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ABSTRACT
The hash table, especially its external memory version, is
one of the most important index structures in large databases.
Assuming a truly random hash function, it is known that in a
standard external hash table with block size b, searching for
a particular key only takes expected average tq = 1+1/2Ω(b)

disk accesses for any load factor α bounded away from 1.
However, such near-perfect performance is achieved only
when b is known and the hash table is particularly tuned
for working with such a blocking. In this paper we study if
it is possible to build a cache-oblivious hash table that works
well with any blocking. Such a hash table will automatically
perform well across all levels of the memory hierarchy and
does not need any hardware-specific tuning, an important
feature in autonomous databases.

We first show that linear probing, a classical collision res-
olution strategy for hash tables, can be easily made cache-
oblivious but it only achieves tq = 1 + O(α/b). Then we

demonstrate that it is possible to obtain tq = 1 + 1/2Ω(b),
thus matching the cache-aware bound, if the following two
conditions hold: (a) b is a power of 2; and (b) every block
starts at a memory address divisible by b. Both conditions
hold on a real machine, although they are not stated in the
cache-oblivious model. Interestingly, we also show that nei-
ther condition is dispensable: if either of them is removed,
the best obtainable bound is tq = 1 + O(α/b), which is ex-
actly what linear probing achieves.
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1. INTRODUCTION
The hash table is one of the most fundamental index struc-

tures in databases. It stores a set of n keys from a uni-
verse [u] in linear space, while allowing us to search for
any particular key efficiently. It is also one of the sim-
plest data structures: Let h : [u] → [r] be a hash func-
tion. The table has size r ≥ n and we simply store key
x in position h(x). If that position already contains some
other key, one can use various collision resolution strategies,
among which chaining and linear probing are the most com-
mon ones. In chaining, we simply store all keys that are
mapped to same position in a list associated with that posi-
tion. In linear probing, if position h(x) is already occupied
when x is being inserted, we successively probe positions
h(x), h(x)+1, . . . , r−1, 0, 1, . . . , h(x)−1 until an empty po-
sition is found and we will put x there. To do a search on
x, we follow the same probing sequence, until x is found or
an empty position is encountered, in which case we know
that x is not stored in the table. It is known that linear
probing generally outperforms chaining in practice due to
its sequential access pattern, provided that the load factor
α = n/r is not too close to 1.

The mathematical analysis of hashing is usually consid-
ered as the birth of analysis of algorithms [14], and it is
still attracting a lot of attention nowadays. Most analyses
on hashing assume h to be a truly random function, i.e.,
each h(x) is independently uniformly distributed on [r]. It
has been observed that these analyses match what actu-
ally happens on real-world data surprisingly well, even with
some very simple hash functions. Recently, some theoretical
explanation [18] has also been put forward justifying such
an assumption. We will also adopt the truly random hash
function assumption in this paper. Under such an assump-
tion, Knuth [14] showed that the expected average number
of probes during a search using linear probing is (averaged
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Thus, for a typical load factor α = 0.7, we expect to make
2.17 probes if the searched key is in the table, and 6.05
probes if it is not.

In large databases, the hash table is usually stored in ex-
ternal memory, and data is accessed in terms of blocks. In
this setting, we care about the number of blocks accessed
(I/Os) when performing a search. The number of I/Os is
clearly at most the number of probes, but such a naive
analysis is too pessimistic. Interestingly, Knuth [14] showed
that the external version of linear probing has a search cost
of 1 + 1/2Ω(b) I/Os (for both successful and unsuccessful
searches), where b is the block size. Here and further we
assume that the load factor α is bounded away from 1.
In the external version of linear probing, the table consists
of r/b blocks, and correspondingly we use a hash function
h : [u] → [r/b]. To do a search on x, we successively access
blocks h(x), h(x) + 1, . . . until x is found or a non-full block
is encountered. The intuitive explanation for this extremely
close-to-one cost is that since a block has size b, we will not
have a collision unless more than b keys are hashed into this
block, which happens with probability exponentially small
in b. Knuth [14] actually derived the constant in the big-
Omega, showing that for reasonably large b (larger than 10),
the number of I/Os is very close to 1, much smaller than
the number of probes, demonstrating the excellent locality
of external linear probing. Meanwhile, a natural external
version of chaining also achieves the same bound. These re-
sults basically have explained why hash tables work so well
in external memory.

These classical analyses assumed a simple two-level mem-
ory model [2], where the (sufficiently large) external memory
is partitioned into blocks of size b and are fetched into the in-
ternal memory of size m as they are probed. Here both sizes
are measured in terms of (log u)-bit words. Starting in the
late 90’s tremendous efforts have been devoted to the design
and analysis of data structures that work well not only in
a two-level memory model, but also in a memory hierarchy
that consists of any number of levels, where each level has
a different capacity m and block size b. Among them, the
most successful approach is the cache-oblivious model [10]
due to its elegance and simplicity. This model actually only
features two levels of memory: a data structure is laid out
in external memory and accessed in exactly the same way
as in the standard two-level model, but the additional re-
quirement is that the structure is unaware of the block size
b, or equivalently, the structure is laid out in external mem-
ory in a way that works for all block sizes1. Thus a cache-
oblivious data structure automatically works in a memory
hierarchy. More precisely, if we can show that the cost of
some operation on a cache-oblivious structure is f(n, b) I/Os
in the two-level model, then the number of block transfers
will always be f(n, b) between any two levels in a memory
hierarchy with multiple levels, where the b simply becomes

1Strictly speaking the structure should be unaware of both
m and b. But for most data structure problems the opera-
tions on the structure are always oblivious to m, so we only
need to require that the layout works for all b.

the block size of that corresponding level. Another major
benefit of cache-oblivious algorithms and data structures is
that they achieve their guaranteed performance without any
hardware-specific tuning. This is particularly important in
autonomous databases, and is in fact the main motivation
of the recent efforts in bringing cache-oblivious techniques
to databases, such as EaseDB [12].

Note that the external versions of linear probing and chain-
ing mentioned above only work for a single b, so they are not
cache-oblivious. In this paper we investigate whether it is
possible to lay out a hash table such that its search cost
matches its cache-aware version, i.e., 1 + 1/2Ω(b) I/Os, for
all block sizes b.

Our results.
A straightforward way of making the hash table cache-

oblivious is to simply use linear probing but ignoring the
blocking at all2. One would expect it to work well irrespec-
tive of the block size since it uses only sequential probes.
However, in Section 2 we show that its search cost is 1 +
O(α/b) I/Os. In fact, we also derive the constant in the big-
Oh, which depends on Cn and C′

n. This is worse than its
cache-aware version that is particularly tuned to work with
a single b. The gap is in some sense exponential, if we are
concerned with the fraction of keys that cannot be found
with a single cache miss (note that an average search cost
of tq = 1 + ε means that at most a fraction of ε keys need
two or more I/Os).

Next, we explore other collision resolution strategies to
see if they work better in the cache-oblivious model. In
Section 3, we show that the blocked probing algorithm [20]

achieves the desired 1 + 1/2Ω(b) search cost, but under the
following two conditions: (a) b is a power of 2; and (b) ev-
ery block starts at a memory address divisible by b. Neither
of these conditions is stated in the cache-oblivious model,
but they indeed hold on all real machines. This raises the
theoretical question of whether 1 + 1/2Ω(b) is achievable in
the “true” cache-oblivious model. In Section 4 we show that
neither condition is dispensable. Specifically, we prove that
if the hash table is only required to work for a single b but
an arbitrary shift of the layout, or if (b) holds but the hash
table is required to work for all b, then the best obtainable
search cost is 1 +O(α/b) I/Os, which exactly matches what
linear probing achieves. Our lower bound model puts no
restrictions on the structure of the hash table, except that
each key is treated as an atomic element, known as the in-
divisibility assumption.

Related results.
Hashing is perhaps one of the most studied problems in

computer science. Most works on hashing assume a truly
random function, as we do in this paper. Since such a
function requires a large space to describe, there are also
a lot of works on hashing using explicit and efficient hash
functions [6, 20]. Meanwhile, although most works focus on
the expected search cost, there are also hashing schemes
that guarantee good worst-case search costs [9, 21]. Hashing
has been well studied in the external memory model. The
1 + 1/2Ω(b) search cost holds as long as the load factor α

2Chaining would perform worse cache-obliviously because
the list associated with each position is not laid out consec-
utively.



is bounded away from 1 [14], and there are various tech-
niques in the database literature to keep the load factor in a
desired range, such as extensible hashing [8] or linear hash-
ing [17]. Jensen and Pagh [13] designed a hashing scheme

that has α = 1 − O(1/
√

b) while supporting searches with

1 + O(1/
√

b) I/Os. In all these hashing schemes a small
faction of the keys still need two or more disk accesses to
retrieve. Meanwhile there are also schemes that guarantee
a single I/O to retrieve any key [11, 16], but they all need
the internal memory to have size m = Θ(n/b). Note that
on the other hand, all the other hashing schemes achieving
tq = 1+ε only need the internal memory to store a constant
number of blocks.

The cache-oblivious model was proposed by Frigo et al. [10],
which introduces a clean and elegant way to modeling mem-
ory hierarchies. Previous approaches attempted to model a
memory hierarchy directly, but did not have much success
due to the complicated models. Since then, cache-oblivious
algorithms and data structures have received a lot of atten-
tion, and most fundamental problems have been solved. For
example, cache-oblivious sorting takes O(n

b
logm/b

n
b
) I/Os

[10], and a cache-oblivious B-tree takes O(logb n) I/Os for a
search [4]. Please see the survey [7] for other results. How-
ever, hashing has not been considered in the cache-oblivious
model so far. In most cases the cache-oblivious bounds
match their cache-aware versions, and it has always be an in-
teresting problem to see for what problems we have a separa-
tion between the cache-oblivious model and the cache-aware
model. Until today there have been only three separation
results [1, 3, 5]. Our lower bound adds to that list, furthering
our understanding of cache-obliviousness.

2. ANALYSIS OF LINEAR PROBING IN THE
CACHE-OBLIVIOUS MODEL

Linear probing while ignoring the blocking is naturally
cache-oblivious. In this section we analyze its search I/O
cost, which turns out to delicately depend on Cn and C′

n,
the expected number of probes in a successful and unsuc-
cessful search, respectively. Note that the equalities in the
theorem below are exact, though we only know the asymp-
totic formulas for Cn and C′

n.

Theorem 1. Let COn and CO′
n denote the expected num-

ber of I/Os for a successful and an unsuccessful search, re-
spectively. For any block size b, we have

COn = 1 + (Cn − 1)/b

CO′
n = 1 + (C′

n − 1)/b.

Proof. Let r be the size of the hash table, which is di-
vided into r/b blocks B0, . . . , Br/b−1 (assuming that r is
a multiple of b for simplicity). The block Bl spans posi-
tions lb, lb + 1, . . . , lb + b − 1. We will first consider unsuc-
cessful searches. Define p(i, j), i 6= j, to be the probability
that the hash table has position j empty, while positions i
through j − 1 occupied (wrapping around when necessary),
and p(i, i) the probability of position i being empty. Note
that the number of occupied positions is n, so p(i, j) = 0 for
any j 6∈ {i, i + 1, . . . , i + n} (wrapping around when neces-
sary). By the circular symmetry of linear probing and the
truly random hash function assumption, p(0, k) is exactly
the probability that an unsuccessful search of a key x takes

exactly k + 1 probes. Thus we have [14]:

C′
n =

n
X

k=0

(k + 1)p(0, k). (1)

Let pk be the probability that an unsuccessful search takes
k + 1 I/Os. Below we will relate pk with the p(0, k)’s. Note
that for a search to cost k + 1 I/Os, the probe sequence
will visit k + 1 consecutive blocks, that is, it will probe the
positions lb + i, lb + i + 1, . . . , (l + k)b + j, for any 0 ≤ i, j ≤
b − 1 if k ≥ 1 (wrapping around when necessary), or any
0 ≤ i ≤ j ≤ b − 1 if k = 0. For an unsuccessful search,
positions lb+ i through (l+k)b+j−1 must be occupied and
position (l + k)b+ j must be empty. Since h(x) is uniformly
distributed in [r], each of the r positions in the table is
equally likely to be the starting position. For α bounded
away from 1, we have r > n + b for n sufficiently large and
thus p(lb + i, lb + j) = 0 for i > j. So we can write pk for
any k as

pk =

r/b−1
X

l=0

b−1
X

i=0

Pr[h(x) = lb + i]

b−1
X

j=0

p(lb + i, (l + k)b + j)

=

r/b−1
X

l=0

b−1
X

i=0

1

r

b−1
X

j=0

p (0, kb + j − i) (by circular symmetry)

=
1

b

b−1
X

i=0

b−1
X

j=0

p(0, kb + j − i).

The last formula can be divided into two parts: the sum-
mation of all p(0, kb − b + s) for s = 0, . . . , b − 1, and the
summation of all p(0, kb + s) for s = 0, . . . , b− 1. Note that
each p(0, kb− b+s) contributes s times and each p(0, kb+s)
contributes b − s times in the summation. Thus pk can be
expressed as

pk =
1

b

 

b−1
X

s=0

sp(0, kb − b + s) +
b−1
X

s=0

(b − s)p(0, kb + s)

!

.

Now we can compute CO′
n as follows:

CO′
n =

⌊n/b⌋+1
X

k=0

(k + 1)pk

=

⌊n/b⌋+1
X

k=0

b−1
X

s=0

k + 1

b

 

b−1
X

s=0

sp(0, kb − b + s)

+
b−1
X

s=0

(b − s)p(0, kb + s)

!

=
1

b

0

@

⌊n/b⌋
X

k=−1

b−1
X

s=0

(k + 2)sp(0, kb + s)

+

⌊n/b⌋1
X

k=0

b−1
X

s=0

(k + 1)(b − s)p(0, kb + s)

1

A .

In the last equality we substitute the index k with k − 1 for
the first summation. Noting that k = −1 or k = ⌊n/b⌋ + 1
implies p(0, kb+ s) = 0 regardless what s is, we can simplify



the equation as

CO′
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1

b

0

@
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1
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1

b

n
X

t=0

(t + b)p(0, t)

= 1 − 1

b
+

n
X

t=0

(t + 1)p(0, t)

= 1 − 1

b
+

C′
n

b
.

For the expected successful query cost COn, we have:

COn =
1

n

n−1
X

k=0

CO′
k = 1 − 1

b
+

Pn−1
k=0 C′

k

nb
= 1 − 1

b
+

Cn

b
.

Combining Knuth’s results with our analysis, we can con-
clude that the I/O cost of directly applying linear probing in
the cache-oblivious model is 1+Θ(α/b), which is a lot worse
than its the external version that is aware of the blocking.

3. BLOCKED PROBING
Standard linear probing maintains the invariant that each

key x is placed as close as possible to position h(x) in the
probe sequence, in the sense that no single key can be moved
to decrease the length of a probe sequence. Blocked prob-
ing is a variant of linear probing proposed by Pagh, Pagh
and Ružić [20], who used it to derive optimal performance
(as a function of the load factor α) assuming only 5-wise
independent hash functions.

In this paper we are concerned with strong bounds on the
expected number of probes, for which the probability space
of 5-wise independent hash functions is not sufficiently large:
If the probability of using more than 1 I/O should be 2−Ω(b),

we need a probability space of size at least 2Ω(b). More gen-
erally, any explicit family of hash functions that allows per-
formance that tends to 1 I/O as b increases must use space
that depends on b. Thus, there is no hope to make such a
hash function cache-oblivious. Instead, as in most works on
hashing, we perform our analysis assuming a truly random
hash function. All experience shows that analyses performed
under this assumption closely match observed performance
when using high-quality heuristic hash functions.

3.1 Algorithm description
As described in [20], blocked probing assumes a hash table

whose size r is a power of two. It also assumes that r is fixed,
i.e., there is no notion of dynamically adjusting the capacity
of the hash table; at the end of this section we sketch how
to handle the general case. Suppose that the key x is stored
in location ix. Following [20] we define the distance measure
d(x, ix) to be equal to the position of the most significant bit
in which h(x) and ix differ (the least significant bit is said
to be at position 1), and d(x, ix) = 0 in case ix = h(x). Let
I(x, j) = {i | d(x, i) ≤ j}. Note that I(x, j) is the aligned

block of size 2j that contains h(x). The invariant of blocked
probing is that each key is stored as close as possible to h(x)
in the sense that ix ∈ I(x, j) if there is sufficient space, i.e.,
if the number of keys with hash values in I(x, j) is at most
|I(x, j)| = 2j . A thorough discussion of the operations of
blocked probing can be found in [20], but we sketch them
here for completeness.

When inserting a key x the invariant is maintained by
searching, for j = 0, 1, 2, . . . , for a location i ∈ I(x, j) where
x could be placed. For each j we first check if there is an
empty location in I(x, j) and put x there if there is one.
Otherwise, we look for a location ix′ ∈ I(x, j) that contains
a key x′ with d(x′, ix′) > j (implying that h(x′) 6∈ I(x, j)).
If there is such an x′ we swap x and x′, and continue the
insertion process with x′. If both attempts fail we move on
to the next j.

A search for x proceeds by inspecting, for j = 0, 1, 2, . . . ,
the locations of I(x, j) until either x is found, or we do not
find x but find instead an empty location or a key x′ with
d(x′, ix′) > j. In the latter cases, the invariant tells us that
x is not present in the hash table.

Deletion of a key x ∈ I(x, j)\I(x, j − 1) needs to check
if there is a key stored in I(x, j + 1)\I(x, j) that could be
stored in I(x, j) — if this is the case it is copied to the empty
location, and the old copy is deleted recursively.

3.2 Cache-oblivious analysis of blocked probing
Let S denote the set of keys involved in a given opera-

tion (insertion, deletion, successful or unsuccessful search),
including the key x specified by the query or update (x may
or may not be in the hash table). Define Xj as the number
of keys in S with hash value in the aligned block of size 2j

containing h(x), i.e., Xj = |{y ∈ S | h(y) ∈ I(x, j)}|. As
in [20] we observe that we will not visit any locations out-
side of I(x, j∗), where j∗ = min{j | Xj ≤ 2j}. We know
that h(x) ∈ I(x, j), but for any key y 6= x we have, by the
full randomness assumption, that Pr[h(y) ∈ I(x, j)] = 2j/r.
This means that Xj −1 follows a binomial distribution with
expectation bounded by n2j/r = α2j . By Chernoff bounds

Pr[Xj − 1 > 2j − 1] ≤ 2−(1−α)2 (2j−1)/2, so the probability

that j∗ > j is at most 2−(1−α)2 (2j−1)/2.
By the assumption that b is a power of 2 and storage

blocks are aligned to multiples of b, we have that all lo-
cations in I(x, log b) can be visited in 1 I/O. More gener-
ally, if the search goes on to step j∗ > log b the number of
I/Os required is 2j∗/b, since I(x, j∗) consists of that many
blocks. To compute the expected number of blocks involved
in an operation, in addition to the first I/O that retrieves
I(x, log b), we sum over all possible values of j∗ > log b the

cost 2j∗/b multiplied by the probability that j∗ steps or more
is used:

1 +
∞
X

j=1+log b

(2j/b) 2−(1−α)2 (2j−1)/2 = 1 + 2−Ω((1−α)2 b),

The upper bound uses the fact that the sum is rapidly
decreasing as j increases, and hence is dominated by the
first term. In conclusion, we have upper bounded the ex-
pected I/O cost for a search, insertion, or deletion, to 1 +

2−Ω((1−α)2 b), which is 1+1/2Ω(b) for α bounded away from 1.

3.3 Cache-oblivious dynamic hash tables
The standard doubling/halving strategy can be used to



maintain the load factor α in the range 1/2−ε/2 ≤ α ≤ 1−ε
as we insert and delete keys in the hash table where ε > 0 is
any small constant. In such a range the expected I/O cost

per operation is 1 + 1/2Ω(b) I/Os using the blocked probing
scheme described above. In particular, we always use a hash
table of size r that is a power of 2. Let g : [u] → [u] be a
“mother” hash function. When the table’s size is r, we take
the log r least significant bits of g(x) as h(x). When α = n/r
goes beyond the range [1/2 − ε/2, 1 − ε] we double or halve
r accordingly. This can be done in a simple scan of the hash
table in amortized O(1/b) I/Os per key, by simply inserting
keys in the order they occur in the table. The analysis uses
the fact that the keys to be inserted in a block in the resized
hash table are (w.h.p.) in at most two blocks in the original
hash table. We omit the rather standard analysis.

However, the above solution has a poor space utilization.
A number of methods have been proposed that maintain a
higher load factor, and also allow the rehashing to be done
incrementally; see [15] for an overview. To our best knowl-
edge these methods are all cache-aware — however, we now
describe how they can be made cache-oblivious while main-
taining the load factor of α = 1 − Θ(ε). Suppose initially
r is a power of 2 and n > (1 − 2ε)r. Adjust ε so that εr
is also a power of 2; this will not change ε by more than a
factor of 2. The idea is to split the hash table into 1/ε parts
using hashing (say, by looking at the first log(1/ε) bits of
the mother hash function), where each part is handled by
a cache-oblivious hash table of size εr which stores at most
(1 − ε)εr keys. As n changes, the number of parts also
changes to maintain the overall load factor at α = 1−Θ(ε).
Now this situation is analogous to a standard cache-aware
hash table with “block size” being equal to (1 − ε)εr, and
parts corresponding to blocks. So we may use any cache-
aware method that resizes a standard hash table, such as
linear hashing [17]. These resizing techniques will split or
merge parts as needed, and cost is O(1/b) I/Os per inser-
tion/deletion amortized. When r doubles or halves, we re-
build the entire hash table using a new part size εr. The

cache-aware resizing techniques ensures that only 1+1/2Ω(b′)

parts are accessed upon a query in expectation, where b′ is
the part size b′ = (1 − ε)εr. Within each part, our cache-

oblivious scheme accesses 1 + 1/2Ω(b) blocks. So as long as

r ≫ b, the overall query cost is still 1 + 1/2Ω(b) I/Os, as
desired.

In summary, we can dynamically update our cache-oblivious
hash table while maintaining a high load factor. The addi-
tional resizing cost is only O(1/b) I/Os amortized.

Theorem 2. In the cache-oblivious model where the block
size b is a power of 2 and every block starts at a memory
address divisible by b, there is a dynamic hash table that
supports queries in expected average tq = 1 + 1/2Ω(b) I/Os,
and insertions and deletions of keys in expected amortized
1 + O(1/b) I/Os. The load factor can be maintained at α ≥
1 − ε for any constant ε > 0.

4. LOWER BOUNDS
In this section, we show that the two conditions that the

analysis of blocked probing depends upon are both necessary
to achieve a 1 + 1/2Ω(b) search cost. Specifically, we prove
that when either condition is removed, the best obtainable
bound for the expected average cost of a successful search
is 1 + O(α/b) I/Os. The lower bound proofs do not assume

that α is a constant, so it means that we cannot hope to do
a lot better even with super-linear space.

4.1 The model
Before we present the exact lower bound statements let

us first be more precise about our model. Let U = [u] be
the universe. The hard input we consider here is a random
input in which each key is drawn from U uniformly and
independently. Let Iu be such a random input, and I be the
set of all inputs. We will bound from below the expected
average cost of a successful search on Iu where the average is
taken over all keys in Iu. We will only consider deterministic
hash tables; the lower bounds also hold for randomized hash
tables by invoking Yao’s minimax principle [19] because we
are using a random input. The hash table can employ any
hash functions to distribute the input. We assume u > n3,
then with probability 1 − O(1/n) all keys in Iu are distinct
by the birthday paradox.

We assume that all the n keys are stored in a table of size r
on external memory3, possibly with duplication. We model
the search algorithm by two functions f, g : [u] → [r]. For
any x ∈ [u], f(x) is the position where the algorithm makes
its first probe, while g(x) is the position of the last probe,
where key x (or one of its copies) must be located. Note that
the internal memory must be able to hold the description of
f , thus any deterministic hash table can employ a family F
of at most 2m log u such functions. Although the particular f
used by the hash table of course can depend on the input Iu,
the family F has to be fixed in advance. We do not have any
restrictions on g, as it is possible for the search algorithm to
evaluate g after accessing external memory, except that all
g(x)’s are distinct for the n keys.

The table is partitioned into blocks of size b. For any x
such that f(x) 6= g(x), define g′(x) to be g(x) if f(x) < g(x)
and g(x) + 1 if f(x) > g(x). Then if g′(x) is the first posi-
tion of a block, at least two blocks must have been accessed,
though the reverse is not necessarily true; please refer to Fig-
ure 1. For lower bound purposes we will assume optimisti-
cally that the search for x needs two I/Os if g′(x) is the first
position of a block, and one I/O otherwise. Note that after
this abstraction, the search cost is completely characterized
by the functions f, g and the blocking.

We will consider the following two blocking models. In the
boundary-oblivious model, the hash table knows the block
size b but not their boundaries. More precisely, how the
keys are stored in the table is allowed to depend on b, but
the layout should work for any shifting s, namely when each
block spans the positions from ib − s to (i + 1)b − s − 1 for
s = 0, 1, . . . , b − 1. In the block-size-oblivious model, the
blocks always start at positions that are multiples of b but
the layout is required to work for all b = 1, . . . , r. Below we
will show that in either model, the best possible expected
average cost of a successful search is 1 + O(α/b) I/Os.

4.2 Good inputs and bad inputs
For any I ∈ I, f ∈ F , define ηf (I) =

P

i∈[r](|{x ∈ I |
f(x) = i}| − 1). Intuitively, ηf (I) is the number of the
overflowed keys; since each position i can only hold one key,
at least ηf (I) keys in I need a second probe when the hash

3Here we do not allow keys to be stored in internal memory:
since the memory holds at most m keys, it does not affect
the average search cost as long as n is sufficiently larger than
m.



g(x)−1 g(x) g(x)+1f(x)

First probe of query(x) Last probe of query(x)

g′(x) − 1 g′(x)

= ib − 1 = ib

g(x)−1 g(x) g(x)+1 f(x)

First probe of query(x)Last probe of query(x)

g′(x) − 1 g′(x)

= ib − 1 = ib

Figure 1: When two I/Os are needed.

table uses f to decide its first probe. We say an input I ∈ I
is bad with respect to f if ηf (I) ≥ α

4
n, otherwise it is good.

Let If be the set of all bad inputs with respect to f , and
IF =

T

f∈F If which is the set of inputs that are bad with
respect to all f ∈ F . In our lower bounds we will actually
focus only on the bad inputs IF . The following technical
lemma ensures that almost all inputs are in IF .

Lemma 1. For n > cm log u/α2 where c is some suffi-

ciently large constant and α = ω(n−1/2), Iu is a bad input
with respect to all f ∈ F with probability 1−o(1) as n → ∞.

The general idea of the proof is the following: We first
show that for a particular f and a random Iu, the probability

that Iu is good with respect to f is e−Ω(α2n). Thus by
a union bound, Iu is good for at least one f ∈ F with

probability at most e−Ω(α2n) · 2m log u. So as long as n is
large enough, Iu will be bad with respect to all f ∈ F with
high probability.

We need the following bin-ball game, which models the
way how f works on a uniformly random input:

A bin-ball game.
In a (n, r, ~β) bin-ball game, we throw n balls into r bins

independently at random. The probability that a ball goes

to the j-th bin is βj , where ~β = (β0, . . . , βr−1) is a prefixed
distribution. Let Z denote the number of empty bins after
n balls are thrown in.

Lemma 2. In an (n, r, ~β) bin-ball game, Pr[Z ≤ r − n +
α
4
n] ≤ e−Ω(α2n), where α = n/r.

Proof. Note that if ~β is the uniform distribution, the
problem is known as the occupancy problem and the lemma
can be proved using properties of martingales [19]. The same

proof actually also holds for a nonuniform ~β, so we just
sketch it here:

Let Z0 be the expectation of Z before any ball is thrown
in, and let the random variable Zi be the expectation of Z
after the i-th ball is thrown in (where the randomness is from
the first i balls), for i = 1, . . . , n. Note that Z0 = E[Z] and
Zn = Z. It can be verified that the sequence Z0, Z1, . . . , Zn

is a martingale, and that |Zi+1 − Zi| ≤ 1 for all 0 ≤ i < n.
Therefore by Azuma’s inequality, we get

Pr[Z ≤ E[Z] − λn1/2] ≤ 2e−λ2/2.

Note that

E[Z] =

r−1
X

i=0

(1 − βi)
n ≥ r

 

r −Pr−1
i=0 βi

r

!n

= r

„

1 − 1

r

«n

≥ r − n +
α

2
n − α

2
− (n − 1)(n − 2)

6n
α2.

Setting λ = (α
4
n − α

2
− (n−1)(n−2)

6n
α2)n−1/2 = Ω(αn1/2), we

have E[Z] − λn1/2 ≥ r − n + α
4
n, hence the lemma.

Now we are ready to prove Lemma 1.

Proof. (of Lemma 1) Consider a particular f : [u] → [r]
and a random input Iu. The probability that a randomly
chosen key x from [u] has f(x) = i is exactly |f−1(i)|/u. This

is exactly an (n, r, ~β) bin-ball game where βi = |f−1(i)|/u.
Let Z be the number of empty bins at the end of such a
bin-ball game. Note that we have ηf (I) = n − (r − Z),
which, by Lemma 1, does not exceed α

4
n with probability

at most e−Ω(α2n). Since there are 2m log u different f ’s in
F , by a union bound, the probability that Iu is good for

at least one f ∈ F is at most e−Ω(α2n) · 2m log u. Thus if
n > cm log u/α2 for some sufficiently large c, this probability

is e−Ω(α2n) = o(1).

4.3 Lower bound for the boundary-oblivious
model

Now we prove the lower bound for the boundary-oblivious
model, where the layout is required to work for any shift-
ing s.

Theorem 3. For any fixed block size b, consider any hash
table that stores n uniformly random keys. There exists some
shifting s for which the hash table has an expected average
successful search cost at least 1 + α

5b
, for n sufficiently large

and α = ω(n−1/2).

Proof. Consider any input I ∈ I. Suppose that the hash
table uses fI ∈ F and gI on input I . Define γ(s, I) to be
the number of keys in I that need two I/Os to search when
the shifting is s, i.e., those keys x with fI(x) 6= gI(x) and
g′

I(x) = ib − s for some integer i. Note that the average
search cost on I is 1 + γ(s, I)/n, and the expected average
search cost on a random Iu is 1 + Eu[γ(s, Iu)]/n, which we
will show to be greater than 1 + α

5b
.

Consider any I ∈ IF . Since I is bad for all f ∈ F , it is
also bad for fI . Thus there are at least α

4
n keys x in I with

fI(x) 6= gI(x). For these keys, g′
I(x) is defined and there is

exactly one s such that g′
I(x) = ib− s for some integer i. So

we have
Pb−1

s=0 γ(s, I) ≥ α
4
n. By Lemma 1, Iu belongs to IF

with probability 1 − o(1), so

b−1
X

s=0

Eu[γ(s, Iu)] = Eu

"

b−1
X

s=0

γ(s, Iu)

#

≥ (1 − o(1))
α

4
n ≥ α

5
n.



By the pigeonhole principle, we must have one s such that
Eu[γ(s, Iu)] ≥ αn

5b
, and the lemma is proved.

4.4 Lower bound for the block-size-oblivious
model

Next we give the lower bound under the block-size-oblivious
model, in which the block boundaries are always multiples
of b, but the layout of the hash table is required to work
with any b. Since it is not possible to prove a lower bound
of the form 1+Ω(α/b) for all b (that would be a lower bound
in the cache-aware model), instead we show that 1 + o(α/b)
is not achievable, i.e., the following is false: “∀ǫ∃n0∃b0∀n >
n0∀b > b0, the cost is at most 1 + ǫα/b.” In particular, we
show that this statement is false for ǫ = 1

17
.

Theorem 4. Consider any hash table that stores n uni-
formly random keys. For any b0, there exists a block size
b ≥ b0 on which the expected average success search cost on
n keys is at least 1 + α

17b
, for any n sufficiently large and

α = ω((log log n)−1/2).

We follow the same framework as in the proof of The-
orem 3. Let ρ(b, I) be the number of keys x in I with
fI(x) 6= gI(x) and b|g′

I(x); these keys need two I/Os to
search when the block size is b in the block-size-oblivious
model. On a random Iu, the expected average search cost is
1 + Eu[ρ(b, Iu)]/n. From here suppose we were to continue
to follow the proof of Theorem 3 and consider the summa-
tion of Eu[ρ(b, Iu)] over all b ∈ {b0, b0 + 1, . . . , r}. Each
x contributes 1 to the summation when b = g′

I(x), so we
still have

Pr
b=b0

Eu[ρ(b, Iu)] = Ω(αn). This, unfortunately,

only guarantees the existence of a b such that Eu[ρ(b, Iu)]
is at least Ω(αn

r
) or Ω( αn

b log r
), where the latter uses the fact

that
Pr

b=b0
1/b = Θ(log r). Neither is strong enough to give

us the desired lower bound. Below we show how we prove
Theorem 4 by restricting b to the primes and a much more
careful analysis.

Lemma 3. Let Pk be the set of all primes that are smaller
than k, and let P = Pr − Pb0 be the set of all primes that

are in the range [b0, r). For α = ω((log log n)−1/2), we have

Eu

"

X

b∈P

ρ(b, Iu)

#

=
X

b∈P

Eu[ρ(b, Iu)] > (1−o(1))
α

16
n log log r,

as n → ∞.

Note that Lemma 3 implies that there must be a b ∈
P such that E[ρ(b, Iu)] ≥ α

17b
n, proving Theorem 4, since

otherwise we would have

X

b∈P

E[ρ(b, Iu)] ≤ α

17
n
X

b∈P

1

b
≤ α

17
n(log log r + O(1)).

Here we use the following approximation for the prime har-
monic series [22]:

X

b∈Pr

1

b
= log log r + O(1).

Thus
P

b∈P E[ρ(b, Iu)] ≤ α
17

n (log log r + O(1)), contradict-
ing Lemma 3.

Proof of Lemma 3.
In the rest of this subsection we prove Lemma 3. We need

the following fact from number theory. Let µ(s) denote the
number of distinct prime factors of s.

Lemma 4 ([22]). Let ξ(r) → ∞. Then

˛

˛

˛

n

l ≤ r : |µ(l) − log log r| > ξ(r)
p

log log r
o˛

˛

˛ = O

„

r

ξ2(r)

«

.

Proof. (of Lemma 3) By Lemma 1 we know that Iu be-
longs to IF with probability 1 − o(1), so it suffices to prove
that for any I ∈ IF ,

X

b∈P

ρ(b, I) > (1 − o(1))
α

16
n log log r.

Consider any I ∈ IF . Let G be the set of distinct g′
I(x)’s

for the keys x ∈ I . Let µP (s) be the number of distinct
prime factors of s that are in P . By definition µPb0

(s) is the
number of distinct prime factors of s that are in Pb0 , and it
follows that µ(s) = µPb0

(s) + µP (s). Note that ρ(b, I) is at
least the number of multiples of b in G, so we have

X

b∈P

ρ(b, I) ≥
X

l∈G

µP (l) =
X

l∈G

µ(l) −
X

l∈G

µPb0
(l). (2)

Next we show that
P

l∈G µ(l) is large. Firstly, observe
that

|G| >
α

8
n. (3)

This is because I is bad for fI , so at least α
4
n keys in I

have fI(x) 6= gI(x) and thus their g′
I(x)’s are defined. The

gI(x)’s for these keys must be distinct, and each g′
I(x) is

either gI(x) or gI(x) + 1, so there are at least α
8
n distinct

g′
I(x)’s for the keys in I .

Secondly, by choosing ξ(r) = (log log r)1/4

√
α

in Lemma 4 we
get:

˛

˛

˛

˛



l ≤ r : µ(l) ≤
„

1 − 1√
α(log log r)1/4

«

log log r

ff˛

˛

˛

˛

= O

„

αr√
log log r

«

.

Since we require α = ω( 1√
log log n

) which implies αr√
log log r

=
αn

α
√

log log r
= o(α

8
n) and 1√

α(log log r)1/4
= o(1), it holds that

for at least |G| − o(1)α
8
n distinct l ∈ G,

µ(l) > (1 − o(1)) log log r. (4)

By inequalities (3) and (4), we have
X

l∈G

µ(l) > (1 − o(1))
α

8
n log log r. (5)

It remains to upper bound
P

l∈G µPb0
(l). Note that for

any b ∈ Pb0 , the number of integers in [r] that are divisible
by b is at most r/b, so each b will be counted at most r/b
times in

P

l∈G µPb0
(l). Hence,

X

l∈G

µPb0
(l) ≤

X

b∈Pb0

r/b = r (log log b0 + O(1)) .

Therefore, as long as α ≥
q

32 log log b0
log log n

>
q

16 log log b0
log log n/α

, we

have

log log b0 <
α2

16
log log

n

α
,



so
X

l∈G

µPb0
(l) <

α

16
n log log r + O(r)

= (1 + o(1))
α

16
n log log r. (6)

Finally, combining (2), (6), and (5) completes the proof.

4.5 Lower bounds on updates
Our lower bounds in this paper are concerned with the

query cost only. How about updates? The blocked prob-
ing algorithm in Section 3 has an amortized update cost of
1 + O(1/b) I/Os, but can we improve it to o(1) I/Os, possi-
bly by buffering the updates in internal memory and write
them to external memory in batches? A recent result by
Wei et al. [24] has eliminated this possibility by proving a

1 − 1/2Ω(b) lower bound (in the cache-aware model) on the
amortized update cost if the successful query cost is to be
tq = 1 + 1/2Ω(b). Even more recently, Verbin and Zhang
proved [23] that if tq is o(logb log n n) for both successful and
unsuccessful queries, then the update cost has to be Ω(1).
These results show that for external hashing, buffering is
essentially useless and modifying the hash table on disk di-
rectly is the only way to perform updates.

5. OPEN PROBLEMS
An interesting open question is, although we have proved

a matching lower bound in the cache-oblivious model, we
do not yet know if tq = 1 + 1/2Ω(b) is optimal in the cache-
aware model (or in the cache-oblivious model with the two
more conditions). It is known that we can achieve tq = 1
(namely, perfect hashing) with an internal memory of size
m = Θ(n/b) [11, 16]. On the other hand, external linear

probing and blocked probing achieve tq = 1 + 1/2Ω(b) with
only m = Θ(b). There seems to be a tradeoff between m
and tq but this tradeoff is yet to be understood.
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