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ABSTRACT
This paper approaches the incremental view maintenance
problem from an algebraic perspective. We construct a ring
of databases and use it as the foundation of the design of
a query calculus that allows to express powerful aggregate
queries. The query calculus inherits key properties of the
ring, such as having a normal form of polynomials and be-
ing closed under computing inverses and delta queries. The
k-th delta of a polynomial query of degree k without nesting
is purely a function of the update, not of the database. This
gives rise to a method of eliminating expensive query oper-
ators such as joins from programs that perform incremental
view maintenance. The main result is that, for non-nested
queries, each individual aggregate value can be incremen-
tally maintained using a constant amount of work. This is
not possible for nonincremental evaluation.

Categories and Subject Descriptors
F.1.2 [Computation by Abstract Devices]: Modes of
Computation – Parallelism and concurrency; H.2.3 [Data-
base Management]: Languages – Query languages; H.2.4
[Database Management]: Systems – Query processing

General Terms
Algorithms, Languages, Theory

Keywords
Incremental View Maintenance, Algebra

1. INTRODUCTION
It is widely acknowledged that classical measures of algo-

rithm efficiency do not do database query evaluation justice.
In most cases, databases change only incrementally, in up-
dates small compared to the overall database size. This fact
has been addressed by the research community by a large
amount of work on the incremental view maintenance prob-
lem, which aims at cheaply computing an increment to a
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materialized query result given an update [7, 33, 5, 32, 8,
17, 18, 16, 36, 11, 13, 9, 26, 27, 29, 23].

Most work on incremental view maintenance has aimed
at expressing the delta (=change) to the result of a query
Q on a database D as follows. Suppose that we denote
changes to D by ∆D, which captures both insertions and
deletions. Let us denote the updated database by D′ = D+
∆D, where + is a way of combining a database with a change
to it, made precise later; it is a generalisation of the union
operation of relational algebra. We would like to express the
change to the result of Q as a query ∆Q that depends on
both D and ∆D such that Q(D′) = Q(D) + ∆Q(D,∆D).
The intuition is that evaluating ∆Q(D,∆D) and using the
result to update a materialized representation of Q(D) will
often be faster than recomputing Q on the updated database
D′. The practical benefits of incremental view maintenance
are real and have led to the integration of such techniques
into commercial database management systems. But can
we also make a complexity-theoretic argument that state-of-
the-art incremental query evaluation is more efficient than
nonincremental evaluation?

Unfortunately, there is an argument that suggests the an-
swer is no: If we consider a query language such as the
conjunctive queries or relational algebra with or without ag-
gregates, the image of the language under taking deltas is the
full language: Given an arbitrary query Q, there is another
query of the language whose delta is Q. This suggests that
incremental view maintenance is not fundamentally easier
than nonincremental query evaluation.

In this paper, we show that this intuition is fortunately in-
correct if one looks beyond classical delta processing. Recall
that the circuit complexity classes NC0 ⊆ AC0 ( TC0 (cf.
[22]) all represent constant-time parallel computation using
polynomial amounts of hardware. The difference lies in the
types of gates used. While NC0 uses only bounded fan-in
gates, both AC0 and TC0 use unbounded fan-in gates, which
are unrealistic. AC0 and TC0 problems cannot be solved
in constant parallel time on any amount of bounded fan-in
(“real”) hardware. This paper shows that, for a large class of
aggregate queries, applying a fixed update to a materialized
view is in the complexity class NC0, while non-incremental
evaluation takes TC0 and AC0 for queries with and with-
out aggregates, respectively. Since NC0 and TC0 have been
separated [34], incremental evaluation is indeed easier than
nonincremental evaluation.

This has practical implications: While we cannot assume
to have sufficiently many machines available to achieve con-
stant-time processing for very large inputs, the NC0 re-



sult asserts embarassing parallelism beyond the parallelism
exhibited in nonincremental query evaluation (AC0/TC0).
Standard schemes such as the Brent scheduling principle [6]
can be used to create massively parallel implementations
of incremental query evaluation on commodity computers,
which require, as a lower bound, only constant time, rather
than logarithmic time as for AC0/TC0.

This paper approaches the incremental view maintenance
problem from a fresh perspective. We start by identifying
the essence of delta processing: A query language needs to
be closed under computing an additive inverse (as a gen-
eralization of the union operation on relations to support
insertions and deletions) and the join operation has to be
distributive over this addition to support normalization, fac-
torization, and the taking of deltas of queries. Thus, the
algebraic structure of a ring of databases is needed. The
first contribution of this paper is to craft such a ring. It is
subsequently interconnected with a ring of terms to form an
expressive aggregate query calculus, AGCA, which has the
algebraic properties needed to define delta processing in a
compositional way.

AGCA is closed under taking deltas. Moreover, for an
AGCA query Q without nested aggregates, ∆Q is struc-
turally strictly simpler than Q. We formalize this by the
notion of the degree of a query, which roughly corresponds
to the degree of a polynomial bound on its worst-case data
complexity (for a conjunctive query, it is the number of its
atoms). The k-th delta of an AGCA query of degree k with-
out nested aggregates has degree 0; a query of degree 0 only
depends on the update but not on the database.

This gives rise to an aggressive recursive incremental view
maintenance mechanism (cf. [3]) which is ultimately the key
to the NC0 result. Given a query Q of degree k, we in-
crementally maintain a materialized view of Q by adding,
on a single-tuple update ±~t, the result of ∆Q(D,±~t) to
the view Q(D). The key idea is now to materialize a map
±~t 7→ ∆Q(D,±~t), for all possible updates ±~t. This map
can be expressed as a single aggregate query with group-by;
the different updates ±~t form the groups. We incrementally
maintain the ∆Q map for changes to D as well, using a delta
to ∆Q, and so on. This leads to a recursive query compi-
lation scheme. Overall, Q can be incrementally maintained
by a hierarchy of k layers of materialized views, requiring
only a simple form of message passing between the views to
keep all of them up to date. In most traditional database
query processors, the basic building blocks of delta queries
are large-grained operators such as joins. We instead com-
pile queries to programs that are not based on classical query
operators. The updating of each value in the views only re-
quires a constant number of arithmetic operations on pairs
of numbers.

We also show that each bit of the materialized representa-
tion can be incrementally maintained using an NC0 circuit,
which only reads from a constant number of input bits, as-
suming that numbers are kept in fixed-size registers.

The ring construction, delta processing techniques, and
compilation algorithms of this paper constitute a stream-
lined and cleaner way of performing and presenting incre-
mental view maintenance. These contributions are of inde-
pendent interest, beyond parallel complexity.

The paper is structured as follows. After providing some
algebraic foundations in Section 2, we define a ring of multi-
set relations and discuss some of its properties in Section 3.

We define the aggregate query language AGCA in Section 4.
Section 5 studies delta processing. We give a construction
for deltas and show that, for a large class of queries, deltas
are structurally simpler than the input queries. Section 6
introduces a low-level language, NC0C, to which we later
compile queries. NC0C admits massively parallel evalua-
tion; we give a circuit complexity characterization. Section 7
presents algorithms for compiling queries to NC0C, starting
with a simple algorithm that we subsequently refine. Sec-
tion 8 discusses this and related work.

2. ALGEBRAIC FOUNDATIONS
Let us recall some basic definitions from algebra:

Definition 2.1. A semigroup is a pair (A, ◦) of a base
set A and a binary total function ◦ : A × A → A (“the
operation”) such that ◦ is associative, that is, for all a, b, c ∈
A, (a◦b)◦c = a◦(b◦c). A semigroup is called commutative if
a◦b = b◦a for all a, b ∈ A. A monoid (A, ◦, e) is a semigroup
that has neutral element e ∈ A, that is, a ◦ e = e ◦ a = a for
all a ∈ A. A monoid is called a group if for each a ∈ A there
is an inverse element a−1 ∈ A such that a◦a−1 = a−1◦a = e.

A ring over base set A is a tuple (A,+, ∗, 0) with two op-
erations + and ∗ (called addition and multiplication, respec-
tively) such that (A,+, 0) is a commutative group, (A, ∗) is a
semigroup, and + and ∗ are distributive, that is, a∗(b+c) =
a ∗ b+ a ∗ c and (a+ b) ∗ c = a ∗ c+ b ∗ c for all a, b, c ∈ A. A
ring with identity (A,+, ∗, 0, 1) is a ring in which (A, ∗, 1) is
a monoid. A ring is called commutative if ∗ is commutative.

Example 2.2. The integers Z and the rational numbers
Q form commutative rings with identity (Z,+, ∗, 0, 1) and
(Q,+, ∗, 0, 1). The natural numbers N do not form a ring
because there is no additive inverse; for example, there is no
natural number x such that 1 + x = 0. 2

Neutral elements 0 and 1 are named by analogy and are
not necessarily numbers. For a group with an operation
+, we write −a to denote a−1 and use the shortcut a − b
for a + (−b). When the operations + and ∗ are clear from
the context, we will also use the name of the base set to
denote the ring (e.g., Z for (Z,+, ∗, 0, 1)). In a monoid,
there is a unique identity element and in a group (A, ◦, e),
there is a unique inverse element a−1 for each element a ∈
A (cf. e.g. Proposition 1 in Chapter 1 of [12]). Thus, in
particular, a ring is uniquely determined by its base set and
its operations + and ∗, and we do not need to explicitly
specify 0, 1, or the operation (·)−1 (but it will be done for
the reader’s convenience).

Definition 2.3. Let A be a commutative ring and let
(G, ∗G, 1G) be a monoid. Let A[G] be the set of all functions
α : G→ A such that α(x) = 0 for all but a finite number of
x ∈ G. We define addition and multiplication in A[G] as

α+ β : x 7→ α(x) +A β(x)

α ∗ β : x 7→
X

x=y ∗Gz

α(y) ∗A β(z).

Then A[G] is called the monoid algebra of G over A. 2

Proposition 2.4 (cf. p.104f in [24]). A monoid
algebra is a commutative ring with identity.



In particular, monoid algebras A[G] are closed under mul-
tiplication, i.e., (α ∗ β)(x) = 0 for all but a finite number of
elements x ∈ G. The neutral elements are 0 : x 7→ 0 and

1 : x 7→


1 . . . x = 1G

0 . . . x 6= 1G.

We say that a monoid (G, ∗) has a zero if there is an
element 0 ∈ G such that 0 ∗ g = g ∗ 0 = 0 for all g ∈ G. A
ring homomorphism is a function φ : R → S between two
rings R and S that commutes with + and ∗, i.e., φ(a◦R b) =
φ(a) ◦S φ(b) for ◦ ∈ {+, ∗} and all a, b ∈ R.

Lemma 2.5. Let G be a monoid with 0 and A be a com-
mutative ring. Then the map φ : α 7→ α|G−{0} is a surjective
ring homomorphism from the monoid algebra A[G] to the set
of all functions (G− {0}) → A.

Proof. Let (G, ∗G) be a monoid with zero 0G. Consider
the monoid algebra A[G] of G over commutative ring A.

Let I be the subset of A[G] consisting of those elements
α of A[G] that have α(x) = 0A for all x 6= 0G. Note that
I is closed under +, −, and ∗: The mapping I → A with
α 7→ α(0G) is an isomorphism between I and A. Since A is
a ring, I is a sub-ring of A[G].
I is an ideal of A[G], that is, (r ∗ i) ∈ I for all r ∈ A[G]

and all i ∈ I: Consider an arbitrary x ∈ G. By definition,
(r ∗ i)(x) =

P
x=y∗Gz r(y) ∗

A i(z). Since i(z) = 0A unless

z = 0G and y ∗G 0G = 0G, we must have (r ∗ i)(x) = 0A

unless x = 0G, and indeed (r ∗ i) ∈ I.
We use the converse of the first isomorphism theorem for

rings (cf. Theorem 7(2) in Chapter 7 of [12]):

Lemma 2.6. Let R be a commutative ring and I be an
ideal of R. Then there is a surjective ring homomorphism
from R to the quotient ring R/I, the so-called natural pro-
jection of R onto R/I.

The natural projection φ : A[G] → A[G]/I is the map
φ : α 7→ α|G−{0}. The elements of the quotient ring A[G]/I
are precisely the functions (G− {0}) → A.

3. A RING OF DATABASES
The goal of this section is to construct an analogon of

multiset relational algebra – a starting point for building
aggregate queries – which has a full additive inverse, and
so will allow us to compute delta queries in a clean and
compositional way.

We study a structure (ZRel,+, ∗, 0, 1) (or just ZRel, for
short) of generalized multiset relations – collections of tu-
ples with integer multiplicities and possibly differing sche-
mas. The operations + and ∗ are generalizations of multiset
union and natural join, respectively, to total functions (i.e.,
applicable to any pair of elements of ZRel). The schema
polymorphism of tuples in our generalized multiset relations
just serves the purpose of accommodating such total op-
erator definitions: We have to be able to union together
relations containing tuples of different schema.

We use the notations f : x 7→ v, f(x) := v, and f :=
{x 7→ v | x ∈ dom(f)} interchangeably to define functions,
with a preference for the latter when the domain dom(f)
might otherwise remain unclear. We write f |D to denote
the restriction of the domain of f to D, i.e. f |D := {(x 7→
v) ∈ f | x ∈ D}.

A (typed) tuple ~t is a partial function from a vocabulary
of column names dom(~t) to data values (that is, ~t is not just
a tuple of values but has an associated schema of its own).
Throughout Sections 2 to 5, all tuples are typed, and Tup
denotes the set of all typed tuples.

For a number of technical reasons, we will also use classical
singleton relations (without multiplicities) in what follows.
We write {~t} to construct a singleton relation with schema
sch({~t}) = dom(~t) from ~t and use the classical natural join
operator ./ on such singletons. The set of all singletons is
denoted by Sng (i.e., Sng := {{~t} | ~t ∈ Tup}).

Definition 3.1. A generalized multiset relation (gmr) is
a function R : Tup → Z such that R(~t) 6= 0 for at most a
finite number of tuples ~t. The set of all such functions is
denoted by ZRel. 2

Such a function indicates the multiplicity with which each
tuple of Tup occurs in the gmr. Tuples can have negative
multiplicities.

The operations + and ∗ of ZRel are defined as follows.

Definition 3.2. For R,S ∈ ZRel,

R+ S : ~x 7→
`
R(~x) + S(~x)

´
(−R) : ~x 7→ (−R(~x))

R ∗ S : ~x 7→
X

{~x}={~a}./{~b}

R(~a) ∗ S(~b)

1 : ~x 7→


1 . . . ~x = 〈〉
0 . . . ~x 6= 〈〉

0 : ~x 7→ 0 2

On classical multiset relations (where all multiplicities are
≥ 0 and all tuples with multiplicity > 0 have the same
schema), ∗ is exactly the usual multiset natural join opera-
tion. Definition 3.2 is similar to the definition of a monoid
algebra; this is made precise in the proof of Proposition 3.4.

Example 3.3. Consider the three gmrs of ZRel

R A B
1 7→ −1
2 3 7→ 2

S C
5 7→ 2

T B C
3 5 7→ 1
4 6 7→ −3

over column name vocabulary Σ = {A,B,C} and value do-
main N. For example, in multiset relation R, two tuples of
different schema have a multiplicity other than 0. These two
tuples can be specified as partial functions Σ → N: {A 7→ 1}
and {A 7→ 2;B 7→ 3}.

Then S + T and R ∗ (S + T ) are as follows:

S + T B C
5 7→ 2

3 5 7→ 1
4 6 7→ −3

R ∗ (S + T ) A B C
1 5 7→ −2
1 3 5 7→ −1
1 4 6 7→ 3
2 3 5 7→ 6

The missing values should not be taken as SQL null values,
and ∗ is not an outer join. 2

Proposition 3.4. (ZRel,+, ∗, 0, 1) is a commutative
ring with identity.



Proof. Let Sng∅ = Sng ∪ {∅} be the set of singleton re-
lations plus the empty relation. Then Sng∅ with the natural
join ./ forms a monoid with 1-element {〈〉} and zero ∅. In
particular, Sng∅ is closed under ./.

Consider the monoid algebra Z[Sng∅] of Sng∅ over Z. By
Lemma 2.5, the map φ : α 7→ α|Sng is a surjective ring homo-
morphism from Z[Sng∅] to the set of all functions Sng → Z,
thus the image R of φ is a commutative ring with identity.

The map θ : α 7→
“
~t 7→ α({~t})

”
from R to ZRel is a ring

isomorphism.

The ring ZRel is not an integral domain, however. It has
zero divisors: The result of joining two nonempty relations
may be empty.

Discussion and Justification
The ring ZRel as a Z-module. Let ZSng (⊆ ZRel) be the set
of functions of the form

{~t} : ~x 7→


1 . . . ~x = ~t

0 . . . ~x 6= ~t

for tuples ~t. We have just overloaded {~t} as an element
of both Sng and ZSng. No problems will arise from this.
Let k{~t}, for k ∈ N, denote {~t}+ · · ·+ {~t}| {z }

k times

, and let (−k){~t}

denote −(k{~t}) = k(−{~t}).
Each α ∈ ZRel can be written as a finite sum

vα =
X

~t

α(~t){~t}

of elements of ZSng and their inverses. Since +ZRel is as-
sociative and commutative, this sum is essentially unique.
There is a bijection between the elements α ∈ ZRel and the
elements vα defined by these sums.

Thus, ZSng generates ZRel and ZRel is a Z-module that
is free on ZSng; ZSng is the basis of ZRel (since we will not
need the definitions of these notions further, they are not
introduced here – cf. e.g. [12], Sections 10.1 and 10.3). If
we were to replace Z in ZRel by a field such as R, we would
have an infinite-dimensional vector space.

Viewing ZRel as a Z-module means to ignore its operation
∗, and the fact that it is distributive with +, however.

We say that an operation ◦ is conservative over ./ if R ◦
S = R ./ S on all R,S ∈ ZRel that are classical relations
without duplicates or polymorphic tuples. If we accept the
definition of + in ZRel as natural, then the definition of ∗
(which may feel less natural at first) is uniquely determined
by distributivity, if we want ∗ to be conservative over ./.

Let ◦ be an arbitrary multiplication operation on ZRel

that is distributive with +.

vα ◦ vβ :=
“X

~a

α(~a){~a}
”
◦

“X
~b

β(~b){~b}
”

=
X
~a,~b

`
α(~a) ∗Z β(~b)

´`
{~a} ◦ {~b}

´
This follows from the distributivity of ◦ and the fact that

α(~a){~a} and β(~b){~b} are actually sums. Since ◦ is conserva-

tive over ./ and {~a} and {~b} are classical singleton relations,

{~a} ◦ {~b} = {~a} ./ {~b}, and

(α ◦ β)(~x) =
X

~a,~b:{~a}./{~b}={~x}

α(~a) ∗ β(~b),

as in Definition 3.2, so ◦ is ∗ and vα ∗ vβ = vα∗β .

Musings. It is appealing that our natural choice of +ZRel

completely determines ∗ZRel in any ring, in the way just
described, and that the structure of a monoid algebra arises
necessarily and naturally.

We have come to expect that query algebras are based on
cylindric algebras [19], on which research is rather isolated
from mainstream mathematics. In future work, it may be
worth looking into extensions of ZRel for applications such
as constraint, probabilistic, and scientific databases, where a
better integration of query languages with numerical compu-
tation and the now standard framework of abstract algebra
is desirable.

Relationship to relational algebra. ZRel is no multiset ver-
sion of relational algebra. Specifically, difference and explicit
projection are missing. Observe that, throughout this paper,
R−S = R+(−S) does not refer to the difference operation
of relational algebra, but to the additive inverse in ZRel: for
instance, ∅ − R = −R in ZRel, while the syntactically same
expression in relational algebra results in ∅. It is more ap-
propriate to think of a gmr −R as a deletion, where deleting
“too much” results in a database with negative tuples. For
the purposes of incremental view maintenance later in the
paper, we will use ZRel in a way that we never really delete
too much, but the properties of the ring just defined will
still be essential.

4. AGGREGATION CALCULUS
In this section, we introduce the query language stud-

ied in this paper, AGCA (which stands for AGgregation
CAlculus). AGCA defines two forms of query expressions,
formulae and terms. Formulae evaluate to elements of the
ring (ZRel,+, ∗, 0, 1) of gmrs and terms evaluate to elements
of the ring of rational numbers (Q,+, ∗, 0, 1). We connect
terms and formulae mutually recursively, creating a power-
ful language for expressing aggregate queries. Both formulae
and terms, and thus the overall query language, inherit the
key properties of polynomial rings in that they have an ad-
ditive inverse, a normal form of polynomial expressions, and
admit a form of factorization. These properties will be the
basis of delta processing and incremental query evaluation
in subsequent sections.

Syntax. AGCA consists of formulae and of terms. For-
mulae are expressions built from atomic formulae using +,
−, and ∗. The atomic formulae are true, false, relational
atoms R(~x) where ~x is a tuple of variables, and atomic
conditions of the form t θ 0 comparing term t with 0 us-
ing comparison operations θ from =, 6=, >, ≥, <, and ≤.
AGCA terms are built from variables, built-in function calls
(constants are functions with zero arguments), and aggre-
gate sums (Sum) using addition, its inverse, and multiplica-
tion. Built-in functions compute their result entirely based
on their input terms, not accessing the database.

The abstract syntax of formulae φ and terms t (given vari-
ables x, relation names R, comparison operators θ, and con-
stants/builtin functions f) can be given by the EBNF

φ ::- φ ∗ φ | φ+ φ | −φ | true | false | R(~x) | t θ 0

t ::- t ∗ t | t+ t | −t | f(t∗) | x | Sum(t, φ)

The atoms true and false are just syntactic sugar for
0 = 0 and 0 6= 0, respectively.



safeB(R(x1, . . . , xk)) := {x1, . . . , xk} ∪B
safeB(φ ∗ ψ) := safeB(φ) ∪ safesafeB(φ)(ψ)

safeB(φ+ ψ) := safeB(φ) ∩ safeB(ψ)

safeB(−φ) := safeB(φ)

safeB(x = y) :=


B ∪ {x, y} . . . x or y is in B

B . . . otherwise.

Figure 1: Safety of AGCA formulae.

Bound and safe variables. Formulae and terms are
evaluated relative to a given set of bound variables. Here
bound is a notion in the spirit of binding patterns [31] – pa-
rameters given from the outside – rather than that of vari-
ables bound by quantifiers. Given a set of bound variables
B, the safe variables of a formula are defined as shown in
Figure 1. Observe that safeB(φ) ⊇ B for all B and φ and
that safety of −φ differs from safety of ¬φ in relational cal-
culus (safe(¬φ) = ∅, cf. range-restriction in [1]). A formula
is safe if all its variables are safe. Given a term Sum(t, φ)
with bound variables B, the bound variables of φ are B and
the bound variables of t are the variables safeB(φ). Term
Sum(t, φ) is safe if t and φ are safe. The bound variables
of a subterm are the bound variables of the term. Variables
occurring as terms are safe if they are bound. A term is safe
if all its variables and Sum atoms are safe.

Example 4.1. Given singleton bound variable set {y},

Sum(u ∗ f(z), ((R(x, z)| {z }
x,y,z

+ (y = z)| {z }
y,z

)

| {z }
y,z

∗(z = w))

| {z }
y,z,w

)

is unsafe and thus invalid: The safe variables of the formula
are {y, z, w}, so u is not bound in the term u ∗ f(z). The
overall term becomes valid for bound variables {u, y}. 2

Semantics. The formal semantics of AGCA is given by
mutually recursive functions [[·]]F (·, ·) and [[·]]T (·, ·) for for-
mulae and terms, respectively. We treat variable names as
additional column names. Given database A and a bound
variable tuple ~b (i.e., a function that maps each bound vari-

able to a value), [[φ]]F (A,~b) evaluates to an element of ZRel

and [[t]]T (A,~b) evaluates to a value from Q. The semantics
of AGCA formulae is defined as follows.

[[φ+ ψ]]F (A,~b) := [[φ]]F (A,~b) +ZRel [[ψ]]F (A,~b)
[[−φ]]F (A,~b) := −ZRel [[φ]]F (A,~b)

[[φ ∗ ψ]]F (A,~b) := ~x 7→
X

{~x}={~y}./{~z}

[[φ]]F (A,~b)(~y)

∗Z [[ψ]]F (A, ~y|safedom(~b)(φ))(~z)

[[t θ 0]]F (A,~b) :=

~x 7→

8>>>><>>>>:
1 . . . t = y − z, {y, z} ∩ dom(~b) 6= ∅,

{y, z} ∪ dom(~b) = dom(~x),~b = ~x|dom(~b),

and ~x(y) = ~x(z)

1 . . . otherwise, if ~x = ~b and [[t]]T (A,~b) θ 0
0 . . . otherwise

[[R(x1, . . . , xk)]]F (A,~b) :=

~x 7→

8>>>><>>>>:
RA(~y) . . . RA is defined on ~y, {~x} ./ {~b} 6= ∅,

dom(~x) = {x1, . . . , xk},
dom(~y) = {A1, . . . , Ak}, and
~x(xi) = ~y(Ai) for all 1 ≤ i ≤ k

0 . . . otherwise.

The definitions of [[φ ∗ ψ]]F and [[t θ 0]]F are somewhat cum-
bersome because we need to pass information from rela-
tional atoms into condition atoms, just like in the rela-
tional calculus. Note that if φ and ψ do not contain con-
dition atoms, we can equivalently use the simpler definition

[[φ ∗ ψ]]F (A,~b) := [[φ]]F (A,~b) ∗ZRel [[ψ]]F (A,~b).
The definition of [[R(x1, . . . , xk)]]F supports column re-

naming, which makes it a little lengthy.
The semantics of AGCA terms is defined as

[[x]]T (A,~b) := ~b(x)

[[f(t1, . . . , tk)]]T (A,~b) := f
`
[[t1]]T (A,~b), . . . , [[tk]]T (A,~b)

´
[[Sum(t, φ)]]T (A,~b) :=

X
(~c 7→i)∈[[φ]]F (A,~b)

i ∗Q [[t]]T
`
A,~c|safedom(~b)(φ)

´
Take +, −, and ∗ as built-in functions f (+Q, −Q, and ∗Q)
and the definition is complete.

From SQL to the calculus. A SQL aggregate query

SELECT ~b, SUM(t) FROM R1 r11, R1 r12, . . . , R2 r21, . . .

WHERE φ GROUP BY ~b

is expressed in AGCA as

Sum(t, R1(~x11) ∗R1(~x12) ∗ · · · ∗R2(~x21) ∗ · · · ∗ φ)

with bound variables ~b. While Sum(·, ·) computes exactly
one number, we can think of an SQL aggregate query with
group by clause as a comprehension

{〈~b, [[Sum(·, ·)]](A,~b)〉 | ~b ∈ Groups}.

Sections 6 and 7 will answer the question of how to ob-
tain Groups, i.e., the domain of bound variable tuples, in a
practical setting.

Example 4.2. Relation C(cid, nation) stores the ids and
nationalities of customers. The SQL query

SELECT C1.cid, SUM(1)

FROM C C1, C C2

WHERE C1.nation = C2.nation

GROUP BY C1.cid;

asks, for each cid, for the number of customers of the same
nation (including the customer identified by cid). This query
translates to AGCA as

Sum
`
1, C(c1, n1) ∗ C(c2, n2) ∗ (n1 = n2)

´
with bound variable c1. 2

Relational completeness. AGCA captures all of first-
order logic (FO) and more. Consider the following function
FO2AG that maps FO to AGCA formulae:

FO2AG(φ ∧ ψ) := FO2AG(φ) ∗ FO2AG(ψ)

FO2AG(φ ∨ ψ) := FO2AG(φ) + FO2AG(ψ)

FO2AG(∃x1 . . . xk φ) := Sum(1,FO2AG(φ)) 6= 0

FO2AG(¬∃x1 . . . xk φ) := Sum(1,FO2AG(φ)) = 0



FO2AG is the identity on atoms. Here, k may be 0 to sup-
port general negation. The key to simulating existential
quantification is that Sum performs an implicit projection.

Let � be the usual satisfaction relation for FO. FO is cap-
tured by AGCA in the following sense.

Theorem 4.3. For an FO formula φ with free variables

dom(~b), (A,~b) � φ ⇔ [[FO2AG(φ)]]F (A,~b) 6= 0ZRel .

Example 4.4. A query asking for students S who have
taken T all required courses C is expressed in FO as S(x)∧
¬∃y C(y)∧¬T (x, y) with free variable x; FO2AG turns this
into the AGCA query

Sum
`
1, S(x) ∗ Sum

`
1, C(y) ∗ Sum(1, T (x, y)) = 0

´
= 0

´
with bound variable x. (That is, bound in the sense pre-
sented above, not in the sense “not free”.) 2

Recursively monomial terms. Consider a language of
expressions constructed from values (“constants”) and the
operations + and ∗ of a ring A, plus variables. Let these
expressions evaluate to elements of a multivariate polyno-
mial ring in the natural way. Turning an expression into a
polynomial, that is, a sum of flat products (the products are
also known as monomials), just means to apply distributiv-
ity repeatedly until we end up with a polynomial. This can
be combined with simplification operations based on the 1
and 0-elements and the additive inverse, i.e., α ∗ 1 maps to
α, α ∗ 0 maps to 0, α + 0 maps to α, α + (−α) maps to 0,
−(−α) = α, and (−α) ∗ β = −(α ∗ β).

Such an algorithm for computing and simplifying expres-
sions over a ring is immediately applicable to AGCA formu-
lae and terms. In particular, the operation ∗ is distributive
with + despite its sideways information passing semantics.
For arbitrary terms s and t and formulae φ and ψ, Sum
terms can be simplified using the following equations (to be
applied by replacing a left by a right hand side expression):

Sum(s+ t, φ) = Sum(s, φ) + Sum(t, φ)

Sum(t, φ+ ψ) = Sum(t, φ) + Sum(t, ψ)

Sum(−t, φ) = −Sum(t, φ)

Sum(t,−φ) = −Sum(t, φ)

Sum(t, true) = t

Sum(t, false) = 0

Sum(0, φ) = 0.

We call a term that contains neither + nor − anywhere
recursively monomial. The following result is based on a
straightforward algorithm that rewrites an input term in a
bottom-up pass using the above rules.

Proposition 4.5. Each AGCA term is equivalent to a
finite sum ±t1 ± t2 · · · ± tm where t1, . . . , tm are recursively
monomial terms.

Example 4.6. Sum
`
t, (−φ)∗((−ψ)+π)

´
simplifies to the

recursively monomial Sum(t, φ ∗ ψ)− Sum(t, φ ∗ π). 2

5. DELTA COMPUTATION
Given a ring (A,+, ∗, 0, 1), let us distinguish between vari-

ables x1, . . . , xn and constants (∈ A) in algebraic expres-
sions over the ring. (Thus, we are now talking about a
multivariate polynomial ring A[x1, . . . , xn].) A valuation

Θ : {x1, . . . , xn} → A extends naturally to a valuation
of expressions with Θ the identity on elements of A and
Θ(α ◦ β) := Θ(α) ◦Θ(β) for ◦ ∈ {+, ∗}.

Let us look at a scenario where we change the valuation
of the variables from Θ to Θnew . Then an expression ∆α
capturing the change to the value of an expression α can be
defined inductively as

∆(α+ β) := (∆α) + ∆β

∆(α ∗ β) := ((∆α) ∗ β) + (α ∗∆β) + ((∆α) ∗∆β)

∆(−α) := −∆α

∆x := Θnew (x)−Θ(x) (x is a variable)

∆c := 0 (c ∈ A)

where α and β are expressions.

Proposition 5.1. Θnew (α) = Θ(α) + ∆α.

Proof Sketch. The proof is a straightforward induction:
only the two most interesting cases are shown.

Case α ∗ β: By the structure-preserving extension of vari-
able valuations to expressions, Θnew (α ∗ β) = Θnew (α) ∗
Θnew (β). By the induction hypothesis (the proposition),
this is (Θ(α) + ∆α) ∗ (Θ(β) + ∆β). The claim follows from
distributivity.

Case −α: It follows immediately from the induction hy-
pothesis that −Θnew (α) − (−Θ(α)) = −∆α. It holds that
−Θ(new)(α) = Θ(new)(−α). We conclude that Θnew (−α) −
Θ(−α) = −∆α = ∆(−α). 2

Deltas for AGCA queries. We now consider databa-
ses containing classical multiset relations, i.e., in which the
tuples have coherent schema. Our goal is, given an AGCA
term or formula α, to construct a query ∆α (which is a term
if α is a term and a formula if α is a formula) that expresses
the change made to the database by the insertion respec-
tively deletion of a single tuple. We write ±R(~t) to denote
the insertion or deletion of a tuple ~t into/from relation R.
We write ∆±R(~t)α to denote the delta-query for such such
an update. For atomic terms and formulae,

∆±R(~t)Sum(t, φ) := Sum((∆±R(~t)t), φ )
+ Sum( t , (∆±R(~t)φ))
+ Sum((∆±R(~t)t), (∆±R(~t)φ))

∆±R(~t)(t θ 0) :=
``

(t+ ∆±R(~t)t) θ 0
´
∗ (t θ̄ 0)

´
−

``
(t+ ∆±R(~t)t) θ̄ 0

´
∗ (t θ 0)

´
∆±R(~t)

`
R(x1, . . . , xsch(R))

´
:= ±

|sch(R)|^
i=1

(xi = ti)

∆±R(~t)

`
S(x1, . . . , xsch(S))

´
:= false (R 6= S)

where θ̄ is the complement of the relation θ (i.e., 6= for =,
≥ for <, etc.) and sch(R) is the schema of R – the set of
its column names. For all other atomic terms and formulae
α, ∆±R(~t)α is the zero-element of their respective rings (0
and false, respectively). The delta rules for nonatomic terms
and formulae, i.e., for operations in the rings of terms and
formulae (+,−, ∗), are those provided just above Proposi-
tion 5.1.

Proposition 5.2. Given any database A and values ~b for
the bound variables,

[[α]](A±R(~t),~b) = [[α]](A,~b) + [[∆±R(~t)α]](A,~b).



Proof Sketch. The proof is by a straightforward bottom-
up induction on the syntax tree of AGCA expressions. Only
the two most interesting cases are shown.

Case φ = t θ 0. Informally, the delta to φ is +1 if the condi-
tion was previously false and becomes true by the change, −1
if the condition was previosly true and now becomes false,
and 0 otherwise. The variables of φ can be assumed bound
from the outside, thus the multiplicity of the tuple defined by
φ is either 1 or 0. Consider the following truth table, which
shows, for all truth values of φ and φnew = (t+∆±R(~t)t) θ 0,
the value of ∆±R(~t)φ as given in our definition:

(1) (2) (3) (4) (5)
φ φnew ¬φ ∧ φnew φ ∧ ¬φnew ∆±R(~t)φ = (3)− (4)

1 1 0 0 0
1 0 0 1 −1
0 1 1 0 +1
0 0 0 0 0

It is easy to see that for all truth values of [[φ]](A,~b)
and [[φnew ]](A,~b), (5) = (2) − (1) in the above table, thus

[[∆±R(~t)φ]](A,~b) = [[φnew ]](A,~b)− [[φ]](A,~b) is always true.

Case ∆±R(~t)R(~x): ∆±R(~t)R(~x) explicitly constructs the
change to R: It evaluates to

±{~t} : ~y 7→

±1 . . . ~t = ~y

0 . . . otherwise.

∆±R(~t)S(~x) (for R 6= S) evaluates to 0ZRel . 2

Example 5.3. Consider the AGCA query

q[c1] = Sum
`
1, C(c1, n1) ∗ C(c2, n2) ∗ (n1 = n2)

´
from Example 4.2. By the notation q[c1], we mean that the
query has bound variable c1 (for the group-by column) and
defines a map that represents the aggregate query result for
each group c1. We abbreviate C(c2, n2)∗ (n1 = n2) as φ and
C(c1, n1) ∗ φ as ψ to keep the example short.

Let us study the insertion respectively deletion of a single
tuple (c, n) to/from C. Since

∆±C(c,n)(n1 = n2) = 0

∆±C(c,n)C(ci, ni) = ±((ci = c) ∗ (ni = n)),

by the delta-rule for ∗,

∆±C(c,n)φ = ±((c2 = c) ∗ (n2 = n) ∗ (n1 = n2)).

Again using the delta-rule for ∗, we get

∆±C(c,n)ψ =
`
(±((c1 = c) ∗ (n1 = n))) ∗ φ

´
+`

C(c1, n1) ∗
`
±((c2 = c) ∗ (n2 = n) ∗ (n1 = n2))

´´
+`

±((c1 = c) ∗ (n1 = n)) ∗
(±((c2 = c) ∗ (n2 = n) ∗ (n1 = n2)))

´
.

By the delta-rule for Sum, since ∆±C(c,n)1 = 0,

∆±C(c,n)Sum(1, ψ) = Sum(1,∆±C(c,n)ψ),

which, following Proposition 4.5, we can turn into the sum

± Sum(1, (c1 = c) ∗ (n1 = n) ∗ C(c2, n2) ∗ (n1 = n2))

± Sum(1, C(c1, n1) ∗ (c2 = c) ∗ (n2 = n) ∗ (n1 = n2))

+ Sum(1, (c1 = c) ∗ (n1 = n) ∗ (c2 = c)

∗ (n2 = n) ∗ (n1 = n2)).
2

AGCA is closed under taking deltas. Thus we can take
deltas as often as we like – our queries are, so to say, infinitely
differentiable. Next we define a construction to characterize
the structural complexity of AGCA expressions and show
that for a large class of expressions, taking deltas makes the
expressions strictly simpler.

Definition 5.4. Let the (polynomial) degree deg of an
AGCA term respectively formula be defined inductively as
follows (α, β are either terms or formulae):

deg(α ∗ β) := deg(α) + deg(β)

deg(α+ β) := max(deg(α), deg(β))

deg(−α) := deg(α)

deg(Sum(t, φ)) := deg(t) + deg(φ)

deg(t θ 0) := deg(t)

deg(R(~x)) := 1.

For all other kinds of terms and formulae, deg(·) := 0. 2

The degree of a conjunctive query is the number of rela-
tion atoms joined together. In absence of further knowledge
about the structure of the query (e.g., tree-width) or the
data, the data complexity [35] of an AGCA query q given
values for the bound variables (in other words, evaluating

the query for one group) is O(ndeg(q)).
An AGCA condition t θ 0 is simple if ∆t = 0 for all update

events. This is in particular true if t does not contain Sum
subterms.

Theorem 5.5. For any AGCA term or formula α with
simple conditions only, deg(∆α) = max(0, deg(α)− 1).

The proof is a straightforward induction combining Defi-
nition 5.4 with the definition of ∆.

Example 5.6. Consider the query of Example 5.3. We
have deg q[c1] = 2 and deg ∆+C(c,n)q[c1] = 1. Computing
q′′[c1] = ∆+C(c′,n′)∆+C(c,n)q[c1] yields Sum(1, (c1 = c) ∗
(c2 = c′) ∗ (n2 = n′)) + Sum(1, (c1 = c′) ∗ (n = n′)), so
deg q′′[c1] = 0. The definition of ∆ ensures that the delta of
any query of degree 0 is 0, so the value as well as the degree
of any derivative of q higher than q′′ are 0, too. 2

Theorem 5.5 guarantees that, for any AGCA expression
with simple conditions only and a fixed k, the k-th delta-
derivative has degree zero. Such an expression does not
access the database: it only depends on the update. This
will be key in the compilation result presented in Section 7.

6. NC0C PROGRAMS
This section introduces NC0C, a low-level language for

incremental, update-event processing that admits massive
parallelization. In an NC0C program, all state is represented
by finite map data structures (associative arrays), mapping
tuples to numbers. NC0C is a restricted imperative lan-
guage, similar to C both in syntax and semantics. There
are two important differences from C. The first is the initial-
ization of undefined map values, which uses special syntax
to account for the fact that NC0C procedures are update
triggers for the map data structures. The second is looping,
which is performed over a set of values that is intentionally



Time ∆C ∆q[1] q[1] ∆q[2] q[2] ∆q[3] q[3] ∆q[4] q[4]
1 insert (1,US) +1 1
2 insert (2,UK) 1 +1 1
3 insert (3,UK) 1 +q2[2,UK] 2 +q1[UK] + 1 2
4 insert (4,US) +q2[4,US] 2 2 2 +q1[US] + 1 2
5 delete (3,UK) 2 −q2[3,UK] 1 −q1[UK]| {z }

−2

− q2[3,UK]| {z }
−1

+ 1 0 2

6 insert (3,US) +q2[3,US] 3 +q2[3,US] 3 +q1[US] + 1 3 +q2[3,US] 3

Figure 2: Runtime trace of the NC0C program of Example 6.1.

not made explicit in the syntax of NC0C (but is particu-
larly well-behaved – it is a form of constrained structural
recursion over the map – and thus admits parallelisation).

In the next section, we will compile AGCA queries to
NC0C programs that perform incremental view maintenance.
It is worth noting that these compiled programs only use the
maps to represent the view and auxiliary data; no database
beyond these is accessed.

Syntax. A map (read) access, where m is a map name, is
written as m[~x]. An NC0C term is an arithmetic expression
built from variables, constants, map accesses, functional ifs
of the form if φ then t else 0 or, using C syntax, (φ ? t
: 0), and arithmetic operations + and ∗. A condition φ is
a boolean combination of (in)equalities over variables and
constants.

An NC0C trigger is of the form

on ±R(~x~y) { s1; . . . ; sk }

where ± indicates insertion respectively deletion, R is a re-
lation name, ~x~y are variables (the trigger arguments), and
s1, . . . , sk are NC0C statements of the form

foreach ~z do m[~x~z]〈tinit〉 ±= t (1)

where ~z are variables distinct from ~x~y, t is an NC0C term,
and tinit is an NC0C term without map accesses that uses
only variables from ~x~z, called the initializer of m[~x~z]. If tinit

is 0, we may omit it and write m[~x~z] rather than m[~x~z]〈0〉.
Letm1[~v1], . . . ,mk[~vk] be the map accesses in the right-hand
side term t. Then m, m1, . . . , mk must be pairwise distinct
and the variables in ~v1, . . . , ~vk must be a nonoverlapping
subsets of the variables in ~x~y~z. We abbreviate statements
of the form (1) with ~z = 〈〉 as

m[~x]〈tinit〉 ±= t.

An NC0C program consists of a set of triggers, one for each
update event ±R.

Semantics. The semantics of NC0C terms is the same as
in C. A statement of form (1) performs the following for
each valuation θ of the variables ~z (extending the valuation
of variables ~x~y passed to the trigger via its arguments) such
that all map accesses in right-hand side t are defined. If
m[~x~z] is undefined, initialize it with tinit . Then, uncondi-
tionally, execute m[~x~z] += t. An “on ±R(~x~y)” trigger fires
if the update is of the form ±R(~x~y) and executes the state-
ments s1; . . . ; sk of its body sequentially (as in C).

The compilation algorithms of the next section may for
convenience create multiple triggers for the same update
event. However, these NC0C programs do not have cyclic
dependencies between triggers: there is no trigger that reads
one map that the other updates and vice-versa (there is a hi-
erarchy of maps). Assuming without loss of generality that

the argument variable tuples of distinct triggers for the same
update event are the same, we can perform a suitable topo-
logical sort of the triggers that assures that no map is read
after it is written, and concatenate their bodies according to
this sort to obtain a single trigger per update event.

Example 6.1. Consider the NC0C on-insert trigger

on +C(cid, nation) {

q[cid] += q1[nation];

foreach cid2 do q[cid2] += q2[cid2, nation];

q[cid] += 1;

q1[nation] += 1;

q2[cid, nation] += 1

}

The initializers are all 0, and are thus omitted.
The trigger on -C is obtained by changing += to -= ev-

erywhere in the above trigger except for the third statement
(q[cid] += 1), which remains unchanged.

These triggers incrementally maintain the query of Ex-
ample 5.3 as the map q[·]; the other maps are auxiliary.
They are exactly the NC0C triggers that the compilation
algorithm of Section 7.2 will produce (modulo the merging
of multiple triggers for the same update event as described
above). The ordering of statements in the triggers in not
arbitrary: no map value must be read after it is written. So
it is important that the first statement precedes the fourth
and the second precedes the fifth.

Figure 2 shows a trace of map q as we perform a sequence
of insertions and deletions. The ∆q[x] columns indicate the
changes made to q[x] on each update. 2

Parallelization
In the following, by the atomic values maintained by an
NC0C program, we refer to the image values (numbers) m[~a]
stored in the maps maintained by the program. Assume a
model of computation in which additions and multiplications
of pairs of numbers are performed in unit time.

Proposition 6.2. Executing NC0C triggers takes a con-
stant amount of work per tuple inserted or deleted and per
atomic value maintained.

Proof Sketch. The syntax of statements of form (1) is
misleading in that it suggests a loop – that a nonconstant
amount of work is needed to bring an atomic value up to
date. Overall, a nonconstant amount of work (evidenced
by the loop) is only needed because in general there are
many atomic values to be maintained. The loop variables
~z of a statement of form (1) all occur in the lvalue m[~x~z],
so each such value is written only once. Because a trig-
ger is a constant-length sequence of statements and there



are no nested loops or recursion, each atomic value is only
written constantly many times in the trigger overall. Since
the right-hand side of a statement only performs a constant
number of arithmetic operations and comparisons starting
from numbers readily available in the maps (consider these
to be hash-maps with constant-time access), the overall work
done to update each value is a constant number of map ac-
cesses, comparisons, additions and multiplications. 2

Let us formalize this result more rigidly, using circuit com-
plexity. A bounded fan-in circuit is a Boolean circuit (built
using AND, OR, and NOT GATES) in which AND and OR
gates have only a bounded number of inputs (w.l.o.g., two).
The complexity class NC0 denotes the LOGSPACE-uniform
families of bounded fan-in Boolean circuits of polynomial
size and constant depth [22, 4]. That is, a decision problem
P is in NC0 if there is a LOGSPACE algorithm that, given
an input size N in unary, outputs a bounded fan-in circuit
CN of polynomial size and constant depth such that CN

outputs true for exactly those problem instances of N -bit
length on which P is true.

Obviously, in an NC0 circuit, the output gate only de-
pends on a constant number of input gates. Thus, bits of
the result of arithmetics on variable-length integers cannot
be computed in NC0. We will consider arithmetics modulo
2k for a fixed integer k, which covers the real-world case of
fixed-precision numbers and fixed-size registers.

Consider a single-tuple update and a representation of a
materialized view and auxiliary data consisting of k-bit num-
bers. We will talk of a (LOGSPACE-uniform) NC0-inter-
pretation modulo 2k of a fixed NC0C update event ±R(~t)
if there is an NC0 circuit for each bit of the representation
which, given the old version of the representation, computes
the new version of that bit.

Theorem 6.3. Update events in NC0C programs have NC0
interpretations modulo 2k.

Proof Sketch. Fix an NC0C update event ±R(~t). Let each
map m used in the NC0C program have key domain arity
ar(m) – that is, the keys are ar(m)-tuples. For each map
m, let nst(m) be the number of statements with m the left-
hand-side map, from all the ±R triggers. Let sm

1 , . . . , s
m
nst(m)

be the instantiations of these statements with ~t, obtained by
substituting all occurrences of the trigger argument variables
with their values in ~t, in arbitrary order. We define an algo-
rithm that, for an active domain size N given in unary, con-
structs a circuit that is an NC0-interpretation of the update
event. Denote the value of m[x1, . . . , xar(m)] after adding

sm
1 + · · · + sm

l , for 0 ≤ l ≤ nst(m), by m(l)[x1, . . . , xar(m)].

We represent the j-th bit of m(l)[x1, . . . , xar(m)] by gate

G
(l)

m[x1,...,xar(m)].j
(1 ≤ j ≤ k). The circuit will have input

gates G
(0)

m[x1,...,xar(m)].j
and output gates G

(nst(m))

m[x1,...,xar(m)].j
.

Since each x(·) has N possible values, there are
P

m a map k∗
Nar(m) input gates and the same number of output gates.

For each map m and each 1 ≤ l ≤ nst(m), we proceed
as follows. Let sm

l be statement foreach ~z do m[~a~z] ±=
t such that ~a are constants (a projection of ~t). The def-
inition of NC0C guarantees that no other variables than
those of ~z occur in right-hand side t. Loop over each ~x~z
in Nar(m). If ~x 6= ~a, forward the value of m(l−1)[~x~z] to

m(l)[~x~z] by connecting the gates. Otherwise, build a circuit

for m(l−1)[~x~z]±t with the variables in t substituted, connect

the inputs to the gates representing m(l−1)[~x~z] and m′(0)[·]
for each of the maps m′ accessed in t, and connect the out-
put to the gates representing m(l)[~x~z]. The construction of
NC0 circuits for adding and multiplying two k-bit numbers
modulo 2k (k fixed) is straightforward, and so is the wiring
together of these circuits into circuits that compute fixed
arithmetic expressions over k-bit numbers (using +, ∗, k-bit
constants, and comparisons).

The algorithm needs a fixed number (maxm ar(m)) of reg-
isters of dlog2Ne bits (which is logarithmic in the input,
which was N given in unary) and runs in LOGSPACE. 2

The result extends to bulk updates involving a constant
number of tuples by simple composition of circuits.

By fixing the update events in Theorem 6.3, we avoid the
need to perform lookups of map items by “address” (key).
This would require unbounded fan-in gates to encode in
a constant-depth circuit. But note that this does not de-
feat our aim: Incremental evaluation eliminates the need to
compute a sum of an unbounded number of terms, which
is qualitatively different from a map lookup, which on real
computers can be done in constant time (using a bus, which
performs lookups but does not compute sums).

7. QUERY COMPILATION
This section describes algorithms for compiling AGCA

queries to NC0C. Throughout the section, we will consider
AGCA Sum terms excluding nested aggregates and inequal-
ity join conditions (i.e., involving two variables, e.g. x < y;
non-join conditions such as x > 5 are permitted). These
terms are called primitive AGCA terms.

The second requirement guarantees that NC0C initializ-
ers are constants and do not require us to go back to the
database to compute. We will discuss relaxing this restric-
tion at the end of the section.

7.1 Basic Compilation Algorithm
The following lemma allows to eliminate unneeded vari-

ables – variables that are made safe by condition atoms
equating them to other safe variables – from AGCA queries.

Lemma 7.1. Given a safe term Sum(t, φ) and a set of
bound variables B. Then there is an equivalent safe term
Sum(t′, ψ) such that each variable in ψ either occurs in a
relational atom R(~x) of ψ or in B.

An AGCA term t = Sum(t0, φ) is called constraints-only if
φ does not contain relational atoms R(~x). When φ contains
only bound variables, we can think of t as a (functional)
if-statement “if φ then t0 else 0” or, using C syntax, “φ ?
t0 : 0”. Let MakeC(t, B) be a function that turns t into
the corresponding functional if-statement after performing
variable elimination using bound variables B.

We present a simple compilation algorithm for AGCA
terms Sum(t, φ) that do not contain nested aggregates, i.e.,
neither t not φ contain Sum terms.

Theorem 7.2. There is an algorithm that compiles any
primitive AGCA term into an NC0C program that incre-
mentally maintains it.

Proof Sketch. To create on-insert (+R) and on-delete
(−R) triggers that incrementally maintain map q[~b] of Sum



term t, we execute the following algorithm as Compile0(q,
~b, t):

algorithm Compile0(q, ~b, t)
outputs an NC0C program
begin
for each relation R in the schema, ± in {+,−} do
~a := turn sch(R) into a list of new variable names;
t′ := ∆±R(~a)t;

if t′ is constraints-only then t′′ := MakeC(t′, ~a~b)

else t′′ := q±R[~a~b]; Compile0(q±R, ~a~b, t′) end if;

tinit := [[t]]F (∅,~a~b);
output on ±R(~a) {foreach ~b do q[~b]〈tinit〉 += t′′}

end

Here, q±R is a new map name for an auxiliary materialized

view. When ~b is the empty tuple, we can omit foreach ~b do
from the NC0C statement created.

The algorithm takes an aggregate query t = Sum(t0, φ)

with bound variables ~b and defines a map q[~b] for it, repre-
senting a materialized view of the query. It creates a trigger
for each possible update event ±R which specifies how to

update q[~b] when this event occurs. To do this, it computes
the delta t′ of the query, and creates a new map q±R rep-
resenting a materialized view of the delta. The statement

increments q[~b] by q±R[·], and uses the result of evaluating

term t on the empty database as the initializer for q[~b]. The
function [[·]]F was defined in Section 4. In particular, on
Sum terms t that are not constraints-only, tinit = 0. The
new map q±R is incrementally maintained as well. To do
this, the algorithm recursively calls itself. The algorithm
terminates because by Theorem 5.5 the delta t′ eventually
reaches degree 0 (i.e., is constraints-only). In this case no
new map is created for it but t′ (turned into an NC0C term
using MakeC) itself is used as the right-hand side of the
NC0C statement.

This is precisely the recursive incremental view mainte-
nance mechanism sketched in the introduction, using the
notation introduced in the past sections. 2

Example 7.3. Let q[] = Sum(1, R(x) ∗ S(x)). Then

∆±R(u)q = ±Sum(1, (x = u) ∗ S(x)) =: qR[u]

∆±S(v)q = ±Sum(1, R(x) ∗ (x = v)) =: qS [v]

∆±S(v)qR[u] = ±Sum(1, (x = u) ∗ (x = v))

∆±R(u)qS [v] = ±Sum(1, (x = u) ∗ (x = v))

Moreover, MakeC(Sum(1, (x = u) ∗ (x = v))) = if (u=v)

then 1 else 0. We will see later that all the initializers for
this code are 0. Compile0 produces the NC0C insert triggers

on +R(u) { q[] += qR[u] }

on +R(u) { foreach v do

qS[v] += if (u=v) then 1 else 0 }

on +S(v) { q[] += qS[v] }

on +S(v) { foreach u do

qR[u] += if (u=v) then 1 else 0 }

The delete triggers are obtained from the insert triggers by
replacing all occurrences of + by -.

7.2 Eliminating Loop Variables
We now improve algorithm Compile0 from the proof of

Theorem 7.2 to loop over fewer variables.

Extraction of aggregates. For a term t and its set B of
bound variables, the function Extract(t, B) replaces each
maximal subterm s of t that is of the form Sum(·, ·) but
is not constraints-only by a map access m[~x]. Here m is
a new name and ~x are those variables of B that occur in
s, turned into an arbitrarily ordered tuple. The result of
Extract thus is a pair (t′,Θ) of the remainder term t′ and a
mapping Θ from map accesses m[~x] to extracted subterms
s (which could be used to undo the extraction). That is, t′

is constraints-only, and t′ with its map accesses substituted
using Θ is t.

Example 7.4. Let t be the term Sum
`
x∗Sum(v,R(v, z)),

y = z
´
∗Sum

`
u,R(x, u)

´
. Extract(t, {x, y}) returns the pair

(t′, θ) consisting of term t′ = Sum(x ∗m1[z]〈θ(m1[z])〉, y =
z) ∗m2[x]〈θ(m2[x])〉 and the mapping

θ = {m1[z] 7→ Sum(v,R(v, z)); m2[x] 7→ Sum(u,R(x, u))}.

Factorization of monomial aggregate terms. For e either
a formula or a term, let vars(e) be the set of all variables
occurring in e. Factorization employs the equivalence

Sum(s ∗ t, φ ∗ ψ) = Sum(s, φ) ∗ Sum(t, ψ)

which is true if (vars(s)∪ vars(φ))∩ (vars(t)∪ vars(ψ)) = ∅.

Proposition 7.5. A monomial aggregate term can be max-
imally factorized in linear time in its size.

Example 7.6. The term Sum(5 ∗ x ∗ Sum(1, R(y, z)) ∗
w,R(x, y) ∗ R(v, w)) factorizes as Sum(5, true) ∗ Sum(x ∗
Sum(1, R(y, z)), R(x, y)) ∗ Sum(w,R(v, w)). 2

Recursive factorization, given term Sum(t, φ), recursively
– bottom-up – factorizes the aggregate terms in t before
applying factorization as just described to Sum(t, φ) itself.

Lifting ifs. Observe that if ψ is a constraints-only term in
which all variables are bound and t0 is a term in which all
variables are bound, then

Sum(t, φ ∗ ψ) = Sum(Sum(t, φ), ψ)

t0 ∗ Sum(t, ψ) = Sum(t0 ∗ t, ψ)

Thus, given a recursively monomial term, we can lift ψ to
the top. Let function LiftIfs(·, B), given bound variables B,
do exactly this.

Example 7.7. This will be used in Example 7.10:

LiftIfs(Sum(1, C(c2, n) ∗ (c1 = c)), {c1, c, n}) =

Sum(Sum(1, C(c2, n)), c1 = c).

Further auxiliary functions. Simplify(t, B), given an ag-
gregate term t and a set of bound variables B, (1) turns
t into an equivalent sum of (inverses of) recursively mono-
mials using Proposition 4.5, (2) recursively factorizes each
of the result monomials, (3) eliminates all variables other
than B, and finally (4) performs LiftIfs(·, B). The result
t±1 t1 · · · ±n tn is equivalent to t and the ti are recursively
monomials involving only variables in B.

ElimLV is a function that takes an NC0C statement

foreach ~x~y do q[~x~y] += if ~x = ~z then t else 0

and simplifies it to the equivalent statement foreach ~y do

q[~z~y] += t. We lift ifs to be able to apply this optimization.



algorithm Compile(m, ~b, t)
outputs an NC0C program
begin
for each relation R in the schema, ±0 in {+,−} do
~a := turn sch(R) into a list of new variable names;
t′ := ∆±0R(~a)t;

(±1t1 · · · ±n tn, Θ) := Extract(Simplify(t′, ~a~b), ~a~b);
for each i from 1 to n do

tinit := [[t]]F (∅,~a~b);
si := (foreach ~b do m[~b]〈tinit〉 (±i)= MakeC(ti, ~a~b));
output on ±0R(~a) { ElimLV(si) };

for each (m′[~x] 7→ t′′) in Θ do Compile(m′, ~x, t′′);
end

Figure 3: The algorithm Compile.

The algorithm. The algorithm Compile is given in Fig-
ure 3. It is invoked like Compile0 and closely follows its
structure. The difference is that we first Simplify the delta of
the query and extract the non-constraints-only aggregates.
The result is a sum of constraints-only recursively mono-
mials with map accesses. We turn each of the recursively
monomials into a separate statement. The reason for this
is that using LiftIfs and ElimLV, we remove loop variables,
and each of the statements (monomials) may loop over a
different subset of the argument variables of the map repre-
senting the query (the remaining variables are substituted
by constants).

Theorem 7.8. Given a primitive term t and bound vari-
ables ~x by which results are to be grouped, the output of
Compile(m, ~x, t) is an NC0C program that correctly main-
tains query t in map m[~x] under inserts and deletes.

Example 7.9. Algorithm Compile simplifies the two for-
each-loop statements of Example 7.3 to qS[u] += 1 and
qR[v] +=1. The resulting triggers for this example have no
loops and run in constant sequential time. 2

Example 7.10. Consider the query q[c1] of Example 5.3
and the sum of (inverses of) recursively monomials equiva-
lent to ∆±C(c,n)q[c1] computed there. Factorization on this
query is the identity. Eliminating variables according to
Lemma 7.1 with variables {c1, c, n} bound yields ±t1±t2+t3
with t1 = Sum(1, (c1 = c) ∗C(c2, n)), t2 = Sum(1, C(c1, n)),
and t3 = Sum(1, c1 = c). The result of if-lifting for t1 is
shown in Example 7.7. For t2 and t3 it is the identity.

Extract(Simplify(∆±C(c,n)q[c1], {c1, c, n}), {c1, c, n})

yields (±t′1 ± t′2 + t′3,Θ) where t′1 = Sum(q1[n], c1 = c),
t′2 = q2[c1, n], t′3 = t3, and

Θ =


q1[n] 7→ Sum(1, C(c2, n))

q2[c1, n] 7→ Sum(1, C(c1, n)).

ff
Using ElimLV, we get the three trigger statements

q[c] ±= q1[n]; foreach c1 do q[c1] ±= q2[c1, n];

q[c] += 1.

Without ElimLV, the first statement would be

foreach c1 do q[c1] ±= if c1 = c then q1[n] else 0

and the third would be more complicated, too. We further
have to compile q1 and q2. Since

∆±C(c′,n′)q1[n] = ∆±C(c′,n′)q2[c, n] = ±1,

the compiled NC0C program is exactly as shown in Exam-
ple 6.1.

7.3 Initializers
We defined the primitive (=compilable) AGCA terms to

be those without nested aggregates or inequality join con-
ditions. The second requirement of that definition can be
replaced by the requirement to exclude terms that are un-
safe if the set of bound variables is set to ∅ or where this
condition can become true for a k-th delta.

For example, the query q[] = Sum(1, R(x)∗S(y)∗(x < y))
is excluded because its delta m[y] = Sum(1, R(x) ∗ (x < y))
is safe for bound variable y, but unsafe for the empty set of
bound variables. The problem is that on an insertion into
R, we do not know for which y values the map m should be
updated – the query does not provide use with a method of
bounding the domain of y.

However, if we assume a global, immutable active domain
given (cf. the proof of Theorem 6.3), we never have to com-
pute initial values, and the compilation algorithms are ap-
plicable to all Sum terms with simple conditions only (i.e.,
for which taking deltas simplifies the query structure).

For primitive queries, it is true that for the initialization of
a map value m[~a]〈tinit〉, we can evaluate tinit on the empty
database; any contents of the database are not visible to
query tinit or would otherwise have caused initialization of
m[~a] earlier. This can be proved by induction.

8. RELATED WORK
There is a large literature on the incremental view main-

tenance problem (e.g. [7, 33, 5, 32, 8, 17, 18, 16, 36, 11, 13,
9, 26, 27, 23]). Work in this tradition expresses the delta
to a query as a query itself, which is evaluated mostly using
classical operator-based query evaluation techniques. The
ring ZRel of this paper adds to the state of the art in this
area by simplifying and generalizing the machinery for ob-
taining delta queries. Previous work in this area generally
does not address aggregates nested into conditions, while
this paper does. The work closest to ours is that of [17, 18],
where a multiset semantics and a counting-based model of
incremental computation are proposed. None of the previous
work, however, applies delta processing to deltas recursively
as done here.

Treatments of bag semantics based on an algebraic con-
nection to counting also appear in [25, 15, 14]. The goals of
this paper are different from those of [25, 15, 14]. Z-relations
[14] are relations in which the tuples have integer (including
negative) multiplicities and they are used to study the equiv-
alence, rewriting, and optimization of certain queries with
negation, with an application to incremental view mainte-
nance. There is a fundamental technical difference between
the algebraic modeling of [15, 14] and the one in this pa-
per, in that we consider untyped relations which allows us
to define union and join as total operations, yielding a ring
structure.

There is a considerable body of work on incremental com-
putation by the programming languages research community
[10, 30, 2]. This work is different in spirit since it has the
objective to speed up Turing-complete programming lan-
guages, which is substantially harder. The restriction to
query languages with strong algebraic properties allows for
delta processing in a form that is not possible for general-
purpose programming languages.



Classical complexity classes are not well suited for char-
acterizing the complexity of incremental query evaluation in
databases. In the database theory literature, there is some
work on dynamic complexity classes such as DynFO [29,
11, 26, 27, 21, 20, 28], which fills this gap. DynFO essen-
tially captures the expressive power that relational calcu-
lus yields for incremental computation (for tuple insertions
and deletes). DynFO is more powerful than FO used non-
incrementally. For example, it is well known that graph
reachability cannot be expressed in FO; however, there are
representations of reachability in undirected graphs that can
be incrementally maintained using first-order interpretations
(i.e., in DynFO). Graph reachability on directed graphs can
be incrementally maintained using TC0 – in DynTC0 [20].
In short, this thread of work studies how much additional
expressive power one obtains by using a classical query lan-
guage (such as FO) to compute increments. In a sense, we
do the opposite – we ask with how much less power (and
cost) we can make do by incremental computation for the
evaluation of queries in practical languages. The main result
of this paper suggests that DynFO relates to FO similarly
as the complexity class TC0 relates to NC0. No claim is
made that such a relationship holds strictly, i.e. that TC0
= Dyn-NC0, but it is plausible that a result in this spirit
could be achieved.
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