' 2 ˙N is a �R-name of x 2 R
if ' is of the form u0#u1#u2# : : : (where # is a delimiter symbol
not appearing in the ui) such that ui 2 D and jJuiK � xj < 2�i for
each i 2 N. Thus, this representation specifies a real number as a
list of rational numbers converging to it.

It turns out that �R is a natural representation with which to dis-
cuss computability of real functions. In particular, �R is admis-
sible, that is, it matches well with the usual topology of R [19,
Lemma 4.1.6].

To deal with functions of two arguments, we define, for represen-
tations
 and ı of sets X and Y , a new representation Œ
; ı� of X �Y
by Œ
; ı�.a0b0a1b1a2b2 : : :/ D .
 .a0a1a2 : : :/; ı.b0b1b2 : : ://.

Example 2.2. Binary addition C W R � R ! R is .Œ�R; �R�; �R/-
computable. For suppose that we are given names ' D u0#u1# : : :
and D v0#v1# : : : of real numbers s and t . An approximation
of s C t with precision 2�m, for each m, is given by JumC1K CJvmC1K.

Example 2.3. Multiplication � W R � R ! R is .Œ�R; �R�; �R/-
computable. For suppose that we are given names ' D u0#u1# : : :
and D v0#v1# : : : of real numbers s and t . First, let k D

maxfju0j; jv0jg. Since Ju0K and Jv0K are near s and t , and it takes
more than k digits to encode a number with absolute value � 2k ,
we have jsj, jt j < 2k . Hence, s � t is approximated with precision
2�m by JumCkC1K � JvmCkC1K.

The strength of TTE is that, by using suitable representations, we
can discuss computation over sets other than R. Moreover, there
are often standard ways to introduce representations of higher-type
objects, such as sets or of functions. For example, since we have
agreed on the representations �R of R, we can introduce a canon-
ical representation of the set CŒR� of continuous real functions,
and there are reasons to believe that this is the “right” represen-
tation [19, Chapter 3].

2.2 Complexity
Now we ask whether the computation runs in polynomial time.

We ask whether the time it takes to output the nth prefix of the
output is bounded by a polynomial in n (independently of '):

Definition 2.4. A machine M runs in polynomial time if there is a
polynomial p such that for all ' 2 ˙N and n 2 N, the machine M
on input ' finishes writing the first n symbols of the output within
p.n/ steps. Define polynomial space analogously by counting the
number of visited cells on all (input, work and output) tapes.

Can we use this notion to define polynomial-time computability
of, say, a real function?

2.2.1 Representations must be chosen carefully
A little thought shows that the simple combination of Defini-

tion 2.4 and the representation �R is useless [19, Examples 7.2.1,

7.2.3]. On the one hand, the machine M could “cheat” by writ-
ing redundant �R-names: By writing C10000=100000 instead of
C1=10, it gets more time to compute the next approximation. On
the other hand, the machine may suffer by receiving redundant
names as input, such as the one in which the first approximation
is too long to even read in time.

Thus, to develop a meaningful complexity theory, we need to
disallow redundancy carefully. This leads to the use of signed
digit representation �sd of R [19, Definition 7.2.4], defined as fol-
lows: dom �sd consists of sequences ' 2 ˙N of form ak : : : a1a0 �

a�1a�2 : : : for some k, where each ai is either 0, 1 or �1, such that
either k D 0 or .ak ; ak�1/ 2 f.1; 0/; .1; 1/; .�1; 0/; .�1;�1/g; if
this is the case, set

�sd.'/ D

kX
iD�1

ai � 2i (3)

Thus, we read the digit sequence as a binary expansion of a real
number (with decimal point �) with digits 0, 1 and �1; we forbid
certain patterns in the first two digits of the integer part in order to
exclude redundancy. (See [19, Example 2.1.4.7] for the reason why
the usual binary expansion without the “�1” digit does not work.)

Let �sdjŒ0;1� denote the restriction of �sd to (infinite sequences
representing) real numbers in Œ0; 1�. By Definition 2.4, we know
what it means for a real function f W Œ0; 1� ! R to be polynomial-
time .�sdjŒ0;1�; �sd/-computable. This notion turns out to be robust
and natural, and equivalent to the widely accepted polynomial-time
computability of Ko and Friedman [10], so we will drop the pre-
fix “.�sdjŒ0;1�; �sd/” from now on. The same goes for polynomial-
space computability, and for functions on compact intervals or rect-
angles instead of Œ0; 1� (use the pairing function as in Examples 2.2
and 2.3). It is routine to verify that, for example, addition and multi-
plication C, � W Œ0; 1�� Œ0; 1�!R are polynomial-time computable.
For more interesting results, see Ko’s book [12], survey [14] or
Weihrauch’s book [19, Section 7.3].

2.2.2 Difficulties in generalizing to other spaces
Unfortunately, this approach does not extend much further. For

example, a naive extension to real functions on R (instead of Œ0; 1�)
does not work: polynomial-time .�sd; �sd/-computability tends to
fail for trivial reasons, as in the following example.

Example 2.5. Addition on R (Example 2.2) is not polynomial-time
.Œ�sd; �sd�; �sd/-computable. For suppose that a machine .Œ�sd; �sd�;
�sd/-computed it within polynomial time bound p. In particular,
the machine has to write the first symbol of the output in t WD p.1/
steps or fewer. Note that this first symbol must be 1 if the sum is
greater than 1, and �1 if the sum is less than �1. In particular, it
must be 1 if the two summands are 2tC100 and �2tC50, and �1
if they are 2tC50 and �2tC100. However, the machine cannot tell
between these two cases, because it can read at most t symbols of
the input in time.

The trouble seems to be that the time bound is independent of the
input. Compare this with the addition of integers (written in binary)
by the usual Turing machine. It is in polynomial time, because a
large summand would make the “input size” big and thereby give
the machine more time. For the same thing to happen for addition
of the real numbers, we would need to talk about the “size” of the
input and a time bound “polynomial in” it, but we do not have the
notion of size for infinite sequences.

This problem is not just about real numbers. There are many
other objects that we want to give representations to. The objects

1
0

?

S

Figure 2: Computing a set S .

for which TTE gives reasonable notions of complexity are limited1,
compared to what we can do at the level of computability. This has
long been recognized as a challenge; see, for example, [12, pp. 57–
58], [20, Section 1], or [3, p. 484]. As a result of this limitation, the
complexity of operators working on objects other than real numbers
has been mostly formulated in non-constructive (ineffective) forms.
We quote examples of such theorems below. We will reformulate
them in effectivized forms later (Theorems 4.6 and 4.9).

2.2.3 Ineffective results
The first pair of results are the positive and negative statements

about the operator of taking the convex hull CH.S/ of a closed set
S � Œ0; 1�2.

Polynomial-time computability (deterministic or nondeterminis-
tic) of a set S � Œ0; 1�2 is defined using usual Turing machines as
follows (see e.g. Braverman [4] for a discussion on this definition).
We say that S is (nondeterministic) polynomial-time computable if
there is a (nondeterministic) polynomial-time Turing machine that
computes a function ' W ˙� ! f0; 1g such that, for any n 2 N and
u, v 2 D,

� '.u; v; 0n/ D 1 if dist..JuK; JvK/;S/ < 2�n, and

� '.u; v; 0n/ D 0 if dist..JuK; JvK/;S/ > 2 � 2�n,

where dist.p;S/ WD infq2S kp�qk denotes the Euclidean distance
of point p 2 R2 from S (Figure 2).

Theorem 2.6 (Essentially2 in [15, Corollary 4.3]). If a set S �

Œ0; 1�2 is polynomial-time computable, then CH.S/ is nondetermin-
istic polynomial-time computable.

Theorem 2.7 (Essentially2 in [15, Corollary 4.6]). Unless P D

NP, there exists a set S � Œ0; 1�2 which is polynomial-time com-
putable, but whose convex hull CH.S/ is not.

For A � Rd , let CŒA� be the set of continuous functions from A
to R. The second pair of results concerns the differential equation

h.0/ D 0; h0.t/ D g
�
t; h.t/

�
(4)

called the initial value problem (IVP), where g 2 CŒŒ0; 1� � R� is
given and h 2 CŒ0; 1� is the unknown. The Picard–Lindelöf (or

1We note, however, that Weihrauch [20] and Schröder [17] study
how far we can get with the infinite string model.
2Ko and Yu state these results for strong recognizability instead of
computability, but their proof almost works for computability as
well. See Braverman [4] for a comparison of the two notions ([4]
says weak computability for Ko’s strong recognizability). In the
present paper, Theorems 2.6 and 2.7 will be derived as corollaries
of the effective version, Theorem 4.6.

Cauchy–Lipschitz) Theorem states that the solution h exists and is
unique if g is Lipschitz continuous (in the second argument), i.e.,

jg.t;y0/ � g.t;y1/j � L � jy0 � y1j (5)

for some nonnegative constant L independent of t , y0, y1. The
following results state how complex h can be, assuming that g is
polynomial-time computable. Since polynomial-time computabil-
ity is defined only for functions with compact domain, we restrict
g to the rectangle Œ0; 1� � Œ�1; 1�. If there is a solution h 2 CŒ0; 1�
whose values stay in Œ�1; 1� (in which case h is unique, as men-
tioned above), we write LipIVP.g/ for this h. Thus, LipIVP is a
partial function from CLŒŒ0; 1� � Œ�1; 1�� to CŒ0; 1�, where the for-
mer set is the subset of CŒŒ0; 1� � Œ�1; 1�� consisting of functions
Lipschitz continuous in the second argument.

Theorem 2.8 ([11, Section 4]3). If g 2 dom LipIVP is polynomial-
time computable, then LipIVP.g/ is polynomial-space computable.

Theorem 2.9 ([8, Theorem 3.2]). There is a polynomial-time com-
putable function g 2 dom LipIVP such that LipIVP.g/ is poly-
nomial-space complete (in the sense defined in [13] or [8]).

We can derive from Theorem 2.9 a statement of a similar form
to Theorem 2.7: unless P D PSPACE, there is a real function g 2

dom LipIVP which is polynomial-time computable but LipIVP.g/
is not.

3. FUNCTIONS AS NAMES
We present the main definitions for our framework here.
As we have noted, the limitations of the TTE approach have to

do with the fact that the information carried by infinite sequences in
˙N is not rich enough, and in particular we do not have the notion
of their size. We replace ˙N with Reg, a class of string functions
which we will use as names of real numbers, sets and functions4.
This section develops a complexity theory for computation over
Reg, introducing the analogues of classes P, NP, PSPACE and the
notions of completeness under many-one reductions.

3.1 Computation over regular functions
We say that a (total) function ' W ˙� !˙� is regular if it pre-

serves relative lengths of strings in the sense that j'.u/j � j'.v/j

whenever juj � jvj. We write Reg for the set of all regular func-
tions (the motivation for considering these functions will become
clear in Section 3.2 where we define their lengths).

Now we begin replacing the role of˙N in TTE (see Section 2.1)
by Reg. This is a generalization, since an infinite string a0a1 : : : 2

˙N can be identified with a regular function ' 2 Reg which

(a) takes values of length 1, and

(b) depends only on the length of the argument,

by setting '.0n/ D an. In the following, observe that Definitions
3.1 and 3.2 extend their counterparts in TTE in this sense.

Since we will deal with an analogue of NP, and nondetermin-
ism is better understood for predicates (f0; 1g-valued functions),
it sometimes makes sense to stop the generalization halfway, re-
moving (b) only and keeping (a). Let Pred � Reg be the set of
f0; 1g-valued regular functions.

Instead of the machine in TTE that converted infinite strings to
infinite strings, we use an oracle Turing machine (henceforth just
“machine”) to convert regular functions to regular functions:
3The original theorem is stated with a condition slightly weaker
than Lipschitz continuity.
4Ko’s formulation [12] already uses string functions instead of in-
finite strings of TTE, but it does not make full use of this extension.

Definition 3.1. 1. A deterministic machine computes a func-
tion F W Reg ! Reg if, given ' as oracle and u as string
input, it outputs F.'/.u/ and halts.

2. A nondeterministic machine computes a function F W Reg !

Pred if, given ' as oracle and u as input, it has at least one
accepting branch exactly when F.'/.u/ D 1.

For the precise conventions for issuing and answering queries,
follow any of [16, 7, 12].

As before, we can extend these definitions to multi-functions F
by saying that a machine computes F if on any input ' 2 dom F it
outputs some element of F Œ'�.

3.2 Polynomial time and space
Recall that regular functions are those that respect lengths in the

sense explained at the beginning of Section 3.1. In particular, they
map strings of equal lengths to strings of equal lengths. Therefore,
it makes sense to define the size j'j W N ! N of a regular function '
by j'j.juj/ D j'.u/j. It is a non-decreasing function from N to N.

Now we want to define what it means for a machine to run in
polynomial time. Since j'j is a function, we begin by defining poly-
nomials “in” a function, following the idea of Kapron and Cook [7].
Second-order polynomials (in type-1 variable L and type-0 vari-
able n) are defined inductively as follows: a positive integer is
a second-order polynomial; the variable n is also a second-order
polynomial; if P and Q are second-order polynomials, then so are
P C Q, P � Q and L.P /. An example is

L
�
L.n � n/

�
C L

�
L.n/ � L.n/

�
C L.n/C 4: (6)

A second-order polynomial P specifies a function, which we also
denote by P , that takes a function p W N ! N to another function
P .p/ W N ! N in the obvious way. For example, if P is the above
second-order polynomial (6) and p.x/ D x2, then P .p/ is given
by

P .p/.x/ D
�
.x � x/2

�2
C .x2

� x2/2 C x2
C 4

D x8
C x4

C x2
C 4: (7)

As in this example, P .p/ is a (usual first-order) polynomial if p is.

Definition 3.2. A (deterministic or nondeterministic) machine M
runs in (second-order) polynomial time if there is a second-order
polynomial P such that, given any ' 2 Reg as oracle and any u 2

˙� as input, M halts within P .j'j/.juj/ steps (regardless of the
nondeterministic choices). Define polynomial space analogously
by counting the number of visited cells on all (input, work, output
and query) tapes.

When ' satisfies (a), the size j'j is a constant function, so the
bound P .j'j/.juj/ reduces to a (usual first-order) polynomial in
juj. Therefore, Definition 3.2 can be viewed as an extension of
Definition 2.4.

Definition 3.3. 1. We write FP2 (resp. FPSPACE2) to denote
the class of multi-functions from Reg to Reg computed by a
deterministic machine that runs in second-order polynomial
time (resp. space).

2. We write P2 (resp. NP2) for the class of multi-functions from
Reg to Pred computed by a deterministic (resp. nondeter-
ministic) machine M that runs in polynomial time.

Note that unlike FP and FPSPACE, it is easy to separate, e.g.,
FP2 and FPSPACE2, because an FPSPACE2 machine can make
exponentially many queries to the given oracle.

It is easy to see that the classes defined here respect the corre-
sponding usual complexity classes:

Lemma 3.4. 1. Functions in FP2 (resp. FPSPACE2) map reg-
ular functions in FP to FP (resp. FPSPACE to FPSPACE).

2. Functions in P2 (resp. NP2) map regular functions in FP to
P (resp. NP).

Why we restrict ourselves to regular functions
The idea of using second-order polynomial as a bound on time
and space comes from Kapron and Cook’s characterization [7] of
Mehlhorn’s class [16] of polynomial-time computable operators5.
This is a class of (total) functionals F W .˙� !˙�/�˙� !˙�,
but they can be regarded as F W .˙� ! ˙�/ ! .˙� ! ˙�/ by
writing F.'/.x/ instead of F.';x/. Kapron and Cook define the
size of ' W ˙� !˙� by

j'j.n/ D max
juj�n

j'.u/j; n 2 N: (8)

Note that our definition of size for regular ' is a special case of this.
Then they defined the class of polynomial-time functionals in the
same way as Definition 3.3.1. (We added FPSPACE2 by analogy.)

We have restricted attention to regular functions. This is be-
cause, in order to obtain reasonable complexity notions, it seems
necessary to be able to simulate a given machine with known time
bounds. Note that for usual (type-one) computation, it was easy to
find jxj given x, and thus to clock the machine with the time bound
p.jxj/ for a fixed polynomial p. In contrast, finding the value (8)
for a given ' in general requires exponentially many queries to '
and thus exponential time. For regular ', we can easily find j'j.n/
for each n, and thus the second-order polynomial P .j'j/.juj/ is a
bound “time-constructible” from ' and u.

Regular functions ' suffice for our purpose, because our inten-
tion is to use ' as names of real numbers, sets and functions, and
there seems to be little incentive to use irregular names. All repre-
sentations in this paper (Section 4) will use regular functions only.

3.3 Reduction and completeness
Recall that the definition of the usual many-one reduction be-

tween multi-functions A, B from ˙� to ˙� is as follows: we say
that A many-one reduces to B (written A �1

mF B) if there are (to-
tal) functions r , t 2 FP such that for any u 2 dom A, we have
r.v/ 2 AŒu� whenever v 2 BŒt.u/�—that is, we have a function t
that converts an input for A to an input for B, and another func-
tion r that converts an output of B to an output of A (we omit r
in the many-one reduction �1

m between predicates). Since multi-
functions over Reg also get a function as input, the analogous defi-
nition of reduction involves one more converter s:

Definition 3.5. 1. Let A and B be multi-functions from Reg to
Reg. We say that A many-one reduces to B (written A �2

mF
B) if there are (total) functions r , s, t 2 FP2 such that for any
' 2 dom A, we have s.'/ 2 dom B and r.'/ı�ıt.'/ 2 AŒ'�
whenever � 2 BŒs.'/� (Figure 3).

2. Let A and B be multi-functions from Reg to Pred. We write
A �2

m B if there are functions s, t 2 FP2 such that for any
' 2 dom A, we have s.'/ 2 dom B and � ı t.'/ 2 AŒ'�
whenever � 2 BŒs.'/�.

5Kapron and Cook [7] call them Basic Feasible Functionals or Ba-
sic Polynomial-Time Functionals.

B

x

ϕ

ψ(x)

A

s

t r

(for some ψ ∈ A[ϕ])

Figure 3: Reduction A �2
mF B .

Now that we have the classes (Definition 3.3) and reductions
(Definition 3.5)6, we can talk about completeness for these classes:
we define FPSPACE2-completeness using the reduction �2

mF, and
NP2-completeness using �2

m.
The following lemma states that an FPSPACE2-complete multi-

function maps some function in FP to an FPSPACE-complete func-
tion with respect to the usual many-one reduction �1

mF. But since
a multi-function has several values, we need the following defini-
tion: For a set F of (single-valued) functions from X to Y , we
write

S
F to mean the multi-function from X to Y defined by

.
S

F /Œx� D f f .x/ W f 2 F g.

Lemma 3.6. 1. Let B be an FPSPACE2-complete multi-func-
tion from Reg to Reg. Then there is 2 dom B \ FP such
that

S
.BŒ �/ is FPSPACE-complete (with respect to �1

mF).

2. Let B be an NP2-complete multi-function from Reg to Pred.
Then there is 2 dom B \ FP such that

S
.BŒ �/ is NP-

complete (with respect to �1
m).

Proof. We only prove the first claim. There are a function A 2

FPSPACE2 and a polynomial-time computable function ' 2 Reg
such that A.'/ is FPSPACE-complete. Since B is FPSPACE2-
complete, there are total functions r , s, t as in Definition 3.5. Let
 D s.'/. Then 2 FP. On the other hand,

S
.BŒ �/ is

FPSPACE-complete. To see why, note that r.'/ and t.'/ are in
FP and, by Definition 3.5, give a many-one reduction from A.'/ toS
.BŒ �/ in the usual sense. Since A.'/ is FPSPACE-complete,

so is
S
.BŒ �/.

We define the pairing function for regular functions as follows:
for ', 2 Reg, define h'; i 2 Reg by setting h'; i.0u/ D

'.u/10j .u/j and h'; i.1u/ D .u/01j'.u/j (we are padding the
string to make h'; i regular). Let h'; ; �i D hh'; i; �i, etc.
6The design of these reductions is somewhat arbitrary. We chose
this definition simply because it is strong enough to make our ex-
amples (Theorems 4.6 and 4.9) complete. What Beame et al. [2]
call the many-one reduction between type-2 problems is slightly
stronger in that it passes the string input x not only to t (Figure 3)
but also to r and s.

3.4 Representations
As we have moved from ˙N to Reg, we extend the notions of

representations accordingly. A representation
 of a set X is a
surjective partial function from Reg to X . Computation relative to
representations is again formulated by Definition 2.1, now with the
updated notion of representation. This defines what it means for a
function F from X to Y , where X and Y are sets equipped with
representations
 and ı, respectively, to be .
; ı/-C-computable,
where C is one of the classes we have defined, such as FP2 and
FPSPACE2. This C can be P2 or NP2 if dom ı � Pred. Also,
we say that F is .
; ı/-C-complete (for C D FPSPACE2, NP2) if
ı�1 ı F ı
 (see Definition 2.1) is C-complete.

We say that an element x 2 X is
 -C -computable (where C
is a usual complexity class of string functions, such as FP and
FPSPACE) if it has a
 -name in C . It is said to be
 -C -complete
if

S
.
�1Œx�/ (where ��1 is the inverse image, and

S
is defined

before Lemma 3.6) is C -complete. Lemmas 3.4 and 3.6 yield:

Lemma 3.7. Let
 and ı be representations of sets X and Y , re-
spectively.

1. A .
; ı/-FP2-computable function from X to Y maps
 -FP-
computable elements of X to ı-FP-computable elements of
Y . Similarly for FPSPACE2 and FPSPACE replacing FP2

and FP.

2. Suppose that dom ı � Pred. Then a .
; ı/-P2-computable
function from X to Y maps
 -FP-computable elements of X
to ı-P-computable elements of Y . Similarly for NP2 and NP
replacing P2 and P.

Lemma 3.8. Let
 and ı be representations of sets X and Y , re-
spectively.

1. A .
; ı/-FPSPACE2-complete function from X to Y maps
some
 -FP-computable element of X to a ı-FPSPACE-com-
plete element of Y .

2. Suppose that dom ı � Pred. Then a .
; ı/-NP2-complete
function from X to Y maps some
 -FP-computable element
of X to a ı-NP-complete element of Y .

For representations
0 and
1 of X0 and X1, respectively, we can
define the representation Œ
0;
1� of the Cartesian product X0 � X1

by Œ
0;
1�.h'0; '1i/ D .
0.'0/;
1.'1//.

4. APPLICATIONS
As we noted in Section 3.1, our formulation can be viewed as a

generalization of TTE obtained by removing the conditions (a) and
(b) on the oracle that we use as names. In the following three sub-
sections, we will apply our theory to real numbers, real sets and real
functions through representations �R, , and ı¤. These three rep-
resentations exploit the removal of (a), (b), and both, respectively.

4.1 Computation over real numbers
Recall the representation �R of R in TTE (Section 2.1) where a

�R-name of a real number x was an infinite list u0#u1# : : : of (en-
codings of) rational numbers JuiK satisfying jJuiK � xj < 2�i . We
modify this in a straightforward way to define a representation �R
that encodes real numbers into regular functions (we keep writing
�R by abuse of notation): We say that ' 2 Reg is a �R-name of
x 2 R if '.0i/ 2 D and jJ'.0i/K � xj < 2�i for each i 2 N. Thus,
we encode the same list into the values '.0i/. We write �RjŒ0;1�

for the restriction of �R to (names of) real numbers in the interval
Œ0; 1�.

It turns out that .�RjŒ0;1�; �R/-FP2-computability coincides with
the polynomial-time computability that was defined in Section 2.2.1
using the signed digit representation �sd. Recall that in the defini-
tion of �sd, we needed to forbid redundancy carefully so that the
machine would not cheat by writing long names as output or suf-
fer by reading long names as input. Observe how our formulation
avoids these problems naturally: now we do not have to fret too
much about defining concise representations.

Moreover, we obtain a reasonable notion of polynomial-time
computability of real functions on R as well without additional
work: .�R; �R/-FP2-computability seems to be a reasonable no-
tion and coincides with the one discussed by Hoover [6]. He ex-
tends the polynomial-time computability on Œ0; 1� to that on R by
requiring that the 2�m-approximation of the value f .t/ of function
f W R ! R should be delivered within time polynomial in m and
logjt j. An equivalent definition appears also in Takeuti [18], inde-
pendently inspired by Pour-El’s approach to computable analysis.

Example 4.1. It is easy to verify that binary addition and multipli-
cation on R can be .Œ�R; �R�; �R/-FP2-computed by the algorithms
suggested by Examples 2.2 and 2.3.

Example 4.2. The exponential function exp W R ! R restricted to
Œ0; 1� is .�RjŒ0;1�; �R/-FP2-computable, because exp t can be writ-
ten as the sum of a series which is known to converge fast on Œ0; 1�
(that is, given a desired precision, the machine can tell how many
initial terms it needs to compute). However, exp on the whole real
line R is not .�R; �R/-FP2-computable, because it grows too fast.

Example 4.3. The sine function sin W R ! R is .�R; �R/-FP2-
computable. To see this, note that just like exp in the previous
example, sin is polynomial-time computable if restricted to, say,
Œ�4; 4�. It is also possible, given t 2 R as oracle and a desired pre-
cision, to find efficiently a number in Œ�4; 4� which is close enough
to t modulo 2� . We can compute sin t by combining these algo-
rithms.

Example 4.4. A function can be .�R; �R/-FP2-computable without
even an explicit description known. The trisector curves between
the points .0; 1/ and .0;�1/ in the plane are the pair of sets C1,
C2 � R2 such that C1 is the set of points equidistant from .0; 1/
and C2, and C2 is the set of points equidistant from .0;�1/ and
C1. Asano, Matoušek and Tokuyama [1] showed that such a pair
.C1;C2/ exists and is unique (see [9] for a simpler and more gen-
eral proof), and that C1 (as well as C2, which is the mirror reflec-
tion) is a graph of a function f W R ! R which is, in our terminol-
ogy, .�R; �R/-FP2-computable. Interestingly, they conjecture that
the trisector curves are different from any curves that were previ-
ously known.

4.2 Computation over real sets
Let A be the set of closed subsets of Œ0; 1�2. The operator CH

of taking convex hulls (Section 2.2.3) is a function from A to A.
Define the representation of A as follows7: let ' 2 Pred be
a -name of S 2 A if ' and S satisfy the two itemized con-
ditions in Section 2.2.3. Since dom � Pred, it makes sense
to talk about -NP-computability, . ; /-NP2-computability, etc.
The following is immediate from the definition of polynomial-time
computability in Section 2.2.3.

Lemma 4.5. A set in A is (nondeterministic) polynomial-time com-
putable if and only if it is -P-computable (-NP-computable).

7Note that this representation is more succinct than the one that
we would be able to define in TTE using infinite sequences [20,
Example 6.9].

Now we can state and prove the following effectivized version
of Theorems 2.6 and 2.7.

Theorem 4.6. CH is . ; /-NP2-complete.

The proof is a straightforward effectivization of those of Theo-
rems 2.6 and 2.7, but we need to modify the hardness proof slightly,
because, as we noted in footnote 2, Ko and Yu’s original results
were about a different notion of computability; this will be ex-
plained in the full version of this paper.

As corollaries of Theorem 4.6, we get Theorem 2.6 by Lemmas
3.7.2 and 4.5, and Theorem 2.7 by Lemmas 3.8.2 and 4.5.

4.3 Computation over real functions
For � W N ! N, define � 2 Reg by �.u/ D 0�.juj/. We say

that � is a modulus of continuity of a function f 2 CŒ0; 1� if jt �

t 0j � 2��.n/ implies jf .t/ � f .t 0/j � 2�n (for all n 2 N and t ,
t 0 2 Œ0; 1�).

Define the representation ı¤ of CŒ0; 1� as follows: for � W N!N
and ' 2 Reg, we set ı¤.h�; 'i/ D f if and only if � is a modulus
of continuity of f and for every n 2 N and u 2 D�.n/, we have
v WD '.u/ 2 Dn and jf .JuK/ � JvKj < 2�n. This gives names to
all functions in CŒ0; 1�, because a continuous function on a compact
interval is uniformly continuous.

Recall that the only reason that a real number can require long
�R-names was having a large absolute value. In contrast, functions
in CŒ0; 1� may have long ı¤-names for two possible reasons: hav-
ing big values, and having a big modulus of continuity.

It is routine to prove the following.

Lemma 4.7. A function in CŒ0; 1� is polynomial-time computable
(resp. polynomial-space computable) if and only if it is ı¤-FP-
computable (resp. ı¤-FPSPACE-computable).

Lemma 4.8. A function in CŒ0; 1� is PSPACE-complete in the sense
of [8, Section 1.2] if it is ı¤-FPSPACE-complete.

The above definitions and lemmas extend to compact domains
other than Œ0; 1� (we keep writing ı¤ by abuse of notation). To
discuss the complexity of the operator LipIVP (Section 2.2.3), we
define a representation ı¤L of the space CLŒŒ0; 1�� Œ�1; 1�� of Lips-
chitz continuous functions: Let ı¤L.h'; i/ D g if and only if ' is
a ı¤-name of g and is a constant function with value 0L, where
L 2 N satisfies (5). Note that the Lipschitz constant is written in
unary.

Now we can formulate the effectivized version of Theorems 2.8
and 2.9 as follows. The computability part can be verified by check-
ing that the proof of Theorem 2.8 in [11] can be effectivized. For
the hardness part, we need to modify slightly the construction in [8];
this will be worked out in the full version of this paper.

Theorem 4.9. LipIVP is .ı¤L; ı¤/-FPSPACE2-complete.

As corollaries, we have Theorem 2.8 by Lemmas 3.7.1 and 4.7,
and Theorem 2.9 by Lemmas 3.8.1 and 4.8.

5. SUMMARY AND FUTURE WORK

� A TTE machine works on ˙N, the infinite strings. We re-
place ˙N with Reg, the regular functions. This is a gener-
alization in two ways: regular functions (a) can have values
of length greater than 1, and (b) take arguments written in
binary.

� For time and space bounds we use second-order polynomials
in the input size, which are defined in the way suggested by

type-two complexity theory. We define complexity classes
P2, NP2 and FP2, FPSPACE2. With a suitable notion of
polynomial-time reductions, we can also define NP2- and
FPSPACE2-completeness. Formulating other classes is left
for future work.

� To apply this to real problems, we introduced representations
�R, and ı¤ of real numbers, sets and functions. Both as-
pects (a) and (b) of our generalization turn out to be useful.
With respect to these representations, we showed that taking
the convex hull of a set is NP2-complete, and that solving the
Lipschitz continuous initial value problem is FPSPACE2-
complete. These are effectivized versions of what have been
known in ineffective forms, and tell us more about the hard-
ness of numerical problems in practice. It is interesting to
investigate which other known ineffective results about oper-
ators do (or do not) effectivize and how.

6. ACKNOWLEDGEMENTS
We thank Kaveh Ghasemloo for comments on the manuscript

that helped improve the presentation.
The first author is supported by the Nakajima Foundation, and

both authors are supported by the Natural Sciences and Engineering
Research Council of Canada.

7. REFERENCES
[1] T. Asano, J. Matoušek, and T. Tokuyama. The distance

trisector curve. Adv. Math., 212(1):338–360, 2007.
[2] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and

T. Pitassi. The relative complexity of NP search problems. J.
Comput. Syst. Sci., 57(1):3–19, 1998.

[3] V. Brattka, P. Hertling, and K. Weihrauch. A tutorial on
computable analysis. In S. Barry Cooper, Benedikt Löwe,
and Andrea Sorbi, editors, New Computational Paradigms:
Changing Conceptions of What is Computable, pages
425–491. Springer, 2008.

[4] M. Braverman. On the complexity of real functions. In Proc.
46th Annual IEEE Symposium on Foundations of Computer
Science, pages 155–164, 2005.

[5] A. Grzegorczyk. Computable functionals. Fund. Math.,
42:168–202, 1955.

[6] H. J. Hoover. Feasible real functions and arithmetic circuits.
SIAM J. Comput., 19(1):182–204, 1990.

[7] B. M. Kapron and S. A. Cook. A new characterization of
type-2 feasibility. SIAM J. Comput., 25(1):117–132, 1996.

[8] A. Kawamura. Lipschitz continuous ordinary differential
equations are polynomial-space complete. Comput.
Complexity, 2010, to appear.

[9] A. Kawamura, J. Matoušek, and T. Tokuyama. Zone
diagrams in Euclidean spaces and in other normed spaces. In
Proc. 26th Annual ACM Symposium on Computational
Geometry, 2010, to appear.

[10] K. Ko and H. Friedman. Computational complexity of real
functions. Theoret. Comput. Sci., 20(3):323–352, 1982.

[11] K. Ko. On the computational complexity of ordinary
differential equations. Inform. Control, 58:157–194, 1983.

[12] K. Ko. Complexity Theory of Real Functions. Birkhäuser
Boston, 1991.

[13] K. Ko. On the computational complexity of integral
equations. Ann. Pure Appl. Log., 58(3):201–228, 1992.

[14] K. Ko. Polynomial-time computability in analysis. In
Iurii Leonidovich Ershov et al., editors, Handbook of
Recursive Mathematics: Volume 2: Recursive Algebra,
Analysis and Combinatorics, vol. 139 of Studies in Logic
and the Foundations of Mathematics, pages 1271–1317.
North-Holland, 1998.

[15] K. Ko and F. Yu. On the complexity of convex hulls of
subsets of the two-dimensional plane. In Proc. 4th
International Conference on Computability and Complexity
in Analysis, vol. 202 of Electronic Notes in Theoretical
Computer Science, pages 121–135, 2008.

[16] K. Mehlhorn. Polynomial and abstract subrecursive classes.
J. Comput. Syst. Sci., 12(2):147–178, 1976.

[17] M. Schröder. Spaces allowing type-2 complexity theory
revisited. Math. Log. Q., 50(4-5):443–459, 2004.

[18] I. Takeuti. Effective fixed point theorem over a
non-computably separable metric space. In Jens Blanck,
Vasco Brattka, and Peter Hertling, editors, Computability
and Complexity in Analysis, vol. 2064 of Lecture Notes in
Computer Science, pages 310–322. Springer, 2001.

[19] K. Weihrauch. Computable Analysis: An Introduction. Texts
in Theoretical Computer Science. Springer, 2000.

[20] K. Weihrauch. Computational complexity on computable
metric spaces. Math. Log. Q., 49(1):3–21, 2003.

