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OPTIMAL BOUNDS FOR SIGN-REPRESENTING THE INTERSECTION
OF TWO HALFSPACES BY POLYNOMIALS

ALEXANDER A. SHERSTOV

ABSTRACT. Thethreshold degreef a functionf: {0,1}" — {—1,+1} is the least degree
of a real polynomialp with f(x) = sgnp(x). We prove that the intersection of two half-
spaces or{0,1}" has threshold degre®(n), which matches the trivial upper bound and
completely answers a question due to Klivans (2002). Thegdresious lower bound was
Q(+/n). Our result shows that the intersection of two halfspace$®b}" only admits a
trivial 22("-time learning algorithm based on sign-representation dyrpmials, unlike
the advances achieved in PAC learning DNF formulas and oead-Boolean formulas.
The proof introduces a new technique of independent irttebesed on Fourier analysis
and matrix theory.

1. INTRODUCTION

A well-studied notion in computational learning theory limt of aperceptron This
term stands for the representation of a given Boolean fandti {0,1}" — {—1,+1} in
the formf (x) = sgnp(x) for a real polynomiap of some degred. The least degree for
which f admits such a representation is calledttiveshold degreef f, denoted deg(f).

In other words, deg(f) is the least degree of a real polynomial that agrees Wwithsign.
Perceptrons are appealing from a learning standpoint Becduey immediately lead to
efficient learning algorithms. In more detail, let {0,1}" — {—1,+1} be an unknown
function of threshold degrest Then by definitionf has a representation of the form

f(x) = A i
(x) sgn(azgd SII;LX>

for some reals\s and is thus a halfspace M= () + (}) +--- + (J) dimensions. As a
result, f can be PAC learned in time polynomially using any of a variety of halfspace
learning algorithms. (Throughout this paper, the term “Ra@rning” refers to Valiant's
standard model [40] of learning under arbitrary distribo8.)

The study of perceptrons dates back forty years to the sémioaograph of Minsky
and Papert [25], who examined the threshold degree of dex@ranon functions. Today,
the perceptron-based approach yields the fastest knowné&¥#@ing algorithms for sev-
eral concept classes. One such is the class of DNF formulpslgfiomial size, posed a
challenge in Valiant’s original paper [40] and extensiv&lydied over the past two decades.
The fastest known algorithm for PAC learning DNF formulasgin time exgO(n%/3)}
and is due to Klivans and Servedio [18]. Specifically, théhats of [18] prove an upper
bound ofO(n3logn) on the threshold degree of polynomial-size DNF formulasicivh
essentially matches a classical lower boun@@fi/3) due to Minsky and Papert [25].
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Another success story of the perceptron-based approdoh c®hcept class of Boolean
formulas, i.e., Boolean circuits With fan-out 1 at everygga'Donnell and Servedio [29]
proved an upper bound qf/élog )s on the threshold degree of Boolean formulas of
sizes and depthd, giving the first subexponential algorithm for a family of foulas of
superconstant depth. This upper bound on the threshole:degas improved te?-5+o(1)
for any depthd by Ambainis et al. [2], building on a quantum query algoritbfr-arhi et
al. [10]. More recently, Lee [24] sharpened the upper boor@(t/s), which is tight. This
line of research gives the fastest known algorithm for PA€Zrieng Boolean formulas.

Another extensively studied problem in computationaliésg theory, and the subject
of this paper, is the problem of learnimgtersections of halfspacese., conjunctions of
functions of the formf (x) = sgn(y aix; — 0) for some realsr, ..., an, 8. While solutions
are known to several restrictions of this problem [7, 23,311,7, 19, 16], no algorithm has
been discovered for PAC learning the intersection of everttaifspaces in time faster than
2°("_ Progress on proving hardness results has also been scadeed| all known hard-
ness results [8, 1, 20, 14] either require polynomially mhalfspaces or assunpgoper
learning. In particular, we are not aware of any represemtahdependenthardness results
for PAC learning the intersection @¥(1) halfspaces.

Our Results. Since the perceptron-based approach yields the fastestrkalyorithms
for PAC learning DNF formulas and read-once Boolean forsyutais natural to wonder
whether it can yield any nontrivial results for the intetts&t of two halfspaces. Letting
D(n) stand for the maximum threshold degree over all intersestiof two halfspaces
on {0,1}", the question becomes whett¢n) is a nontrivial (sublinear) function of the
dimensiom. This question has been studied by several authors, as surechar Table 1.
Forty years ago, Minsky and Papert [25] used a compactngsmant to show thdd(n) =
w(1), the function in question being the intersection of two misigs on disjoint sets
variables. O’Donnell and Servedio [29] studied the sametion using a rather different
approach and thereby proved tiixtn) = Q(logn/loglogn). No nontrivial upper bounds
on D(n) being known, Klivans [15§7] formally posed the problem of proving a lower
bound substantially better th&logn) or an upper bound af(n).

It was recently shown in [34] th&(n) = Q(+/n), solving Klivans’ problem and ruling
out ann®v"-time PAC learning algorithm based on perceptrons. It iarcleowever, that a
PAC learning algorithm for the intersection of two halfspan timen® " would still be
a breakthrough in computational learning theory, comgartbthe advances in the study
of DNF formulas and read-once Boolean formulas. The maitritmriion of this paper is
to prove thaD(n) = Q(n), which matches the trivial upper bound and definitively raes
the perceptron-based approach for learning the intesseofitwo halfspaces in nontrivial
time.

Result Reference
D(n) = w(1) [25]
D(n) = Q(logn/loglogn) [29]
D(n) = Q(vn) [34]
D(n) =06(n) this paper

Table 1: Lower bounds for the intersection of two halfspaces.
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THEOREM1 (Mainresult). Forn=1,2 3, ..., let D(n) denote the maximum threshold de-
gree of a function of the form(x) A g(x), where fg: {0,1}" — {—1,+1} are halfspaces.
Then

To be more precise, we give a randomized algorithm which witibability at least
1—e 12 constructs two halfspaces d0,1}" whose intersection has threshold degree
O(n). In Section 6, we develop several refinements of Theorem lekample, we show
that the intersection of two halfspaces ff 1}" requires a perceptron with e¥@®(n)}
monomials, i.e., does not have a sparse sign-represantatie also give an essentially
tight lower bound on the threshold degree of the intersaaifa halfspace and a majority
function, improving quadratically on the previous boundi3d].

In summary, unlike DNF formulas and read-once Boolean fdasjuhe intersection of
two halfspaces does not admit a nontrivial sign-represientaApart from computational
learning theory, lower bounds on the threshold degree hiayee@ a key role in several
works on circuit complexity [30, 39, 21, 22, 36], Turing colexity classes [4, 6, 5], and
communication complexity [36, 35, 37, 31]. For this reasea,consider Theorem 1 and
the techniques used to obtain it to be of interest outsidewoifputational learning.

Theorem 1 and much previous work suggest that the nature aCaléarning prob-
lem changes significantly when, instead of Valiant’s orddjiarbitrary-distribution setting,
one considers learning with respect to restricted digiobg. For example, the uniform
distribution on the spher8"~! or hypercube{0,1}" allows the use of tools other than
sign-representing polynomials, such as Fourier analyisigaarticular, polynomial-time
algorithms are known for the uniform-distribution leargiaf intersections of a constant
number of halfspaces on the sphere [7, 41] and hypercube [FLrihermore, if member-
ship queries are allowed, DNF formulas are known to be ldderia polynomial time with
respect to the uniform distribution on the hypercube [12].

Our Techniques. Let f A f denote the conjunction of two copies of a given Boolean func-
tion f, each on an independent set of variables. It was shown in [@&t]the threshold
degree off A f equals, up to a small multiplicative constant, the leastrele@f a ra-
tional functionR with || f — R||. < 1/3. With this characterization in hand, the equality
deg, (f A f) = ©(y/n) was derived in [34] by solving the rational approximationlgiem

for the halfspace

f ﬁﬁz_
=sgn| 1 'xij | -
(x) sgn( +i;j; x,)

Unfortunately, thed(,/n) barrier is fundamental to the analysis in [34]. To prove that
factD(n) = ©(n), we pursue a rather different approach.

The intuition behind our work is as follows. Let,a»,...,a, be given nonzero in-
tegers, and leff: {0,1}" — {—1,4+1} be a given Boolean function such th&fx) is
completely determined by the sufnaix. When approximating pointwise by polyno-
mials and rational functions of a given degree, can oneicéstitention to those approx-
imants that are, likef, functions of the suny a;x alone rather than the individual bits
X1,X2, ..., Xn? If true, this claim would dramatically simplify the analysf the threshold
degree off by reducing it to a univariate question. Minsky and Papéest phowed that
the claim is indeed true in the highly special case= a, = - -- = ap. For the purposes of
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this paper, however, the nonzero coefficiemisas, . .., ay must be of increasing orders of
magnitude and in particular must satisfy

0f
max| —

e > exp{Q(n)}.

aj
Minsky and Papert’'s argument breaks down completely ingbing, and with good rea-
son: coefficientsry, ..., a, are easily constructed [5] for which the passage to unitaria
approximation increases the degree requirement frorml to

To overcome this difficulty, we use techniques from Fouriealgsis and matrix pertur-
bation theory. Specifically, we define an appropriate distion onn-tuples(as, ..., o)
and study the behavior of the suproix; as the vectox ranges ovef0,1}". We prove that
for a typicaln-tuple (a1, ..., an) and any collection of sumS C Z of interest, the subset
XsC {0,1}" that induces the sums 8is highly random in that membershipXg is uncor-
related with any polynomial of degree up@&gn). With some additional work, this allows
the sought passage to a univariate question. In particwsaye able to prove the existence
of ahalfspacd : {0,1}" — {—1,+1} such that any multivariate rational approximantfor
gives a univariate rational approximant for the sign fusn{+1, +2,+3,...,+2°M}
with the same degree and error. The univariate questiorghedfi-understood, we infer
that f requires a rational function of degr€en) for pointwise approximation within /3
and hence ded f A f) > Q(n) by the characterization from [34].

2. PRELIMINARIES

Notation. We will view Boolean functions as mappings— {0,1} or X — {—1,+1} for
some finite seX, where the output value 1 corresponds to “true” in the fornzesecand
“false” in the latter. We adopt the following standard defon of the sign function:

-1, x<0,
sgnx=<¢0, x=0,
1, x> 0.

The complement of a s&is denoted. We denote the symmetric difference of s8@nd
ThyS®T = (SNT)U(SNT). For a finite seX, the symbol#(X) denotes the family of
all 2%l subsets oK. For functionsf,g: X — IR on a finite sei, we use the notation

1

(f.9) = x| 2 FO)9(x)-

We let logx stand for the logarithm ok to the base 2The binary entropy function
H: [0,1] — [0,1] is given byH (p) = —plog p— (1— p)log(1— p) and is strictly increasing
on[0,1/2]. The following bound is well known [13, p. 283]:

k
(2.1) Z}(”) < 2Hk/mn. k=0,1,2,...,[n/2].
i=

For elements, y of a given set, we use the Kronecker delta

_ 17 X=Y,
Oy = {O, X Y.
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The symbolR stands for the family of all univariate real polynomials @&fgtee up tc.
The majority function MAJ: {0,1}" — {—1,+1} has the usual definition:

=1, Xg+Xo+--+X>n/2
1, otherwise

MAJn(X) = {

Fourier transform. Consider the vector space of functiof 1}" — R, equipped with
the inner product

(f,gy=2" ;} f(x)g(x).
xe{0,1}"

For SC {1,2,...,n}, define xs: {0,1}" — {—1,+1} by xs(X) = (—1)%iesX. Then
{Xs}sc(1,2...n) is an orthonormal basis for the inner product space in queséis a result,
every functionf : {0,1}" — R has a unique representation of the form

f= 5 fOxs
sc{fZ...n}

wheref (S) = (f, xs). The realsf (S) are called théourier coefficients of fThe orthonor-
mality of { xs} immediately yieldarseval’s identity

£ 2 _ 2
(22) IDRRCEIUDEN S

Matrices. The symbolR™" refers to the family of almx n matrices with real entries. A
matrix A € R™" is calledstrictly diagonally dominanif

n

|Aii|>Z|Aij|, i=12,...,n
=1
i

A well-known result in matrix perturbation theory, due tor§lggorin [11], states that the
eigenvalues of a matrix lie in the union of certain disks ia ttomplex plane centered
around the diagonal entries of the matrix. We will need tH#ang very special case,
which corresponds to showing that the eigenvalues are aiieéro.

THEOREM 2.1 (Gershgorin).Let A R™" be strictly diagonally dominant. Then A is
nonsingular.

Proof (Gershgorin) Fix a nonzero vectax € R" and choosésuch thatxi| = ||X||». Then
by strict diagonal dominance,

JiAiiXJ

so thatAx # 0. i

n

> |AilIXle = [AijllIXlle > O,
=1
i#i

|(AX)i| =
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Rational approximation. The degree of a rational functiom(x)/q(x), where p andq
are polynomials ofiR", is the maximum of the degrees pfandq. Consider a function
f: X— {-1,+1}, whereX CR". Ford > O, define

f(x)— PX)

S ax)
where the infimum is over multivariate polynomiglsandq of degree up ta such that
g does not vanish oX. In words,R(f,d) is the least error in an approximation bhy a
multivariate rational function of degree updoA closely related quantity is

f(x)— PX)

a(x)

where the infimum is over multivariate polynomigdandq of degree up ta such thag
is positive onX. These two quantities are related in a straightforward way:

R*(f,2d) < R(f,d) < R*(f,d).

R(f,d) = inf sup
p,g xeX

)

R"(f,d) = inf sup
p,q xeX

)

The second inequality here is trivial. The first follows frahe fact that every rational
approximanip(x)/q(x) of degreed gives rise to a degreed2ational approximant with the
same error and a positive denominator, namighyx)q(x)} /q(x)?.

The infimum in the definitions dR(f,d) andR* (f,d) cannot in general be replaced by
a minimum [32], even whekX is finite subset oR. This contrasts with the more familiar
setting of a finite-dimensional normed linear space, wheastterror approximants are
guaranteed to exist.

ForSC R, we let

p(X)

T q(x)
where the infimum ranges ovprq € Py such thafj is positive onS. The study of the ratio-
nal approximation of the sign function dates back to semvimeaik by Zolotarev [42] in the
late 19th century. A much later result due to Newman [28] givighly accurate estimates
of R"([-n,—1]U[1,n],d) for all n andd. Newman'’s work in particular provides upper
bounds onR* ({£1,4+2,...,+n},d), which in [34] were sharpened and complemented
with matching lower bounds to the following effect:

R"(S,d) =inf sup
p,d xS

3

THEOREM2.2 (Sherstov) Let nd be positive integers, RR" ({+1,4+2,...,+n},d). For

1<d<logn,
1 1
exp{—@ (W)} <R« exp{—m}.

R= exp{—@ (m) }

R=0.

Forlogn<d < n,

Ford>n,

Theorem 2.2 has the following corollary [34, Thm. 1.7], iniethwe adopt the notation
rdeg (f) =min{d: R"(f,d) < ¢}.
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THEOREM 2.3 (Sherstov) Let MAJ,: {0,1}" — {—1,+1} denote the majority function.

Then
2n 1 n
@(Iog{m}-logg), 2 "<e<1/3,

logn

e<1+m>, 1/3<e< L

Threshold degree. Let f: X — {—1,+1} be a given Boolean function, whekeC R"

is finite. Thethreshold degre®f f, denoted deg(f), is the least degree of a polyno-

mial p(x) such thatf (x) = sgnp(x). The term “threshold degree” appears to be due to

Saks [33]. Equivalent terms in the literature include “styalegree” [4], “voting polyno-

mial degree” [21], “polynomial threshold function degrg29], and “sign degree” [9].
Given functionsf : X — {—1,+1} andg: Y — {—1,+1}, we let the symbof Agstand

for the functionX x Y — {—1,+1} given by(f Ag)(x,y) = f(x) Ag(y). Note that in this

notation,f and f A f are completely different functions, the former having dom&aand

the latterX x X. An elegant observation, due to Beigel et al. [6], relatesrtbgons of

sign-representation and rational approximation for cogfions of Boolean functions.

rdeg. (MAJ,) =

THEOREM 2.4 (Beigel, Reingold, and Spielman)et f: X — {-1,+1} and g Y —
{-1,+1} be given functions, where , X C R". Let d be an integer with R'f,d) +
R"(g,d) < 1. Then

deg, (f AQ) < 2d.

Proof (Beigel, Reingold, and SpielmanTonsider rational function;(x)/q1(x) and
p2(y)/az(y) of degree at mosd such thaty; andg; are positive orK andY, respectively,
and

p2(y)

Su
P a2(y)

X

aly) —

p1(X)
”X*ql—(x)\*sep

<1

Then

f(x) Ag(y) = sgn{1+ f(x) +g(y)} = sgn{1+ PL) | Pa(y) }

A gy
Multiplying the last expression by the positive quantify(x)dz(y) gives f(x) Ag(y) =
sgn{az(X)az(y) + P1(X)a2(y) + P2(y)da(¥)} J

We will also need a converse to Theorem 2.4, proved in [34,.Thé]j.

THEOREM 2.5 (Sherstov) Let f: X — {-1,+1} and g Y — {—1,+1} be given func-
tions, where XY C R" are arbitrary finite sets. Assume that f and g are not idefiiica
false. Let d=deg, (f AQ). Then

RY(f,4d) + R"(g,2d) < 1.

Symmetric functions. Let S, denote the symmetric group orelements. Foo € S, and
x € {0,1}", we denoteox = (Xg(1);---,Xg(m)) € {0,1}". Forx € {0,1}", we definelx| =
X1+X2+ -+ +Xn. Afunctiong: {0,1}" — R is calledsymmetriaf @(x) = ¢(ox) for every
x € {0,1}" and every € S,. Equivalently,p is symmetric if@(x) is uniquely determined
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by |x|. Symmetric functions 00, 1}" are intimately related to univariate polynomials, as
borne out by Minsky and Papersymmetrization argumef25]:

PROPOSITION2.6 (Minsky and Papert)Let ¢: {0,1}" — R be a polynomial of degree d
Then there is a polynomial @ Py such that

o5 [#(0%)] = p(X), x € {0,1}".

We will need the following consequence of Minsky and Papesthnique for rational
functions, pointed out in [34, Prop. 2.7].

PROPOSITION 2.7. Let m,...,nx be positive integers. Consider a function
F:{0,1}" x-.-x{0,1}"™ — {—1,+1} suchthat xy,...,x) = f(|x¢|,. .., |x|) for some
f:{0,1,...,m} x---x{0,1,...,m} = {—1,+1}. Then for all d

R*(F,d) = R"(f,d).

3. ANALYSIS OF RANDOM HALFSPACES

In this section, we prove a certain structural property nfi@an halfspaces. Specifically,
we will fix integerswy,w,, ..., w, at random from a suitable range and analyze the sum

n
Zwm
i=

asx ranges ove0,1}". Our objective will be to show that, for a typical choice of the
weightswi, Wo, ..., Wy, the distribution of this sum moduld®® is highly random. More
precisely, we will show that the subskt C {0,1}" that induces any particular sum
modulo 2™ s relatively large and that membershipXais almost uncorrelated with any
polynomial of low degree. We start with a technical lemma.

LEMMA 3.1. Let f,g: {0,1}" — {0,1} be given functions. Fix an integer k with< k <
n/2. Foraset SC {1,2,...,n}, define : {0,1}" — {0,1} by

Fs(x) = f(X) A <g(x)69EBxi> .
ieS
Fix a real { > 0. Then with probability at least — 2-"tH(K/Mn+2¢n gyer a uniformly
random choice of & #7({1,2,...,n}), one has
1.

(3.1) 5

Fs(T)

m|<z e i<k

Proof. Define ¢: {0,1}" — [-1/2,1/2] by ¢(x) = f(x)g(x) — %f(x). Define .¥ C
2({1,2,...,n}) by.7 = {S:|@(S)| > 2-¢"1}. By Parseval's identity (2.2),

(3.2) .7 < 45N,

SinceFs(x) = 3 f(x) + (—1)Zi<s% ¢(x), we have

(3.3) Fs(T) —

%f(T)‘zMB(S@T)L STC{12...n}.
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For a uniformly randonS e #({1,2,...,n}), the set{S@ T : |T| < k} contains any
fixed element 0f%({1,2,...,n}) with probability 2" 5¥ o (). By the union bound, we
infer that

k
P{SET:TI<kiNs £2]< |72 " > (?)
=
which in view of (2.1) and (3.2) is bounded from above by g (k/mn+2{n This observa-
tion, along with (3.3), completes the proof. [

Using Lemma 3.1 and induction, we now obtain a key interntedigsult.

LEMMA 3.2. Fix an integer k> 0 and realse,{ € (0,1/2). Choose sets¢SSy, ..., €
2({1,2,...,n}) uniformly at random. Fix any integer s and define{0,1}" — {0,1} by

(3.4) fx)=1 & _izi _zsszs (mod Z*1).
i= je

Then with probability at least — (k+ 1)2-"H(E)n+2n gyer the choice of §Sy,.. ., S.
one has

. dr, -
f(T)—Zk—fi L27¢n

(3.9) < IT| <en.

)

Proof. In view of the modular counting in (3.4), one may assume that< 2k+1 and
therefores = zik:OZibi for somebyg, by, ..., bx € {0,1}. The proof of the lemma is by in-
duction onk for a fixeds.

The base cask = 0 corresponds td (x) = 3 + 3(—1)™xg,(x). One obtains (3.5) by
conditioning on the evenS| > &n, which in view of (2.1) occurs with probability no
smaller than 1-2-"H(EN,

We now consider the inductive step. Defiffe {0,1}" — {0,1} by

/ ki = 4
f'ix)=1 & iZOZ j;Xj = i;Z bi (mod 2).

Let E; be the event, over the choice &,...,S1, that |F/(T) — 2 %81 | < 274" for
|T| < en. By the inductive hypothesis,

(3.6) P[Ey] > 1— k2 MtH(En+20n

Let E; be the event, over the choice®,..., S, that|f(T) — 3F/(T)| < 27" for |T| <
en. In this terminology, it suffices to show that

(3.7) P[E1 AEp] > 1— (k+1)2 MHEn+2en

Observe that

() =f'(x)A <9(X)@@Xi> ;
ISR
whereg: {0,1}" — {0,1} is the function such thaf(x) = 1 if and only ifby is the(k+ 1)st
least significant bit of the integeFk 32! YjesXj- As a result, Lemma 3.1 shows that
P[E;] > 1— 2~ "H(EN+2(n This bound, along with (3.6), settles (3.7) and thereby com-
pletes the induction. [
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We have reached the main result of this section.

THEOREM 3.3 (Key property of random halfspacegjix an integer k> 0 and realse, { €
(0,1/2). Choose integers wwo, . . ., Wy uniformly at random fron{0, 1,...,2* — 1} For
se Z, define §: {0,1}" — {0,1} by

(3.8) fsx)=1 & .iwixi =s (mod &%),

Then with probability at leastl — (k 4 1)2-"tH(EN+2n+k+1 gyer the choice of
W1, Wo, ..., Wy, one has

. o0

fs(T) = g | < 2-¢n

X

, T|<en, seZ.

Proof. In view of the modular counting in (3.8), it suffices to prove ttheorem fos €
{0,1,...,2*1 _1}. The functionsfs have the following equivalent definition: pick sets
0,51, .-, € 2({1,2,...,n}) uniformly at random and define

k
fsx)=1 & Z}Z' %Xj =s (mod Z*1),
i= je
The proof is now complete by Lemma 3.2 and the union bound®ver i

4., ZEROING OUTCORRELATIONS BY A CHANGE OF DISTRIBUTION

Recall the setting of the previous section, where we fixedgetswy,wo, ..., W, at
random from a suitable range and analyzed the $iimwix asx ranged ovef0,1}".
We showed that the subsi¢  {0,11" that induces any particular susmodulo 2
is relatively large and that membershipXg hasalmostzero correlation with any given
polynomial of low degree. For the purposes of this paperctreelations with low-degree
polynomials need to bexactlyzero. In this section we show that, with respect to a suitable
distribution s on eachXs, membership inXs will indeed have zero correlation with any
low-degree polynomial.

A starting point in our discussion is a general statementevaiag out the correlations
of given Boolean functiongi, X2, . . ., Xk with another Boolean functiof. Recall that for
functionsf,g: X — R on afinite seX, we use the notation

1
(f.9) = mxgxf(X)g(X)-

THEOREMA4.1. Let f, x1,..., Xxx: X = {—1,+1} be given functions on a finite set Xup-
pose that

K 1
(4.1) _;I<f,xi>| <3

3 3 et

NI =

k

(4.2) ;I<xi,XJ>| <
=
J#
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Then there exists a probability distributignon X such that

E[f(X)Xi(X)]:Q i=12,...k
REMARK 4.2. A comment is in order on the hypothesis of Theorem 4.1e fhieorem
states that ifx1, X2, ..., Xk €ach have a small correlation withand, in addition, have
small pairwise correlations, then a distribution existdwespect to whicl is completely
uncorrelated withy1, X2, ..., Xk. The latter part of the hypothesis, namely the requirement
(4.2) of small pairwise correlations fof, X2,.. ., Xk, May seem unnecessary at first. In
actuality, it is vital. Exponential lower bounds on the wgjof linear perceptrons [27, 38]
imply, by linear programming duality, the existence of ftions f, X1, X2,..., Xk: X —
{—1,4+1} such tha{(f, xi)| = exp{—©(k)},i=1,2,...,k, and yet

k
(4.3) f(x) = Sgn(;aixi (X)>

for some fixed realss, ..., ak. In this construction, the correlation dfwith eachy; is
small, in fact exponentially smaller than what is assumetdlirorem 4.1; nevertheless,
the representation (4.3) rules out a distributiomith respect to whicH could have zero
correlation with eacly;, for such a distributionu would have to obey

k

0< I;Zl [ i;aixi(x)

Proof of Theorend.1 Consider the linear system

(4.4) Ma =y

K K
] =E [f(x) ZlaiXi(X)] = |Zlai E[f(x)Xxi (9] =0.

in the unknowna € R, where M = [{xi,xj)]ij is @ matrix of orderk and y =
((f,X1),-.-,(f,xc)) € RK. Then (4.2) shows thatl is strictly diagonally dominant and
hence nonsingular by Theorem 2.1. Fix the unique solutido the system (4.4). Then
2|ai| — z‘j(:l|aj X, x| < |(f,xi)| fori=1,2,....,k. Summing thesé& inequalities, we
obtain

k K K )
2i;|ai| - JZl|aj|i;l|<)(i7Xj>| < i;|<f’Xi>|’

which in view of (4.1) and (4.2) shows th§L1|ai| < 1. Therefore, the functiop: X — R
given by

k
p(x)=¢ (1— f(x) _;aiXi (X)>

is a probability distribution oiX for a suitable normalizing factar > 0. At last,
k
ELF00xi ()] = £[X] <<f,xi> ->q <xi,xJ'>> =0,
=1

where the final equality holds by (4.4). I

We are now in a position to prove the main result of this sectio
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THEOREM 4.3. Let a > 0 be a sufficiently small absolute constant. Choose integers
Wi, Wa,. .., Wy uniformly at random fron{0, 1,...,2l@"+1 _ 1} For s Z, define

(45) Xs= {Xe {07 1}” : i\Mx' =g (mOd ZC{anrl) } )

Then with probability at least — e "/3 over the choice of wws, . .., wy, there is a distri-
bution s on X (for each g such that

(4.6) E[D(X)] =E [P(X)]

for any st € Z and any polynomial p of degree at maostn|.

Proof. Leta > 0 be sufficiently small. We will assume throughout the prbath > 1/a,
the theorem being trivial otherwise. Set 2a, { =1/5, andk= |an| in Theorem 3.3.
Then with probability at least X e /3 over the choice ofv,Ws, ..., W, one has

Oz

~ olanj+1

(4.7) fo(T) <275, IT|<2an, sez,

wherefs: {0,1}" — {0,1} is given byfs(x) = 1 < x € Xs. It follows that for eacts,
(4.8) IXs| = 2"fs(2) = 2"(2loanl-1 _ 2 1/5),

For f,g: {0,1}" — R, we will write (f,g)x; = [Xs| ! Txex. f(X)9(X). Let . C
Z({1,2,...,n}) be the system of nonempty subsets of at nmstelements. Fix any
T € .. Then for eacls,

2n - 2n 1
(4.9) %Mx&xﬂm = @%m(smﬂ <1<
where the final two inequalities follow from (2.1), (4.7),caf#.8). Similarly, for eacls,
(4.10) S (s xohel = o 3 1S < o725 < 2.
& Xl & [Xs| 2

In view of (4.9) and (4.10), Theorem 4.1 provides a distiitiufs on {0,1}" that is sup-
ported onXs and obeygis(S) = 0 for Se .. Since s is a probability distribution, we
additionally havefls(@) = 27" for all s. In particular, the distributiongis have identical
Fourier spectra up to coefficients of ordem, which is another way of stating (4.6). [

5. REDUCTION TO A UNIVARIATE PROBLEM

Recall from the Introduction that the crux of our proof is ttablish the existence
of a halfspace : {0,1}" — {—1,+1} that requires a rational function of degi®¢én) for
pointwise approximation within /3. The purpose of this section is to reduce this task, for a
suitably chosen random halfspace, to a univariate probléraunivariate problem pertains
to the uniform approximation of the sign function on thefgetl, +£2, +3, ..., i2®<“)} and
has been solved in previous work. Key to this univariate eéida will be the construction
of probability distributions in the previous two sections.
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THEOREM 5.1 (Reduction to a univariate problemut k= |an|, wherea > 0 is the
absolute constant from Theorefn3. Choose w, Wy, ..., W, uniformly at random from
{0,1,...,2<*1 _ 1} Define f: {0,1}" x {0,1,2,...,n} — {—1,+1} by

_ 1 C - k+1.
f(x,t)_sgn<§+i;w.x.—2 t].

Then with probability at least — e /3 over the choice of wws, . .., w,, one has
(5.1) RY(f,d) > RT({£1,4+2,+3,...,+2¢}.d), d=0,1,...,k

Proof. Fors= +1,42 +3,...,+2% defineXs C {0,1}" by (4.5). Then by Theorem 4.3,
with probability at least - e "/3 there is a distributiopis on Xs for eachs such that

(52) E [p()] = E[p()

foranys,r € {#1,42, +3,...,+2¢} and any polynomiap of degree no greater th&nin
the remainder of the proof, we will work with a fixed choice ofightswy, w,, ..., w, for
which the described distributiong exist.

Suppose thaR" (f,d) < € where 0< € < 1 and 0< d < k. Then there are degre-
polynomialsp,q onR" x R such that on the domain df

(5.3) 0 < (1-&)qxt) < p(x,t)f(x,t) < (1+€)q(x.t).
On the support ofis (for s= +1,+2,+3,...,4+2%), the linear form

0(x,8) =271 <iwixi - s)

obeys((x,s) € {0,1,2,...,n} andf(x,£(x,s)) = sgns. Lettingt = ¢(x,s) in (5.3) and pass-
ing to expectations,

0< E [a0x((x9)] (1) <_E [p(x£(x9)]sgrs

X~HUs X~ Us

< E a(x£(x8))] (1+¢).

X~ Hs
It follows from (5.2) thatE, [p(x,4(x,s))] = P(s) andE[q(x,£(x,s))] = Q(s) for some
3,

P,Q € Py and alls. As a result,R" ({#1,42,+3,...,+2},d) < &, the approximant in
question beind®/Q.

It remains to rewrite the previous theorem in terms of fumdi on the hypercube
{0,1}?" rather than the s€0,1}" x {0,1,2,...,n}.

THEOREM5.2. Put k= |an|, wherea > 0 is the absolute constant from Theordn3.
Choose w,Wa, ..., Wy uniformly at random fronf0, 1, ..., 2€t1 — 1} Define f: {0,1}?" —

{_17+1} by
f(x) =sgn }4— nW‘X@—ZkH % Xi
2 i; | E-TRYA

Then with probability at least — e /3 over the choice of wws, . .., w,, one has
RY(f,d) > R ({£1,42,+3,...,+2X}.d), d=0,1,....k

Proof. Immediate from Proposition 2.7 and Theorem 5.1. [
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6. MAIN RESULT AND GENERALIZATIONS

We now combine the newly obtained result on rational appnaxion with known re-
sults from Section 2 to prove the main theorem of this work.

THEOREM 6.1 (Main result).Fix sufficiently small absolute constarts> 0 and 3 =
B(a) > 0. Choose integers wws, ..., wy € {0,1,...,2l9+1 _ 1} uniformly at random.
Then with probability at least — e "/3, the function £ {0,1}2" — {—1,+1} given by

1 n 2n
f(x)=sgn| =+ S wx —2lan+t X;
<2 2" 2
obeys

(6.1) deg, (fAf) > [Bn].

Proof. Theorem 5.2 shows that with probability at least # "3 over the choice of
W1, Wo, ..., Wy, one has

(6.2) RT(f,d) > R™(S,d), d=0,1,....|an|,

whereS= {+1,4+2 +3,...,+2l%"} anda > 0iis the absolute constant from Theorem 4.3.
In the remainder of the proof, we will condition on this event

Suppose now that dedf A f) < | Bn], wheref is a constant to be chosen later subject
to 0< B < a/4. Then Theorem 2.5 implies th&" (f, [48n]) < 1/2, which in view of
(6.2) leads toR"(S,[4Bn|) < 1/2. The last inequality violates Theorem 2.2 for small
enoughB > 0. Thus, (6.1) holds fof8 small enough. i

Recall that the technical crux of this paper is an optimaldoWwound for the rational
approximation of a halfspace. We will have occasion to apjoethis result again, and for
this reason we formulate it as a theorem in its own right.

THEOREMG6.2. A family of halfspacesth {0,1}" — {—1,+1},n=1,23,..., exists such
that
n
+ = — — — =
(6.3) R* (hn,d) = 1 exp{ e(d)}, d=1,2,...,0(n).
Proof. The lower bound in (6.3) is immediate from Theorem 5.2 anduthieariate lower
boundsin Theorem 2.2.

Next, every halfspacé,: {0,1}" — {—1,+1} constructed in Theorem 5.2 trivially
obeysR* (hn,1) < 1—exp{—O(n)}. For 0< & < 1, Newman'’s classical work [28] shows
thatR* ([—1,—&] U [&,1],d) < 1— E91/9) whence by composition of the approximants
one obtains the upper boundin (6.3).

Mixed intersection. Theorem 6.1 shows that the intersection of two halfspacedie
asymptotically highest threshold degree. At the same tBeggel et al. [6] showed that
the intersection of a constant number of majority functiong0, 1}", which are partic-
ularly simple halfspaces, has threshold degd@egn). We now derive a lower bound of
Q(+/nlogn) on the threshold degree of the intersection of a halfspadeanajority func-
tion, which improves quadratically on the previous boun{B#] and essentially matches
the upper bound)(/nlogn), given below in Remark 6.4.
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THEOREMG6.3. A family of halfspacesth {0,1}" — {—1,+1},n=1,23,..., exists such
that

(6.4) deg, (hhn AMAJR) = O(4/nlogn).
Proof. The lower bound in (6.4) is immediate from Theorems 2.3, 286, 6.2. The upper
bound in (6.4) is immediate from Theorems 2.3, 2.4, and 6.2. i

REMARK 6.4. The construction of Theorem 6.3 is essentially bessiptesin that every
sequence of halfspachg: {0,1}" — {-1,+1},n=1,23,..., obeys

(6.5) deg. (hn AMAJ,) = O(+/nlogn).

To derive this upper bound, recall th&"(h,, 1) < 1 — exp{—©(nlogn)} for every
halfspacehn: {0,1}" — {—1,+1}, by a classical result due to Muroga [26]. Since
R ([-1,—&]U[E,1],d) < 1— O/ for 0 < & < 1 by Newman [28], we obtain by com-
position of approximants th&" (h,,d) < 1—exp{—O({nlogn}/d)}. This settles (6.5) in
view of Theorems 2.3 and 2.4.

Threshold density. In addition to threshold degree, several other complexigasures
are of interest when sign-representing Boolean functignsebl polynomials. One such
complexity measure idensity,i.e., the leask for which a given function can be sign-
represented by a linear combinationkoparity functions. Formally, for a given function
f: {0,1}" — {—1,41}, thethreshold densitgng f) is the minimum siz¢.7| of a family
< C 2({1,2,...,n}) such that

f(x) = A
(x) Sgn(g;y SXS(X)>

for some realds, S€ .. It is clear from the definition that dig§) < 2" for all functions
f: {0,1}"— {—1,+1}, and we will show that the intersection of two halfspace$@m }"
has threshold density®?.

To this end, we recall an elegant technique for convertingl®in functions with high
threshold degree into Boolean functions with high thredtd®nsity, due to Krause and
Pudlak [21, Prop. 2.1]. Their construction sends a fumcfio {0,1}" — {—1,+1} to the
function f¥?: ({0,1}")3 — {—1,+1} given by

fPOY2) = (.., @A)V (@A), -.).
THEOREM®6.5 (Krause and PudlakEvery function f {0,1}" — {—1,+1} obeys
dns{fKP) > 2degt(f)'
We are now in a position to obtain the desired density results

THEOREMG6.6. A family of halfspacesth {0,1}" — {—1,+1},n=1,23,..., exists such
that

(6.6) dnghn A hy)
(6.7) dnghy A MAJy,)

exp{©(n)},
exp{®(/nlogn)}.

2
2
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Proof. The parity of several parity functions is another paritydtion. As a result,

(6.8) n’kllax{dns{hn/\hn)} > mFax{dns(F AF)},

where the maximum on the left is over all halfspabgs {0,1}" — {—1,+1} and the
maximum on the right is over arbitrary functiofs {0,1}™ — {—1,+1} (for arbitrary
m) such that dnd) < n. For eachn=1,2,3,..., Theorem 6.1 ensures the existence of
a halfspacef,: {0,1}" — {—1,+1} with deg.(fn A fn) > Q(n). By Theorem 6.5, the
function (fn A f,)KP = f,KP A £,XP has threshold density ef@(n)}. Since dnsf,KP) <
4n+ 1, the right member of (6.8) is at least €Xp(n)}.

This completes the proof of (6.6). The proof of (6.7) is clgsnalogous, with Theo-
rem 6.3 used instead of Theorem 6.1. [

The lower bounds in Theorem 6.6 are essentially optimal.cifipally, (6.6) is tight
for trivial reasons, whereas the lower bound (6.7) nearlychnes the upper bound of
exp{O(/nlog?n)} that follows from (6.5).

We also note that Theorem 6.5 readily generalizes to linearbinations of conjunc-
tions rather than parity functions. In other words, if a ftime f: {0,1}" — {-1,+1}
has threshold degreé and fXP(x,y,z) = sgr(zi'\‘zlx\i'ﬁ(x,y, z)) for some conjunctions
T1,..., Ty oOf the literalsxy,y1,21,. .., %0, Yn, Zn, —X1, Y1, 921, - - - , =Xn, —Yn, —Zn, thenN >
29(d) With this remark in mind, Theorem 6.6 and its proof readilyrgaver to this alter-
nate definition of density.
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