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OPTIMAL BOUNDS FOR SIGN-REPRESENTING THE INTERSECTION
OF TWO HALFSPACES BY POLYNOMIALS

ALEXANDER A. SHERSTOV∗

ABSTRACT. Thethreshold degreeof a function f : {0,1}n →{−1,+1} is the least degree
of a real polynomialp with f (x) ≡ sgnp(x). We prove that the intersection of two half-
spaces on{0,1}n has threshold degreeΩ(n), which matches the trivial upper bound and
completely answers a question due to Klivans (2002). The best previous lower bound was
Ω(

√
n). Our result shows that the intersection of two halfspaces on{0,1}n only admits a

trivial 2Θ(n)-time learning algorithm based on sign-representation by polynomials, unlike
the advances achieved in PAC learning DNF formulas and read-once Boolean formulas.
The proof introduces a new technique of independent interest, based on Fourier analysis
and matrix theory.

1. INTRODUCTION

A well-studied notion in computational learning theory is that of aperceptron. This
term stands for the representation of a given Boolean function f : {0,1}n → {−1,+1} in
the form f (x) ≡ sgnp(x) for a real polynomialp of some degreed. The least degreed for
which f admits such a representation is called thethreshold degreeof f , denoted deg±( f ).
In other words, deg±( f ) is the least degree of a real polynomial that agrees withf in sign.
Perceptrons are appealing from a learning standpoint because they immediately lead to
efficient learning algorithms. In more detail, letf : {0,1}n → {−1,+1} be an unknown
function of threshold degreed. Then by definition,f has a representation of the form

f (x)≡ sgn

(

∑
|S|6d

λS∏
i∈S

xi

)

for some realsλS and is thus a halfspace inN =
(n

0

)
+
(n

1

)
+ · · ·+

(n
d

)
dimensions. As a

result, f can be PAC learned in time polynomial inN, using any of a variety of halfspace
learning algorithms. (Throughout this paper, the term “PAClearning” refers to Valiant’s
standard model [40] of learning under arbitrary distributions.)

The study of perceptrons dates back forty years to the seminal monograph of Minsky
and Papert [25], who examined the threshold degree of several common functions. Today,
the perceptron-based approach yields the fastest known PAClearning algorithms for sev-
eral concept classes. One such is the class of DNF formulas ofpolynomial size, posed a
challenge in Valiant’s original paper [40] and extensivelystudied over the past two decades.
The fastest known algorithm for PAC learning DNF formulas runs in time exp{Õ(n1/3)}
and is due to Klivans and Servedio [18]. Specifically, the authors of [18] prove an upper
bound ofO(n1/3 logn) on the threshold degree of polynomial-size DNF formulas, which
essentially matches a classical lower bound ofΩ(n1/3) due to Minsky and Papert [25].
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2 A. A. SHERSTOV

Another success story of the perceptron-based approach is the concept class of Boolean
formulas, i.e., Boolean circuits with fan-out 1 at every gate. O’Donnell and Servedio [29]
proved an upper bound of

√
slogO(d) s on the threshold degree of Boolean formulas of

sizes and depthd, giving the first subexponential algorithm for a family of formulas of
superconstant depth. This upper bound on the threshold degree was improved tos0.5+o(1)

for any depthd by Ambainis et al. [2], building on a quantum query algorithmof Farhi et
al. [10]. More recently, Lee [24] sharpened the upper bound to O(

√
s), which is tight. This

line of research gives the fastest known algorithm for PAC learning Boolean formulas.
Another extensively studied problem in computational learning theory, and the subject

of this paper, is the problem of learningintersections of halfspaces, i.e., conjunctions of
functions of the formf (x) = sgn(∑αixi −θ ) for some realsα1, . . . ,αn,θ . While solutions
are known to several restrictions of this problem [7, 23, 41,3, 17, 19, 16], no algorithm has
been discovered for PAC learning the intersection of even two halfspaces in time faster than
2Θ(n). Progress on proving hardness results has also been scarce. Indeed, all known hard-
ness results [8, 1, 20, 14] either require polynomially manyhalfspaces or assumeproper
learning. In particular, we are not aware of any representation-independenthardness results
for PAC learning the intersection ofO(1) halfspaces.

Our Results. Since the perceptron-based approach yields the fastest known algorithms
for PAC learning DNF formulas and read-once Boolean formulas, it is natural to wonder
whether it can yield any nontrivial results for the intersection of two halfspaces. Letting
D(n) stand for the maximum threshold degree over all intersections of two halfspaces
on {0,1}n, the question becomes whetherD(n) is a nontrivial (sublinear) function of the
dimensionn. This question has been studied by several authors, as summarized in Table 1.
Forty years ago, Minsky and Papert [25] used a compactness argument to show thatD(n) =
ω(1), the function in question being the intersection of two majorities on disjoint sets
variables. O’Donnell and Servedio [29] studied the same function using a rather different
approach and thereby proved thatD(n) = Ω(logn/ loglogn). No nontrivial upper bounds
on D(n) being known, Klivans [15,§7] formally posed the problem of proving a lower
bound substantially better thanΩ(logn) or an upper bound ofo(n).

It was recently shown in [34] thatD(n) = Ω(
√

n), solving Klivans’ problem and ruling
out anno(

√
n)-time PAC learning algorithm based on perceptrons. It is clear, however, that a

PAC learning algorithm for the intersection of two halfspaces in timenΘ(
√

n) would still be
a breakthrough in computational learning theory, comparable to the advances in the study
of DNF formulas and read-once Boolean formulas. The main contribution of this paper is
to prove thatD(n) =Ω(n), which matches the trivial upper bound and definitively rulesout
the perceptron-based approach for learning the intersection of two halfspaces in nontrivial
time.

Result Reference
D(n) = ω(1) [25]
D(n) = Ω(logn/ loglogn) [29]
D(n) = Ω(

√
n) [34]

D(n) = Θ(n) this paper

Table 1: Lower bounds for the intersection of two halfspaces.
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THEOREM1 (Main result). For n= 1,2,3, . . . , let D(n) denote the maximum threshold de-
gree of a function of the form f(x)∧g(x), where f,g: {0,1}n →{−1,+1} are halfspaces.
Then

D(n) = Θ(n).

To be more precise, we give a randomized algorithm which withprobability at least
1−e−n/12 constructs two halfspaces on{0,1}n whose intersection has threshold degree
Θ(n). In Section 6, we develop several refinements of Theorem 1. Forexample, we show
that the intersection of two halfspaces on{0,1}n requires a perceptron with exp{Θ(n)}
monomials, i.e., does not have a sparse sign-representation. We also give an essentially
tight lower bound on the threshold degree of the intersection of a halfspace and a majority
function, improving quadratically on the previous bound in[34].

In summary, unlike DNF formulas and read-once Boolean formulas, the intersection of
two halfspaces does not admit a nontrivial sign-representation. Apart from computational
learning theory, lower bounds on the threshold degree have played a key role in several
works on circuit complexity [30, 39, 21, 22, 36], Turing complexity classes [4, 6, 5], and
communication complexity [36, 35, 37, 31]. For this reason,we consider Theorem 1 and
the techniques used to obtain it to be of interest outside of computational learning.

Theorem 1 and much previous work suggest that the nature of a PAC learning prob-
lem changes significantly when, instead of Valiant’s original arbitrary-distribution setting,
one considers learning with respect to restricted distributions. For example, the uniform
distribution on the sphereSn−1 or hypercube{0,1}n allows the use of tools other than
sign-representing polynomials, such as Fourier analysis.In particular, polynomial-time
algorithms are known for the uniform-distribution learning of intersections of a constant
number of halfspaces on the sphere [7, 41] and hypercube [17]. Furthermore, if member-
ship queries are allowed, DNF formulas are known to be learnable in polynomial time with
respect to the uniform distribution on the hypercube [12].

Our Techniques. Let f ∧ f denote the conjunction of two copies of a given Boolean func-
tion f , each on an independent set of variables. It was shown in [34] that the threshold
degree of f ∧ f equals, up to a small multiplicative constant, the least degree of a ra-
tional functionR with ‖ f −R‖∞ 6 1/3. With this characterization in hand, the equality
deg±( f ∧ f ) = Θ(

√
n) was derived in [34] by solving the rational approximation problem

for the halfspace

f (x) = sgn

(
1+

√
n

∑
i=1

√
n

∑
j=1

2ixi j

)
.

Unfortunately, theΘ(
√

n) barrier is fundamental to the analysis in [34]. To prove thatin
factD(n) = Θ(n), we pursue a rather different approach.

The intuition behind our work is as follows. Letα1,α2, . . . ,αn be given nonzero in-
tegers, and letf : {0,1}n → {−1,+1} be a given Boolean function such thatf (x) is
completely determined by the sum∑αixi . When approximatingf pointwise by polyno-
mials and rational functions of a given degree, can one restrict attention to those approx-
imants that are, likef , functions of the sum∑αixi alone rather than the individual bits
x1,x2, . . . ,xn? If true, this claim would dramatically simplify the analysis of the threshold
degree off by reducing it to a univariate question. Minsky and Papert [25] showed that
the claim is indeed true in the highly special caseα1 = α2 = · · ·= αn. For the purposes of
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this paper, however, the nonzero coefficientsα1,α2, . . . ,αn must be of increasing orders of
magnitude and in particular must satisfy

max
i, j

∣∣∣∣
αi

α j

∣∣∣∣> exp{Ω(n)}.

Minsky and Papert’s argument breaks down completely in thissetting, and with good rea-
son: coefficientsα1, . . . ,αn are easily constructed [5] for which the passage to univariate
approximation increases the degree requirement from 1 ton.

To overcome this difficulty, we use techniques from Fourier analysis and matrix pertur-
bation theory. Specifically, we define an appropriate distribution onn-tuples(α1, . . . ,αn)
and study the behavior of the sum∑αixi as the vectorx ranges over{0,1}n. We prove that
for a typicaln-tuple(α1, . . . ,αn) and any collection of sumsS⊂ Z of interest, the subset
XS⊂{0,1}n that induces the sums inSis highly random in that membership inXS is uncor-
related with any polynomial of degree up toΘ(n). With some additional work, this allows
the sought passage to a univariate question. In particular,we are able to prove the existence
of a halfspacef : {0,1}n→{−1,+1} such that any multivariate rational approximant forf
gives a univariate rational approximant for the sign function on{±1,±2,±3, . . . ,±2Θ(n)}
with the same degree and error. The univariate question being well-understood, we infer
that f requires a rational function of degreeΩ(n) for pointwise approximation within 1/3
and hence deg±( f ∧ f )> Ω(n) by the characterization from [34].

2. PRELIMINARIES

Notation. We will view Boolean functions as mappingsX →{0,1} or X →{−1,+1} for
some finite setX, where the output value 1 corresponds to “true” in the former case and
“false” in the latter. We adopt the following standard definition of the sign function:

sgnx=





−1, x< 0,

0, x= 0,

1, x> 0.

The complement of a setS is denotedS. We denote the symmetric difference of setsSand
T by S⊕T = (S∩T)∪ (S∩T). For a finite setX, the symbolP(X) denotes the family of
all 2|X| subsets ofX. For functionsf ,g: X → R on a finite setX, we use the notation

〈 f ,g〉= 1
|X| ∑

x∈X
f (x)g(x).

We let logx stand for the logarithm ofx to the base 2. The binary entropy function
H : [0,1]→ [0,1] is given byH(p) =−plogp−(1− p) log(1− p) and is strictly increasing
on [0,1/2]. The following bound is well known [13, p. 283]:

k

∑
i=0

(
n
i

)
6 2H(k/n)n, k= 0,1,2, . . . ,⌊n/2⌋.(2.1)

For elementsx,y of a given set, we use the Kronecker delta

δx,y =

{
1, x= y,

0, x 6= y.
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The symbolPk stands for the family of all univariate real polynomials of degree up tok.
The majority function MAJn : {0,1}n →{−1,+1} has the usual definition:

MAJn(x) =

{
−1, x1+ x2+ · · ·+ xn > n/2,

1, otherwise.

Fourier transform. Consider the vector space of functions{0,1}n → R, equipped with
the inner product

〈 f ,g〉 = 2−n ∑
x∈{0,1}n

f (x)g(x).

For S ⊆ {1,2, . . . ,n}, define χS: {0,1}n → {−1,+1} by χS(x) = (−1)∑i∈Sxi . Then
{χS}S⊆{1,2,...,n} is an orthonormal basis for the inner product space in question. As a result,
every functionf : {0,1}n → R has a unique representation of the form

f = ∑
S⊆{1,2,...,n}

f̂ (S)χS,

where f̂ (S) = 〈 f ,χS〉. The realsf̂ (S) are called theFourier coefficients of f. The orthonor-
mality of {χS} immediately yieldsParseval’s identity:

∑
S⊆{1,2,...,n}

f̂ (S)2 = 〈 f , f 〉 = E
x∈{0,1}n

[ f (x)2].(2.2)

Matrices. The symbolRm×n refers to the family of allm×n matrices with real entries. A
matrixA∈ R

n×n is calledstrictly diagonally dominantif

|Aii |>
n

∑
j=1
j 6=i

|Ai j |, i = 1,2, . . . ,n.

A well-known result in matrix perturbation theory, due to Gershgorin [11], states that the
eigenvalues of a matrix lie in the union of certain disks in the complex plane centered
around the diagonal entries of the matrix. We will need the following very special case,
which corresponds to showing that the eigenvalues are all nonzero.

THEOREM 2.1 (Gershgorin).Let A∈ R
n×n be strictly diagonally dominant. Then A is

nonsingular.

Proof (Gershgorin). Fix a nonzero vectorx∈R
n and choosei such that|xi |= ‖x‖∞. Then

by strict diagonal dominance,

|(Ax)i |=
∣∣∣∣∣

n

∑
j=1

Ai j x j

∣∣∣∣∣> |Aii |‖x‖∞−
n

∑
j=1
j 6=i

|Ai j |‖x‖∞ > 0,

so thatAx 6= 0.
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Rational approximation. The degree of a rational functionp(x)/q(x), where p and q
are polynomials onRn, is the maximum of the degrees ofp andq. Consider a function
f : X → {−1,+1}, whereX ⊆ R

n. Ford > 0, define

R( f ,d) = inf
p,q

sup
x∈X

∣∣∣∣ f (x)−
p(x)
q(x)

∣∣∣∣ ,

where the infimum is over multivariate polynomialsp andq of degree up tod such that
q does not vanish onX. In words,R( f ,d) is the least error in an approximation off by a
multivariate rational function of degree up tod. A closely related quantity is

R+( f ,d) = inf
p,q

sup
x∈X

∣∣∣∣ f (x)−
p(x)
q(x)

∣∣∣∣ ,

where the infimum is over multivariate polynomialsp andq of degree up tod such thatq
is positive onX. These two quantities are related in a straightforward way:

R+( f ,2d)6 R( f ,d) 6 R+( f ,d).

The second inequality here is trivial. The first follows fromthe fact that every rational
approximantp(x)/q(x) of degreed gives rise to a degree-2d rational approximant with the
same error and a positive denominator, namely,{p(x)q(x)}/q(x)2.

The infimum in the definitions ofR( f ,d) andR+( f ,d) cannot in general be replaced by
a minimum [32], even whenX is finite subset ofR. This contrasts with the more familiar
setting of a finite-dimensional normed linear space, where least-error approximants are
guaranteed to exist.

ForS⊆ R, we let

R+(S,d) = inf
p,q

sup
x∈S

∣∣∣∣sgnx− p(x)
q(x)

∣∣∣∣ ,

where the infimum ranges overp,q∈Pd such thatq is positive onS. The study of the ratio-
nal approximation of the sign function dates back to seminalwork by Zolotarev [42] in the
late 19th century. A much later result due to Newman [28] gives highly accurate estimates
of R+([−n,−1]∪ [1,n],d) for all n andd. Newman’s work in particular provides upper
bounds onR+({±1,±2, . . . ,±n},d), which in [34] were sharpened and complemented
with matching lower bounds to the following effect:

THEOREM2.2 (Sherstov).Let n,d be positive integers, R=R+({±1,±2, . . . ,±n},d). For
16 d 6 logn,

exp

{
−Θ

(
1

n1/(2d)

)}
6 R< exp

{
− 1

n1/d

}
.

For logn< d < n,

R= exp

{
−Θ

(
d

log(2n/d)

)}
.

For d > n,

R= 0.

Theorem 2.2 has the following corollary [34, Thm. 1.7], in which we adopt the notation
rdegε( f ) = min{d : R+( f ,d)6 ε}.
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THEOREM 2.3 (Sherstov).Let MAJn : {0,1}n → {−1,+1} denote the majority function.
Then

rdegε(MAJn) =





Θ
(

log

{
2n

log(1/ε)

}
· log

1
ε

)
, 2−n < ε < 1/3,

Θ
(

1+
logn

log{1/(1− ε)}

)
, 1/36 ε < 1.

Threshold degree. Let f : X → {−1,+1} be a given Boolean function, whereX ⊂ R
n

is finite. Thethreshold degreeof f , denoted deg±( f ), is the least degree of a polyno-
mial p(x) such thatf (x) ≡ sgnp(x). The term “threshold degree” appears to be due to
Saks [33]. Equivalent terms in the literature include “strong degree” [4], “voting polyno-
mial degree” [21], “polynomial threshold function degree”[29], and “sign degree” [9].

Given functionsf : X →{−1,+1} andg: Y→{−1,+1},we let the symbolf ∧g stand
for the functionX×Y → {−1,+1} given by( f ∧g)(x,y) = f (x)∧g(y). Note that in this
notation,f and f ∧ f are completely different functions, the former having domain X and
the latterX ×X. An elegant observation, due to Beigel et al. [6], relates thenotions of
sign-representation and rational approximation for conjunctions of Boolean functions.

THEOREM 2.4 (Beigel, Reingold, and Spielman).Let f : X → {−1,+1} and g: Y →
{−1,+1} be given functions, where X,Y ⊆ R

n. Let d be an integer with R+( f ,d) +
R+(g,d)< 1. Then

deg±( f ∧g)6 2d.

Proof (Beigel, Reingold, and Spielman). Consider rational functionsp1(x)/q1(x) and
p2(y)/q2(y) of degree at mostd such thatq1 andq2 are positive onX andY, respectively,
and

sup
X

∣∣∣∣ f (x)−
p1(x)
q1(x)

∣∣∣∣+ sup
Y

∣∣∣∣g(y)−
p2(y)
q2(y)

∣∣∣∣< 1.

Then

f (x)∧g(y)≡ sgn{1+ f (x)+g(y)}≡ sgn

{
1+

p1(x)
q1(x)

+
p2(y)
q2(y)

}
.

Multiplying the last expression by the positive quantityq1(x)q2(y) gives f (x)∧ g(y) ≡
sgn{q1(x)q2(y)+ p1(x)q2(y)+ p2(y)q1(x)}.

We will also need a converse to Theorem 2.4, proved in [34, Thm. 3.9].

THEOREM 2.5 (Sherstov).Let f : X → {−1,+1} and g: Y → {−1,+1} be given func-
tions, where X,Y ⊂ R

n are arbitrary finite sets. Assume that f and g are not identically
false. Let d= deg±( f ∧g). Then

R+( f ,4d)+R+(g,2d)< 1.

Symmetric functions. Let Sn denote the symmetric group onn elements. Forσ ∈ Sn and
x ∈ {0,1}n, we denoteσx = (xσ(1), . . . ,xσ(n)) ∈ {0,1}n. For x ∈ {0,1}n, we define|x| =
x1+x2+ · · ·+xn. A functionφ : {0,1}n →R is calledsymmetricif φ(x) = φ(σx) for every
x∈ {0,1}n and everyσ ∈ Sn. Equivalently,φ is symmetric ifφ(x) is uniquely determined
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by |x|. Symmetric functions on{0,1}n are intimately related to univariate polynomials, as
borne out by Minsky and Papert’ssymmetrization argument[25]:

PROPOSITION2.6 (Minsky and Papert).Letφ : {0,1}n →R be a polynomial of degree d.
Then there is a polynomial p∈ Pd such that

E
σ∈Sn

[φ(σx)] = p(|x|), x∈ {0,1}n.

We will need the following consequence of Minsky and Papert’s technique for rational
functions, pointed out in [34, Prop. 2.7].

PROPOSITION 2.7. Let n1, . . . ,nk be positive integers. Consider a function
F : {0,1}n1×·· ·×{0,1}nk →{−1,+1} such that F(x1, . . . ,xk)≡ f (|x1|, . . . , |xk|) for some
f : {0,1, . . . ,n1}× ·· ·×{0,1, . . . ,nk}→ {−1,+1}. Then for all d,

R+(F,d) = R+( f ,d).

3. ANALYSIS OF RANDOM HALFSPACES

In this section, we prove a certain structural property of random halfspaces. Specifically,
we will fix integersw1,w2, . . . ,wn at random from a suitable range and analyze the sum

n

∑
i=1

wixi

asx ranges over{0,1}n. Our objective will be to show that, for a typical choice of the
weightsw1,w2, . . . ,wn, the distribution of this sum modulo 2Θ(n) is highly random. More
precisely, we will show that the subsetXs ⊂ {0,1}n that induces any particular sums
modulo 2Θ(n) is relatively large and that membership inXs is almost uncorrelated with any
polynomial of low degree. We start with a technical lemma.

LEMMA 3.1. Let f,g: {0,1}n → {0,1} be given functions. Fix an integer k with06 k 6

n/2. For a set S⊆ {1,2, . . . ,n}, define FS: {0,1}n → {0,1} by

FS(x) = f (x)∧
(

g(x)⊕
⊕

i∈S

xi

)
.

Fix a real ζ > 0. Then with probability at least1− 2−n+H(k/n)n+2ζn over a uniformly
random choice of S∈ P({1,2, . . . ,n}), one has

∣∣∣∣F̂S(T)−
1
2

f̂ (T)

∣∣∣∣6 2−ζn−1, |T|6 k.(3.1)

Proof. Define φ : {0,1}n → [−1/2,1/2] by φ(x) = f (x)g(x) − 1
2 f (x). Define S ⊆

P({1,2, . . . ,n}) by S = {S: |φ̂ (S)|> 2−ζn−1}. By Parseval’s identity (2.2),

|S |6 4ζn.(3.2)

SinceFS(x) =
1
2 f (x)+ (−1)∑i∈Sxi φ(x), we have

∣∣∣∣F̂S(T)−
1
2

f̂ (T)

∣∣∣∣= |φ̂(S⊕T)|, S,T ⊆ {1,2, . . . ,n}.(3.3)
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For a uniformly randomS∈ P({1,2, . . . ,n}), the set{S⊕T : |T| 6 k} contains any
fixed element ofP({1,2, . . . ,n}) with probability 2−n∑k

i=0

(n
i

)
. By the union bound, we

infer that

P
S
[{S⊕T : |T|6 k}∩S 6=∅]6 |S |2−n

k

∑
i=0

(
n
i

)
,

which in view of (2.1) and (3.2) is bounded from above by 2−n+H(k/n)n+2ζn. This observa-
tion, along with (3.3), completes the proof.

Using Lemma 3.1 and induction, we now obtain a key intermediate result.

LEMMA 3.2. Fix an integer k> 0 and realsε,ζ ∈ (0,1/2). Choose sets S0,S1, . . . ,Sk ∈
P({1,2, . . . ,n}) uniformly at random. Fix any integer s and define f: {0,1}n →{0,1} by

f (x) = 1 ⇔
k

∑
i=0

2i ∑
j∈Si

x j ≡ s (mod 2k+1).(3.4)

Then with probability at least1− (k+ 1)2−n+H(ε)n+2ζn over the choice of S0,S1, . . . ,Sk,
one has ∣∣∣∣ f̂ (T)−

δT,∅

2k+1

∣∣∣∣6 2−ζn, |T|6 εn.(3.5)

Proof. In view of the modular counting in (3.4), one may assume that 06 s< 2k+1 and
therefores= ∑k

i=02ibi for someb0,b1, . . . ,bk ∈ {0,1}. The proof of the lemma is by in-
duction onk for a fixeds.

The base casek = 0 corresponds tof (x) = 1
2 +

1
2(−1)b0χS0(x). One obtains (3.5) by

conditioning on the event|S0| > εn, which in view of (2.1) occurs with probability no
smaller than 1−2−n+H(ε)n.

We now consider the inductive step. Definef ′ : {0,1}n → {0,1} by

f ′(x) = 1 ⇔
k−1

∑
i=0

2i ∑
j∈Si

x j ≡
k−1

∑
i=0

2ibi (mod 2k).

Let E1 be the event, over the choice ofS0, . . . ,Sk−1, that | f̂ ′(T)− 2−kδT,∅| 6 2−ζn for
|T|6 εn. By the inductive hypothesis,

P[E1]> 1− k2−n+H(ε)n+2ζn.(3.6)

Let E2 be the event, over the choice ofS0, . . . ,Sk, that| f̂ (T)− 1
2 f̂ ′(T)|6 2−ζn−1 for |T|6

εn. In this terminology, it suffices to show that

P[E1∧E2]> 1− (k+1)2−n+H(ε)n+2ζn.(3.7)

Observe that

f (x) = f ′(x)∧
(

g(x)⊕
⊕

i∈Sk

xi

)
,

whereg: {0,1}n →{0,1} is the function such thatg(x) = 1 if and only ifbk is the(k+1)st
least significant bit of the integer∑k−1

i=0 2i ∑ j∈Si
x j . As a result, Lemma 3.1 shows that

P[E2] > 1− 2−n+H(ε)n+2ζn. This bound, along with (3.6), settles (3.7) and thereby com-
pletes the induction.
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We have reached the main result of this section.

THEOREM3.3 (Key property of random halfspaces).Fix an integer k> 0 and realsε,ζ ∈
(0,1/2).Choose integers w1,w2, . . . ,wn uniformly at random from{0,1, . . . ,2k+1−1}. For
s∈ Z, define fs : {0,1}n → {0,1} by

fs(x) = 1 ⇔
n

∑
i=1

wixi ≡ s (mod 2k+1).(3.8)

Then with probability at least1 − (k + 1)2−n+H(ε)n+2ζn+k+1 over the choice of
w1,w2, . . . ,wn, one has

∣∣∣∣ f̂s(T)−
δT,∅

2k+1

∣∣∣∣6 2−ζn, |T|6 εn, s∈ Z.

Proof. In view of the modular counting in (3.8), it suffices to prove the theorem fors∈
{0,1, . . . ,2k+1 − 1}. The functionsfs have the following equivalent definition: pick sets
S0,S1, . . . ,Sk ∈ P({1,2, . . . ,n}) uniformly at random and define

fs(x) = 1 ⇔
k

∑
i=0

2i ∑
j∈Si

x j ≡ s (mod 2k+1).

The proof is now complete by Lemma 3.2 and the union bound overs.

4. ZEROING OUTCORRELATIONS BY A CHANGE OF DISTRIBUTION

Recall the setting of the previous section, where we fixed integersw1,w2, . . . ,wn at
random from a suitable range and analyzed the sum∑n

i=1wixi asx ranged over{0,1}n.

We showed that the subsetXs ⊂ {0,1}n that induces any particular sums modulo 2Θ(n)

is relatively large and that membership inXs hasalmostzero correlation with any given
polynomial of low degree. For the purposes of this paper, thecorrelations with low-degree
polynomials need to beexactlyzero. In this section we show that, with respect to a suitable
distributionµs on eachXs, membership inXs will indeed have zero correlation with any
low-degree polynomial.

A starting point in our discussion is a general statement on zeroing out the correlations
of given Boolean functionsχ1,χ2, . . . ,χk with another Boolean functionf . Recall that for
functionsf ,g: X →R on a finite setX, we use the notation

〈 f ,g〉= 1
|X| ∑

x∈X
f (x)g(x).

THEOREM4.1. Let f,χ1, . . . ,χk : X →{−1,+1} be given functions on a finite set X. Sup-
pose that

k

∑
i=1

|〈 f ,χi〉|<
1
2
,(4.1)

k

∑
j=1
j 6=i

|〈χi ,χ j〉|6
1
2
, i = 1,2, . . . ,k.(4.2)
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Then there exists a probability distributionµ on X such that

E
µ
[ f (x)χi(x)] = 0, i = 1,2, . . . ,k.

REMARK 4.2. A comment is in order on the hypothesis of Theorem 4.1. The theorem
states that ifχ1,χ2, . . . ,χk each have a small correlation withf and, in addition, have
small pairwise correlations, then a distribution exists with respect to whichf is completely
uncorrelated withχ1,χ2, . . . ,χk. The latter part of the hypothesis, namely the requirement
(4.2) of small pairwise correlations forχ1,χ2, . . . ,χk, may seem unnecessary at first. In
actuality, it is vital. Exponential lower bounds on the weights of linear perceptrons [27, 38]
imply, by linear programming duality, the existence of functions f ,χ1,χ2, . . . ,χk : X →
{−1,+1} such that|〈 f ,χi〉|= exp{−Θ(k)}, i = 1,2, . . . ,k, and yet

f (x) ≡ sgn

(
k

∑
i=1

αi χi(x)

)
(4.3)

for some fixed realsα1, . . . ,αk. In this construction, the correlation off with eachχi is
small, in fact exponentially smaller than what is assumed inTheorem 4.1; nevertheless,
the representation (4.3) rules out a distributionµ with respect to whichf could have zero
correlation with eachχi , for such a distributionµ would have to obey

0< E
µ

[∣∣∣∣∣
k

∑
i=1

αi χi(x)

∣∣∣∣∣

]
= E

µ

[
f (x)

k

∑
i=1

αiχi(x)

]
=

k

∑
i=1

αi E
µ
[ f (x)χi(x)] = 0.

Proof of Theorem4.1. Consider the linear system

Mα = γ(4.4)

in the unknownα ∈ R
k, where M = [〈χi ,χ j〉]i, j is a matrix of orderk and γ =

(〈 f ,χ1〉, . . . ,〈 f ,χk〉) ∈ R
k. Then (4.2) shows thatM is strictly diagonally dominant and

hence nonsingular by Theorem 2.1. Fix the unique solutionα to the system (4.4). Then
2|αi | −∑k

j=1|α j〈χi ,χ j〉| 6 |〈 f ,χi〉| for i = 1,2, . . . ,k. Summing thesek inequalities, we
obtain

2
k

∑
i=1

|αi |−
k

∑
j=1

|α j |
k

∑
i=1

|〈χi ,χ j〉|6
k

∑
i=1

|〈 f ,χi〉|,

which in view of (4.1) and (4.2) shows that∑k
i=1|αi |< 1. Therefore, the functionµ : X →R

given by

µ(x) = ε

(
1− f (x)

k

∑
i=1

αi χi(x)

)

is a probability distribution onX for a suitable normalizing factorε > 0. At last,

E
µ
[ f (x)χi(x)] = ε|X|

(
〈 f ,χi〉−

k

∑
j=1

α j 〈χi ,χ j〉
)

= 0,

where the final equality holds by (4.4).

We are now in a position to prove the main result of this section.
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THEOREM 4.3. Let α > 0 be a sufficiently small absolute constant. Choose integers
w1,w2, . . . ,wn uniformly at random from{0,1, . . . ,2⌊αn⌋+1−1}. For s∈ Z, define

Xs =

{
x∈ {0,1}n :

n

∑
i=1

wixi ≡ s (mod 2⌊αn⌋+1)

}
.(4.5)

Then with probability at least1−e−n/3 over the choice of w1,w2, . . . ,wn, there is a distri-
butionµs on Xs (for each s) such that

E
µs
[p(x)] = E

µt
[p(x)](4.6)

for any s, t ∈ Z and any polynomial p of degree at most⌊αn⌋.

Proof. Let α > 0 be sufficiently small. We will assume throughout the proof thatn> 1/α,
the theorem being trivial otherwise. Setε = 2α, ζ = 1/5, andk= ⌊αn⌋ in Theorem 3.3.
Then with probability at least 1−e−n/3 over the choice ofw1,w2, . . . ,wn, one has

∣∣∣∣ f̂s(T)−
δT,∅

2⌊αn⌋+1

∣∣∣∣6 2−n/5, |T|6 2αn, s∈ Z,(4.7)

where fs : {0,1}n → {0,1} is given by fs(x) = 1⇔ x∈ Xs. It follows that for eachs,

|Xs|= 2n f̂s(∅)> 2n(2−⌊αn⌋−1−2−n/5).(4.8)

For f ,g: {0,1}n → R, we will write 〈 f ,g〉Xs = |Xs|−1∑x∈Xs f (x)g(x). Let S ⊂
P({1,2, . . . ,n}) be the system of nonempty subsets of at mostαn elements. Fix any
T ∈ S . Then for eachs,

∑
S∈S
S6=T

|〈χS,χT〉Xs|=
2n

|Xs| ∑
S∈S
S6=T

| f̂s(S⊕T)|6 2n

|Xs|
· |S |2−n/5 <

1
2
,(4.9)

where the final two inequalities follow from (2.1), (4.7), and (4.8). Similarly, for eachs,

∑
S∈S

|〈 fs,χS〉Xs|=
2n

|Xs| ∑
S∈S

| f̂s(S)|6
2n

|Xs|
· |S |2−n/5 <

1
2
.(4.10)

In view of (4.9) and (4.10), Theorem 4.1 provides a distribution µs on {0,1}n that is sup-
ported onXs and obeysµ̂s(S) = 0 for S∈ S . Sinceµs is a probability distribution, we
additionally haveµ̂s(∅) = 2−n for all s. In particular, the distributionsµs have identical
Fourier spectra up to coefficients of orderαn, which is another way of stating (4.6).

5. REDUCTION TO A UNIVARIATE PROBLEM

Recall from the Introduction that the crux of our proof is to establish the existence
of a halfspacef : {0,1}n → {−1,+1} that requires a rational function of degreeΘ(n) for
pointwise approximation within 1/3. The purpose of this section is to reduce this task, for a
suitably chosen random halfspace, to a univariate problem.The univariate problem pertains
to the uniform approximation of the sign function on the set{±1,±2,±3, . . . ,±2Θ(n)} and
has been solved in previous work. Key to this univariate reduction will be the construction
of probability distributions in the previous two sections.
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THEOREM 5.1 (Reduction to a univariate problem).Put k= ⌊αn⌋, whereα > 0 is the
absolute constant from Theorem4.3. Choose w1,w2, . . . ,wn uniformly at random from
{0,1, . . . ,2k+1−1}. Define f: {0,1}n×{0,1,2, . . . ,n}→ {−1,+1} by

f (x, t) = sgn

(
1
2
+

n

∑
i=1

wixi −2k+1t

)
.

Then with probability at least1−e−n/3 over the choice of w1,w2, . . . ,wn, one has

R+( f ,d) > R+({±1,±2,±3, . . . ,±2k},d), d = 0,1, . . . ,k.(5.1)

Proof. For s= ±1,±2,±3, . . . ,±2k, defineXs ⊆ {0,1}n by (4.5). Then by Theorem 4.3,
with probability at least 1−e−n/3 there is a distributionµs onXs for eachssuch that

E
µs
[p(x)] = E

µr
[p(x)](5.2)

for anys, r ∈ {±1,±2,±3, . . . ,±2k} and any polynomialp of degree no greater thank. In
the remainder of the proof, we will work with a fixed choice of weightsw1,w2, . . . ,wn for
which the described distributionsµs exist.

Suppose thatR+( f ,d) < ε where 0< ε < 1 and 06 d 6 k. Then there are degree-d
polynomialsp,q onRn×R such that on the domain off ,

0< (1− ε)q(x, t)6 p(x, t) f (x, t) 6 (1+ ε)q(x, t).(5.3)

On the support ofµs (for s=±1,±2,±3, . . . ,±2k), the linear form

ℓ(x,s) = 2−k−1

(
n

∑
i=1

wixi − s

)

obeysℓ(x,s) ∈ {0,1,2, . . . ,n} and f (x, ℓ(x,s)) = sgns. Letting t = ℓ(x,s) in (5.3) and pass-
ing to expectations,

0< E
x∼µs

[q(x, ℓ(x,s))] (1− ε)6 E
x∼µs

[p(x, ℓ(x,s))]sgns

6 E
x∼µs

[q(x, ℓ(x,s))] (1+ ε).

It follows from (5.2) thatEµs[p(x, ℓ(x,s))] = P(s) andEµs[q(x, ℓ(x,s))] = Q(s) for some
P,Q ∈ Pd and all s. As a result,R+({±1,±2,±3, . . . ,±2k},d) 6 ε, the approximant in
question beingP/Q.

It remains to rewrite the previous theorem in terms of functions on the hypercube
{0,1}2n rather than the set{0,1}n×{0,1,2, . . . ,n}.

THEOREM 5.2. Put k= ⌊αn⌋, whereα > 0 is the absolute constant from Theorem4.3.
Choose w1,w2, . . . ,wn uniformly at random from{0,1, . . . ,2k+1−1}.Define f: {0,1}2n→
{−1,+1} by

f (x) = sgn

(
1
2
+

n

∑
i=1

wixi −2k+1
2n

∑
i=n+1

xi

)
.

Then with probability at least1−e−n/3 over the choice of w1,w2, . . . ,wn, one has

R+( f ,d) > R+({±1,±2,±3, . . . ,±2k},d), d = 0,1, . . . ,k.

Proof. Immediate from Proposition 2.7 and Theorem 5.1.
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6. MAIN RESULT AND GENERALIZATIONS

We now combine the newly obtained result on rational approximation with known re-
sults from Section 2 to prove the main theorem of this work.

THEOREM 6.1 (Main result).Fix sufficiently small absolute constantsα > 0 and β =
β (α) > 0. Choose integers w1,w2, . . . ,wn ∈ {0,1, . . . ,2⌊αn⌋+1−1} uniformly at random.
Then with probability at least1−e−n/3, the function f: {0,1}2n →{−1,+1} given by

f (x) = sgn

(
1
2
+

n

∑
i=1

wixi −2⌊αn⌋+1
2n

∑
i=n+1

xi

)

obeys

deg±( f ∧ f )> ⌊βn⌋.(6.1)

Proof. Theorem 5.2 shows that with probability at least 1− e−n/3 over the choice of
w1,w2, . . . ,wn, one has

R+( f ,d) > R+(S,d), d = 0,1, . . . ,⌊αn⌋,(6.2)

whereS= {±1,±2,±3, . . .,±2⌊αn⌋} andα > 0 is the absolute constant from Theorem 4.3.
In the remainder of the proof, we will condition on this event.

Suppose now that deg±( f ∧ f )< ⌊βn⌋, whereβ is a constant to be chosen later subject
to 0< β < α/4. Then Theorem 2.5 implies thatR+( f ,⌊4βn⌋) < 1/2, which in view of
(6.2) leads toR+(S,⌊4βn⌋) < 1/2. The last inequality violates Theorem 2.2 for small
enoughβ > 0. Thus, (6.1) holds forβ small enough.

Recall that the technical crux of this paper is an optimal lower bound for the rational
approximation of a halfspace. We will have occasion to appeal to this result again, and for
this reason we formulate it as a theorem in its own right.

THEOREM6.2. A family of halfspaces hn : {0,1}n →{−1,+1}, n= 1,2,3, . . . , exists such
that

R+(hn,d) = 1−exp
{
−Θ

(n
d

)}
, d = 1,2, . . . ,Θ(n).(6.3)

Proof. The lower bound in (6.3) is immediate from Theorem 5.2 and theunivariate lower
bounds in Theorem 2.2.

Next, every halfspacehn : {0,1}n → {−1,+1} constructed in Theorem 5.2 trivially
obeysR+(hn,1)< 1−exp{−Θ(n)}. For 0< ξ < 1, Newman’s classical work [28] shows
that R+([−1,−ξ ]∪ [ξ ,1],d) 6 1− ξ Θ(1/d), whence by composition of the approximants
one obtains the upper bound in (6.3).

Mixed intersection. Theorem 6.1 shows that the intersection of two halfspaces has the
asymptotically highest threshold degree. At the same time,Beigel et al. [6] showed that
the intersection of a constant number of majority functionson {0,1}n, which are partic-
ularly simple halfspaces, has threshold degreeO(logn). We now derive a lower bound of
Ω(

√
nlogn) on the threshold degree of the intersection of a halfspace and a majority func-

tion, which improves quadratically on the previous bound in[34] and essentially matches
the upper bound,O(

√
nlogn), given below in Remark 6.4.
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THEOREM6.3. A family of halfspaces hn : {0,1}n →{−1,+1}, n= 1,2,3, . . . , exists such
that

deg±(hn∧MAJn) = Θ(
√

nlogn).(6.4)

Proof. The lower bound in (6.4) is immediate from Theorems 2.3, 2.5,and 6.2. The upper
bound in (6.4) is immediate from Theorems 2.3, 2.4, and 6.2.

REMARK 6.4. The construction of Theorem 6.3 is essentially best possible in that every
sequence of halfspaceshn : {0,1}n →{−1,+1}, n= 1,2,3, . . . , obeys

deg±(hn∧MAJn) = O(
√

nlogn).(6.5)

To derive this upper bound, recall thatR+(hn,1) < 1− exp{−Θ(nlogn)} for every
halfspacehn : {0,1}n → {−1,+1}, by a classical result due to Muroga [26]. Since
R+([−1,−ξ ]∪ [ξ ,1],d)< 1− ξ Θ(1/d) for 0< ξ < 1 by Newman [28], we obtain by com-
position of approximants thatR+(hn,d)< 1−exp{−Θ({nlogn}/d)}. This settles (6.5) in
view of Theorems 2.3 and 2.4.

Threshold density. In addition to threshold degree, several other complexity measures
are of interest when sign-representing Boolean functions by real polynomials. One such
complexity measure isdensity,i.e., the leastk for which a given function can be sign-
represented by a linear combination ofk parity functions. Formally, for a given function
f : {0,1}n →{−1,+1}, thethreshold densitydns( f ) is the minimum size|S | of a family
S ⊆ P({1,2, . . . ,n}) such that

f (x)≡ sgn

(

∑
S∈S

λSχS(x)

)

for some realsλS, S∈ S . It is clear from the definition that dns( f ) 6 2n for all functions
f : {0,1}n→{−1,+1}, and we will show that the intersection of two halfspaces on{0,1}n

has threshold density 2Θ(n).
To this end, we recall an elegant technique for converting Boolean functions with high

threshold degree into Boolean functions with high threshold density, due to Krause and
Pudlák [21, Prop. 2.1]. Their construction sends a function f : {0,1}n → {−1,+1} to the
function f KP : ({0,1}n)3 → {−1,+1} given by

f KP(x,y,z) = f (. . . ,(zi ∧xi)∨ (zi ∧yi), . . . ).

THEOREM 6.5 (Krause and Pudlák).Every function f: {0,1}n → {−1,+1} obeys

dns( f KP)> 2deg±( f ).

We are now in a position to obtain the desired density results.

THEOREM6.6. A family of halfspaces hn : {0,1}n →{−1,+1}, n= 1,2,3, . . . , exists such
that

dns(hn∧hn)> exp{Θ(n)},(6.6)

dns(hn∧MAJn)> exp{Θ(
√

nlogn)}.(6.7)
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Proof. The parity of several parity functions is another parity function. As a result,

max
hn

{dns(hn∧hn)}> max
F

{dns(F ∧F)},(6.8)

where the maximum on the left is over all halfspaceshn : {0,1}n → {−1,+1} and the
maximum on the right is over arbitrary functionsF : {0,1}m → {−1,+1} (for arbitrary
m) such that dns(F) 6 n. For eachn = 1,2,3, . . . , Theorem 6.1 ensures the existence of
a halfspacefn : {0,1}n → {−1,+1} with deg±( fn ∧ fn) > Ω(n). By Theorem 6.5, the
function( fn ∧ fn)KP = fnKP∧ fnKP has threshold density exp{Ω(n)}. Since dns( fnKP) 6
4n+1, the right member of (6.8) is at least exp{Ω(n)}.

This completes the proof of (6.6). The proof of (6.7) is closely analogous, with Theo-
rem 6.3 used instead of Theorem 6.1.

The lower bounds in Theorem 6.6 are essentially optimal. Specifically, (6.6) is tight
for trivial reasons, whereas the lower bound (6.7) nearly matches the upper bound of
exp{Θ(

√
nlog2 n)} that follows from (6.5).

We also note that Theorem 6.5 readily generalizes to linear combinations of conjunc-
tions rather than parity functions. In other words, if a function f : {0,1}n → {−1,+1}
has threshold degreed and f KP(x,y,z) ≡ sgn(∑N

i=1 λiTi(x,y,z)) for some conjunctions
T1, . . . ,TN of the literalsx1,y1,z1, . . . ,xn,yn,zn, ¬x1,¬y1,¬z1, . . . ,¬xn,¬yn,¬zn, thenN >

2Ω(d). With this remark in mind, Theorem 6.6 and its proof readily carry over to this alter-
nate definition of density.
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