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ABSTRACT

The problem of efficiently evaluating a large collection of
complex Boolean expressions — beyond simple conjunctions
and Disjunctive/Conjunctive Normal Forms (DNF/CNF)
— occurs in many emerging online advertising applications
such as advertising exchanges and automatic targeting. The
simple solution of normalizing complex Boolean expressions
to DNF or CNF form, and then using existing methods for
evaluating such expressions is not always effective because
of the exponential blow-up in the size of expressions due to
normalization. We thus propose a novel method for eval-
uating complex expressions, which leverages existing tech-
niques for evaluating leaf-level conjunctions, and then uses a
bottom-up evaluation technique to only process the relevant
parts of the complex expressions that contain the matching
conjunctions. We develop two such bottom-up evaluation
techniques, one based on Dewey IDs and another based on
mapping Boolean expressions to one-dimensional intervals.
Our experimental evaluation based on data obtained from an
online advertising exchange shows that the proposed tech-
niques are efficient and scalable, both with respect to space
usage as well as evaluation time.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

General Terms

Algorithms,Performance
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1. INTRODUCTION

We consider the problem of efficiently evaluating a large
collection of arbitrarily complex Boolean expressions, given
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an assignment of attributes to values. The problem of ef-
ficiently evaluating Boolean expressions has many applica-
tions, including (1) publish/subscribe systems [8], where a
subscription can be modeled as a Boolean expressions and
an event can be modeled as a collection of attribute-value
pairs, and the goal is to rapidly return the subscriptions
that match an event, and (2) online display advertising sys-
tems [10, 13, 18], where an advertiser campaign can be mod-
eled as a Boolean expression targeting user visit features,
and a user visit can be modeled as a collection of attribute-
value pairs, and the goal is to rapidly return the set of ad-
vertiser campaigns that are eligible for the user visit. Cur-
rent solutions for evaluating Boolean expressions, however,
are primarily limited to simple Boolean expressions such as
conjunctions [1, 9, 14, 20, 21] and conjunctive/disjunctive
normal form expressions [5, 17]. While these restrictions
are reasonable for many of the above applications, some
emerging applications require support for arbitrarily com-
plex Boolean expressions, as discussed below.

1.1 Motivating Applications

Online Display Advertising Exchanges. One of the
emerging trends in online display advertising is the notion
of an advertising exchange, or simply, an ad exchange. An
ad exchange is essentially an electronic hub that connects
online publishers to advertisers, either directly or through
intermediaries. An ad exchange can thus be represented as a
directed graph, where the nodes are publishers, advertisers
and intermediaries, and an edge exists between a node X and
a node Y if X agrees to sell advertisement slots associated
with user visits to Y (note that X may either be a publisher
who generates advertisement slots through user visits, or
an intermediary who obtains user visits from publishers or
other intermediaries). In addition, each edge is typically
annotated with a Boolean expression that restricts the set
of user visits that can be sold through that edge, for various
business reasons such as protecting certain user visits for
sales through specific channels (edges). For instance, a node
X may only want to sell to Y male user visits to Sports
pages, and female user visits that are not to Finance pages;
this could be represented as a Boolean expression on the
X-Y edge: (Gender € {Male} A Category € {Sports}) V
(Gender € {Female} A Category ¢ {Finance}.
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stance, if an advertiser A wants to book a campaign with
P that targets users in age category 4 who are interested
in NFL, and age category 5 who are interested in NBA,



this campaign can also be represented as a Boolean expres-
sion: (Age € {4} A Interest € {NFL}) A (Age € {5} A
Interest € {NBA}). Note, however, that any user visit
from P that satisfies the above Boolean expression cannot
simply be served the ad from A; the user visit should also
satisfy all the Boolean expressions on the path from P to
A'. Consequently, the campaign booked with P is the con-
junction of the advertiser campaign Boolean expression, and
the Boolean expressions along the path from P to A. Since
advertiser and targeting constraints can themselves be com-
plicated DNF or other expressions, conjunctions of such ex-
pressions quickly leads to fairly complex Boolean expressions
which are booked to publishers.

When a user visits a publisher Web page, the user visit
can be viewed as an attribute-value assignment such as the
one below:

{Gender = Male, Interest = NF L, Category = Sports}
and the goal is to rapidly find all the ad campaigns booked
to P that can be satisfied by the user visit, so that the
best ads can then be selected to be shown to the user. In
other words, the exchange has to rapidly evaluate complex
Boolean expressions to determine which one satisfy the given
assignment of attributes to values.

Automatic user targeting. A related application that
generates complex Boolean expressions is automatic user
targeting for display advertising. Unlike manual user tar-
geting where advertisers specify the Boolean expression of
interest (as in the examples above), in automatic user tar-
geting, the system automatically generates targeting expres-
sions that try to maximize advertiser objectives such as
clicks or conversions. For instance, an advertiser who is
interested in obtaining clicks on ads may specify a fairly
broad targeting constraint, and allow the system to explore
the high dimensional targeting space to generate boolean
targeting expressions that optimize desired measurement ob-
jectives. Clearly these can get quite complex very quickly
because they are automatically generated. Given many such
advertiser campaigns, the advertising system again needs
to rapidly evaluate these Boolean expressions given an at-
tribute assignment (user visit).

1.2 Contributions

Given the above motivating applications, we now turn to
the issue of efficiently evaluating arbitrarily complex Boolean
expressions. A simple evaluation method, of course, is to se-
quentially loop over all the Boolean expressions, and do a
recursive top-down evaluation of the expression tree given
the attribute value assignment. This method has the obvi-
ous downside of having to evaluate every single expression,
even though the assignment may only match a small fraction
of them. Another simple method is convert the Boolean ex-
pressions to DNF or CNF form, and leverage state-of-the-art
techniques (e.g., [5, 17]) to efficiently evaluate these expres-
sions. Again, this method has the downside of an exponen-
tial blow-up in the size the expressions due to normaliza-
tion; this issue is exacerbated by the fact that most online
ad systems are entirely memory-resident (for latency rea-
sons), which leads to excessive memory requirements. Given
the limitations of the obvious approaches, the question that

!There might be multiple paths from P to A and the best
path is usually chosen based on revenue and other con-
straints that are not germane to the current discussion.

arises is the following: is there a way to evaluate Boolean ex-
pressions that does not require evaluating every expression,
and that does not result in an exponential space blow-up?

The main technical contribution of this paper is a novel
evaluation method that addresses the above issues. The
method consists of two key steps. In the first step, existing
conjunction matching techniques [9, 17, 21] are used to find
the leaf-level conjunctions of the (un-normalized) Boolean
expressions that match the given assignment. In addition,
each conjunction is annotated with a compact description
of where it occurs in the Boolean expressions. In the second
step, the matching conjunctions along with the information
on where they occur is used to perform a bottom-up evalua-
tion of the Boolean expressions. The bottom-up evaluation
is performed in a single pass over the matching conjunctions,
and only selectively evaluates the expressions — and parts
of these expressions — that have at least one matching con-
junction. The above two-step approach thus leverages exist-
ing conjunction matching techniques without blowing up the
size of the expressions, and also avoids explicitly evaluating
all expressions by using selective bottom-up evaluation of
only those (parts of) expressions that can possibly be satis-
fied.

As mentioned above, the key idea that enables the bottom-
up evaluation of Boolean expressions is the annotation that
identifies the position of each conjunction within the Boolean
expression. There are two annotation variants that we con-
sider, both of which work on the Boolean tree representation
of expressions. In the first variant, each conjunction is iden-
tified based on a Dewey labeling of the Boolean expression
tree (similar to the Dewey labeling of an XML tree [16]).
Given this labeling, the bottom-up evaluator uses a stack-
based algorithm to efficiently find the ids of the contracts
that evaluate to true. In the second variant, each Boolean
expression tree is mapped to a one-dimensional space, and
the bottom-up evaluator uses a simple interval-matching
technique to find the ids of the matching contracts. While
both approaches are efficient, one of the advantages of the
one-dimensional mapping is that the conjunction annota-
tions are fixed-length, as compared to variable-length Dewey
labels.

We have implemented the proposed methods and evalu-
ated them using data obtained from an online display ad-
vertising exchange. Our performance results show that the
proposed methods significantly outperform existing meth-
ods, both in terms of latency and memory requirements.

1.3 Roadmap

The rest of the paper is organized as follows. In Section
2, we describe the problem and the system architecture. In
Section 3, we present the evaluation method based on Dewey
labeling, and in Section 4, we present the evaluation method
based on the one-dimensional interval mapping. In Section
5, we present our experimental results and, in Section 6, we
discuss related work. Finally, in Section 7, we present our
conclusions.

2. PROBLEM DESCRIPTION

Our problem is to efficiently find which Boolean expres-
sions from a large set are satisfied by an input assignment.
An assignment is a set of attribute name and value pairs
{A; = v1, A3 = va,...}. For example, a woman in Califor-
nia may have the assignment {Gender = F, State = C'A}.



An assignment does not necessarily specify all the possi-
ble attributes. Allowing unspecified attributes is important
to support high-dimensional data where the number of at-
tributes may be in the order of hundreds. Consequently,
our model does not restrict assignments to use a fixed set of
possible attributes known in advance.

A Boolean expression (BE) is a tree in which interme-
diate nodes are of two types: AND nodes and OR nodes.
Leaf nodes in the tree are simple conjunctions of basic €
and ¢ predicates. The predicate State € {CA,NY}, for
example, means that the state can either be California or
New York while the predicate State ¢ {C'A, NY} means
the state cannot be either of the two states. Notice that
the € and ¢ primitives subsume simple = and # predicates.
Without loss of generality, we restrict our BE trees to have
alternating AND-OR nodes in every path from the root to
the leafs. Any arbitrarily complex BE can be represented
by these alternating AND-OR trees with conjunction leafs,
including DNFs (i.e., disjunctive normal form), CNFs (i.e.,
conjunctive normal form), ANDs of DNFs, ORs of CNFs,

and so on.

2.1 System Architecture

The overall system architecture is presented in Figure 1.
In an offline process, before query evaluation starts, BEs are
annotated and indexed. The Conjunction Annotator mod-
ule is responsible for annotating each conjunction with a
compact description of where it occurs in the BE. These an-
notations are stored in a Conjunction Annotations database.
The conjunctions are then indexed by the Conjunction In-
dex Builder. Our approach works with any existing scheme
for indexing and evaluating conjunctions, e.g. [1, 9, 14,
17]. During runtime, given an assignment, the index is used
to retrieve the matching conjunctions. Given these set of
matching conjunctions, the Expression Evaluator uses the
Conjunction Annotations database to retrieve the annota-
tions for the conjunctions that need to be evaluated. The job
of the Expression Evaluator is to efficiently verify if the en-
tire BE tree can be satisfied from the conjunctions retrieved
by the index. We highlighted components Expression Eval-
uator and Expression Annotator since these are the main
contributions of the paper. Sections 3 and 4 describe two
different annotation schemes and evaluation strategies for
these components.

Scalability, latency and updates. The main focus points
of this paper are the Expression Evaluator and Conjunction
Annotator components and we can reuse any conjunction
indexing scheme. Each of these different schemes will han-
dle scalability, latency and updates differently. Our driving
applications are online advertising systems, which have to
process billions of requests a day. However, the update vol-
ume is typically many orders of magnitude less than the
read volume. Fortunately, there are several conjunction in-
dexing schemes optimized for this scenario, e.g., [17]. For
instance, scalability can be solved by index replication and
partitioning, latency can be solved by keeping the indexes in
main memory, while updates can handled by keeping small
“delta” indexes in addition to the main indexes [17].

3. DEWEY ID MATCHING

Our first algorithm uses the notion of Dewey IDs to per-
form boolean expression matching. We first describe how
Dewey IDs are generated, and then how they are used in

Matching Boolean Expression Assignment
f"'bnline l
1 Expression Index
Evaluator Matching Evaluator
Conjunctions
Conjunction onjunctio
Annotations Index
x"bfﬂine
Boolean Conjunction Conjunction
Annotator Index Builder

Figure 1: Online and offline architectural view of the sys-
tem. We focus on the highlighted components, Expression
Evaluator and Conjunction Annotator.

evaluating BEs. The main challenge comes from the fact
that we do not store the Boolean Expression Tree for evalu-
ation. Rather, we reconstruct the relevant parts of the tree
only from the information encoded in the matching Dewey
IDs and decide whether the overall tree evaluates to true.

3.1 Conjunction Annotator

We first describe the information stored with each con-
junction. As we mentioned earlier, any BE can be expressed
as an alternating AND-OR Boolean tree. We label each leaf
node of the tree with its corresponding Dewey ID as follows:

1. Without loss of generality let the root of the tree be
an AND node. We can always add an artificial AND
at the top if needed.

2. Let edges to the children of a node be sequentially
numbered starting from 1, with the last child marked
with a special symbol *. The root-to-node numbering
(based on those edge numbers) is referred to as the
Dewey ID of a node.

3. The length of a Dewey ID is the number of edges from
the root to the node. Observe that a node with an odd
length Dewey ID is beneath an AND, and a node with
an even length Dewey ID is beneath an OR.

For example, consider the BE tree in Figure 2. The label
of D is 1x.3.1 — to reach D from the root, one takes the
first branch (which happens to be the last branch as well,
as denoted by #), then the third branch, and then the first
branch again. The Dewey IDs of other leaves are given in
the Figure.

3.2 Expression Evaluator

We first give intuition on the functioning of the algorithm.
We then describe it in more detail.

The algorithm acts recursively on the Boolean expression
tree. Note that this tree is not actually available during
online processing. We only have the list of matching dewey
IDs. However, these dewey IDs implicitly encode this tree
(or more precisely, the portion of the tree where the dewey
IDs lie). As we process the IDs, we create this “virtual” tree
on the fly.
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Figure 2: An example of a BE tree with Dewey ID labels.
The special symbol * indicates the last child of an AND
node.

Algorithm 1 The DEWEY EVALUATION ALGORITHM

Require: deweyList {a list of dewey IDs in sorted order}

1: Initialize curr <« deweyList.getFirst() {curr and
deweyList are global variables}

2: return EVALUATEAND(Empty Deweyld)

Throughout the running of the algorithm, we alternate
calls to EVALUATEAND and EVALUATEOR. Each call takes
as input a dewey label, which we call dewLabel. We think of
each call as corresponding to exploring a node in the Boolean
expression tree, and this label corresponds precisely to the
dewey ID of that node. A call to EVALUATEAND is like
exploring an AND node of the tree, while EVALUATEOR
corresponds to exploring an OR node.

We iterate through the list of dewey IDs, in sorted order.
The value of curr is the dewey ID we are currently con-
sidering. Note the curr corresponds to a leaf node in the
Boolean expression tree.

At this point, it is helpful to imagine a depth-first traversal
of the virtual nodes of the Boolean expression tree. If we
are exploring a node in the virtual tree that is an ancestor of
the leaf node corresponding to curr(which is equivalent to
the dewey label in the current call being a prefix of curr),
then we move down toward that leaf.

When we reach a leaf, we evaluate it true, since the index
only returns those conjunctions which evaluate to true. We
then pop up a level, partially evaluating that node. The
curr dewey ID is updated to the next dewey ID in the list.
We continuing popping up levels (evaluating nodes as we
go), until we reach an ancestor of the newly updated curr.

Continuing in this manner allows us to evaluate the entire
expression.

We now walk through the algorithm. Pseudo-code is
shown in Algorithms 1,2, and, 3. We use several helper
functions. First, CHILD, which takes as input a dewey pre-
fix and a dewey ID. (The input prefix must be a prefix of
the input dewey ID.) It returns the dewey ID of entry where
they first differ. For example, CHILD(0.1.2, 0.1.2.3.4) returns
0.1.2.3. Note that CHILD returns the Dewey label for one of
the children of the dewey prefix. The other two functions,
work on the dewey IDs, LAST returns the value of the last

Algorithm 2 The EVALUATEOR Algorithm
Require: dewLabel {current position in the tree}
: if dewLabel = curr then { We are at a leaf}

1

2 return true
3: end if
4
5

: Initialize result « false

: while dewLabel is a prefix for curr do {curr is a de-
scendant of this node}

6: Let child « CHILD(dewLabel, curr)

7:  result < result V EVALUATEAND(child)

8:  curr « deweyList.next()

9: end while

0: curr « deweyList.prev()

1: return result

Algorithm 3 The EVALUATEAND Algorithm

Require: dewLabel {current position in the tree}

1: if dewLabel = curr then { We are at a leaf}

2:  return true

3: end if

4: Initialize result « true, lastExplored « 0, and
lastChild«false

5: while dewLabel is a prefix for curr do {curr is a de-
scendant of this node}

6: Let child <« CHILD(dewLabel, curr)

7:  lastExplored «— lastExplored + 1

8: if LAsT(child) # lastExplored then

9: result « false

10:  end if

11:  lastChild«—MARKED(child)

12:  result « result A EVALUATEOR(child)

13:  curr « deweyList.next()

14: end while

15: curr « deweyList.prev()

16: return result & lastChild

id. For example LAST(0.1.2) returns 2. Finally, MARKED
returns true if the last node of the Dewey id is marked with
a * and false otherwise.

The algorithm is initialized by setting curr to the first
element in the sorted deweylD list. It then calls EVALUATE-
AND, with input dewey label of “Empty DeweyID.” We
think of this first call as moving to the root node of the
Boolean expression tree.

Now, within the EVALUATEAND call, our base case
(Steps 1 to 3) corresponds to being at a virtual leaf node, in
which case we return true.

The while loop (Step 5) iterates through all ancestors in
the dewey list of the node currently being explored. It does
this by first exploring the child under which the curr dewey
ID lies. Thus, we recursively call EVALUATEOR with its
label corresponding to the child of the currently explored
node. After this evaluation takes place, we AND its result
with our result so far. Note that curr may have been up-
dated during the EVALUATEOR call. We continue to iterate
through each of the children.

In the call to EVALUATEAND, we need every child to
evaluate to true. We ensure that every child is explored
my maintaining lastExplored, and checking that we never
jump over a child (Steps 7 to 10). We also check that we
encounter a starred dewey ID along the way.



3.3 Example

We walk through an example of the Evaluation algorithm.
Let the set of Dewy IDs presented to the expression evalu-
ator be:

1x.1.1, 1%.3.1, 1%.3.2, 1%.3.3%

Is the BE satisfied?

The Dewey IDs represent nodes A, D, E and F' in Fig-
ure 2, so it is easy to see that the expression is satisfied.
However, remember that the evaluation algorithm does not
know what the tree for the BE was, it only sees the matching
Dewey IDs.

The Dewey evaluation algorithm first looks at id 1x.1.1,
and recursively calls EVALUATEAND and EVALUATEOR un-
til it reaches the leaf (A). It then pops up a level to the AND
at position 1x.1 and increments curr. Since the next id,
1%.3.1 does not have 1x.1 as a prefix, the evaluation stops,
and the AND is evaluated to false since the lastChild was
never set to true.

The algorithm then proceeds to evaluate the AND at posi-
tion 1x.3. It successfully evaluates all of the leaves, at which
point the result is set to true and so is lastChild, the lat-
ter being set to true during the evaluation of 1%.3.3%, since
the id ends in the special symbol *. Therefore the OR at
position 1x is set to true as well. Finally, the original call to
EVALUATEAND returns with true.

3.4 Correctness

THEOREM 1. The DEWEY EVALUATION algorithm is cor-
rect.

ProoF. The proof of correctness follows quickly from the
recursive nature of the algorithm. We sketch the proof that
EVALUATEAND and EVALUATEOR both evaluate correctly,
and further, the value of curr after the call is set to the last
dewey ID for which the dewey label of the call is a prefix.

Clearly, the algorithm produces the correct result when
the Boolean expression tree is a single node. By induction,
assume that the algorithm works on a tree of depth d —
1, and consider a tree of depth d. There are two cases,
whether the top level node is an AND or an OR. Suppose
it is an AND (the OR case is even simpler). In the call to
EVALUATEAND, we call EVALUATEOR iteratively for each
child of the explored node. By induction, each of these calls
returns the correct result. The method returns false if one
of these subroutines returned false (since all of the results
are ANDed together), one of the children is skipped (the
check of lastExplored), or if the final child was not seen
(the check of lastChild). Otherwise we can conclude that
all of the children of the AND returned true, and thus this
node evaluates to true as well. []

Finally, we note the running time:

THEOREM 2. Let ¢ be the set of leaves returned, and for
a leaf n € £ denote by len(n) the length of the Dewey ID of
n. Then the DEWEY EVALUATION algorithm runs in time
O ,celen(n)).

ProOF. The running time follows from the fact that we
evaluate each of the returned Dewey IDs one level at a time,
so the time to process an id n is proportional to len(n). [

We note that while the pseudocode presented is not opti-
mized (one can, for example exit the EVALUATEAND loop
as soon as the result is set to false), this does not change
the worst case running time of the algorithm.

4. INTERVAL IDS

We describe an alternative algorithm for evaluating BE
trees. At a high level the algorithm works by mapping each
leaf node of the BE tree onto a 1-dimensional interval on
the real line. A contract is satisfied if there is a subset of
intervals that cover the real line without overlap. At first
glance it sounds like we have made our problem more diffi-
cult, however, the matching algorithm is simpler and more
intuitive than the Dewey ID evaluation algorithm. More-
over, for each conjunction we need to store only two fixed
length values, namely the beginning and the end of the cor-
responding interval. Hence, the amount of the stored infor-
mation is constant.

4.1 Intuition

Consider an arbitrary BE tree, we will map the leaf nodes
of the tree to intervals on the real line. We denote an in-
terval [s,t) as (s,t). (In what follows s and ¢ will always be
integers.) Fix M to be the maximum number of leaves in a
BE tree. We will represent each contract by a line segment
(1, M). Each leaf of the tree will be mapped to a subinterval
of (1, M). The key to the algorithm lies in the mapping of
conjunctions to intervals. We aim to find a mapping so that
a contract is satisfied if and only if there exists a subset of
satisfied leaves covering the entire segment (1, M) without
overlap.

To develop the intuition, we first describe two simple
cases. Consider a hypothetical Boolean expression, A V B
shown in Figure 3. The contract is satisfied if either of
the two leaves is satisfied. Therefore, the interval mapping
scheme assigns the same interval (1, M) to both A and B.

INVARIANT 1. Consider a BE tree, and a node n corre-
sponding to an OR. Then every child of n has the same in-
terval as n.

OR 12345678910
A Al12345678910
B B{12345678910

Figure 3: The children of an OR node inherit the same
interval as the parent.

The situation is the opposite for an AND node. Consider
a hypothetical Boolean expression, A A B shown in Figure
4. The contract is satisfied only if both of the leaves are
satisfied. The interval mapping scheme splits the interval
(1, M) of the parent node into two non-overlapping intervals,
(1,z) and (x, M) for the children. We describe the exact
choice for x later. More generally, this leads to a second
invariant:

INVARIANT 2. Consider a BE tree, and a node n corre-
sponding to an AND. Then the interval corresponding to n
is partitioned among its children.
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Figure 4: The children of an AND node partition the inter-
val.

It is straightforward to apply these two invariants re-
cursively. A more complicated example, corresponding to
(AANB)VCV (DAEAF) is shown in Figure 5. Notice that
there are three ways the tree can be satisfied. Either both A
and B are satisfied, C' is satisfied, or all three of D, E and F'
are satisfied. This example also demonstrates why we must
find a set of non-overlapping intervals that fully cover (1, 10).
If B and D are returned, then (1,10) C (1,4) U (2, 10), that
is, together B and D cover the whole interval. However,
since B and D overlap, this is not an eligible assignment.

2345678910
12345678910

|AND| |AND|

[c]
|
[D]

A

E | EIC

[ B ]

Figure 5: A more complex example of intervals.

Another potential pitfall in assigning intervals is shown in
Figure 6. Here because B and E share the same starting
point, an assignment of B and D would evaluate to true:
together B and D cover the whole interval (1,10) without
overlap. Thus we have the third invariant :

2345678910
12345678910

Figure 6: An invalid labeling. If B and D are true, the full
interval is covered without overlap.

INVARIANT 3. Given a boolean expression tree, and let C'
be the set of children of AND nodes. Let F' be the set of first

(left-most) children of AND nodes. Then no two nodes in
C \ F have the same starting point for their intervals.

The last invariant precisely precludes the case in Figure
6. Since both B and E are second children of an AND node,
their corresponding intervals must start at different posi-
tions. We will refer to the assignment of intervals to the
leaves of a tree as the labeling of the tree.

DEFINITION 1. We call a labeling valid if Invariants 1, 2
and 8 are maintained.

We describe an algorithm for generating a valid labeling
in the next section, and in Section 4.3 show how we can
quickly evaluate whether the full BE is true, based only on
the intervals corresponding to the satisfied conjunctions.

4.2 Conjunction Annotation

In this section we describe an algorithm for providing a
valid labeling of the nodes of the tree. Let the size of a node
be the total number of children in its subtree (with size of a
leaf node set to 1). Further, for each node n, let n.leftLeaves
denote the total number of leaves appearing before n in a
pre-order traversal of the tree.

The algorithm is recursive, it starts by labeling the root
node with interval (1, M) where M is the maximum number
of leaves supported, and then calling the subroutine pre-
sented in Algorithm 4.

Algorithm 4 The LABEL algorithm
Require: Node n.

1: if n is a leaf then

2:  return

3: else if n is an OR node then
4:  for all children c of n do
5: c.begin < n.begin
6: c.end + n.end
7 LABEL(c)
8: end for
9: else if n is an AND node then
10:  for first child ¢ do
11: c.begin < n.begin
12: c.end + n.leftLeaves + c.size
13: LABEL(c)
14: curr « c.end+1
15:  end for
16:  for all intermediate children c of n do
17: c.begin « curr;
18: c.end « curr + c.size -1;
19: LABEL(c)
20: curr <« c.end+1
21: end for
22:  for last child ¢ do
23: c.begin « curr;
24: c.end « n.end;
25: LABEL(c)
26: end for
27: end if

For example, consider the Tree in Figure 5 with M = 10.
When labeling node A, we have n.leftLeaves = 0, since there
are no prior leaf nodes in an in-order traversal of the tree.
Therefore the interval for A is (1,1). B is relegated the rest
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-4 |1]|1]olo|t]o]o]olo|o] o0
E=(,5 |1]1]|0lo|1|1]0o]olo]o]| 0
F=(6,10 |1|1]0o]o|1|1]o|o]o|o]1

Table 1: The matched array during the evaluation of the
algorithm on A, D, E,F. For instance, row D shows the
array matched after adding the interval for D.

of the interval, (2,10). The interval for C is easy, since it
is a child of an OR node, it must be (1,10). Now consider
the label for D. For D’s parent node, n.leftLeaves is set to
three, therefore the endpoint of the interval for D is 143 =
4. The intervals for E and F follow. Note that the labeling
of the tree can be constructed in a single in-order traversal
of the BE tree.

4.3 Expression Evaluation

The input to the evaluation algorithm is a set of intervals,
one for each matching conjunction. The algorithm attempts
to find a non-overlapping set of intervals that cover the range
(1,M). To do so, the algorithm will maintain a Boolean
array matched, where matched[i] is true if there is a non-
overlapping set of intervals that ends in i. We give the full
matching algorithm below:

Algorithm 5 March Algorithm.

Require: I: set of intervals (begin, end) sorted by begin
1: matched < Boolean Array of length M + 1
2: Initialize matched[i] to false for all ¢
3: matched[0] = true
4: for all intervals (begin,end) in I do
5:  if matched[begin-1] then
6.
7
8

matched[end] < true
end if

: end for
9: if matched[M] then
10: return true
11: else
12:  return false
13: end if

Consider again the example in Figure 5, and suppose that
A, D, E, F were returned as matching conjunctions. The
algorithm maintains the state of the matched array, with the
individual steps presented in Table 1. Note that processing
each interval requires only two probes into the boolean array.

4.4 Correctness

In this section we prove that both the labeling algorithm
and the label evaluation algorithms are correct.

THEOREM 3. The LABEL Algorithm produces a valid la-
beling.

PROOF. It is easy to see that Invariants 1 and 2 are triv-
ially satisfied, that is every child of an OR node has the
same interval as the parent, and the children of an AND
node partition the interval among themselves. It remains to
show invariant 3. Let C be the set of children of AND nodes,
and F' be the set of first, or leftmost children. We show that

the interval corresponding to every node n € C'\ F starts at
n.leftLeaves + 1. Recall that n.leftLeaves is the number of
leaves occurring before n in a pre-order traversal of the tree.
If this holds than no two nodes in C'\ F can have the same
starting points for intervals.

We prove the claim by induction on the depth of the
node. For the base case, consider the root node n, and let
c1,C2,...,Ck beits k children. Observe that c;.leftLeaves =
Etll c;.size, and the base case follows. Suppose that the
clalm holds for nodes at depth d. Let n be a node at depth
d+1 and cq,ca,.. ck be its k£ children. Since c;.leftLeaves
= n.leftLeaves + Z _! c;.size, the theorem follows. [J

We now show that the matching algorithm is correct. We
begin with a theorem about valid labelings.

THEOREM 4. Consider a BE tree with a wvalid labeling.
Let I be the set of intervals corresponding to leaf nodes in
N that evaluate to true. Then the BE is satisfied iff there
exists a subset I' C I such that U;cp (begin,, end;) = (1, M)
and any two intervals i,i’ € I' are disjoint: (begin;, end;) N
(beging,end; ) = 0.

To prove the theorem, we first show that given a satisfying
assignment to the BE we can find a set of intervals I’ as
described above. We then prove the converse, that is, given
a set of intervals satisfying the condition above, we show
that the BE must be satisfied.

Proor. To prove the forward direction, consider the min-
imal set of leaves of the tree that lead to a satisfied as-
signment (a set is minimal if removing any element would
lead to the BE evaluating as false). Then the set of corre-
sponding intervals covers the whole segment (1, M) and is
non-overlapping. The formal proof is by induction on the
height of the tree: since an AND partitions the interval, to
be satisfied all of its children must be satisfied, therefore its
interval would be fully covered by its children. On the other
hand, since all of the children of an OR inherit the same
interval, only one of the children needs to be satisfied (oth-
erwise the initial set of trees is not minimal). Therefore the
intervals corresponding to the minimal set of leaves satisfy
the conditions of the theorem.

To prove the reverse direction, the main obstacle is to
show that an interval corresponding to an AND node can
only be fully covered without overlap by the nodes corre-
sponding to its children. This is guaranteed by Invariant
3. Since the starting points of the intervals of all intermedi-
ate AND children are disjoint, and AND node can only be
satisfied by its children because no subset of other children
would result in a continuous and non-overlapping interval.
The formal proof again proceeds by induction on the height
of the tree rotted at the AND node. [

Finally, we can prove the correctness of the MATCH algo-
rithm. Let £ be the number of leaves of the tree returned by
the indexing system.

THEOREM 5. The MATCH algorithm is correct and runs
in time O({).

Proor. To prove correctness, we show that the MATCH-
ING algorithm finds a non-overlapping subset of intervals
covering the whole interval if one exists. The invariant main-
tained by the algorithm is that matched][i] is set to true only
if there exists a non-overlapping set of intervals that cover



the interval (1,7). When processing an individual interval
1 = (begin, end), we check to see if begin continues a previ-
ous interval, in which case matched[end] is set to true. Since
the intervals are sorted by the begin position when process-
ing, all intervals that end before begin will have been pro-
cessed before (since they must begin even earlier).

To show the running time, observe that each evaluation
of an interval results in at most two lookups into a boolean
array. [

4.5 Discussion

The Interval evaluation algorithm has a number of appeal-
ing properties that improve upon the Dewey ID algorithm.

e It can handle trees of very large depth with a fixed size
Interval ID. In contrast, the Dewey ID grows linearly
with the depth of the tree. If the total number of
leaves is n, the space taken by storing the interval is
O(log n), whereas the space required for some Dewey
ids may be as large is Q(n).

e Although we described the algorithm in the context of
AND-OR trees, it can naturally handle arbitrary BE
trees without any change to the code.

e Finally, the Interval algorithm is faster, requiring only
two memory look up calls for each interval, instead of
being linear in the size of the Dewey IDs.

5. EXPERIMENTS

In this section, we evaluate our Dewey and Interval match-
ing algorithms for BE evaluation on synthetic datasets from
an online advertising application. We compare their perfor-
mance to other efficient algorithms for BE evaluation and
study how the algorithms behave for different scenarios, such
as BE tree depth and selectivity. All algorithms were imple-
mented in C++4, and our experiments were run on a 2.5GHz
Intel(R) Xeon(R) processor with 16GB of RAM.

5.1 Dataset

In order to test the efficiency of the Dewey evaluation,
Interval evaluation and other algorithms, we used a syn-
thetic dataset generated from statistics of real advertising
contracts. To gather the statistics we looked at individ-
ual conjunctions appearing in each contract. For example,
a contract looking for Males from California would specify
Gender € {Male} A State € {CA}. We first collected statis-
tics over the size of these conjunctions. We denote by ¢; the
probability of seeing a conjunction on ¢ elements. We then
recorded how often each attribute ¢ (e.g. gender, state,
etc) is present in the contracts, which we denote by aj;.
For example, if half the contracts targeted on gender then
Ggender = /2. For each attribute i, we collected statistics
on the targeting values for this attribute. We denote the
distribution by pattribute (target). For example, if, from the
set of contracts targeting on gender, 2/3 targeted males, and
1/3 targeted females, then we say pgender(male) = 2/3 and
Dgender (female) = 1/3.

These statistics served as input to the BE generator. We
first generated the logical BE tree, namely an alternating
AND-OR tree. Without loss of generality the root node was
selected to be an AND. The tree was then generated recur-
sively. For each node, we first decide how many children the
node will have. If it has 0, then we stop and mark the node

as a conjunction; otherwise we generate the children, mark
them as OR nodes (or in the case of processing an OR node,
we mark the children as AND nodes), and recurse.

The input to the tree generator specified the minimum
and maximum depths of the desired tree, and the probability
distribution on the number of children. If the node being
generated is below the minimum depth, then the number of
children is set to be non-zero. If the node is at the maximum
depth, then the number of children is set to 0. Otherwise, we
select from the distribution. In our experiments, the number
of children was 2 with probability 0.7, 3 with probability 0.2,
and 1 or 4 with probability 0.05. This resulted in a wide
distribution on the trees.

Given the tree structure, we then generated a conjunction
for each leaf node of the tree. To generate a conjunction we
randomly select its size, selecting size s with probability cs.
Next for each of the s slots, we randomly select an attribute
with probability a;. The attribute selection is done without
replacement. Finally, for each attribute i we select a target
with probability p;(-).

For the evaluation test, the queries came from a ran-
dom subset of 2,000 real display advertising adlogs. Each
query represents the information of a user visiting a web-
page, and so specifies the feature values that are known
about the user. For example, a query may look like
gender = M A State = NY.

5.2 Algorithms

We have implemented the Dewey and Interval evaluation
algorithms using the Conjunction Evaluation algorithm de-
scribed [17] as the Index Evaluator component (Figure 1).
We have chosen [17] since it was shown to outperform other
state-of-the-art algorithms, such as Le Subscribe [9]. We
compare the Dewey and Interval algorithms with the algo-
rithms below.

e DNF expansion: We used the DNF evaluation algo-
rithm described in [17] to evaluate BE trees by convert-
ing each BE tree into a single DNF. As shown in the
experimental results, this method has the downside of
an exponential blow-up in the size the expressions due
to normalization.

e Scan: An exhaustive algorithm that scans and eval-
uates all BEs one by one for each assignment. While
there are optimized techniques for evaluating one BE
against assignments [15], since we have to evaluate
multiple BEs, we use a straightforward implementa-
tion that iterates through (pre-parsed) operator trees
corresponding to BEs, and evaluates each tree accord-
ing to the semantics of Boolean operators.

e Scan with conjunction match: This algorithm im-
proves over the basic Scan by just evaluating the BEs
that have at least one conjunction returned by the in-
dex.

5.3 BE depth

In this section we study the impact of the BE tree depth
in memory size and index evaluation. First, in Table 2, we
show the memory consumption for the different algorithms
when varying the depth. Both the Dewey and Interval al-
gorithms use the same amount of memory for the index and
the annotations database. This is due to the fact that we



| Depth [ Dewey and Interval [ DNF [ Scan with conj [ Scan ‘

1 9.5 55 373 364
2 18 501 854 836
3 35 NA NA NA
4 70 NA NA NA

Table 2: Memory usage by all algorithms for different BE
depths (in MB).

used a 32 bit field to hold a Dewey ID, and a 16 bit field
for each of the begin, end markers of the interval. As shown
in Table 2 the size of these data structures grow linear with
depth for Dewey and Interval algorithms. We could not
evaluate the Scan and DNF algorithms for depths greater
than 2 since their memory consumption was too extreme for
these cases. The reason for the large memory consumption
in the case of the Scan algorithms is that they need to main-
tain the Boolean tree in memory for evaluation. Scan with
conjunction matching has to maintain the index in addition
to the Boolean tree for each expression being evaluated. Ta-
ble 2 indicates that the memory requirement for the DNF
expansion algorithm grows exponentially with depth (due
to BE normalization). To further investigate this point, in
Figure 7 we plot how the average size of a DNF expansion
of a BE grows with depth. (The results are averages of 20
randomly generated BEs of each size.)

12

10

=&—DNF size

1 2 3

Figure 7: Average size of a single DNF expanded BE for
depths 1, 2 and 3 (in KB).

In Figure 8 we show the running time for all algorithms for
depths 1 and 2. These numbers are average latency numbers
over 2,000 queries for each depth. For each depth d, queries
were executed against an index with BE depth at most d.
The selectivity for the different depths we tested is shown in
Table 3. The index and the BE trees were loaded in memory
prior to the evaluation (this is true for all the experiments
that report query latency).

It is clear from Figure 8 that both Scan and Scan with con-
junction matching behave orders of magnitude worse than
the other algorithms. Figure 9 shows the same numbers
omitting the results for the Scan algorithms. This figure
shows that the running time for evaluating DNF-expanded
trees also does not scale even for depth 2. Therefore, for the
remainder of the experiments we focus on the Dewey and
Interval algorithms. In the case the indexed expressions are
small DNF's, as shown for depth 1 in the figure, the perfor-
mance for DNF algorithm can be as good as the Dewey and
Interval algorithms.

35000

30000

=&—|nterval
25000
=—Dewey
20000
DNF
15000
10000 =>&=Scan with conjunction
match
5000 Scan
0 1 L}
1 2

Figure 8: Running time for all algorithms for BE depths 1
and 2 (in ms).

| Depth [ Selectivity ‘

1 22.85%
2 57.97%
3 10.97%
4 49.23%

Table 3: Average selectivity (over 2,000 queries) for indexes
of different BE depths.

Figure 10 shows the total running time for Dewey and In-
terval for depths between 1 and 4. It also shows the time
spent in index evaluation and sorting. The sorting time is
the time spent to sort the conjunctions returned by the in-
dex either by Dewey or by the begin value of the Interval ID
(both algorithms require this sorting step). In Figure 11 we
present results only for the Expression Evaluation compo-
nent, i.e., only the overhead incurred by the two algorithms
over the index evaluation and sorting steps. In this figure it
is more clear that Interval scales better with depth.

5.4 Number of BEs

In this section we study the impact of the size of the index.
Table 4 shows the the memory consumption incurred by
both Dewey and Interval for different number of indexed
BEs. As in the case of depth, the index and annotations
database data structures grow linearly with index size for
Dewey and Interval.

Figure 12 shows the total running time for both Dewey
and Interval for different index sizes. It also shows the
amount of time spent in index evaluation and sorting. For
each index size we kept the selectivity as 50% and we lim-
ited the depth of the indexed BEs to a maximum of 2. The
reported numbers are average latency numbers over 2,000
queries for each index. The index sizes we used for these ex-
periments are smaller than the ones we used for the depth in-

| Number of BEs [ Dewey and Interval ‘

10K 1.1
20K 2.0
50K 4.7
100K 9.1
150K 14

Table 4: Memory usage by Dewey and Interval for different
number of indexed BEs (in MB).
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Figure 9: Running time for DNF expansion, Dewey, and
Interval for BE depths 1 and 2 (in ms).
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Figure 10: Total running time for Dewey and Interval eval-
uations for depths between 1 and 4 (in ms). The figure also
shows the time spent in index evaluation and sorting.

vestigation, therefore the latency numbers are smaller than
those reported in Figure 10. Figure 13 isolates the time
spent in Expression Evaluation. Again the Interval algo-
rithm scales better than Dewey w.r.t. the number of BEs
indexed.

5.5 Selectivity

In this section we study the impact of BE selectivity. To
adjust the selectivity we generated a large number of candi-
date BEs that did not match any of the queries in the test
set. By adding those BEs to the full set, we can precisely
adjust the selectivity in the dataset. Figure 14 shows the
evaluation time, i.e., the time spent in Expression Evalua-
tion, for different selectivity values. Both Dewey and In-
terval scale linearly with respect to selectivity. For these
experiments we set the maximum BE depth to 3. The num-
bers shown are average latency numbers over 2,000 queries
for each selectivity value.

6. RELATED WORK

One way to view our system is as a publish/subscribe
system where a subscription is represented by a boolean ex-
pression and a stream of published events are modeled by a
set of attribute-value pairs. The simplest, and slowest eval-
uation method is scanning all of the BEs and performing
an evaluation of those expressions. There are ways to opti-
mize those evaluations [15] but it is not scalable in practice
for a large number of complex BEs. An improvement over
scanning all expressions is the counting algorithm of [20,
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Figure 11: Running time for Dewey and Interval evaluations
for depths between 1 and 4 (in ms), excluding the time spent
in index evaluation.
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Figure 12: Total running time for Dewey and Interval eval-
uations for different number of indexed BEs (in ms). The
figure also shows the time spent in index evaluation and
sorting.

21], where information retrieval (IR)-style inverted lists are
used to find candidate conjunctions for DNF expressions.
They use posting lists and count the number of words (con-
juncts) in the incoming document that are present in the
BEs using posting lists to determine matches efficiently. The
counting algorithm was also enhanced by Carzaniga et al. [5]
to do more efficient short-circuit evaluation. Extensions to
the counting algorithm to handle arbitrary AND/OR trees
(without explicit NOTSs) have been proposed in [3].

Le Subscribe [9, 14] is an algorithm for evaluating con-
junctions in a publish/subscribe system. One variant of Le
Subscribe uses a hash table to store clusters of conjunctions
using their most selective conjunct as the hash table key.
The most selective conjunct is thus used as a filter crite-
ria for qualifying that conjunction for full evaluation. In
[17] a method of using inverted lists to efficiently evaluate
CNF and DNF expressions. The algorithm works by finding
matching conjunctions efficiently using enhancements to the
WAND algorithm [4]. These algorithms (except for simple
scanning) are limited by their inability to handle general,
complex BEs. Although that limitation may be partially
mitigated by doing DNF expansion, for very complicated
BEs, the explosion of conjunctions that results from DNF
expansion may be prohibitively large.

Inverted lists have also been extended to handle the in-
dexing of regular expressions expressions [6, 7], though the
structure of that problem is different from ours.
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Figure 13: Running time for Dewey and Interval evaluations
for different number of indexed BEs (in ms), excluding the
time spent in index evaluation.
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Figure 14: Running time for Dewey and Interval evaluations
for different selectivity values (in ms), excluding the time

spent in index evaluation.

Database systems have a myriad of techniques for evaluat-
ing boolean expressions. These techniques include scalable
trigger systems [11], the EVALUATE operator [2, 19] (in
Oracle), and table lookup methods [1]. All of these schemes
can not match the performance scalability of a specialized
BE matching algorithm and efficiently handle very complex
boolean, high-dimensional expressions at the high through-
put.

7. CONCLUSIONS

We have presented two solutions for the problem of eval-
uating complex boolean expressions. We show that both
of these solutions substantially outperform the previously
best known approaches which relied on first transforming
the complex boolean expression into a CNF or DNF. The
two algorithms are similar in spirit, both working bottom
up and evaluating the tree given only the satisfied leaves.
They differ, however, on the type and amount of informa-
tion stored at each conjunction leaf. Of the two, the Interval
matching approach is more advantageous — it is faster, uses
less memory and is simpler to describe and implement.

As future work we want to examine the impact of com-
mon subexpression elimination across indexed BEs —i.e., to
identify common AND/OR trees and to index and evaluate
these trees only once. Common-subexpression identification
is an interesting problems by itself, where techniques such
as predicate ordering [12] may be helpful.
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