arXiv:0911.0801v3 [cs.DS] 6 Dec 2011

Tractable hypergraph properties for constraint satisfa@nd
conjunctive queries

Daniel Marx

October 28, 2018

Abstract

An important question in the study of constraint satistatproblems (CSP) is understanding how the
graph or hypergraph describing the incidence structurb®tbnstraints influences the complexity of the
problem. For binary CSP instances (i.e., where each camtsinaolves only two variables), the situation
is well understood: the complexity of the problem esselgtidépends on the treewidth of the graph of
the constraints [27, 43]. However, this is not the correawaar if constraints with unbounded number
of variables are allowed, and in particular, for CSP instsnarising from query evaluation problems in
database theory. Formally,# is a class of hypergraphs, then let CEPpe CSP restricted to instances
whose hypergraph is ifit. Our goal is to characterize those classes of hypergraptvehiich CSPH) is
polynomial-time solvable or fixed-parameter tractableapzeterized by the number of variables. Note that
in the applications related to database query evaluatierysually assume that the number of variables is
much smaller than the size of the instance, thus paramatierzy the number of variables is a meaningful
question.

The most general known property &f that makes CSR{) polynomial-time solvable is bounded frac-
tional hypertree width. Here we introduce a new hypergraphsure calledubmodular widthand show
that bounded submodular width &f (which is a strictly more general property than boundedtioaal
hypertree width) implies that CSH] is fixed-parameter tractable. In a matching hardnesstreseishow
that if # has unbounded submodular width, then G$Pis not fixed-parameter tractable (and hence not
polynomial-time solvable), unless the Exponential Timepbihesis (ETH) fails. The algorithmic result
uses tree decompositions in a novel way: instead of usingggestlecomposition depending on the hyper-
graph, the instance is split into a set of instances (all erstime set of variables as the original instance),
and then the new instances are solved by choosing a diffemtiecomposition for each of them. The
reason why this strategy works is that the splitting can beeda such a way that the new instances are
“uniform” with respect to the number extensions of partialusions, and therefore the number of partial
solutions can be described by a submodular function. Fohérdness result, we prove via a series of
combinatorial results that if a hypergraghhas large submodular width, then a 3SAT instance can be effi-
ciently simulated by a CSP instance whose hypergraph io prove these combinatorial results, we need
to develop a theory of (multicommaodity) flows on hypergraphd vertex separators in the case when the
functionb(S) defining the cost of separatSiis submodular, which can be of independent interest.

*A preliminary version of the paper was presented at STOC 2010
TInstitut fur Informatik, Humboldt-Universiat , Berlirfzermany.dmarx@cs.bme . hu

http://arxiv.org/abs/0911.0801v3

Contents

1 Introduction k!

2 Preliminaries

3 Width parameters 14

4 From CSP instances to submodular functions 13
4.1 CONSIStENCY v o e e e e e e e e e e e e e [1h
4.2 Decomposition into uniform CSPinstances oL [16
4.3 Uniform CSP instances and submodularity (18

5 From submodular functions to highly connected sets 2d
51 Thefunctiond™ot []21

5.2 Submodular separation e
5.3 Obtaining ahighly connectedset i e

[2B
[27
6 From highly connected sets to embeddings 21
6.1 Highly connected setswithcliques [2s
6.2 Concurrentflowsandembedding [3b
6.3 Connection with adaptive width (35

[38

3¢

7 From embeddings to hardness of CSP

8 Conclusions

1 Introduction

There is a long line of research devoted to identifying hgpawh properties that make the evaluation of con-
junctive queries tractable (see e.q. 1[23,50,[26, 27]). Oainngontribution is giving a complete theoretical
answer to this question: in a very precise technical senseharacterize those hypergraph properties that im-
ply tractability for the evaluation of a query. Efficient &vation of queries is originally a question of database
theory; however, it has been noted that the problem can heetteas a constraint satisfaction problem (CSP)
and this connection led to a fruitful interaction betweemtiio communities [39, 25, 50]. Most of the literature
relevant to the current paper use the language of constaiisfaction. Therefore, after a brief explanation of
the database-theoretic motivation, we switch to the laggud CSPs.

Conjunctive queries. Evaluation of conjunctive queries (or equivalently, Selemject-Join queries) is
one of the most basic and most studied tasks in relationabdags. A relational database consists of a fixed set
of relations. A conjunctive query defines a new relation tfaat be obtained as first taking the join of some rela-
tions and then projecting it to a subset of the variables. rexample, consider a relational database that con-
tains three relations: enrollé@ersonCourseDate), teache&PersonCourseYear), parentPerson1Person2.

The following queryQ defines a unary relation af#® with the meaning thatP is enrolled in a course taught
by her parent.”
Q:angP) « enrolledP,C,D) A teache&P2,C,Y) A parentP2,P).

In the Boolean Conjunctive Quengroblem, the task is only to decide if the answer relatiomipty or not,
that is, if the join of the relations is empty or not. This isially denoted as the relation “ans” not having any
variables. Boolean Conjunctive Query contains most of trakinatorial difficulty of the general problem
without complications such that the size of the output bexgonentially large. Therefore, the current paper
focuses on this decision problem.

In a natural way, we can define tinypergraphof a query: its vertices are the variables appearing in
the query and for each relation there is a correspondingrbygpe containing the variables appearing in the
relation. Intuitively, if the hypergraph has “simple sttuie,” then the query is easy to solve. For example,
compare the following two queries:

Q1 : ans— Ry(A,B,C) ARy(C,D) ARs(D,E,F) AR4(E,F,G,H) ARs(H, 1)
Q. ans«— Ry(A,B) ARx(A,C) AR3(A, D) A Ry(B,C) ARs(B,D) ARs(C, D)

Even though more variables appearQa, evaluating it seems to be easier: its hypergraph is “p&th”li
thus the query can be answered efficiently by, say, dynansigramming technigues. On the other hand, the
hypergraph of) is a clique on 4 vertices and no significant shortcut is appa@mpared to trying all possible
combinations of values fqA, B,C,D).

What are those hypergraph properties that make Boolearu@ativje Query tractable? In the early 80s,
it has been noted that acyclicity is one such propérty [95898]. Later, more general such properties were
identified in the literature: for example, bounded queryttvid 4], bounded hypertree width [23], and bounded
fractional hypertree width [42, 28]. Our goal is to find thegnhgeneral hypergraph property that guarantees
an efficient solution for query evaluation.

Constraint satisfaction. Constraint satisfaction is a general framework that inefuchany standard algo-
rithmic problems such as satisfiability, graph coloringatiase queries, etc. [26,120]. A constraint satisfaction
problem (CSP) consists of a 3étof variables, a domai®, and a se€ of constraints, where each constraint
is a relation on a subset of the variables. The task is to mssiglue fromD to each variable in such a way
that every constraint is satisfied (see Definifiod 2.1 in i8a@ for the formal definition). For example, 3SAT
can be interpreted as a CSP problem where the dom&irHg0,1} and the constraints i@ correspond to the
clauses (thus the arity of each constraint is 3). As anotkemele, let us observe that theClique problem
(Is there &-clique in a given grapl&?) can be easily expressed as a CSP instance the followingLwal
be the set of vertices @, letV containk variables, and le€ contain('g) constraints, one constraint on each
pair of variables. The binary relation of these constraiatgiire that the two vertices are distinct and adjacent.
Therefore, the CSP instance has a solution if and orB/hfas ak-clique.

It is easy to see that Boolean Conjunctive Query can be fatedlas the problem of deciding if a CSP
instance has a solution: the variables of the CSP instantespond to the variables appearing in the query
and the constraints correspond to the database relationkstiActive feature of CSP instances obtained this
way is that the number of variables is small (as queries giedlly small), while the domain of the variables
are large (as the database relations usually contain atamgpéer of entries). This has to be contrasted with
typical CSP problems from Al, such as 3-colorability ands§ability, where the domain is small, but the
number of variables is large. As our motivation is datalthseretic, in the rest of the paper the reader should
keep in mind that we are envisioning scenarios where the puoflvariables is small and the domain is large.

As the examples above show, solving constraint satisfagiroblems is NP-hard in general if there are
no additional restrictions on the input instances. The ngaii of the research on CSP is to identify tractable
special cases of the general problem. The theoreticahlitexr on CSP investigates two main types of restric-
tions. The first type is to restrict thmnstraint languagethat is, the type of constraints that are allowed. This
direction includes the classical work of Schaefer| [51] asdriany generalizations [10,111,112] 20| 38]. The
second type is to restrict thatructureinduced by the constraints on the variables. Tlpergraphof a CSP
instance is defined to be a hypergraph on the variables oh#ft@rice such that for each constraimt C there
is a hyperedge; containing exactly the variables that appeac.iff the hypergraph of the CSP instance has
very simple structure, then the instance is easy to solveekample, it is well-known that a CSP instarice
with hypergraptH can be solved in timél |9™(H) [22], where twH) denotes the treewidth &f and |1 || is
the size of the representation lah the input.

Our goal is to characterize the “easy” and “hard” hypergsaipbm the viewpoint of constraint satisfaction.
However, formally speaking, CSP is polynomial-time soleator every fixed hypergraphi: sinceH has a
constant numbek of vertices, every CSP instance with hypergréphan be solved by trying alll || possible
combinations on th& variables. It makes more sense to characterize tblassesf hypergraphs where CSP
is easy. Formally, for a clask of hypergraphs, let CSP() be the restriction of CSP where the hypergraph
of the instance is assumed to be#fi For example, as discussed above, we know théf i a class of
hypergraphs with bounded treewidth (i.e., there is a constasuch that twH) < w for everyH €), then
CSP{H) is polynomial-time solvable.

For the characterization of the complexity of C&(we can investigate two notions of tractability.
CSP) is polynomial-time solvabli there is an algorithm solving every instance of CEPin time (||1]])°,
where||l || is the length of the representationlai the input. The following notion interprets tractability a
less restrictive way: CSHI) is fixed-parameter tractable (FPT)there is an algorithm solving every instance
| of CSPE) in time f(H)(||1||)°Y, wheref is an arbitrary computable function of the hypergraplof the
instance. Equivalently, the factdi(H) in the definition can be replaced by a factiqk) depending only on
the numbek of vertices ofH: as the number of hypergraphs brertices (without parallel edges) is bounded
by a function ofk, the two definitions result in the same notion. The motivatiehind this definition is that
if the number of variables is assumed to be much smaller theuthe domain size, then we can afford even
exponential dependence on the number of variables, as btigeadependence on the size of the instance is
polynomial. For a more background on fixed-parameter théldta the reader is referred to the parameterized
complexity literaturel[18, 21, 45].

The case of bounded aritiesIf the constraints have bounded arity (i.e., the edge siZ¢ is bounded by
a constant), then the complexity of CSP) is well understood. In this case, bounded treewidth is tilg o
polynomial-time solvable case:

Theorem 1.1([27]). If H is a recursively enumerable class of hypergraphs with bedneldge size, then
(assuming=PT+# W[1]) the following are equivalent:

1. CSP{) is polynomial-time solvable.

2. CSP®) is fixed-parameter tractable.

3. H has bounded treewidth.

The assumption FPFE W[1] is a standard hypothesis of parameterized compleXibus in the bounded

arity case bounded treewidth is the only property of the tyagh that can make the problem polynomial-

4

time solvable. By definition, polynomial-time solvabilityplies fixed-parameter tractability, but Theoreml 1.1
proves the surprising result that whenever G%Pi§ fixed-parameter tractable, it is polynomial-time sblea
as well.

The following sharpening of Theorelm 1.1 shows that thereialgorithm whose running time is signif-
icantly better than th¢l||°™ ™)) bound of the treewidth based algorithm, and this is true ifrestrict the
problem toany classH of hypergraphs. The result is proved under the Exponentiat Hypothesis (ETH)
[35] stating that there is nd®®) time algorithm fom-variable 3SAT, which is a somewhat stronger assumption
than FPT# W[1].

Theorem 1.2([43]). If there is a function f and a recursively enumerable classf hypergraphs with bounded
edge size and unbounded treewidth such that the problem?@)®a6 be solved in time(H) ||1 ||o(W(H)/logtw(H))
for instances | with hypergraph ¢ H, then ETH fails.

This means that the treewidth-based algorithm is almosimapton every class of hypergraphs: in the
exponent only a®(logtw(H)) factor improvement is possible. It is conjecturediinl [43ttMheoreni 1]2 can
be made tight, i.e., the lower bound holds even if the lobanit factor is removed from the exponent.

Conjecture 1.3 ([43]). If H is a class of hypergraphs with bounded edge size, then tkeme algorithm
that solves CSRY) in time f(H)||1||°®™ ™) for instances | with hypergraph K #, where f is an arbitrary
function.

Unbounded arities. The situation is less understood in the unbounded arity, Ga&sewhen there is no
bound on the maximum edge size7if First, the complexity in the unbounded-arity case dep@mdsow the
constraints are represented. In the bounded-arity casaclf constraint contains at mostariables being
a fixed constant), then every reasonable representatiorcarfisiraint has sizf|°"). Therefore, the size of
the different representations can differ only by a polyrarfactor. On the other hand, if there is no bound on
the arity, then there can be exponential difference betwleesize of succinct representations (e.g., formulas
[15])) and verbose representations (e.g., truth tableg.[44]e running time of an algorithm is expressed as a
function of the input size, hence the complexity of the peablcan depend on how the input is represented:
longer representation means that it is potentially easiebtain a polynomial-time algorithm.

The most well-studied representation of constraints igisall the tuples that satisfy the constraint. This
representation is perfectly compatible with our dataliaseretic motivation: the constraints are relations
of the database, and a relation is physically stored as a tabitaining all the tuples in the relation. For
this representation, there are clasgésith unbounded treewidth such that CSP restricted to thasscis
polynomial-time solvable. A trivial example is the clagsof all hypergraphs having only a single hyperedge
of arbitrary size. The treewidth of such hypergraphs canrbirarily large (as the treewidth of a hypergraph
consisting of a single edgeis exactly|e| — 1), but CSPH) is trivial to solve: we can pick any tuple from the
constraint corresponding to the single edge. There are, otbitrivial, classes of hypergraphs with unbounded
treewidth such that CSH() is solvable in polynomial time: for example, classes wittuhded(generalized)
hypertree width[24], boundedfractional edge cover numbdR8], and boundedractional hypertree width
[28,[42]. Thus, unlike in the bounded-arity case, treewidtimot the right measure for characterizing the
complexity of the problem.

Our results. We introduce a new hypergraph width measure that westdlimodular width.Small sub-
modular width means that for every monotone submodulartimmd on the vertices of the hypergraph,
there is a tree decomposition whé&@) is small for every bag of the decomposition. (This definition makes
sense only if we normalize the considered functions: far teason, we require thate) < 1 for every edge
of H.) The main result of the paper is showing that bounded suhbtaogvidth is the property that precisely
characterizes the complexity of C3P

Theorem 1.4(Main). LetH be a recursively enumerable class of hypergraphs. Assutinénigxponential Time
Hypothesis, CSR) parameterized by H is fixed-parameter tractable if and @ity has bounded submodular
width.

Theorem_1.W has an algorithmic side (algorithm for boundgsh®dular width) and a complexity side
(hardness result for unbounded submodular width). Unlilevipus width measures in the literature, where
small value of the measure suggests a way of solving @$R(is not at all clear how bounded submodular
width is of any help. In particular, it is not obvious what sutidular functions have to do with CSP instances.
The main idea of our algorithm is that a CSP instance can Hé™ggo a small number of “uniform” CSP
instances; for this purpose, we use a partitioning proeedhspired by a result of Alon et al.l[4]. More
precisely, splitting means that we partition the set ofégppearing in the constraint relations in a certain
way and each new instance inherits only one class of thetipar{thus each new instance has the same set
of variables as the original). Uniformity means that for aupbsetB C A of variables, every solution for
the problem restricted t8 has roughly the same number of extension#AtoThe property of uniformity
allows us to bound the logarithm of the number of solutionshendifferent subsets by a submodular function.
Therefore, bounded submodular width guarantees that edfdrm instance has a tree decomposition where
only a polynomially bounded number of solutions has to besittared in each bag.

Conceptually, our algorithm goes beyond previous decoitippgechniques in two ways. First, the tree
decomposition that we use depends not only on the hyperghaplon the actual constraint relations in the
instance (we remark that this idea first appeared_ih [44] iifferdnt context that does not directly apply to our
problem). Second, we are not only decomposing the set aiblas, but we also split the constraint relations.
This way, we can apply different decompositions to difféqggrts of the solution space.

The proof of the complexity side of Theorém]1.4 follows themsehigh-level strategy as the proof of The-
orem[1.2 in[[43]. In a nutshell, the argument of|[43] is thédwing: if treewidth is large, then there is subset
of vertices which is highly connected in the sense that thel@es not have a small balanced separator; such
a highly connected set implies that there is uniform corentrflow (i.e., a compatible set of flows connecting
every pair of vertices in the set); the paths in the flows candesl to embed the graph of a 3SAT formula;
and finally this embedding can be used to reduce 3SAT to CSReTdrguments build heavily on well-known
characterizations of treewidth and results from combimatoptimization (such as th@(logk) integrality gap
of sparsest cut). The proof of Theorém]1.4 follows this aetlibut now no such well-known tools are avail-
able: we are dealing with hypergraphs and submodular fumetin a way that was not explored before in the
literature. Thus we have to build from scratch all the neags®ols. One of the main difficulties of obtaining
Theoreni 14 is that we have to work in three different domains

e CSP instancesAs our goal is to investigate the existence of algorithmgiagl CSP, the most obvious
domain is CSP instances. In light of previous results, weapecially interested in algorithms based on
tree decompositions. For such algorithms, what mattetseigxistence of subsets of vertices such that
restricting the instance to any of these subsets gives gamnices with “small” number of solutions. In
order to solve the instance, we would like to find a tree deasitipn where every bag is such a small
set.

e Submodular functions. Submodular width is defined in terms of submodular functishes submod-
ular functions defined on hypergraphs is our second natorabih. We need to understand what large
submodular width means, that is, what property of the sulmaodunction and the hypergraph makes it
impossible to obtain a tree decomposition where every bagimall value.

e Flows and embeddings in hypergraphs.In the hardness proof, our goal is to embed the graph of a
3SAT formula into a hypergraph. Thus we need to define an @pptte notion of embedding and study
what guarantees the existence of embeddings with suitabjgegies. As in[[43], we use the paths
appearing in flows to construct embeddings. For our purpaisesight notion of flow is a collection of
weighted paths where the total weight of the paths interspetach hyperedge is at most 1. This notion
of flows has not been studied in the literature before, thuseesl to obtain basic results on such flows,
such as exploring the duality between flows and separators.

A key question is how to find connections between these danaks mentioned above and detailed in
Section[#, we have a procedure that reduces a CSP instaoca s#t of uniform CSP instances, and the
number of solutions on the different subsets of variablea imiform CSP instance can be described by a

Sectior%: Algorithm for
bounded submodular width
by partitioning into uniform
instances . | Submodular functions|
on hypergraphs

CSP instances

Section¥: Using embeddin Section[b: Large submod-
results to prove hardness ular width implies highly
results connected sets
Embedding graphs | _ Highly connected set
into hypergraphs | ~ Sectior®: Highly connected in hypergraphs
sets allow efficient embed-
ding

Figure 1: Connections between different domains.

submodular function. This method allows us to move from tbmain of CSP instances to the domain of
submodular functions. Sectiéh 5 is devoted to showing freathmodular width of a hypergraph is large, then
there is a certain “highly connected” set in the hypergraidighly connected set is defined as a property of
the hypergraph and has no longer anything to do with subraoduihctions. Thus this connection allows us
to move from the domain of submodular functions to the stuidigypergraphs. In Sectidd 6, we show that
a highly connected set in a hypergraph means that graphseceffitiently embedded into the hypergraph.
In particular, the graph of a 3SAT formula can be embeddeultimt hypergraph, which gives us (as shown
in Section[¥) a reduction from 3SAT to CSP\ This connection allows us to move from the domain of
embeddings back to the domain of CSP instances. We remdr&eiction$ 457 are written in a self-contained
way: only the first theorem of each section is used outsidsdhton.

As a consequence of our characterization of submodulahywie obtain the surprising result that bounded
submodular width equals bounded adaptive width (defined4i){

Theorem 1.5. A class of hypergraphs has bounded submodular width if amglibit has bounded adaptive
width.

Itis proved in[44] that there are classes of hypergraphslgarounded adaptive width (and hence bounded
submodular width), but unbounded fractional hypertreethvi@reviously, bounded fractional hypertree width
was the most general property that was known to guarantes fiaeameter tractability [28]. Thus Theoreml1.4
not only gives a complete characterization of the paranzetticomplexity of CSP{), but its algorithmic side
proves fixed-parameter tractability in a strictly more gahease than what was known before.

Why fixed-parameter tractability? We argue that investigating the fixed-parameter tractalufiCSP ()
is at least as interesting as investigating polynomiaktsolvability. In problems coming from our database-
theoretic motivation, the size of the hypergraph (thattis, dize of the query) is assumed to be much smaller
than the input size (which is usually dominated by the siz¢hefdatabase), hence a constant factor in the
running time depending only on the number of variables (ottenhypergraph) is accepta{BJeEven the
STOC 1977 landmark paper of Chandra and Metlin [13], whiahtetl the complexity research on conjunctive
gueries, suggests spending exponential time (in the sitieeafuery) on finding the best possible evaluation
order. Furthermore, the notion of fixed-parameter tratitpformalizes the usual viewpoint of the literature
on conjunctive queries: in the complexity analysis, we #hamalyze separately the contribution of the query
size and the contribution of the database size.

1This assumption is valid only for evaluation problems (vehisre problem instance includes a large database) and nuifolems
that involves only queries, such as the Conjunctive Quenyt&oment problem.

By aiming for fixed-parameter tractability, we can focus mon the core algorithmic question: is there
some method for decomposing the space of all solutions inyahed allows efficient evaluation of the query?
Some of the progress in this area was made by introducing eeangposition techniques, without showing
how to actually find such decompositions. For example, thas the case for the papers introducing query
width [14] and fractional hypertree width [28]: it was showat if a certain type of decomposition is given,
then the problem can be solved in polynomial time. In our teabogy, these results already show the fixed-
parameter tractability of CSHP() for the classe${ where such decompositions exist (since the time required
to find an appropriate decomposition can be bounded by aifumof the hypergraphd only), but do not
give polynomial-time algorithms. It took some more time aifibrt to come up with polynomial-time (ap-
proximation) algorithms for finding such decomposition8,(22]. While investigating algorithms for finding
decompositions give rise to interesting and important kgrols, they are purely combinatorial problems on
graphs and hypergraphs, and no longer has anything to doguéhy evaluation, constraints, or databases.
Thus fixed-parameter tractability gives us a formal way obigng these issues and focusing exclusively on
the evaluation problem.

On the complexity side, fixed-parameter tractability of CBPseems to be a more robust question than
polynomial-time solvability. For example, any polynormiathe reduction to CSPH) should be able to pick a
member ofH, thus it seems that polynomial-time reduction to CBPi6 only possible if certain artificial tech-
nical conditions are imposed @i (such as there is an algorithm efficiently generating apgmembers of
H). Furthermore, there are classésor which CSP{) is polynomial-time equivalent to&c CLIQUE [27]],
thus we cannot hope to classify C3B(into polynomial-time solvable and NP-hard cases. Anotfiiiculty
in understanding polynomial-time solvability is that ithcdepend on the “irrelevant” parts of the hypergraph.
Suppose for example that there is clas$or which CSPH) is not polynomial-time solvable, but it is fixed-
parameter tractable: it can be solved in tifi(@) - (||1])°Y. Let H’ be constructed the following way: for
everyH € H, classH’ contains a hypergrapH’ that is obtained fronH by adding a new component that
is a path of lengthf (H). This new path is trivial with respect to the CSP problem sthany algorithm for
CSP{) can be used for CSP() as well. Consider an instan¢eof CSP{’) having hypergrapid’, which
was obtained from hypergrapt. After taking care of the path, the assumed algorithm for @§Ran solve
this instance in timef (H) - (||])°, which is polynomial in||l ||: instancel contains a representation f,
which has at least (H) vertices, thug|l || is at leastf (H). Therefore, CSB{’) is polynomial-time solvable.
This example shows that aiming for polynomial-time solligbinstead of fixed-parameter tractability might
require understanding such subtle, but mostly irrelevaenhpmena.

In the hardness results obtained so far, evidence for theeristence of polynomial-time algorithms is
given not in the form of NP-hardness, but by giving eviderita the problem is not even fixed-parameter
tractable. In Theorem 1.1, it is a remarkable coincidenagéblynomial-time solvability and fixed-parameter
tractability are equivalent. However, there is no reasoaxjpect this to remain true in more general cases.
Therefore, as discussed above, it makes sense to focusrfitstderstanding the fixed-parameter tractability
of the problem.

Organization. For convenience, Sectidn 2 collects many of the definitigueearing in the papers. The
reader might want to skim through this at first and refer torappate parts of it later. Submodular width
and other width measures are defined in Sedtlon 3. Sddtiomtdins the algorithmic part of the paper: the
algorithm for classes with bounded submodular width. $efl characterizes large submodular width with
highly connected sets, while Sectidn 6 uses highly condeszés to find good embeddings in hypergraph. The
main hardness result of the paper is proved in Setlion 7.

2 Preliminaries

Constraint satisfaction problems. We briefly recall the most important notions related to CSR. fRore
background, see e.d., [26,/20].

Definition 2.1. An instance of aonstraint satisfaction probleiis a triple(V,D,C), where:

e V is a set of variables,

e D is a domain of values,
e Cis aset of constraintdcs,Cy,...,Cq}. Each constraint; € Cis a pair(s,R;), where:

— 5 is atuple of variables of lengtim, called theconstraint scopeand
— R is anmj-ary relation oveD, called theconstraint relation.

For each constraints, R;) the tuples of}; indicate the allowed combinations of simultaneous valees f
the variables irs. The lengthm; of the tuples is called thearity of the constraint. Asolutionto a constraint
satisfaction problem instance is a functibifrom the set of variableg to the domain of valueB such that for
each constrain{s,R)) with s = (vi,,Vi,,...,Vi,), the tuple(f(v,), f(vi,),..., f(v,)) is @ member oR. We
say that an instance kEnary if each constraint relation is binary, i.exy = 2 for each constraifft. It can be
assumed that the instance does not contain two constiairg), (sj,R;) with s = s;, since in this case the
two constraints can be replaced by the constr@nR N R;).

In the input, the relation appearing in a constraint is re@néed by listing all the tuples of the constraint.
We denote byl || the size of the representation of the instahee(V,D,C). It can be assumed th@| < ||I||:
elements oD that do not appear in any relation can be safely removed.

Letl = (V,D,C) be a CSP instance and ¥t C V be a nonempty subset of variablesf Iis a solution of
I, then py. f is theprojectionof f to V', which is simply the restriction of the functioh:V — D toV’ C V.

If Ris a set of solutions for, then we let pj R= {pr,, f | f € R}.

The projectionpr,, | of | toV’is a CSPA’ = (V/,D,C’), whereC' is defined the following way: For each
constraintc = {(v1,...,V),R) having at least one variable ¥, there is a corresponding constraiin C'.
Suppose that;, , ..., Vi, are the variables among, ...,V that are invV’. Then the constraint’ is defined as
((Viy,---,Vi,),R), where the relatiolR is the projection oRto the coordinates, ..., i, that is,R’ contains an
(-tuple(dy,...,d)) € D' if and only if there is &-tuple(dy,...,dyx) € Rsuch thablj =d; for 1< j < /. Clearly,
if fis a solution ofl, then py, f is a solution of py, | (but the converse is not true). For a subget Vv, we
denote by sq(V’) the set of all solutions of prl (which can contain a solution which is not the projection of
any solution ofl). If the instancd is clear from the context, we drop the subscript.

Theprimal graph(or Gaifman graph of a CSP instance= (V,D,C) is a graph with vertex s&t such that
u,v €V are adjacent if and only if there is a constraint whose scopgams bottu andv. Thehypergraphof
a CSP instanceé= (V,D,C) is a hypergraphd with vertex selV, wheree CV is an edge ofd if and only if
there is a constraint whose scope {snore precisely, where the scope is|@rtuple s, whose coordinates form
a permutation of the elements & For a clasg{ of graphs, we denote by CSF) the problem restricted to
instances whose hypergraph istin

Graphs and hypergraphs. If G is a graph or hypergraph, then we denotev§) andE(G) the set of
vertices and the set of edges@®@frespectively. Vertices,v € V (G) areadjacentif there is an edge € E(G)
with u,v € e. A setK CV(G) is acliqueif the vertices inK are pairwise adjacent. H is a hypergraph and
V’/ CV(H), then thesubhypergraph induced by \& a hypergraphi’ with vertex setSand 0c € C V' is an
edge ofH’ if and only if there is an edgec E(H) with enV’ = €. We denote byH \ Sthe subhypergraph of
H induced byv(H)\ S

Paths, separators, and flows in hypergraphsA path Pin hypergraphH is an ordered sequeneg, v,
..., V; of vertices such that, andv,_; are adjacent for every 4 i < r. We distinguish the endpoints of a path:
vertex\vy is thefirst endpointof P andyv; is thesecond endpointf P. For a path of length zero, the first and
second endpoints coincide. A path is)Xar-Y pathif its first endpoint is inX and its second endpoint is 1h
A pathP =vy1vs... v is minimalif there are no shortcuts, i.e;,andv; are not adjacent if — j| > 1. Note that
a minimal path intersects each edge at most twice.

Let H be a hypergraph and,Y C V(H) be two (not necessarily disjoint) sets of vertices. AY)-
separatoris a setSC V (H) of vertices such that there is iX \ S) — (Y \ S) path inH \ S or in other words,
everyX —Y path ofH contains at least one vertex 8f In particular, this means thxtnY C S

2|t is unfortunate that some communities use the notion fyif@SP” in the sense that each constraint is binary (as thpspa
while other communities use it in the sense that the variadle 0-1, i.e., the domain size is 2.

An assignmens: E(H) — R* is afractional (X,Y)-separatorif every X —Y pathP is coveredby s, that
IS, Y ecE(H),eP-0S(€) > 1. Theweightof the fractional separat@is ecg () S(€).

Let H be a hypergraph and I&t be the set of all paths iH. A flow of H is an assignment : P — R"
such thaty pep presp f(P) < 1 for everye € E(H). Thevalueof the flow f is 3 p.p f(P). We say that a path
P appearsn flow f, or simplyP is apath of fif f(P) > 0. For someX,Y CV(H), an(X,Y)-flowis a flow f
such that onlyX —Y paths appear iri. A standard LP duality argument shows that the minimum weala
fractional (X,Y)-separator is equal to the maximum value of ZnY)-flow.

If f, f’ are flows such that’(P) < f(P) for every patHP, thenf’ is asubflowof f. Thesumof the flowsf;,
..., fr is a mapping that assigns weigdfit , fi(P) to each pattP. Note that the sum of flows is not necessarily
a flow itself. If the sum offy, ..., f, happens to be a flow, then we say tfiat..., f, arecompatible.

Highly connected setsAn important step in understanding various width measwafiowing that if the
measure is large, then the (hyper)graph contains a highipamied set (in a certain sense). We define here
the notion of highly connectedness that will be used in thgepaFirst, recall that factional independent set
of a hypergrapH is a mappingu : V(H) — [0,1] such thaty . u(v) < 1 for everye € E(H). We extend
functions on the vertices df to subsets of vertices ¢ the natural way by setting(X) := Sycx H(V), thus
U is a fractional independent set if and onlyiife) < 1 for everyec E(H).

Let u be a fractional independent set of hypergrapland letA > 0 be a constant. We say that a set
W CV(H)is (u,A)-connectedf for any two disjoint set#\, B C W, the minimum weight of a fraction&/, B)-
separator is at leadt- min{u(A), u(B)}. Note that ifW is (u,A)-connected, thew is (u,A’)-connected for
everyA’ < A and everylW' C W is also(u,A)-connected. Informally, iV is (i, A)-lambda connected for
some fractional independent gesuch thaiu (W) is “large”, then we cal’w a highly connected set. Far> 0,
we denote by con(H) the maximum ofu (W), taken over everypu, A)-connected sétV of H. Note that if
A’ < A, then con/(H) > cony (H). Throughout the papek, can be thought of as a sufficiently small universal
constant, say,.001.

Embeddings. The hardness result presented in the paper and earlierdssrdesults for CSP() [27,44,
43] are based on embedding some other problem (with a cagtaph structure) in a CSP instance whose
hypergraph is a member &. Thus we need appropriate notions of embedding a graph ippefgraph. Let
us first recall the definition of minors in graphs. A graphs aminor of G if H can be obtained frors by
a sequence of vertex deletions, edge deletions, and edg¢factions. The following alternative definition is
more relevant from the viewpoint of embeddings: a grigh a minor ofG if there is a mappingy that maps
each vertex of to a connected subset ¥i{G) such thaty(u) N ¢(v) =0 for u# v, and ifu,v € V(F) are
adjacent irF, then there is an edge E(G) connectingy/(u) andy(v).

A crucial difference between the proof of Theorem 1.1.in [2@dl the proof of Theorefn 1.2 in [43] is that
the former result is a based on finding a minor embedding ot while the latter result uses a more general
notion of embedding where the images of distinct verticesrat necessarily disjoint, but can overlap in a
controlled way. We define such embeddings the following Walg.say that two sets of verticegY CV(H)
touchif either X NY # 0, or there is an edge< E(H) intersecting botiX andY. An embeddingf graph
G into hypergrapiH is a mappingy that maps each vertex &f to a connected subset ¥f{G) such that if
u andv are adjacent irG, then(u) and @(v) touch. Thedepthof a vertexv € V(H) in embeddingy is
dy(v) :=[{ueV(G) |ve Y(u)}|, the number of vertices @ whose images contam Thevertex depttof
the embedding is max,) dy(v). Observe thaty is a minor mapping if and only if it has vertex depth 1.
Because in our case we want to control the size of the constlations, we need a notion of depth that is
sensitive to “what the edges see.” We define the ddptle) of an edge asly(e) = ¥ cdy(€) and theedge
depthto be the maximum oé taken over all edges € E(H). Equivalently, we can define the depth of an
edge agly(E) = Yvev(g) |W(V) N, that is, each vertex contributes|(v) Nel to the depth. (A different,
perhaps more natural, definition of edge depth would be to@éfsimply as a maximum number of sétév)
that intersect an edge. Somewhat unexpectedly, mostsasulhe paper remain true with both notions; see
Remark$ 76=717.)

Trivially, for any graphG and hypergraplid, there is an embedding & into H having vertex depth and
edge depth at mogV (G)|. If G hasm edges and no isolated vertices, tHenG)| is at most 2n. We are
interested in how much we can gain compared to this trivikitem of depthO(m). We define thembedding

10

poweremi(H) to be the maximum (supremum) value @ffor which there is an integan, such that every
graphG with m> m, edges has an embedding itfowith edge deptim/a. It might look unmotivated that we
define embedding power in terms of the number of edgds: afefining it in terms of the number of vertices
might look more natural. However, if we replace the numipesf edges with the number of vertices in the
definition, then the worst case occurgHifis a clique om vertices. Such a definition would describe how well
cligues can be embedded, and would give us no informatioatdtmw sparse graphs can be embedded.

3 Width parameters

Treewidth and its various generalizations are defined mghction. We follow the framework of width func-
tions introduced by Adler [1]. Aree decompositionf a hypergraptH is a tuple(T, (Bt)iev(r)), WwhereT

is a tree andB ey (1) is a family of subsets d¥ (H) satisfying the following two conditions: (1) for each
ec E(H) there is a nodé € V(T) such thate C B, and (2) for eactve V(H) the set{t e V(T) |ve B} is
connected ifT. The setsB, are called théagsof the decomposition. Let : 2¥(H) — R+ be a function that
assigns a nonnegative real number to each nonempty subsatiots. Thef-width of a tree-decomposition
(T, (Boev(r)) is max{ f(B) | t € V(T)}. The f-width of a hypergraptH is the minimum of thef-widths of
all its tree decompositions. In other wordswidth(H) < w if and only if there is a tree decomposition laf
wheref (B) < w for every bagB.

The main idea of tree decomposition based algorithms isftha have a tree decomposition for instance
| such that at mosE assignments oB; have to be considered for each gthen the problem can be solved
by dynamic programming in time polynomial @ and ||l ||. The various width notions try to guarantee the
existence of such decompositions. The simplest such ndteewidth, can be defined as follows:

Definition 3.1. Lets(B) = |B| — 1. Thetreewidthof H is tw(H) := s-width(H).

Further width notions defined in the literature can also bveniently defined using this setup. A subset
E’ CE(H) is anedge coveif | JE' =V (H). Theedge cover numbep(H) is the size of the smallest edge
cover (here we assume thdthas no isolated vertices). F¥rC V(H), let p4(X) be the size of the smallest
set of edges covering.

Definition 3.2. Thegeneralized hypertree widthf H is hw(H) := py-width(H).

The original (nongeneralized) definitidn [23] of hypertreiglth includes an additional requirement on the
decomposition (we omit the details), thus it cannot be leas generalized hypertree. However, it is known
that hypertree width and generalized hypertree width cHierdiy at most a constant factar [2].

Grohe and Marx [28] further generalized hypertree width mysidering linear relaxations of edge covers.
A function y: E(H) — [0,1] is afractional edge coveof H if § g hyveeY(€) > 1 for everyv e V(H). The
fractional cover numbep*(H) of H is the minimum ofy o) y(€) taken over all fractional edge coverstof
(it is well known that this minimum is achieved by some raéiby). We definep;; (X) analogously t (X):
the requiremeny ¢ y(€) > 1 is restricted to verticege X.

Definition 3.3. Thefractional hypertree widttof H is tfhw(H) := p};-width(H).

A crucial idea in [44] is to make the choice of tree decompasibdaptive: instead of assigning a sin-
gle decomposition to each hypergraph, we choose the bestgiesition based on additional properties of
the current instance. Motivated by this idea, we generalimenotion of f-width from a single function
f to a class of functionsF. Let H be a hypergraph and Ief be an arbitrary (possibly infinite) class of
functions that assign nonnegative real numbers to nonesyligets of vertices dfi. The F-width of H is
F-width(H) := sup{ f-width(H) | f € F}. Thus if 7-width(H) <k, then for everyf € F, hypergraptH has
a tree decomposition with-width at mosk. Note that this tree decomposition can be different for ifergnt
functions f. For normalization purposes, we consider only functibrmnV (H) that satisfyf (0) = 0 and that
areedge-dominatedhat is, f(e) < 1 holds for everyee E(H).

Using these definitions, we can define adaptive width, intced in [44], as follows. Recall that in Sec-
tion[2, we stated that ifi is a fractional independent set, thgns extended to subsets of vertices by defining
H(X) = Syex H(V) for everyX CV(H).

11

Definition 3.4. The adaptive widthadw(H) of a hypergraptH is F-width(H), where F is the set of all
fractional independent sets Hf.

A function f : 2V(H) — R is modularif f(X) = ¥,cx ¢, for some constants, (v € V(H)). The function
u(X) arising from a fractional independent set is clearly a madahd edge dominated function, in fact, in
Definition[3.4 we can defing as the set of all nonnegative modular edge-dominated fumeonV (H). The
main new definition of the paper is a new width measure, whidbtained by imposing a requirement weaker
than modularity on the functions iR (hence the considered s&tof functions is larger):

Definition 3.5. A functionb: 2¥™) — R+ is submodulaif b(X) +b(Y) > b(XNY)+b(XUY) holds for every
X,Y CV(H). Given a hypergraphi, let 7 contain every edge-dominated monotone submodular funbtio
onV (H) with b(0) = 0. Thesubmodular widttof hypergraprH is subw(H) := F-width(H).

It is well-known that submodular functions can be equivilyeoharacterized by the property thiaX U

v) — b(X), themarginal valueof v with respect toX, is a nonincreasing function &. That is, for every and
XCY,

b(XUv) —b(X) > b(YUv) —Db(Y). Q)

It is clear that subyH) > adw(H): Definition[3.5 considers a larger set of functions than Ddim[3.4.
Furthermore, we show that sulM) is at most the fractional hypertree widthldf This is a straightforward
consequence of the fact that an edge-dominated submodaulgtidn is always bounded by the fractional cover
number:

Lemma 3.6. Let H be a hypergraph and b be a monotone edge-dominated suttendunction with §0) = 0.
Then BS) < p},(S) for every SCV(H).

Proof. The statement can be proved along the same lines as the gr8bkarer's Lemma [16] attributed to
Radhakrishnan goes. It is sufficient to prove the statenterthé case&s=V (H): otherwise, we can consider
the subhypergraph dfl induced byS and the functiorb restricted toS. Lety: E(H) — R* be a minimum
fractional edge cover db. Letvy, ..., vy be an arbitrary ordering of (H) and letVi = {vi,...,vi}, Vo = 0.
For everye € E(H), we haveb(e) = 3, co(b(enVi) —b(enVi_1)) > Sy.ce(b(Vi) —b(Vi_1))) (the equality is a
simple telescopic sum; the inequality udes (1), i.e., thegimal value ofv; with respect td/;_; is not greater
than with respect tenV,_1).

PLVHD= T v©> T vebe> T v (bV)-bViy)

ecE(H) ecE(H) ecE(H) vi€e
- Z ((b(\/i)—b(vil)) S v(e)> > i(b(m)—b(vim =b(V(H))
1= ecE(H),vice I=

(in the first inequality, we use thdtis edge dominated; in the last inequality, we use thata fractional edge
cover). O

Proposition 3.7. For every hypergraph Hsubw(H) < fhw(H).

Proof. Let (T,Bicy(r)) be a tree decomposition &f whosepy;-width is fhw(H). If b is an edge-bounded
monotone submodular function witi{®) = 0, then by Lemma3l&(B;) < p(;(Bt) < fhw(H) for every bag
B of the decomposition, i.eb-width(H) < fhw(H). This is true for every such functidn hence subyH) <
fhw(H). O

Since adwH) < subw(H) < fhw(H), if a class# of hypergraphs has bounded fractional hypertree width,
then it has bound submodular width, and if a clés$has bounded submodular width, then it has bounded
adaptive width. Surprisingly, it turns out that the lattepiication is actually an equivalence: Corollary 6.10
shows that subgH) is at mostO(adw(H)?), thus a class of hypergraphs has bounded submodular width if
and only if it has bounded adaptive width. In other wordggdasubmodular width can be certified already by
modular functions: if submodular width is unbounded+rand we want to choose &h< H and a submodular

12

Bounded submodular width =

Bounded adaptive width

Bounded fractional hypertree width

Bounded (generalized)
hypertree width

Bounded
treewidth

Figure 2: Hypergraph properties that make CSP fixed-pammaictable.

function b such that thés-width of H is larger than some constakitthen we can choodd andb such that

b is actually modular. There is no intuitive reason why thigrige: submodular functions seem to be much
more powerful than modular functions. Still, we obtain thésult as a byproduct of our characterization of
submodular width.

There is no such connection between adaptive width anddredthypertree width: it is shown in [44] that
there is a class of hypergraphs with bound adaptive widthuabdunded fractional hypertree width. Thus the
property bounded fractional hypertree width is a strictlyaker property than bounded adaptive/submodular
width.

Figure[2 shows the relations of the hypergraph propertiésettin this section (note that the elements of
this Venn diagram are sets of hypergraphs; e.g., the sentlmlitreewidth” contains every st of hyper-
graphs with bounded treewidth). As discussed above, alhtliasions in the figure are proper.

Finally, let us remark that there have been investigatidrisee decompositions and branch decomposi-
tions of submodular functions and matroids in the literaf®3,[47] 34| 32,/5]. However, in those results the
submodular function is a connectivity function(:S) describes the boundary 8fthat is, the cost of separating
Sfrom its complement. In our casb(S) describes the cost of the separafitself. Therefore, we are in a
completely different setting and the previous results oabe used.

4 From CSP instances to submodular functions

In this section, we prove the main algorithmic result of tlaer: CSPK) is fixed-parameter tractable H
has bounded submodular width.

Theorem 4.1. Let’H be a class of hypergraphs such tisatbw(H) < ¢ for every He #. Then CSPK() can
be solved in time@e 2> """ |j||0(co),

The proof of Theorern 411 is based on two main ideas:

1. A CSP instancé can be decomposed into a bounded number of “uniform” CSRnussl,, ..., |t
(Lemma4.111). Here uniform means thaBifC A are two sets of variables, then every solution gflpr
has roughly the same number of extensions fd jor

2. Ifl is auniform CSP instance, then (the logarithm of) the nurobsolutions on the different projections
of | can be described by an edge-dominated monotone submodotiiohb (Lemmd4.1R). Therefore,
if the hypergrapt of | has bounded submodular width, then it follows that therdiis@decomposition

13

where every bag has a bounded number of solutions. This ntieatnthe existence of a solution can be
tested by standard techniques.

While our algorithm is based on these two ideas, the techimga@lementation is slightly different. First, we
can achieve uniformity only on “small sets” of variables.r Fechnical reasons, we have to ensure a certain
consistency condition (for example, to ensure that the sdutar functionb is monotone). It follows from
the consistency condition that when find a tree decompasitipa uniform instance such that every bag has a
small number of solutions, then this automatically imptleet the instance has a solution; we do not even have
to use the tree decomposition (see Lenimé 4.7).

In Sectiori 4.1 we define the notion of consistence that wengdiacuss how it can be reached. Sedtioh 4.2
describes how the instance can be partitioned into unifoistances. Sectidn 4.3 shows how a submodular
function can be defined based on a uniform instance, comgegtir algorithm to submodular width.

4.1 Consistency

Recall from Sectio]2 that gt is instancel projected to a sef of variables and sglA) is the set of all
solution of ppl. In the implementation of the first idea (Lemia_4.11), we gotge uniformity only to
subsets of variables that are “small” in the following hétay sense (note that in general it is possible that
|sol (S)| > |sol(S)| for someS C 9):

Definition 4.2. Let| be a CSP instance ahdl > 1 an integer. We say th&C V is M-smallif |sol (S)| <M
for everyS C S

It is not difficult to find all theM-small sets, and every solution of the instances projeatéadl these sets:

Lemma 4.3. Let | = (V,D,C) be a CSP instance and M 1 an integer. There is an algorithm with running
time 2°(1V1) . poly(||1]|,M) that finds the sef of all M-small sets S V and constructsol (S) for each such
SeS.

Proof. Fori =1,2,...,|V|, we find everyM-small setSof sizei and construct sp(S). This is trivial to do for

i = 1. Suppose that we have already found the collecfionf all M-small sets of size exactly By definition,
every sizel subsetS of an M-small setS of sizei + 1 is anM-small set. Thus we can find evel-small set
of sizei + 1 by enumerating everg € S; and checking for every € V \ SwhetherS := SU{v} is M-small.
To check whetheB8 is M-small, we first check whether every subset of sieM-small, which is easy to do
using the se&;. Then we construct sdlS): this can be done by enumerating every tuptesol (S) and every
extension ofs by a new value fronD. Thus we need to consider at mosbl (S)| - |D| < M- |D| tuples as
possible members in §08), which means that sdIS) can be constructed in time polynomialh and||1||.

If |sol(S)| <M, then we putS into Si;1. As the size of each s&; is at most 2| and every operation is
polynomial inM and |1 ||, the total running time is2/VD - poly(||1||,M). O

We want to avoid dealing with assignmeiits sol(B) that cannot be extended to a member of Apfor
someA D B. Of course, there is no easy way to avoid this in general (eneg detect if there is suchk:
for example, ifA is the set of all variables, then we would need to chedkgan be extended to a solution.
Therefore, we require only that there is no such unexteedaiblA andB areM-small:

Definition 4.4. A CSP instance idM-consistenif sol(B) = prgsol(A) for all M-small setd C A.

The notion ofM-consistency is very similar io-consistency, a standard notion in the constraint satisfac
literature |7/ 17| 40]. However, we restrict the considesalisets not by the number of variables, but by the
number of solutions (more precisely, by considering dviksmall sets). Similarly to usu&k-consistency, we
can achieveM-consistency by throwing away partial solutions that vielthe requirements: if we use the
algorithm of Lemma 43 to find all possible assignments ofMMhsmall sets, then we can check if there is such
an unextendablb for someM-small setsA andB. If there is such &, then we can exclude it from consideration
(without losing any solution of the instance) by introducia new constraint oB. By repeatedly excluding
the unextendable assignments, we can avoid all such prebléve say that’ = (V,D,C’) is arefinemenbf
| = (V,D,C) if for every constraints,R) € C, there is a constrains,R’) € C’ such thaR C R.

14

Lemma 4.5. Let | = (V,D,C) be a CSP instance and M 1 an integer. There is an algorithm with running
time2°(VD . poly(||1]|,M) that produces an M-consistent CSP instarldat is a refinement of | witkol(l) =
sol(1").

Proof. Using the algorithm of Lemmia_ 4.3, we can find all tMesmall sets and then we can easily check if
there are twdVi-small setsSC S violating consistency, i.e., S@) < prgsol(S). In this case, les be a|S-
tuple whose coordinates conta®in an arbitrary order and let us add the constraiprgsol(S)); it is clear
that so(V) does not change buisol(S)| strictly decreases. We repeat this step until the instarcerbedM-
consistent. Note that adding the new constraint can makeM-senall that was noM-small before, thus we
need to rerun the algorithm of Lemimal4.3. To bound the numtiggrations beforéM-consistency is reached,
observe that adding a new constraint does not incressgA)| for any A and strictly decreasesol(S)| for
someM-small setS. As there are at most*2 setsSand|sol(S)| < M for everyM-small setS, it follows that
this step can be repeated at md¥t 2V times. The size of the instance increases in each step bygddiew
constraint with at mod¥l tuples, thus the size of the instance at the end of the praegsike still bounded by
20(VD) - poly(||1]],M). Thus the total time required to ensure that instarisM-consistent can be bounded by
200D - poly({|i |, M). O

We want to avoid degenerate cases where there is no solwm#nfer someM-small sets. Consistency
implies that it is sufficient to require this for sets of siza/le say that a CSP instancensntrivial if sol({v}) #
0 for everyv € V. The following is immediate:

Proposition 4.6. If | is an M-consistent nontrivial CSP instance, theoi(S) # 0 for every M-small set S.

It is well known that by achieving-consistency, we can solve CSP instances with treevddtine key
observation is that if an instand¢ewith treewidth at mosk has ak-consistent nontrivial refinement, then|
has a solution. The following lemma adapts this statemeatietting.

Lemma 4.7. Let | = (V,D,C) be a CSP instance and M 1 an integer. Letbe an M-consistent nontrivial
refinement of I. If the hypergraph H of | has a tree decompmsitihere every bag B is M-small ify then |
has a solution.

Proof. Suppose that there is such a tree decomposifiofB;);cy(r)). Assume thal is rooted and for every
nodet € V(T), let 4 be the union of the bags that are descendants(iotluding B;). We claim that every
assignment in sp(B;) can be extended to an assignmentahat satisfies every constraint loivhose scope
is fully contained inv;. Applying this statement to the root dfproves that there exists a solution fo(Recall
that every edge of the hypergraph and hence the scope of every constraint, is fully containexhe of the
bags.)

We prove the claim for every node ®fin a bottom up order. The statement is trivial for the leavex1;,
..., t, be the children of and suppose the claim is true for these nodes. Consider gm@aentg € sol (By).
Sincel’ is M-consistent an@; is M-small, assignmerg‘Bthi can be extended to an assignmgnt sol (B,).

As the claim is true for nodg, assignmeng; can be extended to an assignmgnof V. The assignments,
i, --., g, can be combined to obtain an assignmgirin'V; (note that this is well defined: the intersection of
V;, andV;, is in, which means that a variable appearing in bgtlandV;; has the same value @) ¢, andg’j).
Furthermore, every edgeof H that is fully contained inV; is fully contained in at least one &, \,, ..., W,,
and the corresponding assignment amgng;, ..., g, shows thaty satisfies the constraint corresponding to
e]

Note the subtle detail that Lemmal4.7 does not claim Ithiads a solution. Furthermore, when Lenimd 4.5
creates arfM-consistent instance, then it possibly adds many new ainttrand the hypergraph Bfcan be
very dense even if the hypergraphldifias nice structure. However, this is not a problem, as Lemihddes
not require any property on the hypergrapH’of

15

4.2 Decomposition into uniform CSP instances

Our algorithm for decomposing a CSP instance into unifornP @&tances is inspired by a combinatorial
result of Alon et al.[[4], which shows that, for every fixagdan n-dimensional point se® can be partitioned
into polylog(|S) classes such that each clas®©id)-uniform. We follow the same proof idea: the instance
is split into two instances if uniformity is violated someerk, and we analyze the change of an appropriately
defined weight function to bound the number of splits perfedimHowever, the parameter setting is different
in our proof: we want to partition intd (|V|) classes, but we are satisfied with somewhat weaker unifarmit
Another minor technical difference is that we require ummfitly only on theN°¢-small sets.

The following definitions gives the precise notion of unifoty that we use:

Definition 4.8. Let | = (V,D,C) be a CSP instance. F& C ACV and an assignmerii: B — D, let
sol (AB = b) := {a € sol(A) | prga = prgh}, the set of all extensions dj to a solution of pxl. Let
max (AlB) = MaX,csoy(g) | SOI (AIB = b)| (if sol;(B) = 0, then max(A[B) = 0). We define maxA|0) =
|sol (A)| and max(0|0) = 1. We will dropl from the subscript of max if it is clear from the context.

Let us prove two straightforward properties of the functioax(A|B):
Proposition 4.9. For every BC ACV and CCV, we have

1. max(A|B) > |sol(A)|/|sol(B)|,

2. max(A|B) > maxAUC|BUC).

Proof. If every b € sol(B) has at most mg#|B) extensions td\, then clearly|sol(A)| is at most|sol(B)| -
max(A|B), proving the first statement. To show the second statememsjder arx € sol(BUC) with max(AU
C|BUC) extensions t&AUC. For any twoys, Yy, € solAUC|BUC = x) with y; # y,, we have pryr = preyz =
prc X, hencey; andy, can be different only if pry: # praye2. This means that giy; and pp y» are two different
extensions of gyx to A. Therefore,

max(A|B) > |sol(A|B = prgX)| > |solAUC|BUC = x)| = maxAUC|BUC),
what we had to show. O

Notice that (2) in Prof._ 419 gives a hint that submodularitly lve relevant: it is analogous to inequalifyl (1)
expressing that marginal value is larger with respect to alemset.

Definition 4.10. We say thaA C V is c-uniform(for some integec) if, for everyB C A,
max (A|B) < c|sol (A)|/|sol (B)|.
A CSP instance i$N, ¢, €)-uniformif every N®-small set ifN-uniform.

That is,Ais c-uniform if every solution on of sp{B) has at most times as many extensions as the average
number of extensions.

Lemma 4.11. Let | = (V,D,C) be a CSP instance, let N an be an integer, and letL € > 0 real numbers.
There is an algorithm with running tin?>""-</¢ . poly(||l||,N€) that produces a set N, c, €)-uniform N--
consistent nontrivial instances,|..., lt with0 <t < 220M-c/e , all on the set V of variables, such that

1. every solution of | is a solution of exactly one instance |

2. for everyl <i <t, instancelis a refinement of I.

16

Proof. The main step of the algorithm takes a CSP instdnard either makes tN, c, €)-uniform andN®-
consistent without losing any solutions, or splits it inteotinstancedsma, large: By applying the main step
recursively onlsmai andljarge, We eventually arrive to a set 9N, ¢, €)-uniform N°-consistent instances. We

will argue that the number of constructed instances 2¢/¢.

In the main step, we first check if the instance is trivial; ilstcase we can stop with= 0. Otherwise,
we invoke the algorithm of Lemnia 4.5 to obtain Mf-consistent refinement of the instance, without losing
any solution. Next we check if thi®-consistent instanckis (N,c, €)-uniform. This can be tested in time
20V poly(|1]|,N®) if we use Lemm&4]3 to find all tHe®-small sets and the corresponding sets of solutions.
Suppose thal®-small setdB C A violate uniformity, that is,

max(A|B) > N¢|sol(A)|/|sol(B)].

Let sokmai(B) contain those tuplel for which |sol(A|B = b)| < v/N¢|sol(A)|/|sol(B)| and let sakrge(B) =
sol(B) \ sokmai(B). Note that|sol(A)| > |solarge(B)| - (vVNE|sol(A)|/|sol(B)|) (as every tuplé € SOlarge(B)
has at least/N¢| sol(A)|/|sol(B)| extensions t&), hence

| SOkarge(B)| < [s0I(B)|/v/NE. (2

Letinstancdsmai (resp. liarge) be obtained fronh by adding the constraiB, Sokmai(B)) (resp.,(B, SOlarge(B))).
Clearly, the set of solutions dfis the disjoint union of the sets of solutionslgfay andljage. This completes
the description of the main step.

It is clear that if the recursive procedure stops, then thtamces at the leaves of the recursion satisfy the
two requirements: the application of Lemmal4.5 does notdmsesolution and each resulting instancéfs
consistent andN, c, €)-uniform. We show that the height of the recursion tree cabhdwended from above by
afunctionh(|V|,c, &) = 2°(VD . ¢c/e depending only ofV|, ¢, ande; in particular, this shows that the recursive
algorithm eventually stops and produces at niese(V.ce) — 22°"-c/¢ jnstances.

Let us consider a path in the recursion tree starting at tbe amd letl %, 12, ..., 1P be the corresponding
NC-consistent instances. If a sis N°-small inl}, then it isNC-small in1!" for everyj’ > j: the main step
cannot increasesol(S)| for anyS. Thus, with the exception of at most 2values ofj, instanced ! and|i+1
have the sambI®-small sets. Let us consider a subpgth..., IY such that all these instances have the same
NC¢-small sets. We show that the length of this subpat®(@V! - c/¢), hencep = O(2VI-3VI.¢/g). As this
holds for any path starting at the root, we obtain that thgftedf the recursion tree is”2V)) . ¢/e and hence
t = 222WVc/e

For the instanceé!, let us define the following weight:

wi = > logmax; (A|B).
O0CBCACV
A,BareNC¢-small inl!

We bound the length of the subpadtfy..., IY by analyzing how this weight changes in each step. Obseste fir
that when invoking the algorithm of Lemrha #.5 to findMfrconsistent refinement, then the weight does not
increase: adding new constraints cannot increase Apgxfor any A,B C V and cannot create neMf-small
sets by the assumption on the subplttand Y. Thus it is sufficient to analyze how the weight decreases
iN ljarge @Nd Isman compared td. Note that 0< W) < 3V/logN® = 3V!. clogN: the sum consists of at most
3Vl terms and (ag is N°-small and the instance is N°-consistent and nontrivial) maxA|B) is between 1
andNC. We show thawi** <W/ — (g/2)logN, which immediately implies that the length of the subpath is
0(3Vl.¢/¢). Let us inspect how i +1 changes comparedW!. Sincel ! andl** have the sami®-small sets
by assumption, no new term can appeaihi L. Itis clear that max.1(A|B) cannot be greater than mzyA|B)
for any A, B. Moreover, there is at least one term that strictly deceaSeippose first that 1 was obtained
from 11 by adding the constraifB, sokmai(B)). Then

|sohi(A)

logmax;1(A|B) < Iogﬁm < log(max; (A|B)/v/N¢) = logmax; (A|B) — (£/2)logN,
1]

17

where we have use(4.2) in the second inequality. On the dided, if| I *1 was obtained by adding the
constraint(B, Solarge(B)), then

log ma;.1(B|0) = log| sol-1(B)| < log(|soh; (B)|/v'N¢) = logmax; (B|0) — (£/2) logN,

where the inequality follows froni12). In both cases, we dwit tat least one term decreases by at least
(¢/2)logN. O

4.3 Uniform CSP instances and submodularity

Assume for a moment that we have a 1-uniform instanegth hypergraphH. Note that by Prop 419(1), this
means that ma¥|B) = |sol(A)|/|sol(B)|. Suppose that every constraint contains at mbgiples and let us
define the functiorb(S) = logy, | sol(S)|. For every edge € E(H), there is a corresponding constraint, which
has at mosN tuples by the definition oK. Thus|sol(e)| <N and hencé(e) < 1 for everye € E(H), that is,

b is edge dominated. The crucial observation of this sectidhat this functiorb is submodular:

b(X) + b(Y) = logy, | s0l(X)| + logy <| sol(X mY)|%)

= logy | sol(X)|+logy (| sol(X NY)|-max(Y|XNY))
> logy | sol(X) |+ logy (| sol(XNY)| - max X UY|X))
)

] |soI(XUY)|>

= logy | sol(X)|+ logy (\sol(x nyY) S0IX)|
= logy |sol(XNY)|+logy |sol(XUY)|

=b(XNY)+b(XUY)

(the equalities follow from 1-uniformity; the inequalityses Propl_4]9(2) witth =Y, B=XNY, C = X).
Therefore, if the submodular width &f is at mostc, thenH has a tree decomposition whdseB) < ¢ and
hence|sol(B)| < N¢ for every bagB. Thus we can find a solution of the instance by dynamic progreng in
time polynomial inNC.

Lemmal4.1ll guarantees some uniformity for the createdrineta but not perfect 1-uniformity and only
for theNC-small sets. Thus in Lemnia 4]12, we need to ddfiirea slightly different and more technical way:
we add some small terms to correct errors arising from thekeraaniformity and we truncate the function at
large values (i.e., for sets that are iNStsmall).

Lemma4.12.Let 1= (V,D,C) be a CSP instance with hypergraph H such tisati(e)| < N for every e E(H).
If 1 is N¢-consistent andN, c, £3)-uniform for some ¢ 1 and e := 1/|V|, then the following function b is an
edge-dominated, monotone, submodular function @)Mvith b(0) = O:

b(S) — (1—€)logy | sOl(S)| + 2629 — £3|9? if Sis Ne-small,
"l (1—e)c+2629 — 392 otherwise.
Proof. Leth(S) := 22|95 — £3|S2. Itis easy to see th&i(S) is monotone and & h(S) < & for everySC V(H)
(ase|9 < 1). Furthermoreh is a submodular function:
h(X) +h(Y)—h(XNY)—h(XUY)

= 262(|X| + Y| = [XNY| = [XUY|) + (= [X[2= [Y]2+ XY [2+ [XUY|?)

= 3 (—(IXNY[+[X\Y)Z=(IXNY][+[Y\X)Z+[XNY P+ (XOY][+[X\Y]+[Y\X])?)

= 283X\ Y|-[Y\ X| > 0.
This calculation shows that iX \ Y|,|Y \ X| > 1, then we actually havl(X)+h(Y) > h(XNY)+h(XU

Y) +2¢3. We will use this extra £ term to dominate the error terms arising from assuming ¢NIyc, £%)-
uniformity instead of perfect uniformity.

18

Let us first verify the monotonicity d. If Y is N®-small, then ever)X C Y is N¢-small, which implies
|sol(X)| < |sol(Y)| asl is N°-consistent. Therefordy(X) < b(Y) follows from the monotonicity oh. If Y is
not N small, thenb(Y) = (1—€)c+h(Y) andb(X) < b(Y) is clear for everyX C Y, no matter whetheX is
NC-small or not.

To see thab is edge-dominated, consider an edge E(H). By assumption, log|sol(e)| < 1 for every
e € E(H) and hence (using\®-consistency and > 1) e is N°-small. Thusb(e) < (1—¢)+h(S) <1, as
required.

Finally, let us verify the submodularity &ffor someX,Y CV. If X CY orY C X, then there is nothing to
show. Thus we can assume tit\ Y|, |Y \ X| > 1. We consider 3 cases depending on whiciX@ndY are
NC-small. Suppose first that andY are bothN®-small. In this case,

b(X)+b(Y) = (1—¢&)logy | sol(X)| + (1 — &)logy | sol(Y)| +h(X) + h(Y)
|sol(Y)|

— (1—¢)logy |s0I(X)| + (1 — &) logy (IS°'<X”Y>| Tsol(XNY)]

> +h(X) +h(Y)
> (1—¢)logy |sol(X)|+ (1— €)logy | sol(X NY)|
+ (1— &)logy (Max(Y[X NY) /NE) + h(X) + h(Y)

> (1—¢)logy |sol(XNY)| + (11— €)logy(|sol(X)|max X UY|X))

—(1—¢€)-2+h(XNY)+h(XUY) +2¢3
(1—¢€)logy |sOXNY)|+ (1—¢€)logy |sOIXUY)|[+h(XNY)+h(XUY)
b(XNY)+b(XUY)
(in the first inequality, we used the definition @, c, £3)-uniformity onX NY andY; in the second inequality,
we used the submodularity bfand Prop_419(2) foA=Y, B= XNY, andC = X; in the third inequality, we
used Prod._4]9(1) foh = X UY, B = X; the last inequality is strict only KUY is notN°®-small).

For the second case, suppose that, Xag,N¢-small butY is not. In this caseX NY is N¢-small butX UY
is not. Thus

>
>

b(X)+b(Y) = (1— ¢&)logy | sol(X)| + (1 — &)c+ h(X) + h(Y)
> (1—-¢)logy |sol(XNY)|+ (1—¢g)c+h(XNY)+h(XUY)
=b(XNY)+b(XUY)

(in the inequality, we used tHg®-consistency oiX NY andY, and the submodularity d).
Finally, suppose that neithe&t norY is N°-small. In this caseXUY is notN¢-small either. Now

b(X) +b(Y) = 2(1— £)c+h(X) +h(Y) > 2(1— £)c+h(XNY) +h(XUY) > b(XNY) +b(X UY).
|

Having constructed the submodular functtwas in Lemm&4.12, we can use the argument described at the
beginning of the section: i has submodular width at mogt — €)c, then there is a tree decomposition where
every bag isN®-small, and we can use this tree decomposition to find a soluth fact, by Lemm&4]7, in this
caseN°®-consistency implies that every nontrivial instance haglati®n.

Proof (of Theorerh 4]1)Let | be an instance of CSR(having hypergraplid € 7. We decide the solvability
of | the following way. LetN < ||I|| be the size of the largest constraint relatiorl jn.e., every constraint
has at mosN satisfying assignments. Set=1/|V(H)|, and letc:= cp/(1— €). Let us use the algorithm of
Lemma[4.11l to produce the nontriviliF-consistent N, ¢, £3)-uniform instances;, ..., l;. The running time
of this step is 2"/ . poly(||1]|,N®), which is 202"V .|| ||0(0)

If t =0, then we can conclude thiahas no solution. Otherwise, we argue thais a solution. Consider
anyl; and letb be the edge-dominated monotone submodular function defileemmd4.1P2. By definition of
submodular widthiH has a tree decompositidiT, (Bt)iy (t)) such thab(B;) < subw(H) < ¢o = (1 - ¢€)c for
everyt € V(T). Sinceb(S) < (1— ¢)cimplies|sol(S)| < N®andb is monotone, this means thatis N°-small
in ; for everyt € V(T). Therefore, the conditions of Lemrhald.7 hold, ariehs a solution. O

19

5 From submodular functions to highly connected sets

The aim of this section is to show that if a hypergraphas large submodular width, then there is a large
highly connected set inl. Recall that we say that a 9ét is (i, A)-connected for some fractional indepen-
dent sety andA > 0, if for every disjointA,B C W, every fractional(A,B)-separator has weight at least
A-min{u(A),u(B)} (see Sectiof]2). Equivalently, we can say that for everyulisjA, B C W, there is an
(A,B)-flow of value A - min{u(A),u(B)}. Recall also that con(H) denotes the maximum value pf(\W)
taken over every fractional independent getnd(u, A)-connected sau.

The main result of this section allows us to identify a higbbnnected set if submodular width is large:

Theorem 5.1. For every sufficiently small constait> 0, the following holds. Let b be an edge-dominated
monotone submodular function of H witt{@h = 0. If the b-width of H is greater tham(w+ 1), then
com (W) > w.

For the proof of Theorefn 5.1, we need to show that if there ise® decomposition whetgB) is small

for every bagB, then a highly connected set exists. There is a standardsieeyprocedure that either builds
a tree decomposition or finds a highly connected set (segf21g.Section 11.2]). Simplifying somewhat, the
main idea is that if the graph can be decomposed into smakghg by splitting a certain set of vertices into
two parts, then a tree decomposition for each part is coeteiuusing the algorithm recursively, and the tree
decompositions for the parts are joined in an appropriatg tawabtain a tree decomposition for the original
graph. On the other hand, if the set of vertices cannot bt #pin we can conclude that it is highly connected.
This high-level idea has been applied for various notiortseaf decompositions [48, 46,[2,/147], and it turns out
to be useful in our context as well. However, we need to ovarctwo major difficulties:

1. Highly connected set in our context is defined as not hagértainfractional separatorgi.e., weight
assignments). However, if we want to build a tree decomioosih a recursive manner, we neiedeger
separatorgi.e., subsets of vertices) that decompose the hypergraptsimaller parts.

2. Measuring the sizes of sets with a submodular functi@an lead to problems, since the size of the
union of two sets can be much smaller than the sum of the sfzabe two sets. We need the property
that, roughly speaking, removing a “large” part from a sekesat “much smaller.” For example, A
andB are components dfl \ S and bothb(A) andb(B) are large, then we need the property that both
of them are much smaller thafAuUB). Adler [1l, Section 4.2] investigates the relation betweeme
notion of highly connected sets arfdwidth, but assumes thdt is additive: if A andB do not touch,
thenf(AUB) = f(A) + f(B). However, for a submodular functidyn there is no reason to assume that
additivity holds: for example, it very well may be thatA) = b(B) = b(AUB).

To overcome the first difficulty, we have to understand whacttfonal separation really means. The first
guestion is whether fractional separation is equivalerdaime notion of integral separation, perhaps up to
constant factors. The first, naive, question is whether etifnaal (X,Y)-separator of weightv implies that
there aréD(w) edges whose union is &X,Y)-separator, i.e., there is(X,Y)-separatoSwith py (S) = O(w).
There is a simple counterexample showing that this is net tiuis well-known that for every integds> 0
there is a hypergrapH such thatp*(H) = 2 andp(H) = k. LetV be the set of vertices dfl and letH’ be
obtained fromH by extending it with two independent seXsY, each of siz&k, and connecting every vertex
of X UY with every vertex olV. It is clear that there is a fraction&K,Y)-separator of weight 2, but every
(X,Y)-separatoShas to fully contain at least one ¥f, Y, orV, implying py/ (S) > k.

A less naive question is whether a fractiofidl Y)-separator with weightvin H implies that there exists
an (X,Y)-separatoiS with p(;(S) = O(w) (or at mostf (w) for some functionf). It can be shown that this is
not true either: using the hypergraph family presented 4 Bection 5], one can construct counterexamples
where the minimum weight of a fraction&X,Y)-separator is a constant, oj} (S) has to be arbitrarily large
for every(X,Y)-separatofS (we omit the details).

We will characterize fractional separation in a very difier way. We show that if there is a fractional
(A, B)-separator of weightv, then there is atfA, B)-separatoiS with b(S) = O(w) for everyedge-dominated
monotone submodular functidn Note that this separat&can be different for different functioris so we are

20

not claiming that there is a sing(é, B)-separatoSthat is small in every. The converse is also true, thus this
gives a novel characterization of fractional separatimmttup to a constant factor. This result is the key idea
that allows us to move from the domain of submodular funatittnthe domain of pure hypergraph properties:
if there is no(A, B)-separator such th&(S) is small, then we know that there is no small fractio(¥a)B)-
separator, which is a property of the hypergr&plbnly and has no longer anything to do with the submodular
functionb.

To overcome the second difficulty, we introduce a transfdionahat turns a monotone submodular func-
tion b onV(H) into a functionb* that encodes somehow the neighborhood structut¢ a$ well. The new
functionb* is no longer monotone and submodular, but it has a numbenwdnieable properties, for example,
b* remains edge dominated abd(S) > b(S) for every setSC V(H), implying thatb*-width is not smaller
thanb-width. The main idea is to prove Theorém]5.1 brwidth instead ob-width (note that this makes the
statement stronger). Because of the Ww¥codes the neighborhoods, the second difficulty will disayp:
for example, it will be true thab*(AUB) = b*(A) + b*(B) if there are no edges betweArandB, that is,b* is
additive on disjoint components. Lemmnal5.6 formulates @omewhat technical way) the exact propertypof
that we will need. Furthermore, luckily it turns out that tlesult mentioned in the previous paragraph remains
true withb replaced byo*: if there is a fractionalA, B)-separator of weight, then there is afA, B)-separator
Ssuch that not only(S), but everb*(S) is O(w).

5.1 The functionb*

We define the functio* the following way. LetH be a hypergraph and l&tbe a monotone submodular
function defined oV (H). Let S, be the set of all permutations @f(H). For a permutationt € S, (), let
N (v) be the neighbors of precedingv in the orderingrt. Forme S,y andZ CV(H), we define

b z(v) :=b(vU (N, (V)NZ)) —b(N, (V)N Z).

In other wordsgb; z(v) is the marginal value of with respect to the set of its neighborsdmpreceding it. We
abbreviatedbyy, 1) by dbs. As usual, we extend the definition to subsets by letflbgz (S) := ¥ ycsdbrz (V).
Furthermore, we define

bn(Z) = 0bn’z (Z) = Zabmz(V),

b*(Z) := min by(2).
TS (H)

Thusby(2) is the sum of the marginal values with respect to a given ardewhile b*(Z) is the smallest pos-
sible sum taken over all possible orderings. Let us proveessimple properties of the functidsi. Properties
(1)—(3) and their proofs show why was defined this way, the other properties are only techsieédments
that we will need later.

Proposition 5.2. Let H be a hypergraph and let b be a monotone submodular famckefined on YH) with
b(0) = 0. For everyme S,y and ZC V(H) we have

(1) br(Z) = b(2),

(2) b'(2) = b(2),

(3) br(Z)=Db(z)if Z is a clique,
(4) Obrz, (V) < 9bnz,(v)if Z2 C 7y,
(5) dbn(V) < Ibrz(v),

(6) b (XUY) < b*(X) +b*(Y).

21

Proof. (1) We prove the statement by induction @j; for Z = 0, the claim is true (ab(0) = 0). Otherwise,
let v be the last element & according to the ordering. Asv is not preceding any element @f for every
ue Zwe haveN; (u)NZ = Ny (u) N (Z\v), and henc@by z(u) = dbyz\y(U).

br(Z)= Y 0bnz(u)+0brz(v)= 5 Obnzy(u)+dbrz(V)

ueZ\v ueZ\v

= br(Z\V) + 3brz(v) > B(Z\V) + b(vU (N (v) N2)) ~ b(N; (V) "Z) > b(2).

In the first inequality, we used the induction hypothesis thieddefinition ofdb, z(v); in the second inequality,
we used the submodularity bf the marginal value of with respect t&Z \ v is not greater than with respect to
N, (V)NZ.

(2) Follows immediately from (1) and from the definition lwf.

(3) We prove the statement by induction [@. As in (1), letv be the last vertex of in 7. Note that since
Zis aclique, N, (v)NZ is exactlyZ \ v.

br(Z) = § Obnz(u)+0brz(V)= ¥ dbrziy(U)+b(vU (N;(V)1Z)) ~ (N (v)N2Z)

uezZ\v ueZ\v

= br(Z\ V) + b(vU (Z\ V) — b(Z\ V) = b(Z\ V) + b(Z) — b(Z\ V) = b(Z).

(4) Follows from the submodularity df: b,z (v) is the marginal value of with respect tdN,; (v) N Zy,
while db;; z,(v) is the marginal value of with respect to the subsbl; (v) N Z, of N (v) N Z;.

(5) Immediate from (4).

(6) Let v be an ordering such thé; (X) = b*(X) and definers, similarly. Let us define orderingr
such that it starts with the elementsXf in the order ofr, followed by the elements of \ X, in the order
of v, and completed by an arbitrary ordering\ofH) \ (XUY). Itis clear that for every € X, we have
Obrxuy (V) = dbgy x (v). Furthermore, for every € Y\ X, N (v)NY € N (v)N(XUY): if uis a neighbor of
vinY that precedes it im&, thenu is either inX or in Y \ X; in both casesl precedew in 1. Thus, similarly
to (4), we havedby x y (V) < dby, v (V) for everyv e Y \ X: dbgxuy (V) is the marginal value of with respect
to N (v) N (XUY), while dby, v (v) is the marginal value of with respect td\ (v) NY. Now we have

b*(XUY) <bg(XUY) = § dbpxuy (V) < gabm,x(vn S Obry (V) < b (X) +b7(Y).

veXuY veY\X

Prop[5.2(3) implies thalb,z can be used to define a fractional independent set:

Lemma 5.3. Let H be a hypergraph and let b be an edge-dominated monotdmaadular function defined
onV(H) with b(0) = 0. LetWC V(H) and letrtbe an ordering of W. Let us defipgv) = dbyw(v) forve W
and u(v) = 0 otherwise. Theiu is a fractional independent set of H withW) = b(W) > b*(W).

Proof. Letebe an edge dfl and letZ := enW. We have
p(e) = u(Z) = dbgw(Z) < 0bpz(Z) =br(Z) =b(Z) <1,

where the fist inequality follows from Prdp. 5.2(4), the leguality follows from Prod.5]2(3), and the second
inequality follows from the fact thdiis edge dominated. Furthermore, we hgN®/) = dbw (W) = br(W) >
b(W) from Prop[5.2(1). O

We close this section by proving the main propertybbdfthat allows us to avoid the second difficulty
described at the beginning of Sectldn 5. First, althougé fitat used directly, let us state thxitis additive on
sets that are independent from each other:

Lemma 5.4. Let H be a hypergraph, let b be an edge-dominated monotonaaidar function defined on
V(H) with b(0) =0, and let AB C V(H) be disjoint sets such that there is no edge intersecting Aathd B.
Then B(AUB) = b*(A) +b*(B).

22

Proof. By Prop[5.2(6), we have to show orly(AUB) > b*(A) + b*(B). Let it be an ordering o¥ (H) such
thatb;(AUB) = b*(AUB); we can assume that starts with the vertices giU B. Since there is no edge that
intersects botk andB, and no vertex outsid@U B precedes a vertaxe AUB, we haveN,; (u) C Afor every
ue AandN; (u) C Bfor everyu € B. Thusdb;ag(u) = dbyra(u) for everyu € Aanddbyaus(U) = dbge(u)
for everyu € B. Thereforep*(AUB) = b;(AUB) = by(A) +by(B) > b*(A)+b*(B), what we had to show. [

The actual statement that we use is more complicated thamlags: there can be edges betwéesnd
B, but we assume that there is a sni&llB)-separator. We want to generalize the following simpleestant
to our setting:

Proposition 5.5. Let G be a graph, WC V (G) a set of vertices, B C W two disjoint subsets, and A, B)-
separator S. IfS < |A|,|B|, then(CNW) US< |W/| for every component C of GS.

The proof of Prop[55 is easy to see: every compofnf G\ Sis disjoint from eitherA or B, thus
|ICNW|is at mostiW| —min{|A|,|B|} < |W|—|S, implying that|(CNW)U S is less tharfW/|. In our setting,
we want to measure the size of the sets using the funbtiomot by the number of vertices. More precisely, we
measure the size &and(CNW) U Susingb*, while the size ofV/, A, andB are measured using the fractional
independent set defined by LemmBa3513. The reason for this will be apparentémptioof of Lemm&5.10: we
want to claim that if such a separat®does not exist for an, B C W, thenW is a(u, A)-connected set for
this fractional independent sgt

Lemma 5.6. Let H be a hypergraph, let b be an edge-dominated monotonaaidar function defined on
V (H) with b(0) = 0 and let W be a set of vertices. ey be an ordering of (H), and letp(v) := dby, w(Vv)
for ve W andu(v) = 0 otherwise. Let AB C W be two disjoint sets, and let S be &h B)-separator. If
b*(S) < u(A),u(B), then B((CNW)US) < u(W) for every component C of KS.

Proof. LetC be a component dfl \ Sand letZ := (CNW)US Let i be the ordering reaching the minimum
in the definition ofb*(S). Let us define the ordering that starts wittSin the order ofrz, followed byC W

in the order ofryy, and finished by an arbitrary ordering of the remaining eegi It is clear that for every
ve S we havedbyz (V) = dby s(v). Let us consider a vertexe CNW and letu € W be a neighbor of that
precedes it igy. Sincev € C andC is a component oH \ S, eitheru € Soru e CNW. In both casesy
precedes in 1. This means thall; (v) "W C N (v) N Z, which implies thaBbyz(v) < dbg, w(V) = p(v)
for everyv € CNW. As Sseparate# andB, componenC intersects at most one éfandB; suppose, without
loss of generality, that is disjoint fromA. Thus

D(Z) < by(2) = 3 Sbrz() + T Sbrz(y) < (9 + MENW) < H(A) + W\ A) = H(W)
O

5.2 Submodular separation

This section is devoted to understanding what fractiongasstion means: we show that having a small frac-
tional (A, B)-separator is essentially equivalent to the property thrag¥ery edge-dominated submodular func-
tion b, there is an(A, B)-separatofSsuch thab(S) is small. The proof is based on a standard trick that is often
used for rounding fractional solutions for separation fots: we define a distance function and show by an
averaging argument that cutting at some distang®es a small separator. However, in our setting, we need
significant new ideas to make this trick work: the main diffigis that the cost functiob is defined orsubsets

of vertices and is not a modular function defined by the costdices. To overcome this problem, we use the
definitions in Sectiof 511 (in particular, the functidb,(v)) to assign a cost to every single vertex.

Theorem 5.7.Let H be a hypergraph, X CV (H) two sets of vertices, and ¥ (H) — R* an edge-dominated
monotone submodular function withZh = 0. Suppose that s is a fractiongX, Y)-separator of weight at most
w. Then there is afiX,Y)-separator STV (H) with b(S) < b*(S) = O(w).

23

class OE{ Vi ’ |

class 1 V2 ‘ :
i = v
- ‘ ‘ [v T ‘
class2 =
L 3 3
class 3*
0 E 5 : g : 8 g 1

Figure 3: The intervals corresponding to a directed path.., vg. The shaded lines show the offsets of the
vertices.

Proof. The total weight of the edges covering a veney ecg (1) vee S(€); let us definex(v) := min{1, ¥ g (1) vee S(€) }-
It is clear that ifP is a path fromX to Y, thenypXx(v) > 1. We define the distanakv) to be the minimum
of SvepX(V), taken over all paths frorK to v (this means that(v) > 0 is possible for some e X). Itis clear
thatd(v) > 1 for everyv € Y. Let us associate the closed interval) = [d(v) —x(v),d(v)] to each vertex. If
visin X, then the left endpoint af(v) is 0, while ifvis inY, then the right endpoint af(v) is at least 1.
Let u andv be two adjacent vertices id such thatd(u) < d(v). Itis easy to see that(v) < d(u)+ x(u):
there is a patt from X to u such thaty ,.pX(U') = d(u), thus the path®’ obtained by appendingto P has
Svep X(V) = TyepX(U) 4+ x(v) = d(u) +x(v). Therefore, we have:

Claim 1. If uandv are adjacent, ther(u) N1 (v) # 0.

Theclassof a vertexv € V(H) is the largest integex (v) such thak(v) < 2-%), and we define(v) := oo
if x(v) =0. Recall thatx(v) < 1, thusk(v) is nonnegative. Theffsetof a vertexv is the unique value
0< a <2-2 ¥V such thatd(v) =i(2-2-¥) + a for some integer. Let us define an ordering= (vi,...,V,)
of V(H) such that

e K (V) is nondecreasing,
e among vertices having the same class, the offset is noratenge

Let directed graplD be the orientation of the primal graphldfsuch that if; andv; are adjacent anid j,
then there is a directed edgT’/} in D. Figure[3 shows a directed pathin If P is a directed path i®, then the
width of P is the length of the interval),.p ! (V) (note that by Claini]1, this union is indeed an interval). The
following claim bounds the maximum possible width of a diestpath:

Claim 2. If Pis a directed patlD starting atv, then the width oP is at most 18(v).

Proof. We first prove that if every vertex & has the same clasgv), then the width oP is at most 42-¥(),
Since the class is nondecreasing along the path, we catigrattie path into subpaths such that every vertex
in a subpath has the same class and the classes are distthetdifferent subpaths. The width Bfis at most
the sum of the widths of the subpaths, which is at mgst) 4- 27" = 8-27¥) < 16x(v).

Suppose now that every vertex®has the same claggv) as the first vertex and leth := 2-%(), As the
offset is nondecreasing, pakhcan be partitioned into two parts: a subp®&ihcontaining vertices with offset
less tharh, followed by a subpatP, containing vertices with offset at leas{one ofP; andP, can be empty).

24

AR
p|
Pp| 5 5 5 | |

i.oh—h i-2n i-2h+h (|+1)~2h i.2h-h i-2h i-2hth (i+1)-2h

(@) (b)

Figure 4: Proof of Clainl2: Two examples of directed paths netevery vertex has the same clasgand
h:=27%). The shaded lines show the offsets of the vertices.

See Figurél4 for examples. We show that eack,@&ndP, has width at mostt2 which implies that the width
of P is at most 4. Observe that ifi € P; andi (u) contains a poinit- 2h— h for some integetr, then, considering
X(u) < h and the bounds on the offset afthis is only possible if (u) = [i-2h—h,i-2h], i.e.,i-2h—his the
left endpoint ofi (u). Thus ifl; = Uyep, ! (u) containsi - 2h —h, then it is the left endpoint df. Therefore];
can contairi - 2h — h for at most one value af which immediately implies that the length lafis at most B.
We argue similarly fol,. If u € P,, theni(u) can contain the point- 2h only if 1 (u) = [i - 2h,i - 2h+ h].
Thus if 12 = Uyep, 1 (U) containsi - 2h, then it is the left endpoint ab. We get thal, can containi - 2h for at
most one value aof, which immediately implies that the width &f is at most B. This concludes the proof of
Claim[2. J

Letc(v) := dbp(v).
Claim 3. 3 yey) X(V)e(v) <w.

Proof. Let us examine the contribution of an edge E(H) with values(e) to the sum. For every vertexc e,
edgee increases the valudv) by at mosts(e). Thus the total contribution of edgss at most

s(e) - Z c(v) =s(e) - Z obg(v) < Z Obre(v) = s(e)br(e) = s(e)b(e) < s(e),

vee vee vee

where the first inequality follows Prop. 5.2(5); the last @iy follows form Prop[5.R2(3); the last inequality
follows from the fact thab is edge dominated. Therefor§,cyw)X(V)c(V) < Yece(H)S(€) < W, proving
Claim[3. J

Let Sbe a set of vertices. We defirgto be the “inneighbor closure” @, that is, the seAt of all vertices
from which a vertex oSis reachable on a directed pathDn(in particular, this means th&C S).
Claim 4. ForeverySCV(H), 3,.aC(V) = br(S).
Proof. Observe that for any € S every inneighbor ot is also in§, henceNy; (v) C S Thereforedb, g(v) =
dby(v) = c(v) and ClainT# follows. N

Let S(t) be the set of all verticese V (H) for whicht € 1 (v). Observe that for every @t < 1, the se§(t)
(anq henc&(t)) separateX fromY. We use an qveraging argument to show that there is &€ 1 for which
br(S(t)) is O(w). Asb*(S(t)) < by(S(t)), the set§(t) satisfies the requirement of the lemma.

25

If we are able to show thafg1 br(S(t))dt = O(w), then the existence of the requirediearly follows. Let
ly(t) = 1 if ve §t) and letl,(t) = O otherwise. Ifiy(t) = 1, then there is a patR in D from v to a member of
S(t). By Claim[2, the width of this path is at mostX(6), thust € [d(v) — 16x(v),d(v) + 15x(v)]. Therefore,
Jo u(t)dt < 31x(v). Now we have

/0 bn(S))dt /l Y vt = /01 T cWh®dt= o) /0 “L(0dt < 31 T x(v)c(v) < 31w

0 ves(t) veV(H) veV(H) veV(H)
(we used Claim}4 in the first equality and Cldiin 3 in the lastjiradity). O
Although it is not used in this paper, we can prove the corvefS'heoreni 5]7 in a very simple way.

Theorem 5.8.Let H be a hypergraph, and let, X CV(H) be two sets of vertices. Suppose that for every edge-
dominated monotone submodular function on H with)b= 0, there is an(X,Y)-separator S with {5) < w.
Then there is a fractionalX, Y)-separator of weight at most w.

Proof. If there is no fractionalX,Y)-separator of weight at most, then by LP duality, there is afX,Y)-
flow F of value greater thaw. Let b(S) be defined as the total weight of the pathd-imntersectings, it is
easy to see that is a monotone submodular function, and sificés a flow, b(e) < 1 for everye € E(H).
Thus by assumption, there is 84,Y)-separatoSwith b(S) < w. However, every)X —Y path ofF intersects
(X,Y)-separatofS, which impliesh(S) > w, a contradiction. O

The problem of finding a small separator in the sense of Thefrd might seem related to submodular
function minimization at a first look. We close this sectiongwinting out that finding arfA, B)-separatoiS
with b(S) small for a given submodular functidmis not an instance of submodular function minimization,
and hence the well-known algorithms (seel [36, (37, 52]) cabroused for this problem. If a submodular
functiong(X) describes the weight of tHeundaryof X, then finding a smallA, B)-separator is equivalent to
minimizing g(X) subject toA C X, XN B = 0, which can be expressed as an instance of submodulardanct
minimization (and hence solvable in polynomial time). Irr case, howeveh(S) is the weight ofS itself,
which means that we have to miniminéS) subject toS being an(A, B)-separator and this latter constraint
cannot be expressed in the framework of submodular functionmization. A possible workaround is to
defined(X) as the neighborhood of (the set of vertices outsid¢ adjacent toX) andb/(X) := b(d(S)); now
minimizing b’ (X) subject toA C XU §(X), XNB = 0 is the same as finding d¥X,Y)-separatofS minimizing
b(S). However, the functio’ is not necessarily a submodular function in general. Tloegeftransforming
b to b’ this way does not lead to a polynomial-time algorithm usingnsodular function minimization. In
fact, it is quite easy to show that finding &, B)-separatoSwith b(S) minimum possible can be an NP-hard
problem even ib is a submodular function of very simple form.

Theorem 5.9. Given a graph G, subsets of vertices X, Y, and collecfiai subsets of vertices, it is NP-hard
to find an(X,Y)-separator that intersects the minimum number of membeS$s of

Proof. The proof is by reduction from 80LORING. LetH be a graph withn vertices andn edges; we identify
the vertices oH with the integers from 1 ta. We construct a grapB consisting of 8+ 2 vertices, vertex sets
X, Y, and a collectior§ of 6m sets such that there is 8X,Y)-separatofSintersecting at mostr members of
S if and only if G is 3-colorable.

The graphG consists of two vertices, y, and for every K i <n, a pathxv 1V; »v; 3y of length 4 connecting
x andy. The collectionS is constructed such that for every edgec E(H) and 1< a,b < 3,a# b, there is a
corresponding S€v a,Vj b, X, Y}. LetX := {x} andY := {y}. Observe that the s¢V; 5,V;} intersects exactly
3 sets ofS if a# band exactly 4 sets & if a=Dh.

Letc:V(G) — {1,2,3} be a 3-coloring o6z. The seS= {v; ;) | 1 <i < n} is clearly an(X,Y)-separator.
For everyij € E(G), separatoSintersects only 3 of the 6 se{s; a,Vip,X,y}. ThereforeSintersects exactly
3m members ofS.

Consider now anX,Y)-separatorS intersecting at mostr8 members ofS. Since every member &
contains bottx andy, it follows thatx,y ¢ S. ThusShas to contain at least one internal vertex of every path

26

XVi 1Vi2Vi gy. For every 1<i <n, let us fix a vertew; o) € S We claim thatc is a 3-coloring ofG. For every
ij € E(G), Sintersects at least 3 of the s€t§ a,Vip,X,y}, and intersects 4 of them i) = c(j). Thus the
assumption tha®intersects at most3 members ofS immediately implies that is a proper 3-coloring. [

5.3 Obtaining a highly connected set

The following lemma is the same as the main result of Sefifh@oren! 5.11) we are trying to prove, with
the exception that-width is replaced byp*-width. By Prod 5.2(2)b*(S) > b(S) for every selSC V(H), thus
b*-width is not less tham-width. Therefore, the following is actually a strongertetaent and immediately
implies Theorenm 511.

Lemma 5.10. For every sufficiently small constaiat> 0, the following holds. Let b be an edge-dominated
monotone submodular function of H witl{@d = 0. If the br-width of H is greater thand(w + 1), then
com (W) > w.

Proof. Suppose thal < 1/c, wherec is the universal constant of Lemrmals.7 hidden by the big-Qtiat.
Suppose that carf\Wp) < w, that is, there is no fractional independent getnd(u, A)-connected sép with
H(Wp) > w. We show thaH has a tree decomposition bf-width at mostg(w+ 1), or more precisely, we
show the following stronger statement:

For every subhypergrapH’ of H and everyW, C V(H') with b*(Wp) < w+ 1, there is a tree
decomposition oH’ having b*-width at most% (W+ 1) such thaMp is contained in one of the
bags.

We prove this statement by induction n(H’)|. If b*(V(H’)) < 3(w+ 1), then a decomposition consisting
of a single bag proves the statement. Otherwis&Viee a superset & such thawv < b*(W) <w+1; let us
choose &V that is inclusionwise maximal with respect to this prope@pserve that there has to be at least one
such set: from the fact that (v) < 1 for every vertex and from Propl_5]2(6), we know that adding a vertex
increased* (W) by at most 1. Since*(V(H')) > 3(w+ 1), by adding vertices td\ in an arbitrary order, we
eventually find a seétv with b*(W) > w, and the first such set satisfig§W) < w+ 1 as well.

Let 7 be an ordering o¥ (H’) such that,(W) = b*(W). As in Lemm&5.B, let us define the fractional
independent sgt by 1 (v) := dbgw(v) if ve W andu(v) = 0 otherwise. Clearly, we haygW) = b*(W) > w.

By assumptionWV is not (u, A)-connected, hence there are disjoint 8 C W and a fractionalA, B)-
separator of weight less than min{u(A), u(B)}. Thus by LemmaZ5l7, there is A, B)-separatoSC V (H’)
with b*(S) < min{u(A),u(B)} < u(W)/2 < (w+1)/2 (the second inequality follows from the fact that
andB are disjoint subsets o). LetC;y, ..., C; be the connected componentstdf\ S by Lemmal5.5,
b*((CiNW)US) < br(W) = b*(W) < w+1 for every 1<i <r. Asb*(V(H')) > 3(w+1) andb*(S) <
(w+1)/2, itis not possible the8=V (H’), hencer > 0. Itis not possible that= 1 either:(C; "W) U Swould
be a superset &V with b*-value less tham+ 1, and (ad*(V(H’)) > %(w+ 1)) we could find a set between
(C:NW)uUSandV(H’) contradicting the maximality of the choice Wf. Thusr > 2, which means that each
hypergraptH/ := H'[C; U S has strictly fewer vertices thar’ for every 1<i <r.

By the induction hypothesis, ea¢lf has a tree decompositioh having b*-width at most% (w+ 1) such
thatW := (CGGNW)USis contained in one of the bags. LBt be the bag off; containingW. We build a
tree decompositiofi of H by joining together the tree decompositiohs ..., 7;: let Bp := WU Sbe a new

bag that is adjacent to ba@s, ..., B;. It can be easily verified thaf is indeed a tree decomposition Idf.
Furthermore, by Prop.8.2(6):(Bo) < b* (W) +b*(S) < w+1+ (w+1)/2= 3(w-+1) and by the assumptions
onTy,..., 7, every other bag has' value at mostg(w+ 1). O

6 From highly connected sets to embeddings

The main result of this section is showing that the existexideghly connected sets imply that the hypergraph
has large embedding power. Recall from Seclibn 2 Was a (u,A)-connected set for some > 0 and
fractional independent sgtif for every disjointX,Y C W, the minimum weight of a fraction&K, Y)-separator

27

is at leastA - {u(X),u(Y)}. We denote by conH) the maximum value ofi(W) taken over every fractional
independent sgt and(u, A)-connected s&. Recall also that the edge depth of an embeddging G into H
is the maximum off ey) |@(v) N €], taken over everg € E(H).

Theorem 6.1. For every sufficiently small > 0 and hypergraph H, there is a constant;m such that every

1
graph G with m> m , edges has an embedding into H with edge deptm/A 2 cont(H))). Furthermore,
there is an algorithm that, given G, H, ar\d produces such an embedding in tim@ifA)n®W.

In other words, Theoref 6.1 gives a lower bound on the emhgdutbwer ofH:

1
Corollary 6.2. For every sufficiently small > 0 and hypergraph Hembh(H) = Q(A 3 coni(H)).

Theoren{ 6.1l is stated in algorithmic form, since the reductn the hardness result of Sectidn 7 needs
to find such embeddings. For the proof, our strategy is sinilahe embedding result of [43]: we show
that a highly connected set implies that a uniform concurfiew exists, the paths appearing in the uniform
concurrent flow can be used to embed (a blowup of) the linehgpa complete graph, and every graph
has an appropriate embedding in the line graph of a complegghg To make this strategy work, we need
generalizations of concurrent flows, multicuts, and mattienodity flows in our hypergraph setting and we
need to obtain results that connect these concepts to highlyected sets. Some of these results are similar in
spirit to theO(,/n)-approximation algorithms appearing in the combinatarlmization literature[[30, 31 3].
However, those approximation algorithms are mostly basetdaver rounding of fractional solutions, while in
our setting rounding is not an option: as discussed in Se&tdhe existence of a fractiongX,Y)-separator
of small weight does not imply the existence of a small integgparator. Thus we have to work directly with
the fractional solution and use the properties of the higblynected set.

It turns out that the right notion of uniform concurrent floar our purposes is a collection of flows that
connect cliques: that is, a collectiéh; (1 <i < j <Kk) of compatible flows, each of valug such thaf ; is
a (Ki, Kj)-flow, whereKj, ..., K are disjoint cliques. Thus our first goal is to find a highly sected set that
can be partitioned int& cliques in an appropriate way.

6.1 Highly connected sets with cliques

Let (X1,Y1), .., (X, Yk) be pairs of vertex sets such that the minimum weight of aifvaat (X;,Y;)-separator

is 5. Analogously to multicut problems in combinatorial optiaiion, we investigate weight assignments that
simultaneouslyseparate all these pairs. Clearly, the minimum weight ohsarc assignment is at least the

minimum of thes’s and at most the sum of thegs. The following lemma shows that in a highly connected
set, such a simultaneous separator cannot be very efficmghly speaking, its weight is at least the square
root of the sum of the's.

Lemma 6.3. Let u be a fractional independent set in hypergraph H and let W kgt &)-connected set
for some0 < A < 1. Let(Xy,...,X,Y1,...,Yk) be a partition of W, let w.= min{u(X;),u(Y;)} > 1/2, and
let w:=SK ,w. Lets: E(H) — R* be a weight assignment of total weight p such that s is a fraeli
(Xi,Yi)-separator for everyl <i <k. Then p> (A/7)-/W.

Proof. Let us define the functiod by s'(e) = 6s(e) and letx(v) := ¥ ece(H)veeS (€). We define the distance
d(u,v) to be the minimum of ,.p X(V), taken over all pathB fromutov. Itis clear that the triangle inequality
holds, i.e.d(u,v) <d(u,z)+d(z V) for everyu,v,ze V(H). If scovers everyi—v path, therd(u,v) > 6: every
edgee intersecting a1— v pathP contributes at least(e) to the sumy, .pX(V') (ase can intersecP in more
than one verticeg can increase the sum by more th&fe)). On the other hand, ii(u,v) > 2, thens' covers
everyu— Vv path. Clearly, itis sufficient to verify this for minimal get. Such a patR can intersect an edgsat
most twice, hence contributes at mostXe) to the sumy,.px(V) > 2, implying that the edges intersecting
P have total weight at least 1 8.

Suppose for contradiction that< (A /7) - \/w, that is,w > 49p?/A2. Assis an(X;,Y;)-separator, we have
thatp > 1. LetA:=0 andB:= J* (X UY)). Note thatu(B) > 25K ;w = 2w. We will increaseA and

28

decreas® while maintaining the invariant condition that the distarné A andB is at least 2 ird. Let T be the
smallest integer such th@;-T:lwi > 6p/A; if there is no suclT, thenw < 6p/A, a contradiction. Asv; > 1/2
for everyi, it follows thatT < 12p/A +1 < 13p/A (sincep > 1 andA <1).

Fori=1,2,...,T, we perform the following step. Let’ (resp.,Y/) be the set of all vertices & that are
at distance at most 2 frob§ (resp.,Y;). As the distance oX; andy; is at least 6, by the triangle inequality the
distance oK’ andY; is at least 2, henceg is a fractional(X/, Y/)-separator. Sinc@ is (i, A)-connected and
is an assignment of weighpbéwe have midu(X/), u(Y;/)} <6p/A. If u(X') <6p/A, then let us puk; (note:
not X') into A and let us remov&/ from B. The setX/, which we remove fron, contains all the vertices that
are at distance at most 2 from any new verteAjmence it remains true that the distancé@&ndB is at least
2. Similarly, if u(X/) > 6p/A andu(Y/) < 6p/A, then let us puy; into A and let us remov, from B. Note
that we may put a vertex int& even if it was removed frorB in an earlier step.

In thei-th step of the procedure, we incregs@A) by at leastw; (aspu(X), u(Yi) > w; and these sets are
disjoint from the sets already containedApand 11(B) is decreased by at mospBA. Thus at the end of the
procedure, we havg(A) > 5T, w; > 6p/A and

u(B) > 2w—T-6p/A > 98p°/(A%) — (13p/(A))(6p/A) > 6p/A,

that is, mi u(A), u(B)} > 6p/A. By construction, the distance AfandB is at least 2, thus' is a fractional
(A, B)-separator of weight exactlyps contradicting the assumption thatis (u, A)-connected. O

In the rest of the section, we need a more constrained nofidlows, where the endpoints “respect” a
particular fractional independent set. Lat u, be fractional independent sets of hypergréaphnd letX,Y C
V(H) be two (not necessarily disjoint) sets of vertices([A, t2)-demand X, Y)-flowis an(X,Y)-flow F such
that for eachx € X, the total weight of the paths iR having first endpoink is at mosty; (x), and similarly,
the total weight of the paths iR having second endpoigte Y is at mostu(y). Note that there is no bound
on the weight of the paths going throughaa X, we only bound the paths whose first/second endpoixt is
The definition is particularly delicate X andY are not disjoint, in this case, a vertex XNY can be the first
endpoint of some paths and the second endpoint of some dties, jpr it can be even both the first and second
endpoint of a path of length 0. We use the abbreviatietlemand for(u, 1)-demand.

The following lemma shows that if a flow connects aldewith a highly connected s&Y¥, thenU is highly
connected as well (¥ can be moved t&)”). This observation will be used in the proof of Lemal6.5,end
we locate cliques and show that their union is highly corgmhcsince there is a flow that connects the cliques
to a highly connected set.

Lemma 6.4. Let H be a hypergraphys, i fractional independent sets, and WV (H) a (1, A)-connected
set for som® < A < 1. Suppose that |V (H) is a set of vertices and F is (@, 42)-demandW, U)-flow of
valuepx(U). Then U is(uz, A /6)-connected.

Proof. Suppose that there are disjoint s&t8 C U and a fractional A, B)-separatos of weightw < (A /6) -
min{2(A), ti2(B)}. (Note that this means,(A), Lz2(B) > 6w/A > 6w.) For a pattP, lets(P) = ¥ ecg (1) enp-20 S(€)
be the total weight of the edges intersectiig.et A’ C W (resp.,B' C W) contain a vertex € W if there is a
pathP in F with first endpointv and second endpoint i (resp.,B) ands(P) < 1/3. If ANB' £ 0, then it is
clear that there is a pathwith s(P) < 2/3 connecting a vertex d& and a vertex oB via a vertex ofA' "B/, a
contradiction. Thus we can assume thaandB’ are disjoint.

SinceF is a flow ands has weightw, the total weight of the paths i with s(P) > 1/3 is at most &. As
the value ofF is exactlyu,(U), the total weight of the paths i with second endpoint iA is exactly iz (A).
If s(P) < 1/3 for such a path, then its first endpoint isAhby definition. Therefore, the total weight of the
paths inF with first endpoint inA’ is at leastux(A) — 3w, which means thatiy (A') > ta(A) — 3w > ta(A)/2.
Similarly, we havep; (B) > p2(B)/2. SinceW is (U, A)-connected andis an assignment with weight less
than(A /6)-min{pz(A), u2(B)} < (A /3)-min{u1(A'), ua(B')}, there is ar\ — B’ pathP with s(P) < 1/3. Now
the concatenation of al — A pathPa havings(Pa) < 1/3, the pattP, and aB’ — B pathPs havings(Ps) < 1/3
forms anA — B path that is not covered tg/ a contradiction. O

29

Primal LP Dual LP
r
maximize x(P) minimize ye)+ Y puylu)+ Yy pvy(v)
i; ueA.Z/e B; eegH) ue; VZB
PePuv
s. t.
d s. t.
Zi Z XP)<1 vecE(H) vi<i<r,ueA,veB;
"~ ecRupre > Y@YWy =L gy
X(P) < p(u) Vi<i<rueA il
VeBi PPy (Pl < py) Vi<is o y(e) >0 VeeE(H)
X(P) < u(v <i<rveB;
UEAPEPY I y(uy>0 YueA
Vi<i<rueA,VeB, y(v)>0 WweB
>
X(P) =0 P e Puw

Figure 5: Primal and dual linear programs ferdemand multicommodity flow between pai&g,Bs), ...,
(Ar,Br). We denote byP,, the set of alu— v paths.

A p-demandmulticommodity flowbetween pairgA1,Bs), ..., (Ar,By) is a setFy, ..., K of compatible
flows such thaF; is au-demandA;, B;)-flow (recall that a set of flows is compatible if their sum isah flow,
that is, do not violate the edge constraints). Vakieof a multicommodity flow is the sum of the values of the
flows. LetA=J[_; A, B=J{_, Bi, and let us restrict our attention to the case wi®n...,A;,By,...,B;)isa
partition of AUB. In this case, the maximum value ofiademand multicommodity flow between pa(#s, Bs),

..., (Ar,By) can be expressed as the optimum values of the primal andideat programs in Figuié 5.

The following lemma shows that if cqiH) is sufficiently large, then there is a highly connected sat th
has the additional property that it is the uniorkafliquesKsy, ..., Ky with u(K;) > 1/2 for every clique. The
high-level idea of the proof is the following. Take(g,A)-connected sé with p(W) = con, (H) and find
a large multicommodity flow between some pdifg,Bs), ..., (Ar,B) in W. Consider the dual solution
By complementary slackness, every edge with nonzero valyeavers exactly 1 unit of the multicommodity
flow. If most of the weight of the dual solution is on the edgealales, then we can chookeedges that cover
at leastQ(k) units of flow. These edges are connectetMdy a flow, and therefore by Lemrha 6.4 the union
of these edges is also highly connected and obviously caaiiégned into a small number cliques.

There are two things that can go wrong with this argumenst ftrcan happen that the dual solution assigns
most of the weight to the vertex variablgal), y(v) (u € A, v € B). This case is only possible if the value of the
dual (and hence the primal) solution is clos&to, (min{u(A) + u(Bi)}). To avoid this situation, we want to
select the pair$A;, B;) such that they are only “moderately connected”: there igetifsnal (A;, B;)-separator
of weight 22 min{ u(A;), 1(Bj)}, that is, at most twice the minimum possible. This meanstti@tveight of
the dual solution is at most2y{_, (min{¢(Ai), 4(Bi)}), which is much less thafi_, (min{u(A;), u(Bi)} (if
A is small). If we are not able to find sufficiently many such pathen we argue that a larger highly connected
set can be obtained by scalipgby a factor of 2. More precisely, we show that there is a latgessiW’ C W
that is(2u,A)-connected and2(W'’) > con (H), a contradiction (a technical difficulty here that we have to
make sure first that/2is also a fractional independent set).

The second problem we have to deal with is that the value otitia solution can be so small that we
find a very small set of edges that already cover a large fracti the multicommodity flow. However, we can
use Lemma 613 to argue that a weight assignment on the edafesotrers a large multicommodity flow in a
(u,A)-connected set cannot have very small weight.

Lemma 6.5. Let H be a hypergraph and I€&< A < 1/16 be a constant. Then there is fractional independent
setu, a(u,A /6)-connected set W, and a partitidKy, ..., Kx) of W such that k= Q(A y/com (H)), and for
everyl <i <Kk, K is a clique withu(K;) > 1/2.

30

Proof. Let k be the largest integer such that goH) > 3T 4 2k holds, whereT := (56/A)2-k?; it is clear
thatk = Q(A/con (H)). Let o be a fractional independent set aWg be a (Lo, A)-connected set with
Ho(Wo) = comy (H). We can assume thab(v) > 0 if and only if v € Wp. This also implies thai\p is in one
connected component bf.

Highly loaded edges.First, we want to modifylp such that there is no edgewith pp(e) > 1/2. The
following claim shows that we can achieve this by restrigliy to an appropriate subsét of Wp.

Claim 1. There is a subs&V C W, such thatug(W) > comy (H) — kandpp(enW) < 1/2 for every edge.

Proof. Let us choose edges, @, ... as long as possible with the requirement(Ki) > 1/2 for K; :=
(g NWp) \ U'j;ll K;. If we can select at lea&tsuch edges, then the cliqui€s, ..., Ky satisfy the requirements.
Indeed W' := (¥ ; Ki CWp is a (o, A)-connected seflo(Ki) > 1/2, and(Ky, ..., Ky) is a partition oW’ into
cliques.

Thus we can assume that the selection of the edges stopseai;ddgsomet < k. LetW :=Wp \ !, K;.
Observe that there is no edge E(H) with pp(eNW) > 1/2, as in this case the selection of the edges could
be continued withy,, 1 := e. Furthermore, we havgo(W) = to(We \ Ut_1 Ki) > Ho(Wo) —k = cony (H) — K,
as required. J

Moderately connected pairs. Let us defineu such thatu(v) = 2ug(v) if ve W and u(v) = 0 other-
wise. By Claim[1,u is a fractional independent set. The ¥gtis (L, A)-connected, but not necessarily
(u,A)-connected. In the next step, we find a large collection afsgay, B;) that violate(u, A)-connectivity.
Informally, we can say that these pai#s, B;) are “moderately connected”: denoting= min{u(A), u(Bi)},
the minimum value of a fractiondlA;, B;)-separator for such a pair is less thaw;, but at leastAw; /2 =
Amin{Lo(A), Uo(Bi)} (becausaV is (o, A)-connected).

Claim 2. There are disjoint set4;,Bs,...,Ar,B, C W such that for every X i <r there is a fractional
(Ai, Bj)-separator with weight less thamw; for wi := min{u(A), u(Bj)} andw:=Si_,w; > T.

Proof. Let us greedily select a maximal collection of such pédts B,), ..., (Ar, Br). Note that every fractional
separator has value at least 1\(@ss in a single component &f), thusAw; > 1 holds, implyingw; > 1/A > 1.
We can assume that(Ai), u(Bi) <wi+ 1 < 2w;: if, say, 4(A) > u(Bi) + 1, then removing an arbitrary vertex
of A; decreaseg (A;) by at most one (ag is a fractional independent set) without changing fpitA), u(B;i)},
hence there would be a smaller pair of sets with the requirepdepties. Therefore, we have2< u(A UB;) <
2w; +1 < 3w, forevery 1<i <r.

Suppose thatv:= 51w < T. LetW : =W\ U[_1(AUB;). As u(U_1(AiUB;)) < 3w < 3T, we have
H(W') > (W) —3T = 2ug(W) — 3T > 2comy (H) — 2k— 3T > con, (H). Since the greedy selection stopped,
there is no fractiona(A', B')-separator of value less than min{u(A'), u(B')} for any disjointA’,B' C W',
that is,W' is (u, A)-connected withu(W’) > con (H), contradicting the definition of cqriH). N

Finding a multicommodity flow. Let (Aq,Bs), ..., (Ar,Br) be as in Clain 2. Since there is a fractional
(A, Bj)-separator of value less tharw;, the maximum value of @-demand multicommodity flow between
pairs(Ag,B1), ..., (Ar,By) is less thamw. Lety be an optimum dual solution; we give a lower bound on the
total weight of the edge variables.

Claim 3. zeeE(H)y(e) > 2k.
Proof. Let A:=J[_;A andB:=Ji_;B;. LetA*:={ue A|y(u) <1/4}, B*:={ve B|y(v) < 1/4},
A =ANA" B =BinB*, andwi = min{u(A), u(B;)}. For each, the value ofn; is either at least; /2, or
less than that. Assume without loss of generality that tieeeel < r* <r such thaw > w; /2 if and only if
i <re Letw* =3I, wr.

We claim thatw* > w/4. Note thatw < w;/2 means that eithep(A") < w;/2 or u(Bf) < wi/2; as
U(A), 1(Bi) > w;, this is only possible if1(Ai \ A*) + u(B; \ B) > w; /2. Suppose first thati_. ., wi > w/2.
This would imply

HAVAYUB\B) > S (HA\A)+u(B\B) > T wi/2>w/4

i=r7+1 i=r"+1

31

However,y(u) > 1/4 for everyu € (A\ A*) U (B\ B*), thus 3 ycaug H(V)Y(V) > U((A\A)U(B\ B¥))/4 >
w/16 > Aw (sinceA < 1/16), a contradiction with the assumption that the optimust isiostAw. Thus we
can assume that!_..,w <w/2 and henc&!_,w, > w/2. Together withw; > w;/2 for every 1< i < r¥,
this impliesw* > w/4.

As y(a),y(b) < 1/4 for everya c Af, b € By, it is clear that for evernA’ — B path P, the total weight
of the edges intersecting has to be at least/2 in assignmeny. Therefore, if we defing* : E(H) — R
by y*(e) = 2y(e) for everye e E(H), theny* covers evenAr — B path. Letw* = JI_; (A" UB?). We use
Lemma[6.8 for th€ 1, A)-connected s&V*, the pairs(A},B)), ..., (A,By.), and for the weight assignment
y*. Note thatwi > w;/2 > 1/2 for everyi. It follows that the total weight of/* on the edges is at least
(A/7)- VW > (A /14) - /W, which means tha g 1) Y(€) > (A/28)- /W > (A /28) - VT > 2. 4

Locating the cliques.Lety be an optimum dual solution for the maximum multicommodiopflproblem
with pairs(Ag,By), ..., (Ar,Br) and letF be the sum of the flows obtained from an optimum primal safutio

Claim 4. There arek pairwise-disjoint cliqguey, ..., Kx and ak subflowsfy, ..., fx of F, each of them
having value at least/R, such that every path appearingfinintersectsk; and is disjoint fromK; for every
j#Ii.

Proof. Let F(9 = F and fori = 1,2,..., let F() be the flow obtained fror (9 by removingfy, ..., fi. Let

c(e,F) be the total weight of the paths F() intersecting edge and letCi = 3 g (n) Y(€)c(e F). By

complementary slackness(e, F(?) = 1 for eache € E(H) with y(e) > 0 and henc€ = YecE(H) Y(€) > 2K.

Let us select to be an edge such thes, F~%) is maximum possible and Ié := e \ U} ;. Let the
flow f; contain all the paths d& (-1 intersectingg. Observe that the paths appearingiido not intersece;,

.., &_1 (otherwise they would be in one df, ..., fi_; and hence they would no longer beRfi—1), thus
cliqueK; intersects every path if;.

For everyu— v pathP appearing irF (9, we gety ece(H) enp2oY(€) +Y(U) +Y(v) = 1 from complementary
slackness: if the primal variable correspondindPtis nonzero, then the corresponding dual constraint is.tight
In particular, this means that the total weight of the edgesrsecting such a pakhis at most 1 iny. AsF (-1
is a subflow ofF (9, this is also true for every pathin F(—Y. This means that when we remove a path of
weighty from F(~2 to obtainF (), then the total weight of the edgegor which c(e, F(~1)) decreases byis
at most 1, i.e.Ci_1 decreases by at mogt As only the paths intersectirg are removed fronfr (-1 and the
total weight of the paths intersectirgis at most 1, we get th&; > C;_1 — 1 and henc€; > Cy —k > Cy/2 for
i <k SinceCo = Fecgm)Y(€) andCi = Yecg(n) Y(e)c(e,F V) > Co/2, it follows that there has to be at least
one edgee with c(e,F()) > 1/2. Thus in each step, we can select an egigich that that the total weight of
the paths irF () intersectingg is at least 12, and hence the value d@fis at least 12 for every 1<i <k.

Moving the highly connected setLetU = U< ; K;.

Claim 5. There is a fractional independent ggtsuch that) is a(u’, A /6)-connected set witp'(K;) > 1/2
for every 1<i <r.

Proof. Each pathP in f; is a path with endpoints iV and intersectind<;. Let us truncate each pathin
fi such that its first endpoint is still W and its second endpoint is Iq; let f/ be the(W, K;)-flow obtained
by truncating every path if;. Note thatf/ is still a flow and the sunf’ of f{, ..., f; is a(W,U)-flow. Let
p1 = p and letu,(v) be the total weight of the paths F with second endpoint. It is clear thaty, is a
fractional independent sqtp(K;) > 1/2, andF is a (U, t2)-demandW, U)-flow with value z(U). Thus by
Lemmd 6.4V is a(up,A /6)-connected set with the required properties. J

The seU, the partition(Ky,...,K;), and the fractional independent gétclearly satisfy the requirements
of the lemma. O

6.2 Concurrent flows and embedding

Let W be a set of vertices and 1€X,...,Xs) be a partition oW. A uniform concurrent flow of value on
(X1,...,X) is a compatible set off) flowsFj (1 <i < j <Kk) whereF ; is an(X;, X;)-flow of valuee. The

32

Primal LP Dual LP
maximizee minimizeeegH)y(e)
s. t. > ye=t; Vi<i<j<kPeR
X(P) <1 VeeE(H) ecE(H)enP#0
1§i<]§k|F;§77i‘10., Eivj >1
e o 1<i<)<k
Y x(P)>e Vi<i<j<k y(e) >0 VeecE(H)
Pchi B . .
XP)>0 Vi<i<|<kPeP, 4;>0 V1i<i<j<k

Figure 6: Primal and dual linear programs for uniform conent flow onW = (Xy,...,X). We denote byP,
the set of allX; — X; paths.

maximum value of a uniform concurrent flow B can be expressed as the optimum values of the primal and
dual linear programs in Figufé 6.

If H is connected, then the maximum value of a uniform concufftewton (X1, ..., X) is at least 1(;) =
Q(k~2): if each of the('g) flows has value /1(';) then they are clearly compatible. The following lemma
shows that in &, A)-connected set, if the seXs, ..., X, are cliques angi(X;) > 1/2 for everyi, then we can
guarantee a better bound @(k‘%).

Lemma 6.6. Let H be a hypergraphy a fractional independent set of H, and WV (H) a (u, A)-connected
setforsom@® < A < 1. Let(Kj,...,K) (with k> 1) be a partition of W such thatjks a cliqgue andu(K;) >1/2
for everyl <i < k. Then there is a uniform concurrent flow of valéi /k%) on (Ky,...,Kg).

Proof. Suppose that there is no uniform concurrent flow of vg@ua /k%, wheref3 > 0 is a sufficiently small
universal constant specified later. This means that the lthesdr program has a solution having value less
than that. Let us fix such a solutiqy,; ;) of the dual linear program. In the following, for every pah
we denote by(P) := ¥ ecgH).epr0Y(€) the total weight of the edges intersectiRglt is clear from the dual
linear program thay(P) > ¢; ; for everyP € P, ;.

We construct two graphS; andG;: the vertex set of both graphs{g, ..., k} and for every i < j <k,
verticesi and j are adjacent i, (resp.,Gy) if and only if 4 ; > 1/(3k?) (resp..4ij > 1/k?). Note thatG; is a
subgraph of5;. First we prove the following claim:

Claim 1. If the distance ofi andv is at most 3 in theomplemenof Gy, thenu andv are not adjacent ;.

Proof. Suppose thatw;wsv is a path of length 3 in the complement @f (the same argument works for
paths of length less than 3). By definition Gfi, there is aK, — Ky, path P, a Ky, — Ky, pathP, and a
Kw, — Ky path P3 such thaty(Py),y(P,),y(Ps) < 1/(3k?). SinceK, andK,, are cliques, path® andP,
touch, and pathB, andP; touch. Thus by concatenating the three paths, we can obtin-&, pathP with
y(P) <y(P1) +Yy(P) +y(Ps) < 1/k?, implying thatu andv are not adjacent i,, proving the claim. Note that
the proof of this claim is the only point where we use thatKkie are cliques. J

Lety : E(H) — R be defined by’ (e) := 3k?-y(e), thusy has total weight less tharB3Av/k. Suppose
first thatG; has a matchingyby, ..., anby of sizem= [k/4]. This means that covers everK, — Ky, path
for every 1< i < [k/4]. Therefore, by Lemma®.§, has weight at leagA /7) - \/Tk/4] - (1/2) > 3B - AV,
if B is sufficiently small, yielding a contradiction.

Thus the size of the maximum matching@ is less tharfk/4], which means that there is a vertex cover
S, of size at mosk/2. LetS, C S contain those vertices & that are adjacent to every vertex outsien
G1. We claim thatS; is a vertex cover ofs;. Suppose that there is an edgeof G, for someu,v ¢ S;. By the
definition of S, eitheru ¢ S;, or there is a vertew,; ¢ S such thau andw; are not adjacent iG1. Similarly,
eithervis not inS, or it is not adjacent i3, to somew, ¢ S;. Since vertices not ig; are not adjacent i

33

(as$ is a vertex cover 065;), we get that the distance afandv is at most 3 in the complement Gf. Thus
by the claim,u andv are not adjacent i,.
Let us give an upper bound gh ;. ;<4 j by bounding/; ; separately for pairs that are adjacenGgnand

for pairs that are not adjacent @y. The total weight ofy, which is less thar)B-)\/k%, is an upper bound on
any/; j. Furthermore, if andj are not adjacent it,, then we havé; j < 1/k2. The number of edges @, is
at most|S|k (as$, is vertex cover), hence we have

1< S 6y <[Sk-BAK+ @(1/18) <B-ASl/VK+1/2,

1<i<)<k

which implies thatS| > vk/(2BA). LetA:= Uies, Ki and B := Uigg, Ki; we haveu(A) > |S| - (1/2) >
VK/(4BA) andu(B) > (1/2)- (k—|S1|)) > k/4. As every vertex 0§ is adjacent irG; with every vertex out-
sideS;, assignmeny’ covers everyA— B path. Howevery has weight less than3 A vk < min{v/k/(4BA),k/4}
(using thatA < 1 and assuming thg is sufficiently small), contradicting the assumption tWats (u, A)-
connected. O

Intuitively, the intersection structure of the paths appegin a uniform concurrent flow on cliquésg, ...,
Kk is reminiscent of the edges of the complete graptk eertices: if{i1, j1} N{i2, j2} # 0, then every path
of F, j, touches every path d¥, ;,. We use the following result from [43], which shows that theelgraph
of cliques have good embedding propertiesGlis a graph and) > 1 is an integer, then thielow up G9 is
obtained fromG by replacing every vertex with a cliqueK, of sizeq and for every edgav of G, connecting
every vertex of the cliqu&, with every vertex of the cliqu&,. Let Ly be the line graph of the complete graph

onk vertices.

Lemma 6.7 ([43]). For every k> 1 there is a constantyr> 0 such that for every G withE(G)| > ny and no

isolated vertices, the graph G is a minor qS“Lfor q= [130E(G)|/k?]. Furthermore, a minor mapping can
be found in time polynomial in the size of G.

Using the terminology of embeddings, a minor mappinahto L,((q) can be considered as an embedding
from G to Ly where every vertex dfx appears in the image of at masvertices, i.e., the vertex depth of the
embedding is at most Thus we can restate Lemimal6.7 the following way:

Lemma 6.8. For every k> 1 there is a constant > 0 such that for every G withE(G)| > nx and no
isolated vertices, the graph G has an embedding intavith vertex depth QE(G)|/k?). Furthermore, such
an embedding can be found in time polynomial in the size of G.

Now we are ready to prove Theoréml6.1, the main result of tbgose

Proof (of Theorerh 6]1)By Lemm&6.b and Lemnia®.6, for sorke- Q(A y/com (H)), there are cliquek;,
..., Kx and a uniform concurrent flow ; (1 <i < j <K) of valuee = Q()\/k%) on (Kg,...,Kg). By trying
all possibilities for the cliqgues and then solving the unificconcurrent flow linear program, we can find these
flows (the time required for this step is a constéfit, A) depending only ol andA) . Letwp be the smallest
positive weight appearing in the flows.

Let m= |E(G)| and suppose that > ny, for the constanty in Lemmal6.¥. Thus the algorithm of
Lemmal6.8 can be used to find a an embeddinfom G to Ly with vertex depthq = O(m/k?). Let us
denote byvy; j, (1 <i < j <K) the vertices ot with the meaning that distinct verticesg, ;,, andvy, j,, are
adjacent if and only ifi, j1} N {i2, j2} # 0.

We construct an embeddingfrom G to H the following way. The sep(u) is obtained by replacing each
vertex ofvg j, € Y(u) by a path from the flowF j (thus @(u) is the union of{(u)| paths). We select the
paths in such a way that the following requirement is satisfeepathP of F; j having weightw is selected into
the images of at mogt(qg/¢) - w| vertices ofG. We setmy, , sufficiently large tha{q/¢) - wo > 1 (note that
q depends om, but £ andwp depends only ofd andA). Thus ifm>my ,, then[(g/e)-w]| < 2(g/g) - w.
Since the total weight of the pathsh; is €, these paths can accommodate the image of at(gasj-€ = q

34

vertices. As each vertex; ;, of Ly appears in the image of at magvertices ofG in the mappingp, we can
satisfy the requirement.

It is easy to see thatif; andu, are adjacent i, theng(u;) and@(uy) touch: in this case, there are vertices
Vi iy} € Y(up), Viisiz) € Y(up) that are adjacent or the samelip (that is, there is & € {i1, j1} N{i2, j2}),
and the corresponding pathsff ;, andF, j, selected intap(u1) and@(uy) touch, as they both intersect the
cligueK;. With a similar argument, we can show thg) is connected.

To bound the edge depth of the embeddmgonsider an edge The total weight of the paths intersecting
eis at most 1 and a path with weightis used in the image of at mosf? €) - w vertices. Each path intersects
ein at most 2 vertices (as we can assume that the paths appéathre flows are minimal), thus a path with
weight w contributes at most(4/¢) - w to the depth ofe. Thus the edge depth a@f is at most 4q/¢) =

O(m/(Av/k)) = O(m/ (A2 com (H)#)). O

6.3 Connection with adaptive width

As an easy consequence of the embedding result Corgllaryw& Zan show that large submodular width
implies large adaptive width:

Lemma 6.9. For every hypergraph Hadw(H) = Q(emi(H)).

Proof. Suppose that entbl) > a. This means that there is an integey such that every graph witim > mj,
edges has an embedding irtfowith edge depthm/a. It is well-known that there are arbitrarily large sparse
graphs whose treewidth is linear in the number of verticesdkample, bounded-degree expanders, see e.g.,
[29]): for some universal constaf, there is a graplis with m > m, edges and treewidth at legdin. Thus
there is an embedding from G to H with edge depth at most < m/a. Letd(v) be the depth of vertex

in the embedding and let us defipgv) := d(v)/q. From the definition of edge depth, it is clear thats a
fractional independent set. Suppose that there is a tremg®asition (T, Bycy(t)) of H having u-width w.

This tree decomposition can be turned into a tree decon@osit,B| 1)) of G: for everyB; C V(H), let

Bl :={ueV(G) | ¢(u)NB; # 0} contain those vertices & whose images interseBt. Now p(B;) < wmeans
thaty g d(v) < qw, which implies thatB{| < qw. Thus the width of T, B(/EV(T)) is less thamgw, which means

thatw has to be at leag#m/q = Q(a), the required lower bound on the adaptive widthHof O
Combining Theorerm 511 and Leminal6.9 gives:
Corollary 6.10. For every hypergraph Hsubw(H) = O(adw(H)#).

7 From embeddings to hardness of CSP

We prove the main hardness result of the paper in this section

Theorem 7.1. Let H be a recursively enumerable class of hypergraphs with untéed submodular width.
If there is an algorithmA and a function f such thak solves every instance | of CS#P with hypergraph
H € 7 in time f(H) - ||1]|°Cut%H)"™) ' then the Exponential Time Hypothesis fails.

In particular, Theorerm 7,1 implies that C3B(for such aH is not fixed-parameter tractable:

Corollary 7.2. If H is a recursively enumerable class of hypergraphs with unded submodular width, then
CSP®H) is not fixed-parameter tractable, unless the ExponeniiakeTHypothesis fails.

The Exponential Time Hypothesis (ETH) states that ther@igfl’ time algorithm forn-variable 3SAT.
The Sparsification Lemma of Impagliazzo, Paturi, and Zabg$Bows that ETH is equivalent to the assump-
tion that there is no algorithm for 3SAT whose running timsubexponentiain the number of claused.his
result will be crucial for our hardness proof, as our reducfrom 3SAT is sensitive to the number of clauses.

Theorem 7.3(Impagliazzo, Paturi, and Zarie [35] there is a2°(™ time algorithm for m-clause 3-SAT, then
there is a2°(" time algorithm for n-variable 3-SAT.

35

To prove Theorerh 711, we show that a subexponential-timerithgn for 3SAT exists if CSPY) is can be
solved “too fast” for somé{ with unbounded submodular width. We use the charactesizaif submodular
width from Sectiori b and the embedding results of Sedtlon @doice 3SAT to CSR{) by embedding the
incidence graph of a 3SAT formula into a hypergrapke . The basic idea of the proof is that if the 3SAT
formula haan clauses and the edge depth of the embedding/is then we can gain a factorin the exponent
of the running time. If submodular width is unboundeddnthen we can make this gagpetween the number
of clauses and the edge depth arbitrary large, and hencepgbaent can be arbitrarily smaller than the number
of clauses, i.e., the algorithm is subexponential in the memof clauses.

The following simple lemma from [43] gives a transformatibiat turns a 3SAT instance into a binary CSP
instance. We include the proof for completeness.

Lemma 7.4. Given an instance of 3SAT with n variables and m clausespdssible to construct in polynomial
time an equivalent CSP instance witkh-mn variables3m binary constraints, and domain side

Proof. Let ¢ be a 3SAT formula withn variables anan clauses. We construct an instance of CSP as follows.
The CSP instance contains a variaklg€l < i < n) corresponding to theth variable ofg and a variabley;

(1 < j < m) corresponding to thg-th clause ofp. Let D = {1,2,3} be the domain. We try to describe a
satisfying assignment @ with thesen-+ mvariables. The intended meaning of the variables is theviatg.

If the value of variable; is 1 (resp., 2), then this represents thatittie variable ofg is true (resp., false). If
the value of variablg; is ¢, then this represents that thth clause ofp is satisfied by it¢-th literal. To ensure
consistency, we addn3constraints. Let K j < mand 1< /¢ < 3, and assume that tifeth literal of the j-th
clause is a positive occurrence of thih variable. In this case, we add the binary constraint: 1V y; # ¢):
eitherx; is true or some other literal satisfies the clause. Simildilshe ¢-th literal of the j-th clause is a
negated occurrence of tith variable, then we add the binary constraigt= 2V y; # ¢). It is easy to verify
that if ¢ is satisfiable, then we can assign values to the variabldedf EP instance such that every constraint
is satisfied, and conversely, if the CSP instance has asoutieng is satisfiable. O

Next we show that an embedding from gra@ho hypergraptH can be used to simulate a binary CSP
instancel; having primal graplG by a CSP instanck whose hypergraph id. The domain size and the size
of the constraint relations d§ can grow very large in this transformation: the edge deptthefembedding
determines how large this increase is.

Lemma 7.5. Let I, = (V4,D1,C1) be a binary CSP instance with primal graph G and ¢ebe an embedding
of G into a hypergraph H with edge depth q. GivenHl, and the embedding, it is possible to construct
(in time polynomial in the size of treutpu) an equivalent CSP instancg + (V»,D2,C;) with hypergraph H
where the size of every constraint relation is at rmoste.

Proof. ForeveryweV(H), letU, :={ueV(G) | ve @(u)} be the set of vertices i whose images contain
and for everye € E(H), letUe := UyceUy. Observe that for everye E(H), we havgUe| < 3 |Uy| < g, since
the edge depth apis g. Let D, be the set of integers between 1 dBd|9. For everyv € V(H), the number of
assignments frorb, to D; is cIearIy|D1|‘UV‘ < |D1]9. Let us fix a bijectiorh, between these assignments on
Uy and the sef1,...,|Dq|"/} C D,.

The setC, of constraints of; are constructed as follows. For eaeh E(H), there is a constrain{te, Re) in
C,, wheres is an|e|-tuple containing an arbitrary ordering of the elements.dfhe relationR. is defined the
following way. Suppose that is thei-th coordinate o& and consider a tuple= (dy, ...,dg) € D‘f' of integers
where 1< d; < |Dy|% for every 1<i < |g|. This means that; is in the image oh,, and hencdf; := h, 1(dp) is
an assignment frottd,, to D1. We define relatiofire such that it contains tupleif the following two conditions
hold. First, we require that the assignmefis..., fiy areconsistenin the sense that;(u) = f;(u) for any
i, j andu e Uy NUy,. In this casefy, ..., fg together define an assignmeibn Ui“illu\,i = Ue. The second
requirement is that this assignmensatisfies every constraint &f whose scope is contained i}, that is,
for every constraint(uz,uz),R) € Cy with {uz,uz} C U, we have(f(uz), f(u2)) € R This completes the
description of the instande.

36

Let us bound the maximum size of a relationlgf Consider the relatioRe constructed in the previous
paragraph. It contains tuplée,...,dg) € D'ze‘ where 1< d; < |Dy|% for every 1< i < |g|. This means that

lel "
Rel < [1Da/ %! = Dy < D 2 ©)
i=

where the last inequality follows from the fact thghas edge depth at magt

To prove that; andl, are equivalent, assume first tHathas a solutionf; : V1 — D;. For everyv € V,,
let us definef,(v) := hy(pry, f2), that is, the integer between 1 ajinh |V corresponding to the projection of
assignmenf, to U,,. It is easy to see thdb is a solution ofl,.

Assume now thal has a solutiorf, : V, — D,. Foreverw € V(H), let f,:= hy1(f,(v)) be the assignment
from U, to D; that corresponds té,(v) (note that by constructiorf,(v) is at mostD;|%, henceh, 1(fo(v))
is well-defined). We claim that these assignments are cabipatf u € U, NU,» for someu € V(G) and
v,V €V (H), thenf,(u) = f»(u). Recall thatp(u) is a connected set iH, hence there is a path betweén
andVv’ in @(u). We prove the claim by induction on the distance betwéeandV’ in @(u). If the distance
is 0, that is,V =V, then the statement is trivial. Suppose now that the distafie’ andv’ is d > 0. This
means tha¥ has a neighboz € ¢(u) such that the distance afandv’ is d — 1. Therefore f,(u) = f,»(u) by
the induction hypothesis. Sineéandz are adjacent id, there is an edg& € E(H) containing both/ and
z. From the wayl, is defined, this means th&y and f, are compatible and, (u) = f,(u) = f(u) follows,
proving the claim. Thus the assignmerfifsv € V (H) are compatible and these assignments together define an
assignmenf; : V(G) — D. We claim thatf; is a solution ofl;. Letc = ((uz,uz),R) be an arbitrary constraint
of 1. Sincewu, € E(G), setsp(up) and @(uy) touch, thus there is an edges E(Hy) that contains a vertex
vi € @(up) and a vertex, € @(up) (or, in other wordsy; € Uy, andu, € Uy,). The definition ofce in |, ensures
that f; restricted tdJ,, UU,, satisfies every constraint bf whose scope is containedlk, UU,,; in particular,
f, satisfies constraint O

Now we are ready to prove Theoréml7.1, the main result of thtose We show that if there is a class
‘H of hypergraphs with unbounded submodular width such th&(@%¥is FPT, then this algorithm can be
used to solve 3SAT in subexponential time. The main ingrediare the embedding result of Theorlen 6.1,
and Lemmabk 714 aid 7.5 above on reduction to CSP. Furthermeneeed a way of choosing an appropriate
hypergraph from the sé{. As discussed earlier, the larger the submodular widthehgpergraph is, the more
we gain in the running time. However, we should not spend taomtime on constructing the hypergraph and
on finding an embedding. Therefore, we use the same techagjine[43]: we enumerate a certain number of
hypergraphs and we try all of them simultaneously. The nurobéypergraphs enumerated depends on the
size of the 3SAT instance. This will be done in such a way tohargntees that we do not spend too much time
on the enumeration, but eventually every hypergrapH is considered for sufficiently large input sizes.

Proof (of Theoreri 711)Let us fix aA > 0 that is sufficiently small for Theoremis 5.1 dndl6.1. Suppbae
there is arf; (H)nPSuwH)) time algorithmaA for CSP(). We can express the running timefagH)nsubw(H)™*/i (subw(H))
for some unbounded nondecreasing functiovith 1 (1) > 1. We construct an algorithi that solves 3SAT in
subexponential time by using algorithdnas subroutine.

Given an instancé of 3SAT with n variables andn clauses and a hypergraphe H, we can solvd the
following way. First we use Lemnia_ 1.4 to transfotrimto a CSP instanch = (V1,D1,Cy) with V4| =n+m,
|ID1| = 3, and|C;| = 3m. Let G be the primal graph of;, which is a graph havingr8 edges. It can be
assumed thamn is greater than some constany; , of Theoreml 61, otherwise the instance can be solved
in constant time. Therefore, the algorithm of Theorlend 6.4 lba used to find an embeddiggof G into
H with edge depttlg = O(m/(A 2 con, (H)Y/4)); by Theoreni 51, we have that gdil) = Q(subw(H)) and
henceq < ¢, m/subw(H)Y for some constant, depending only orA. By Lemma 7.5, we can construct an
equivalent instanck = (V,,D2,Cy) whose hypergraph id. By solvingl, using the assumed algorithinfor
CSPH), we can answer i, has a solution, or equivalently, if the 3SAT instandeas a solution.

We will call “running algorithmAl[l,H]” this way of solving the 3SAT instanck Let us determine the
running time ofA[l,H]. The two dominating terms are the time required to find emimedg using the

37

f(H,A)mP® time algorithm of Theore 711 and the time required to Auon |,. The size of every constraint
relation inl, is at mosiD4 |9 =34, hencé|l2|| = O((|[E(H)|+ |V (H)|)39). Letk = subw(H). The total running
time of A[l,H] can be bounded by

F(H, A)mPD £ (H) 1)</ = £ (H,A)mP@) 4 £ (H)(JE(H)| + [V (H)K"/ 0 g/
= fa(H,A)- mP@ . zeam/i(k)

for an appropriate functiof,(H,A) depending only ol andA.

Algorithm B for 3SAT proceeds as follows. Let us fix an arbitrary complgamumeratiorHq, Hy, ... of
the hypergraphs ifi{. Given anm-clause 3SAT formuld, algorithmB spends the firgh steps on enumerating
these hypergraphs; Iel; be the last hypergraph produced by this enumeration (werssthatmis sufficiently
large that? > 1). Next we start simulating the algorithndgl, H1], A[l,Hz], ..., A[l,H/] in parallel. When
one of the simulations stops and returns an answer, therogpabthe simulations and return the answer. Itis
clear that algorithn® will correctly decide the satisfiability df.

We claim that there is a universal constdrguch that for everg, there is ammg such that for everyn > m,
the running time of3 is at most(m- 2™)4 on anm-clause formula. Clearly, this means that the running time
of B is 20M,

Let ks be the smallest positive integer such th@d) > s (as! is unbounded, this is well defined). Ligtbe
the smallest positive integer such that sybly) > ks (asH has unbounded submodular width, this is also well
defined). Seins sufficiently large thatms > f2(Hi,,A) and the fixed enumeration & reachedH;_ in less then
ms steps. This means that if we rilinon a 3SAT formuld with m> ms clauses, theh > is and hence\[l, H; |
will be one of thel simulations started bf. The simulation ofA[l, H;] terminates in

fo(Hi,, A)mOL) . 3 m/t(subwiHic)) < . pOd). 3 m/s

steps. Taking into account that we simulédtg m algorithms in parallel and all the simulations are stopped
not later than the termination @f[l, H; |, the running time o can be bounded polynomially by the running
time of A[l,H;]. Therefore, there is a constaghtsuch that the running time @ is at most(m-2"/s)d, as
required. O

Remark7.6. Recall that ifg is an embedding o6 into H, then the depth of an edgec E(H) is dy(€) =
Svev(e) |@(v) Nel. A variant of this definition would be to define the deptheoasdy(e) = [{v € V(G) |
p(v)Ne# 0}, i.e., if p(v) intersectse, thenv contributes only 1 to the depth ef not |¢(v) Ne| as in the
original definition. Let us call this variamteak edge deptlit,is clear that the weak edge depth of an embedding
is at most the edge depth of the embedding.

Lemmd_Z.b can be made stronger by requiring only that the wedgk depth is at most Indeed, the only
place where we use the bound on edge depth is in InequalityH@)ever, the size of the relatidR. can be
bounded by the number of possible assignmentsloim instancel;. If weak edge depth is at mogt then
|Ue| < g, and thelD1|% bound on the size dR. follows.

Remark7.7. A different version of CSP was investigated [in/[44], wherelewgariable has a different domain,
and each constraint relation is represented by a full talitet(see the exact definition in]44]). Let us denote by
CSR:(H) this variant of the problem. It is easy to see that @3B can be reduced to CSRJ in polynomial
time, but a reduction in the other direction can possiblyréase the representation of a constraint by an
exponential factor. Nevertheless, the hardness resultssadection apply to the “easier” problem G$R) as
well. What we have to verify is that the proof of Lemimal7.5 wodven ifl, is an instance of CSpi.e., the
constraint relations have to be represented by truth tabiepection of the proof shows that it indeed works:
the product in Inequality{3) is exactly the size of the trtable describing the constraint corresponding to
edgee, thus the|D1|9 upper bound remains valid even if constraints are repreddnt truth tables. Therefore,
the hardness results 60f [44] are subsumed by the followinglleoy:

Corollary 7.8. If H is a recursively enumerable class of hypergraphs with unded submodular width, then
CSRi(H) is not fixed-parameter tractable, unless the Exponenti@elHypothesis fails.

38

8 Conclusions

The main result of the paper is introducing submodular wédttth proving that bounded submodular width is the
property that determines the fixed-parameter tractablitC SP¢). The hardness result is proved assuming
the Exponential Time Hypothesis. This conjecture was fdated relatively recently [35], but it turned out to
be very useful in proving lower bounds in a variety of setifd3, 6,41, 49].

For the hardness proof, we had to understand what large shidanavidth means and we had to explore the
connection between submodular width and other combirsforbperties. We have obtained several equivalent
characterizations of bounded submodular width, in pdeicwe have showed that bounded submodular width
is equivalent to bounded adaptive width:

Corollary 8.1. The following are equivalent for every claksof hypergraphs:

1.
2.

4,
5.

There is a constant such thatu-width(H) < ¢, for every He H and fractional independent sgt

There is a constantcsuch that b-widttH) < c, for every He H and edge-dominated monotone sub-
modular function b on YH) with b(0) = 0.

. There is a constantscsuch that B-width(H) < c3 for every He ‘H and edge-dominated monotone

submodular function b on {H) with b(0) = 0.
There is a constantysuch thatcon, (H) < ¢4 for every He H, whereA > Ois a universal constant.

There is a constanssuch thatemh(H) < cs for every He H.

Implications (2)=(1) and (3)=(2) are trivial; (4)}=(3) follows from Lemma’5.70; (5)-(4) follows from
Corollary[6.2; (13=(5) follows from Lemma 6.9.
Let us briefly review the main ideas that were necessary foripg the main result of the paper:

Recognizing that submodular width is the right propertyrahterizing the complexity of the problem.
A CSP instance can be partitioned into a bounded number @draminstances (Sectidn 4.2).

The number of solutions in a uniform CSP instance can be itbescby a submodular function (Sec-
tion[4.3).

There is a connection between fractional separation anmh§jredseparator minimizing an edge-dominated
submodular cost function (Sectibnb.2).

The transformation that turrsinto b*, the properties ab* (Sectiof5.11).

Our results on fractional separation and the standard framkeof finding tree decompositions show
that large submodular width implies that there is highlyreested set (Sectidn 5.3).

A highly connected set can be turned into a highly connecttdhsit is partitioned into cliques in an
appropriate way (Sectidn 6.1).

A highly connected set with appropriate cliques implieg thare is a uniform concurrent flow of large
value between the cliques (Sectfon]6.2).

Similarly to [43], we use the observation that a concurreow fls analogous to a line graph of a clique,
hence it has good embedding properties (Seéfidn 6.2).

Similarly to [43], an embedding in a hypergraph gives a wasgiofulating 3SAT with CSPY) (Sec-
tion[1).

39

It is possible that the main result can be proved in a simpky by bypassing some of the ideas above. In
particular, a surprising consequence of our results istibahded submodular width and bounded adaptive
width are the same, i.e., if a clagshas unbounded submodular width, then for evetigere is aHy € H and

a fractional independent sgi such thafu,-width(Hg) > k, or in other words, large submodular width can be
certified by themodularfunction . To prove this, we need all the results of Sections 5and 6irldabetter
understanding and an independent proof of this fact cougléfly the proofs considerably. Another possible
target for simplification is Sectidn 6.1, where a lot of effisr spent on proving that if there is a large highly
connected set, then there is a large highly connected gdttpartitioned into cliques in an appropriate way.
It might be possible to strengthen the results of Seé¢tionethgps by better understanding the role of cliques
in separators) so that they give such a highly connectedreetlgl.

An obvious question for further research is whether it issime to prove a similar dichotomy result with
respect to polynomial-time solvability. At this point, & hard to see what the answer could be if we investigate
the same question using the more restricted notion of pafyalotime solvability. We know that bounded
fractional hypertree width implies polynomial-time sdhility [42] and Theoreni 7]1 shows that unbounded
submodular width implies that the problem is not polynontiige solvable (as it is not even fixed-parameter
tractable). So only those classes of hypergraphs are ingitas/ ‘zone” that have bounded submodular width
but unbounded fractional hypertree width.

What could be the truth in this gray zone? A first possibilgythat CSPK) is polynomial-time solvable
for every such class, i.e., Theorém]4.1 can be improved freed{fparameter tractability to polynomial-time
solvability. However, Theorein 4.1 uses the power of fixedhpeeter tractability in an essential way (splitting
into a double-exponential number of uniform instances)it 8onot clear how such improvement is possible.
A second possibility is that unbounded fractional hypertrédth implies that CSF{) is not polynomial-time
solvable. Substantially new techniques would be requipedsfich a hardness proof. The hardness proofs
of this paper and of_ [27, 43] are based on showing that a larglelem space can be efficiently embedded
into an instance with a particular hypergraph. However fitkexd-parameter tractability results show that no
such embedding is possible in case of classes with boundedasiular width. Therefore, a possible hardness
proof should embed a problem space that is comparable (ie semse) with the size of the hypergraph and
should create instances where the domain size is boundedfinyction of the size of the hypergraph. A
third possibility is that the boundary of polynomial-timeh&bility is somewhere between bounded fractional
hypertree width and bound submodular width. Currentlyrdahie no natural candidate for a property that
could correspond to this boundary and, again, the hardraesefthe characterization should be substantially
different than what was done before. Finally, there is atfopossibility: the boundary of the polynomial-time
cases cannot be elegantly characterized by a simple cotabaigproperty. In general, if we consider the
restriction of a problem to all possible classes of (hypapgs, then there is no a priori reason why an elegant
characterization should exist that that describes the@as$hard classes. For example, it is highly unlikely that
there is an elegant characterization of those classes phgmhere solving the MXIMUM INDEPENDENT
SET problem is polynomial-time solvable. As discussed eartles fixed-parameter tractability of CS#) is
a more robust question than its polynomial-time solvabilience it is very well possible that only the former
question has an elegant answer.

References

[1] I. Adler. Width functions for hypertree decompositioRhD thesis, Albert-Ludwigs-Universitat Freiburg,
2006.

[2] I. Adler, G. Gottlob, and M. Grohe. Hypertree width andated hypergraph invariantsEuropean J.
Combin, 28(8):2167-2181, 2007.

[3] A.Agarwal, N. Alon, and M. Charikar. Improved approxitian for directed cut problems. IBTOC'07—
Proceedings of the 39th Annual ACM Symposium on Theory opGiimg, pages 671-680. ACM, New
York, 2007.

40

[4] N. Alon, I. Newman, A. Shen, G. Tardos, and N. Vereshchadlartitioning multi-dimensional sets in a
small number of “uniform” partsEuropean J. Combin28(1):134-144, 2007.

[5] O. Amini, F. Mazoit, N. Nisse, and S. Thomassé. Submadpértition functionsDiscrete Mathematics
309(20):6000 — 6008, 2009.

[6] A.Andoni, P. Indyk, and M. Patrascu. On the optimalitytleé dimensionality reduction method.FOCS
'06: Proceedings of the 47th Annual IEEE Symposium on Fotimas of Computer Science (FOCS'06)
pages 449-458, Washington, DC, USA, 2006. IEEE Computee§oc

[7] A. Atserias, A. A. Bulatov, and V. Dalmau. On the powerletonsistency. INCALP, pages 279-290,
2007.

[8] C. Beeri, R. Fagin, D. Maier, A. O. Mendelzon, J. D. Ullmamd M. Yannakakis. Properties of acyclic
database schemes. §TOC pages 355-362, 1981.

[9] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On theiddslity of acyclic database scheme§.
Assoc. Comput. Mach30(3):479-513, 1983.

[10] A. A. Bulatov. A dichotomy theorem for constraints orhadge-element set. IIRroc. 43th Symp. Founda-
tions of Computer Sciencpages 649—-658. IEEE, November 2002.

[11] A. A. Bulatov. Tractable conservative constraint sittion problems. 1A8th Annual IEEE Symposium
on Logic in Computer Science (LICS'Q3)age 321, Los Alamitos, CA, USA, 2003. IEEE Computer
Society.

[12] A. A. Bulatov, A. A. Krokhin, and P. Jeavons. The comgtg>of maximal constraint languages. In
Proceedings of the 33rd ACM Symposium on Theory of Computatges 667—674, 2001.

[13] A. K. Chandra and P. M. Merlin. Optimal implementatiohconjunctive queries in relational data bases.
In STOC pages 77-90, 1977.

[14] C. Chekuri and A. Rajaraman. Conjunctive query comtant revisited. Theoret. Comput. Sci.
239(2):211-229, 2000.

[15] H. Chen and M. Grohe. Constraint satisfaction with sucity specified relationsJ. Comput. Syst. Sgi.
76(8):847-860, 2010.

[16] F. R. K. Chung, R. L. Graham, P. Frankl, and J. B. She&eme intersection theorems for ordered sets
and graphsJ. Combin. Theory Ser.,A43(1):23-37, 1986.

[17] V. Dalmau, P. G. Kolaitis, and M. Y. Vardi. Constraintiséaction, bounded treewidth, and finite-variable
logics. InCP '02: Proceedings of the 8th International Conference oimétples and Practice of Con-
straint Programmingpages 310-326, London, UK, 2002. Springer-Verlag.

[18] R. G. Downey and M. R. Fellows.Parameterized Complexity Monographs in Computer Science.
Springer, New York, 1999.

[19] R. Fagin. Degrees of acyclicity for hypergraphs anétiehal database schemesd. Assoc. Comput.
Mach, 30(3):514-550, 1983.

[20] T. Feder and M. Y. Vardi. The computational structurarainotone monadic SNP and constraint satis-
faction: a study through Datalog and group the@iAM J. Comput.28(1):57-104, 1999.

[21] J. Flum and M. GroheParameterized Complexity Theor$pringer, Berlin, 2006.

[22] E. C. Freuder. Complexity of k-tree structured coristraatisfaction problems. IRroc. of AAAI-90
pages 4-9, Boston, MA, 1990.

41

[23] G. Gottlob, N. Leone, and F. Scarcello. Hypertree dgoositions and tractable querieslournal of
Computer and System Scienc@4:579-627, 2002.

[24] G. Gottlob, F. Scarcello, and M. Sideri. Fixed-paraenetomplexity in Al and honmonotonic reasoning.
Artificial Intelligence 138(1-2):55-86, 2002.

[25] G. Gottlob and S. Szeider. Fixed-parameter algoritfiongartificial intelligence, constraint satisfaction
and database problemBhe Computer Journab1(3):303—-325, 2008.

[26] M. Grohe. The structure of tractable constraint satisbn problems. IMFCS 2006 pages 5872, 2006.

[27] M. Grohe. The complexity of homomorphism and constraatisfaction problems seen from the other
side.J. ACM 54(1):1, 2007.

[28] M. Grohe and D. Marx. Constraint solving via fractioredge covers. '8ODA '06: Proceedings of
the 17th Annual ACM-SIAM Symposium on Discrete Algorittpages 289-298, New York, NY, USA,
2006. ACM Press.

[29] M. Grohe and D. Marx. On tree width, bramble size, andaggion. Journal of Combinatorial Theory
Ser. B 99(1):218-228, 2009.

[30] A. Gupta. Improved results for directed multicut. Pnoceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (Baltimore, MD, 20@3ges 454-455, New York, 2003. ACM.

[31] M. T. Hajiaghayi and H. Racke. A®(y/n)-approximation algorithm for directed sparsest duform.
Process. Lett.97(4):156-160, 2006.

[32] P. Hlinény. A parametrized algorithm for matroid bch-width. SIAM J. Comput.35(2):259-277, 2005.

[33] P. Hlinény and S.-i. Oum. Finding branch-decomposi and rank-decomposition&IAM J. Comput.
38(3):1012-1032, 2008.

[34] P. Hlinény and G. Whittle. Matroid tree-widtlEuropean J. Combin27(7):1117-1128, 2006.

[35] R. Impagliazzo, R. Paturi, and F. Zane. Which probleragehstrongly exponential complexity?J.
Comput. System Sc63(4):512-530, 2001.

[36] S. Iwata. Submodular function minimizatiomath. Program, 112(1, Ser. B):45—-64, 2008.

[37] S. lwata, L. Fleischer, and S. Fujishige. A combinatbstrongly polynomial algorithm for minimizing
submodular functionsl. ACM 48(4):761-777 (electronic), 2001.

[38] P. Jeavons, D. A. Cohen, and M. Gyssens. Closure piepent constraints. Journal of the ACM
44(4):527-548, 1997.

[39] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query coirtanent and constraint satisfactiod. Comput.
Syst. Scj.61(2):302-332, 2000.

[40] P. G. Kolaitis and M. Y. Vardi. A game-theoretic apprbao constraint satisfaction. IAAI/IAAI, pages
175-181, 2000.

[41] D. Marx. On the optimality of planar and geometric appnoation schemes. [48th Annual IEEE
Symposium on Foundations of Computer Science (FOCSages 338—348, 2007.

[42] D. Marx. Approximating fractional hypertree widtih\CM Trans. Algorithms6(2):1-17, 2010.

[43] D. Marx. Can you beat treewidthPheory of Computings(1):85-112, 2010.

42

[44] D. Marx. Tractable structures for constraint satiitac with truth tables.Theory of Computing Systems
48:444-464, 2011.

[45] R. Niedermeierlnvitation to fixed-parameter algorithmsolume 31 ofOxford Lecture Series in Mathe-
matics and its ApplicationgOxford University Press, Oxford, 2006.

[46] S. Oum. Approximating rank-width and clique-width gkily. In Proceedings of the 31st International
Workshop on Graph-Theoretic Concepts in Computer Scjqrages 49-58, 2005.

[47] S. Oum and P. Seymour. Testing branch-widthCombin. Theory Ser.,B7(3):385-393, 2007.

[48] S.-i. Oum and P. Seymour. Approximating clique-widtidebranch-width.J. Combin. Theory Ser.,B
96(4):514-528, 2006.

[49] M. Patrascu and R. Williams. On the possibility ofterssat algorithms. IProc. 21st ACM/SIAM
Symposium on Discrete Algorithms (SOPggges 1065-1075, 2010.

[50] F. Scarcello, G. Gottlob, and G. Greco. Uniform conigtraatisfaction problems and database theory. In
Complexity of Constraintgages 156—-195, 2008.

[51] T.J. Schaefer. The complexity of satisfiability prabk InConference Record of the Tenth Annual ACM
Symposium on Theory of Computing (San Diego, Calif., 19%8)es 216-226. ACM, New York, 1978.

[52] A. Schrijver. A combinatorial algorithm minimizing bmodular functions in strongly polynomial time.
J. Combin. Theory Ser.,B0(2):346—355, 2000.

[53] M. Yannakakis. Algorithms for acyclic database schemaVLDB, pages 8294, 1981.

43

	1 Introduction
	2 Preliminaries
	3 Width parameters
	4 From CSP instances to submodular functions
	4.1 Consistency
	4.2 Decomposition into uniform CSP instances
	4.3 Uniform CSP instances and submodularity

	5 From submodular functions to highly connected sets
	5.1 The function b*
	5.2 Submodular separation
	5.3 Obtaining a highly connected set

	6 From highly connected sets to embeddings
	6.1 Highly connected sets with cliques
	6.2 Concurrent flows and embedding
	6.3 Connection with adaptive width

	7 From embeddings to hardness of CSP
	8 Conclusions

