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ABSTRACT
In this paper, we address the problem of scalably evaluating
conjunctive queries over correlated probabilistic databases
containing tuple or attribute uncertainties. Like previous
work, we adopt a two-phase approach where we first com-
pute lineages of the output tuples, and then compute the
probabilities of the lineage formulas. However unlike pre-
vious work, we allow for arbitrary and complex correla-
tions to be present in the data, captured via a forest of
junction trees. We observe that evaluating even read-once
(tree structured) lineages (e.g., those generated by hierar-
chical conjunctive queries), polynomially computable over
tuple independent probabilistic databases, is #P-complete
for lightly correlated probabilistic databases like Markov se-
quences. We characterize the complexity of exact computa-
tion of the probability of the lineage formula on a correlated
database using a parameter called lwidth (analogous to the
notion of treewidth). For lineages that result in low lwidth,
we compute exact probabilities using a novel message pass-
ing algorithm, and for lineages that induce large lwidths, we
develop approximate Monte Carlo algorithms to estimate
the result probabilities. We scale our algorithms to very
large correlated probabilistic databases using the previously
proposed INDSEP data structure. To mitigate the complex-
ity of lineage evaluation, we develop optimization techniques
to process a batch of lineages by sharing computation across
formulas, and to exploit any independence relationships that
may exist in the data. Our experimental study illustrates
the benefits of using our algorithms for processing lineage
formulas over correlated probabilistic databases.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Pro-
cessing ; H.2.4 [Database Management]: Physical De-
sign; G.3 [Mathematics of Computing]: Probability and
Statistics
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1. INTRODUCTION
Large amounts of correlated probabilistic data are being

generated at a rapidly increasing pace in a wide variety
of application domains, including data integration [9], in-
formation extraction [15, 13], RFID/sensor network appli-
cations [24, 16] and other applications which use machine
learning techniques [23] for reasoning over large datasets [7].
Hence, there is a need for systems that can effectively store
and query such correlated uncertain data. Although there
has been much work in recent years on uncertain data man-
agement, most of that work has either restricted the types
of correlations that can be represented, or limited the type
of queries that can be evaluated efficiently. Further, the in-
creasing scale of such data has led to many challenges that
have not been addressed before. We begin with two moti-
vating applications to illustrate the key challenges that we
address in this paper.

Information Extraction/Integration: Consider an infor-

mation extraction/integration system [13, 15, 21, 9] that
scans used car advertisements from multiple different sources,
such as cars.com, craigslist.com, and autotrader.com

and populates a relational database with structured entities
(Figure 1). To cope with the enormous amounts of data on
the web, the system employs automatic extractors to detect
potential tuples. Since most web data is in natural language
format, incorrect tuples might also be extracted; hence ma-
chine learning algorithms based on CRFs [13] and Bayesian
inference techniques [15] are used to assign probabilities of
correctness/existence to the extracted tuples.

Figure 1 shows three relations extracted automatically
from the web, along with their probabilities. Such data may
exhibit significant correlations; e.g., both tuples x1 and x2

cannot belong to the relation simultaneously, since they cor-
respond to the same car (since the VIN is same), but their
prices/sellers are different. The system models this by in-
cluding a mutual exclusion correlation between the tuples x1

and x2. We may denote such correlations using a graph (Fig-
ure 1(b)). Note that x1 is connected to x2 indicating that
they are correlated. Additional correlations occur due to at-
tribute uncertainty. If the attribute Car Model was missing
for the extracted tuple, the system adds separate tuples for
each Car Model offered by the seller (e.g., x3, x4, x5), along
with a mutual exclusion dependency among them (x3, x4

and x5 in Figure 1(b)). In general, complex correlations can



tid VIN Seller Model Price prob
x1 1A0 239 Honda 3500 0.3
x2 1A0 231 Honda 4500 0.8
x3 2B1 231 Honda 4500 0.8
x4 2B1 231 Toyota 4500 0.8
x4 2B1 231 Ford 4500 0.8

x1 x2

x4 x5

x3

y1 y2

(a) CarAds (b) Correlation

tid Seller Address prob
y1 239 12344 0.3
y2 239 12345 0.3
y3 231 12207 0.8
y4 340 12209 0.9

tid Seller Reputed prob
z1 239 Good 0.3
z2 231 Bad 0.7
z3 340 Good 0.9

(c) Location (d) Reputation

Figure 1: Data extracted by an information extraction engine.
The correlations are indicated in part (b).

arise in any application that uses sophisticated learning and
inference techniques like Bayesian networks [16, 24, 20].

Given such a database, a query of interest to a user may
be: (Q) List all Honda cars priced under $5000, sold by
a highly reputed seller in the 12344/12345 area. Q is a
conjunctive query with a single output tuple (1A0) since
seller 231 has bad reputation. It can be generated in two
ways, either by joining tuples x1, y1 and z1 or by join-
ing tuples x1, y2 and z1. Hence, it has lineage given by
(x1∧y1∧z1)∨(x1∧y2∧z1), equivalently (x1∧(y1∨y2)∧z1).
To answer the query, we need to determine the probability
of this boolean formula.

Event Monitoring Application: Consider an event mon-
itoring application such as an RFID ecosystem [30] that
uses data collected by RFID devices (installed in a build-
ing) to detect different types of activities. Since the RFID
data is noisy, incomplete and error-prone, it is subjected to
probabilistic modeling using dynamic Bayesian networks [16,
24] and thereby, probabilities are assigned to the detected
events. For instance, obs(X,‘PC’,10:00 a.m) is an event that
specifies that the laptop PC was found near the RFID de-
vice X at 10:00 a.m and it is associated with a probability
of occurrence. The detected events exhibit spatial and tem-
poral correlations [17, 24] owing to the spatial locality of the
sensors and temporal nature of the modeling process. Typ-
ical queries in such a system involve computing the prob-
abilities of compound events expressed as compositions of
simple events. For instance, a query of interest is: What
is the probability that the PC was transferred correctly from
its starting location at Room A to the final location at the
conference room? If there are three RFID devices X1, X2

and X3 between Room A and the conference room, then the
compound event for which we need to know the probability
is given by the boolean conjunction: obs(X1,’PC’,10:00) ∧
obs(X2,’PC’,10:05) ∧ obs(X3,’PC’,10:10).

Many probabilistic database systems have been developed
in recent years to handle large-scale uncertain data [8, 25, 27,
1, 28, 3]. While this prior work has made great strides in our
understanding of how to manage large-scale uncertain data
and how to evaluate various types of queries (including lin-
eages) on them, only a handful of these systems can handle
correlated data effectively. Sen et al. [28, 29] and Antova
et al. [1] have addressed issues in representing and query-
ing complex correlations in probabilistic databases. How-
ever, their proposed techniques are not scalable to large
databases. Letchner et al. [24, 20] have developed techniques

for processing queries over probabilistic event streams that
have special correlation structure, Markov sequences – where
the tuple (event) at time t is only directly influenced by the
tuple (event) at time t–1. However, many of their queries
were limited to simple event detection queries (correspond-
ing to 1 level boolean queries) and decomposable aggregation
queries. In prior work [18], we developed an index structure
called INDSEP that enables scalable query processing over
large correlated probabilistic databases. However our main
focus was on the class of inference queries and aggregation
queries and we did not consider conjunctive queries.

In this paper, we fill this gap by designing highly scalable
algorithms and data structures for processing conjunctive
queries over large correlated probabilistic databases. We fol-
low the prevalent approach to conjunctive query evaluation
in probabilistic databases by first computing the lineages [27]
of the output tuples of the query (i.e. the boolean formulas
corresponding to the existence of the tuples), and then com-
puting the probabilities of the lineage formulas. The second
task is in general very hard in presence of correlations. For
instance, to compute the probability of a simple boolean for-
mula (a1 ∨ a2 · · · ∨ a100) exactly, we need to capture all pos-
sible dependencies that exist among these random variables
efficiently, preferably without constructing the full joint dis-
tribution (containing 2100 probabilities).We formally prove
that the above problem is #P complete in general even in
the simplest case of processing read-once (tree-structured)
lineages on lightly correlated probabilistic databases such as
Markov sequences. Despite this negative result, we show
that we can process lineage formulas without having to con-
struct very large probability distributions by developing al-
gorithms based on message passing in junction trees – a con-
cise data structure to represent correlations in the data. We
characterize the complexity of processing lineages by intro-
ducing a parameter called lwidth, short for lineage-width
(similar to the graph theoretic notion of treewidth [26]). The
value of lwidth depends on the input lineage formula and the
nature of the correlations in the data. If the lwidth induced
by the formula is small, we attempt to process the formula
exactly. For the other case, we develop an Monte Carlo
approximation algorithm to estimate the probability. We
scale our lineage processing algorithms to large-scale corre-
lated probabilistic databases using our previously proposed
INDSEP data structure [18]. To effectively integrate our
algorithms with INDSEP, we introduce a lineage planning
phase to our approach. This planning phase additionally en-
ables us to perform several optimizations, such as exploiting
any independence relationships that exist in the underlying
data to reduce lwidths of the lineage formulas. Further, it
allows us to process a batch of lineage formulas efficiently
by sharing computation across formulas that have common
subexpressions. The research contributions of the paper are:

• We extend the INDSEP data structure proposed in prior
work for scalable evaluation of inference and aggregation
queries [18] to conjunctive queries over lightly correlated
probabilistic databases.

• We develop a novel algorithm for computing the probabil-
ity of boolean formulas over junction trees (and a forest
of junction trees), a fundamental problem that has not
been considered before.

• We show how to process a batch of lineages efficiently by
exploiting the common subexpressions in the formulas.
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Figure 2: Figure shows (i) a tuple uncertain probabilistic database (ii) the graphical model that captures the correlations among the
various tuples (iii) the equivalent junction tree and (iv) the INDSEP data structure corresponding to the junction tree in (iii)

In this section, we explain the tuple uncertain probabilis-
tic database model that we use in the paper. Also, we de-
scribe its equivalent representation as junction trees, which
is a central concept in the rest of the paper. Following this,
we illustrate how to execute queries over junction trees and
how we can speed up the query evaluation using the IND-
SEP index data structure.

2.1 Tuple Uncertain Model
Although we focus on the tuple uncertain probabilistic

database model, many of the concepts in the paper general-
ize to probabilistic databases with attribute uncertainty as
well. In a Tuple Uncertain probabilistic database each tu-
ple is annotated with an existence probability (Figure 1(a)).
We model such uncertainty by introducing a boolean ran-
dom variable Et for each tuple t that denotes the existence
of the tuple, i.e., Et takes value 1 if t belongs to the database
and 0 otherwise. Figure 2(a) shows a tuple uncertain prob-
abilistic database on three relations R1, R2 and R3. The
random variables corresponding to the existence of each of
the tuples is indicated in the column E.

As described in the motivating application, correlations
naturally exist among the tuples. For example, tuples x1 and
x2 in Figure 1(a) are correlated via mutual exclusion, which
means that the presence of one of the tuples precludes the
presence of the other tuple. Such a probabilistic database
can be represented in a generic manner by constructing a
Probabilistic Graphical Model (PGM) on the tuple existence
random variables as shown by Sen et al. [28]. All the cor-
relations in the probabilistic database can be captured by
adding appropriate edges to the PGM (Figure 2(b)). Owing
to space constraints, we do not discuss PGMs here. PGMs
can be equivalently represented using Junction trees, which
we discuss next.

2.2 Junction Trees
A junction tree is an equivalent representation of a PGM [10]

and is also known as a tree decomposition, or a clique tree.
It is a concise representation of the joint probability distri-
bution of a set of random variables. We will not discuss the
actual construction of the junction tree owing to space con-
straints; however we describe some of its main properties.
In a junction tree, there are 2 types of nodes, clique nodes
(represented by circles) and separator nodes (represented by
square). The clique nodes correspond to maximal cliques in
the triangulated PGM and the separator nodes correspond to
the cut vertices that separate the maximal cliques [14]. After

fully constructing the junction tree, each clique/separator in
the tree stores the joint probability distribution of the vari-
ables in the clique/separator. An example of a junction tree
(for the PGM in Figure 2(b)) is shown in Figure 2(c). In
this junction tree, clique (ab) stores the probability distri-
bution p(a, b) and separator c stores the probability distri-
bution p(c). The variables in a clique are directly correlated
with each other and the separators encode the conditional
independences that are present among the variables in the
junction tree. For example, variables a and b are directly
correlated since they belong to the same clique (ab). Given
the knowledge of variable a, variable b becomes independent
of c (i.e., conditional independence) since a is the separator
between cliques (ab) and (ac). The conditional indepen-
dence relationship can be mathematically expressed as:

p(a, b, c) = p(a,b)p(a,c)
p(a)

Also note the disconnection between clique (oq) and the rest
of the tree. Disconnection implies independence, i.e., o and
q are correlated with each other but are independent of the
other variables in the junction tree. The overall joint distri-
bution among all the random variables in the junction tree
can be computed by multiplying the probabilities of all the
clique pdfs and dividing by the product of all the separator
pdfs. The joint distribution for the above example is shown
below:

p(ab)p(ac)p(pd)p(de)p(cfg) . . . p(ln)p(oq)

p(a)p(d)p(c) . . . p(l)

Definition 1. Lightly Correlated Probabilistic Databases:
We denote probabilistic databases that can be efficiently rep-
resented as junction trees as being lightly correlated, i.e.,
the cliques are of small size. Examples of lightly correlated
junction trees include Markovian sequences [21, 18].

2.3 Why Junction trees ?
In the machine learning community, junction trees are

considered as a very useful tool since they can be used to
compute all marginals, i.e., the probability distributions of
each random variable independently, in two passes over the
tree. Hence, in a data warehousing context such as ours,
where we have few updates and several queries, a junction
tree is a natural intermediate structure to build since it
speeds up query evaluation by orders of magnitude. While
junction trees can be built efficiently for lightly correlated
probabilistic databases, there have been concerns about the
feasibility of building a junction tree over highly correlated
probabilistic databases, that generate large cliques. Since
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In this section, we explain the tuple uncertain probabilis-
tic database model that we use in the paper. Also, we de-
scribe its equivalent representation as junction trees, which
is a central concept in the rest of the paper. Following this,
we illustrate how to execute queries over junction trees and
how we can speed up the query evaluation using the IND-
SEP index data structure.

2.1 Tuple Uncertain Model
Although we focus on the tuple uncertain probabilistic

database model, many of the concepts in the paper general-
ize to probabilistic databases with attribute uncertainty as
well. In a Tuple Uncertain probabilistic database each tu-
ple is annotated with an existence probability (Figure 1(a)).
We model such uncertainty by introducing a boolean ran-
dom variable Et for each tuple t that denotes the existence
of the tuple, i.e., Et takes value 1 if t belongs to the database
and 0 otherwise. Figure 2(a) shows a tuple uncertain prob-
abilistic database on three relations R1, R2 and R3. The
random variables corresponding to the existence of each of
the tuples is indicated in the column E.

As described in the motivating application, correlations
naturally exist among the tuples. For example, tuples x1 and
x2 in Figure 1(a) are correlated via mutual exclusion, which
means that the presence of one of the tuples precludes the
presence of the other tuple. Such a probabilistic database
can be represented in a generic manner by constructing a
Probabilistic Graphical Model (PGM) on the tuple existence
random variables as shown by Sen et al. [28]. All the cor-
relations in the probabilistic database can be captured by
adding appropriate edges to the PGM (Figure 2(b)). Owing
to space constraints, we do not discuss PGMs here. PGMs
can be equivalently represented using Junction trees, which
we discuss next.

2.2 Junction Trees
A junction tree is an equivalent representation of a PGM [10]

and is also known as a tree decomposition, or a clique tree.
It is a concise representation of the joint probability distri-
bution of a set of random variables. We will not discuss the
actual construction of the junction tree owing to space con-
straints; however we describe some of its main properties.
In a junction tree, there are 2 types of nodes, clique nodes
(represented by circles) and separator nodes (represented by
square). The clique nodes correspond to maximal cliques in
the triangulated PGM and the separator nodes correspond to
the cut vertices that separate the maximal cliques [14]. After

fully constructing the junction tree, each clique/separator in
the tree stores the joint probability distribution of the vari-
ables in the clique/separator. An example of a junction tree
(for the PGM in Figure 2(b)) is shown in Figure 2(c). In
this junction tree, clique (ab) stores the probability distri-
bution p(a, b) and separator c stores the probability distri-
bution p(c). The variables in a clique are directly correlated
with each other and the separators encode the conditional
independences that are present among the variables in the
junction tree. For example, variables a and b are directly
correlated since they belong to the same clique (ab). Given
the knowledge of variable a, variable b becomes independent
of c (i.e., conditional independence) since a is the separator
between cliques (ab) and (ac). The conditional indepen-
dence relationship can be mathematically expressed as:

p(a, b, c) = p(a,b)p(a,c)
p(a)

Also note the disconnection between clique (oq) and the rest
of the tree. Disconnection implies independence, i.e., o and
q are correlated with each other but are independent of the
other variables in the junction tree. The overall joint distri-
bution among all the random variables in the junction tree
can be computed by multiplying the probabilities of all the
clique pdfs and dividing by the product of all the separator
pdfs. The joint distribution for the above example is shown
below:

p(ab)p(ac)p(pd)p(de)p(cfg) . . . p(ln)p(oq)

p(a)p(d)p(c) . . . p(l)

Definition 1. Lightly Correlated Probabilistic Databases:
We denote probabilistic databases that can be efficiently rep-
resented as junction trees as being lightly correlated, i.e.,
the cliques are of small size. Examples of lightly correlated
junction trees include Markovian sequences [21, 18].

2.3 Why Junction trees ?
In the machine learning community, junction trees are

considered as a very useful tool since they can be used to
compute all marginals, i.e., the probability distributions of
each random variable independently, in two passes over the
tree. Hence, in a data warehousing context such as ours,
where we have few updates and several queries, a junction
tree is a natural intermediate structure to build since it
speeds up query evaluation by orders of magnitude. While
junction trees can be built efficiently for lightly correlated
probabilistic databases, there have been concerns about the
feasibility of building a junction tree over highly correlated
probabilistic databases, that generate large cliques. Since
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In this section, we explain the tuple uncertain probabilis-
tic database model that we use in the paper. Also, we de-
scribe its equivalent representation as junction trees, which
is a central concept in the rest of the paper. Following this,
we illustrate how to execute queries over junction trees and
how we can speed up the query evaluation using the IND-
SEP index data structure.

2.1 Tuple Uncertain Model
Although we focus on the tuple uncertain probabilistic

database model, many of the concepts in the paper general-
ize to probabilistic databases with attribute uncertainty as
well. In a Tuple Uncertain probabilistic database each tu-
ple is annotated with an existence probability (Figure 1(a)).
We model such uncertainty by introducing a boolean ran-
dom variable Et for each tuple t that denotes the existence
of the tuple, i.e., Et takes value 1 if t belongs to the database
and 0 otherwise. Figure 2(i) shows a tuple uncertain prob-
abilistic database on three relations R1, R2 and R3. The
random variables corresponding to the existence of each of
the tuples is indicated in the column E.

As described in the motivating application, correlations
naturally exist among the tuples. For example, tuples x1 and
x2 in Figure 1(a) are correlated via mutual exclusion, which
means that the presence of one of the tuples precludes the
presence of the other tuple. Such a probabilistic database
can be represented in a generic manner by constructing a
Probabilistic Graphical Model (PGM) on the tuple existence
random variables as shown by Sen et al. [28]. All the cor-
relations in the probabilistic database can be captured by
adding appropriate edges to the PGM (Figure 2(ii)). Owing
to space constraints, we do not discuss PGMs here. PGMs
can be equivalently represented using Junction trees, which
we discuss next.

2.2 Junction Trees
A junction tree is an equivalent representation of a PGM [11]

and is also known as a tree decomposition, or a clique tree.
It is a concise representation of the joint probability distri-
bution of a set of random variables. We will not discuss the
actual construction of the junction tree owing to space con-
straints; however we describe some of its main properties.
In a junction tree, there are 2 types of nodes, clique nodes
(represented by circles) and separator nodes (represented by
square). The clique nodes correspond to maximal cliques in
the triangulated PGM and the separator nodes correspond to
the cut vertices that separate the maximal cliques [15]. After
fully constructing the junction tree, each clique/separator in
the tree stores the joint probability distribution of the vari-
ables in the clique/separator. An example of a junction tree
(for the PGM in Figure 2(ii)) is shown in Figure 2(iii). In
this junction tree, clique (ab) stores the probability distri-
bution p(a, b) and separator c stores the probability distri-
bution p(c). The variables in a clique are directly correlated
with each other and the separators encode the conditional
independences that are present among the variables in the
junction tree. For example, variables a and b are directly
correlated since they belong to the same clique (ab). Given
the knowledge of variable a, variable b becomes independent
of c (i.e., conditional independence) since a is the separator
between cliques (ab) and (ac). The conditional indepen-
dence relationship can be mathematically expressed as:

p(a, b, c) = p(a,b)p(a,c)
p(a)

Also note the disconnection between clique (oq) and the rest
of the tree. Disconnection implies independence, i.e., o and
q are correlated with each other but are independent of the
other variables in the junction tree. The overall joint distri-
bution among all the random variables in the junction tree
can be computed by multiplying the probabilities of all the
clique pdfs and dividing by the product of all the separator
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shown here. Note that I2 is connected to I1 via c and to I3 via j as indicated in (iii)

• We devise approximation algorithms based on Gibbs sam-
pling for estimating the probability of boolean formulas
over junction trees.

Outline: In Section 2, we provide background for junction
trees and INDSEP. In Section 3, we describe our algorithms
for processing lineage formulas over junction trees. Follow-
ing this, we illustrate how to scale these algorithms by using
the INDSEP data structure, in Sections 4 and 5. The ap-
proximation algorithms for lineage processing are illustrated
in Section 5.3. We conclude with experiments in Section 7.

2. PRELIMINARIES
In this section, we briefly discuss the tuple uncertain prob-

abilistic database model that we use in the paper and how
we capture correlations in the data using a forest of junc-
tion trees. We then discuss how different types of queries
may be evaluated over junction trees, and briefly describe
the INDSEP data structure, proposed in our prior work, to
speed up inference queries over junction trees.

2.1 Tuple Uncertainty Model
Although our system can handle attribute uncertainty,

for clarity of presentation, we focus on tuple uncertainty
in the bulk of the paper. In a tuple uncertain probabilistic
database, each tuple is annotated with an existence probabil-
ity (Figure 1(a)). We model such uncertainty by introducing
a boolean random variable for each tuple t that denotes the
existence of the tuple. It takes value 1 if t belongs to the
database and 0 otherwise. Figure 2(i) shows a tuple uncer-
tain probabilistic database on three relations R1, R2 and
R3. The random variables corresponding to the existence of
the tuples are indicated in column E.

We allow representation of arbitrary correlations among
the tuples by constructing a PGM on the tuple existence
variables [28]. One possible set of correlations among the
tuples in Figure 2(i) is shown in the PGM of Figure 2(ii).
The edges in the graphical model capture the correlations
among the random variables. Owing to space constraints,
we do not discuss PGMs here. PGMs can be equivalently
represented using junction trees, which we discuss next.

2.2 Junction Trees
A junction tree is an equivalent representation of a PGM [10]

and is also known as a tree decomposition, or a clique tree.
It is a concise representation of the joint probability distri-
bution of a set of random variables. We will not discuss the

actual construction of the junction tree owing to space con-
straints; however we describe some of its main properties.
In a junction tree, there are 2 types of nodes, clique nodes
(represented by circles) and separator nodes (represented by
square). The clique nodes correspond to maximal cliques in
the triangulated PGM and the separator nodes correspond to
the cut vertices that separate the maximal cliques [14]. After
fully constructing the junction tree, each clique/separator in
the tree stores the joint probability distribution of the vari-
ables in the clique/separator. An example of a junction tree
(for the PGM in Figure 2(ii)) is shown in Figure 2(iii). In
this junction tree, clique (ab) stores the probability distri-
bution p(a, b) and separator c stores the probability distri-
bution p(c). The variables in a clique are directly correlated
with each other and the separators encode the conditional
independences that are present among the variables in the
junction tree (though not all the conditional independences
in the original PGM may be preserved). Given the knowl-
edge of variable a, variable b becomes independent of c (i.e.,
conditional independence) since a is the separator between
cliques (ab) and (ac). The conditional independence rela-
tionship can be mathematically expressed as:

p(a, b, c) = p(a,b)p(a,c)
p(a)

Also note the disconnection between clique (oq) and the rest
of the tree. Disconnection implies independence, i.e., o and
q are correlated with each other but are independent of the
other variables in the junction tree. The overall joint distri-
bution among all the random variables in the junction tree
can be computed by multiplying the probabilities of all the
clique pdfs and dividing by the product of all the separator
pdfs. The joint distribution for the above example is shown
below:

p(ab)p(ac)p(pd)p(de)p(cfg) . . . p(ln)p(oq)

p(a)p(d)p(c) . . . p(l)
(1)

Junction trees whose maximum clique size (treewidth of PGM)
can be bounded by a small constant are typically called thin
junction trees [22, 2]. We call probabilistic databases that
can be represented using thin junction trees lightly corre-
lated probabilistic databases. Examples of lightly correlated
probabilistic databases include Markov sequences [20, 17].

2.3 Why Junction Trees ?
In the machine learning community, junction trees are

considered a very useful tool since they can be used to com-
pute all marginals, i.e., the probability distributions of all



the random variables, in two passes over the tree. Further-
more, junction trees are very effective at reusing computa-
tion among different inference queries. Hence in our con-
text, where we typically have few updates to existing data,
but many queries, a junction tree is a natural intermediate
structure to build since it speeds up query evaluation by
orders of magnitude. While junction trees can be built ef-
ficiently for lightly correlated probabilistic databases, there
have been concerns about the feasibility of building a junc-
tion tree over highly correlated probabilistic databases, that
generate large cliques. Since the clique’s pdf is exponential
in the number of its constituent variables, it is impracti-
cal to build junction trees with large cliques. There have
been many proposals to alleviate this problem by perform-
ing approximations. We mention two such approaches here.
Firstly, Choi et al. [4] provide techniques for selectively re-
moving edges from the underlying PGM, so as to generate
smaller cliques in the junction tree. The authors propose
to adjust the values of the remaining parameters to com-
pensate for the deleted edges. In another technique called
HUGS, proposed by Kjaerluff et al. [19], the cliques store ap-
proximate versions of their pdfs. Each clique approximates
its pdf with a set of factors which correspond to the rele-
vant factors in the associated PGM. The authors adapt the
junction tree message passing algorithms (discussed next)
for this representation via Gibbs sampling. More recently,
Chechetka et al. [2] proposed new algorithms for directly
learning thin junction trees from data. Such techniques can
be used to scale junction trees to highly correlated proba-
bilistic databases.

2.4 Query Processing over Junction Trees
We first describe a simple operation on probability distri-

bution functions which we use throughout the paper.

Elimination: Eliminating a variable v from a joint pdf
p(V ) is the process of computing a new pdf over V \ v, i.e.,
p(V \ v), by summing the entries which have the same value
for V \ v. Suppose we have pdf p(A,B), where A and B are
boolean random variables. Then, after eliminating B, p(A)
can be computed, (for a ∈ {0, 1}) using the equation:

p(A = a) = p(A = a, b = 0) + p(A = a, b = 1)

Next, we describe how to evaluate various types of queries
over junction trees.

Inference queries: An inference query is specified by a set
of variables V and the output is defined to be the joint prob-
ability distribution over the variables in V .

The naive way to answer such an inference query is to con-
struct a joint probability distribution over all the variables
using equation (1), and then to eliminate the non-query vari-
ables. This is clearly not feasible. However this can be
made much more efficient by eliminating the non-query vari-
ables earlier during the execution. This is the essence of the
HUGIN algorithm [6, 18] which we illustrate now. We first
compute the smallest subtree (Steiner tree) of the junction
tree that covers all the query variables (the best case scenario
being that a single clique contains all the query variables).
For example, to evaluate the inference query {a,k} over the
junction tree shown in Figure 2(iii), we first construct the
Steiner tree between cliques (ac) (since it contains variable
a) and (gjk) (since it contains k) as shown in Figure 2(v).
We then choose a pivot clique, the node to which all other
cliques in the Steiner tree send their message. Suppose we

choose clique (ac) as our pivot. The following sequence of
messages are passed to evaluate p(a, k), also shown in Figure
2(v):

• Clique (gjk) eliminates j from its pdf p(g, j, k) to compute
p(g, k). It eliminates j since it is not required by the
query. However, it still needs to retain g for correctness
since g is also present in the clique (cfg). (gjk) sends
m1 = p(g, k) as a message to the clique (cfg).

• Clique (cfg) now multiples m1 with its pdf p(c, f, g) to
get p(c, f, g, k). It eliminates f , g to get p(c, k) and sends
m2 = p(c, k) to clique (ac).

• Clique (ac) multipliesm2 with its pdf p(a, c) to get p(a, c, k),
then eliminates c to get the result p(a, k).

Note that for suitably chosen query variables, e.g., {a, n},
the size of the Steiner tree can be almost as large as the size
of the junction tree itself. Thus, even for 2 or a 3 variable
query, the query evaluation time can be very high. This lim-
itation can be resolved by using the INDSEP data structure,
which we discuss in Section 2.5.

Lineage queries: Lineage queries are important in the con-
text of probabilistic databases. Lineage or Provenance [27]
of a tuple in a database is a boolean formula, which rep-
resents all possible derivations of the tuple. Suppose that
we want to execute query R = ΠD(R2 ./C R3) over the
database in Figure 2(i). Consider the tuple (δ) ∈ R. It is
generated by the projection of tuples (α1, γ1, δ) and (α2, γ2, δ)
which are present in (R2 ./C R3). If either of the tu-
ples are present in the join, then the output will contain
(δ). Hence, the lineage of (δ) is written as the boolean
OR of the lineages of the tuples (α1, γ1, δ) and (α2, γ2, δ).
λ(δ) = λ(α1, γ1, δ) ∨ λ(α2, γ2, δ). The tuple (α1, γ1, δ) it-
self is dependent on the presence of both tuples (α1, γ1) and
(γ1, δ) in relations R2 and R3 respectively. Hence, the lin-
eage of (α1, γ1, δ) is written as the boolean AND of the tuples
(α1, γ1) and (γ1, δ). λ(α1, γ1, δ) = λ(α1, γ1)∧λ(γ1, δ) = c∧g.
Similarly, λ(α2, γ2, δ) = m∧n. Hence, we can write the over-
all lineage of the output tuple (δ) as the following boolean
formula: ((c ∧ g) ∨ (m ∧ n)). This formula is an example of
a read-once boolean formula [12], i.e., each boolean variable
appears exactly once in the formula. It can be represented as
a parse tree, as illustrated in Figure 3(a). The root node of
the tree corresponds to the entire boolean formula. Interme-
diate nodes correspond to subformulas, i.e., they represent
the formula of the subtree below them, e.g., in Figure 3(a),
the intermediate node 1 corresponds to (c∧ g) and the node
2 corresponds to (m ∧ n).

A lineage query requires us to evaluate the probability of
the lineage formula given the probability distribution of the
input variables. A naive method is to use the joint probabil-
ity distribution over the variables in the lineage. Suppose we
need to compute the probability distribution of (a ∧ b). We
first compute the joint pdf over the variables a and b, i.e.,
p(a, b). Then, we use the conditional distribution, p(a∧b|a, b)
which specifies how the random variable a∧ b depends on a
and b. In this case, it is just the truth table of the boolean
AND logic. We multiply p(a, b) with p(a ∧ b|a, b) and ob-
tain p(a, b, a ∧ b). Following this, we eliminate a and b from
p(a, b, a ∧ b) and determine p(a ∧ b). Note that a ∧ b is just
another boolean variable with domain {0,1}.

Expressions: We collectively refer to lineages (e.g., b ∧
c, d∧e) and singleton random variables (e.g., a, f) as expres-



sions. As we describe later, we will often need to compute
the joint probability distribution of a set of expressions, e.g.,
{a, b ∧ c, d ∨ e} – we call them ExpressionSets.

The algorithm described above does not scale to large ex-
pressions since the initial step computes a huge joint distri-
bution. Even a simple formula of size 25 needs to compute
a joint pdf of size 225, which is very inefficient. We develop
better algorithms for processing lineages over junction trees,
based on message passing in Section 3.

2.5 INDSEP
We proposed the INDSEP data structure in our prior work

to scale inference and aggregation queries to very large disk
resident junction trees. It is constructed from a hierarchical
partitioning of the junction tree. The index corresponding
to the junction tree shown in Figure 2(iii) is shown in Fig-
ure 2(iv). The hierarchical partitioning that generated the
index is shown with dotted lines in Figure 2(iii). Initially,
the junction tree is partitioned into I1 and I2 and I3. Fur-
ther, I1 is partitioned into P1 and P2 and so on. Each node
in the index represents a subtree of the junction tree. For
instance, I2 represents the subtree containing the cliques
(gjk), (cfg), (fh), and (hi). Similarly, the leaf node P1 cor-
responds to the partition P1 in Figure 2(iii) composed of
cliques (ab),(ac) and the separator (a). Each node in the
index also stores a tree indicating how its children are con-
nected. For instance, the child tree corresponding to the
root node is shown in Figure 2(vi).

The key idea in INDSEP is the use of precomputed short-
cut potentials to speed up the HUGIN algorithm by avoiding
visiting every node in the junction tree. A shortcut poten-
tial is the joint distribution of all the separators adjacent
to a subtree in the junction tree. For example, I2 stores
the shortcut potentials of the subtree P3, which is p(c, f, j)
(since c, f and j are the separators adjacent to P4) and that
of P4, which is p(f). Query processing over INDSEP follows
by recursion on the index tree. For instance, the inference
query {a,n} is converted into the following recursive queries:
{a,c} on I1, {c,j} on I2 and {j,n} on I3. Variables c and j
are added to the recursion in order to capture all possible
correlations that exist between a and n. Note that p(c, j) is
directly obtained from the shortcut potential of P3 and not
by traversing its subtree - which leads to order of magnitude
improvements in query processing time for large graphs. In
addition, we also developed algorithms for processing aggre-
gation queries and extraction queries [18].

3. LINEAGE PROCESSING ALGORITHMS
OVER JUNCTION TREES

In this section, we develop algorithms for processing lin-
eage formulas over junction trees. Although our focus is on
read-once lineages, our algorithms for lineage processing can
be applied even to non-tree structured lineages. While it is
known that read-once lineages can be processed in polyno-
mial time for tuple independent probabilistic databases [8,
28], we can also show the following result:

theorem 1. Processing read-once lineages over lightly cor-
related probabilistic databases, even restricted to the class of
Markov sequences, is #P-complete.

We omit the proof due to space constraints. However, most
real world datasets do not exhibit this worst case behavior.
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Figure 3: Different stages in the simplification process

The junction trees are often disconnected, which allows us
to perform exact computation.

3.1 Message Passing for Lineage Processing
Before discussing the message passing algorithms, we in-

troduce a parameter called lwidth that captures the com-
plexity of processing a lineage formula. We illustrate lwidth
using the naive method we described in Section 2. Suppose
that we want to compute the probability of the lineage for-
mula (c ∧ g) ∨ (m ∧ n). In the first step, we evaluate the
inference query {c, g,m, n} and determine p(c, g,m, n). In
the next step, called simplification, we evaluate the proba-
bility of the lineage. As described earlier, we first multiply
the pdf with p(c ∧ g|c, g) to get p(c, g,m, n, c ∧ g) and then
eliminate c and g to get p(c∧g,m, n). We proceed in similar
fashion to compute p(c∧g,m∧n), and finally the probability
p((c∧ g)∨ (m∧ n)). We pictorially illustrate the simplifica-
tion process in Figure 3. The above algorithm creates sev-
eral intermediate pdfs, the size of the largest intermediate
pdf being 25 = 32. The time taken by the algorithm is influ-
enced by the size of the maximum pdf created. We formally
capture the complexity of the algorithm by introducing the
parameter called lwidth.

Definition 1. Lwidth is the treewidth [26] of the graph-
ical model obtained by combining the junction tree and a
graphical model corresponding to the lineage formula.

Intuitively, lwidth corresponds to the size of largest in-
termediate pdf created if the problem is solved “optimally”,
i.e., with an optimal junction tree, optimal rewriting of the
boolean formula and the optimal algorithm. Like treewidth,
lwidth is in general NP-hard to compute exactly, and we can
only estimate it, i.e., compute an upper bound for it in most
cases. In the example above, lwidth was estimated to be 5.

Next, we develop an improved recursive algorithm for lin-
eage processing based on message passing. The trick is to
create smaller intermediate pdfs by performing the simplifi-
cations eagerly, whenever we detect a message that can be
simplified. We illustrate our Eager strategy next.

Improvement 1 (Eager): As with the HUGIN algorithm

(Section 2), we first select a pivot and construct a Steiner
tree over the variables referred in the lineage formula. At
each clique, we multiply all the incoming messages and the
clique’s pdf to get an intermediate pdf, and then eliminate
the non-query variables. However, we try to simplify the
pdf as much as possible based on the given lineage before
sending the resulting pdf as a message. Let us see how we
would compute p((c ∧ g) ∨ (m ∧ n)) using the Eager strat-
egy. Suppose that we select the clique (cfg) as the pivot.
The Steiner tree for this lineage is the path connecting the
clique (ln) to the clique (cfg) (Figure 2(iii)). The algorithm
proceeds as follows:



• The clique (ln) sends message p(l, n) to the clique (jlm).

• Now, clique (jlm) multiplies the incoming message p(l, n)
with its pdf p(j, l,m) to get p(j, l,m, n) (it also divides
by p(l)). It eliminates l to get p(j,m, n). Since m and n
are together (and do not appear elsewhere in the junction
tree), it simplifies p(j,m, n) here itself, to get p(j,m ∧ n)
and sends it to clique (gjk).

• Clique (gjk) multiplies p(j,m ∧ n) with its pdf p(g, j, k),
eliminates k & j, sends p(g,m ∧ n) to clique (cfg).

• Clique (cfg) eliminates f from its pdf p(c, f, g) to get
p(c, g) and multiplies it with p(g,m∧n) to get p(c, g,m∧
n). After relevant simplifications, the clique (cfg) com-
putes the final result p((c ∧ g) ∨ (m ∧ n)).

In this approach, the maximum intermediate pdf size gener-
ated is 24. This reduction is small for the above toy example,
but it can be very large for larger lineages, since the com-
putational complexity is exponential in the lwidth.

We can reduce the intermdiate pdf sizes induced by the
lineage even further by performing the simplification even
before we multiply all of the incoming messages at a clique
node. Suppose that we want to compute the probability of
another boolean formula (c ∧ h) ∨ (m ∧ n) and we pick the
clique (cfg) as the pivot using the Eager strategy. In the
last step, the Eager strategy would require us to multiply
p(c, f, g), p(f, h) and p(g,m ∧ n) to get p(c, f, g, h,m ∧ n).
This would result in a pdf of size 25. Alternatively, we can
multiply the pdfs p(c, f, g) and p(f, h) to get p(c, f, g, h),
eliminate f and simplify the resulting pdf to p(c∧h, g). We
can now multiply this with p(g,m∧n) and eliminate g to get
the output. In this case, we would only create a pdf of size
24. This observation brings us to our next improvement.

Improvement 2 (Eager+Order): We construct a com-
plete edge weighted graph in which each node corresponds
to the probability distribution which is to be multiplied. The
weight of an edge is set to be equal to the amount of simplifi-
cation that is possible if we multiply the pdfs corresponding
to its adjacent nodes. The amount of simplification while
multiplying two probability distributions f1 and f2 is given
by |f1 ∪ f2| − |f |, where f is the simplified output after
multiplying f1 and f2. For instance, in the example above,
when we multiply p(c, f, g) and p(f, h) the final output is
p(g, c ∧ h), hence the simplification is given by 4 − 2 = 2.
We greedily pick the edge with the largest weight and mul-
tiply the probability distributions together. We then per-
form simplification and update the graph, by clustering the
2 nodes together and recomputing the weights of all edges in-
cident on the newly created node. We continue this process
until all the probabilities have been multiplied, i.e., when
there are no more edges in the graph. The order of multi-
plication for the above example is illustrated in Figure 4(a).
The edges that are selected by the heuristic are darkened.
In the first step, we multiply p(c, f, g) and p(f, h) to obtain
p(g, c ∧ h). In the second step, there is only one edge left,
hence we multiply this with p(g,m ∧ n).

3.2 Pivot Selection
Another factor influencing the intermediate pdf sizes in-

duced by the lineage formula is the pivot selected by the
algorithm. Suppose we want the probability of (b ∧ c) ∨ g.
The Steiner tree corresponding to this query is shown in Fig-
ure 4(b). As shown in the figure, there are 3 choices of pivot

p(c,f,g)

p(f,h)
p(g,m∧n)

1

2

0

p(c∧h,g)

p(g,m∧n)

2 acab a c cfg

p(a,b) p(b ∧ c,c)

p(c,g)p(a,c,g)

(a)Eager+Order heuristic (b)Pivot selection

Figure 4: (a)Illustrating the order of multiplication and simpli-
fication in Eager+Order heuristic. Initially, we multiply pdfs
p(f, h) and p(c, f, g) since that edge has the maximum weight.
(b) When pivot = (cfg), the sequence of messages passed is in-
dicated above the graph (right arrows). When pivot = (ab), the
sequence of messages is indicated below the graph (left arrows).

selection, i.e., one of (ab), (ac) or (cfg). We will evaluate
the lwidth estimate for two different pivot locations - clique
(ab) and clique (cfg).

Case 1: Pivot = (ab): The sequence of messages passed

in this case are indicated in Figure 4(b). Clique (cfg) sends
message p(c, g) to clique (ac). Now, (ac) multiplies it with
its pdf p(a, c) to get p(a, c, g), which is sent to clique (ab).
(ab) multiplies p(a, c, g) with p(a, b) to get p(a, b, c, g). Then
it eliminates a to get p(b, c, g) from which we get p((b∧c)∨g).
The maximum intermediate pdf for this pivot location is 24.

Case 2: Pivot = (cfg): In this case, the clique (ab) sends

the message p(a, b) to clique (ac). Now, (ac) multiplies it
with its pdf p(a, c) to obtain p(a, b, c). It also eliminates
a since it is not required and simplifies p(b, c) to p(b ∧ c, c),
which is then sent to clique (cfg). (cfg) first computes p(c, g)
by eliminating f from its joint pdf and then multiplies with
p(b ∧ c, c) to get p(b ∧ c, c, g) which is then simplified to the
result p((b∧c)∨g). Note that in this case, the maximum pdf
size generated in this case is just 23. Since there are only n
choices, (n is the number of clique nodes in the Steiner tree)
for the pivot position, we use the naive approach in which we
estimate the lwidth for each pivot location. We then select
the node which induces the smallest lwidth as the pivot. In
future, we plan to develop more efficient algorithms for pivot
selection.

3.3 Dealing with Disconnections
Until now, we have assumed that the junction tree is a

single tree that connects all the variables. However, the
random variables may be correlated as a forest of junction
trees. Here, we adapt our lineage processing algorithms to
deal with these disconnections. In the first step, we split
the query into subqueries over each of the components in
the junction forest. For instance, consider the query Q =
(d ∨ e) ∧ (b ∨ c ∨ q) over the junction tree in Figure 2(iii).
We see that the variables in the lineage formula belong to
three different connected partitions {d, e} in one partition
P2, {b, c} in the second partition, P1 and q in the third
partition P6. Hence, we split Q into three subqueries, one
for each connected partition. However, we see that instead
of posing an inference query {d, e} on P2, we can actually
pose a lineage query d∨e on P2. Similarly, we can pose query
b ∨ c on P1 and query q on P6. After executing each query
independently on each of the components in the junction
forest, we get 3 pdfs, namely p(d ∨ e), p(b ∨ c) and p(q).
We combine the result pdfs together using the Eager+Order
heuristic as described before.



4. LINEAGE PROCESSING USING INDSEP
In the previous section, we described efficient techniques

for processing lineage formulas on junction trees. However,
they do not scale to large scale junction trees, since per-
forming a lineage query over few variables may require the
algorithm to access the entire junction tree. Hence, we use
INDSEP, the recursive query processing framework that we
developed in our prior work [18], to scale our lineage pro-
cessing algorithms.

4.1 Recursive Approach
Recall that INDSEP is a hierarchical, tree-like data struc-

ture built on top of a junction tree (or a forest of junction
trees). Lineage processing on INDSEP, analogous to any hi-
erarchical index proceeds by recursion. Now, we describe the
key recursion step for processing lineage formulas. During
lineage processing, each index node involved is given as in-
put, a set of expressions ExpressionSet which has two types
of expressions contained in it: (1) Lineage formulas, which

we denote by ~λ, (2) Singleton random variables, which we

denote by ~V . The Index node is required to compute as
output, the joint probability distribution between the ex-

pressions in the set, i.e., p(~λ ∪ ~V ). The complete lineage
processing algorithm is shown in Algorithm 1. We explain
the algorithm using a simple example.

Algorithm 1 process lineage(inode, ~λ, ~V )

1: qvars = ~V ∪ variables(~λ)
2: for all v ∈ qvars do
3: found[v] = search(v, inode.vars)
4: Graph tree = inode.childTree.Steiner tree(found)
5: {found = set of child inodes that contain qVars}
6: JunctionTree jtree = null
7: for each node ∈ tree do
8: lvars = node.vars ∩ vars(~λ)

9: ivars = node.vars ∩ ~V
10: nrs = neighboring separator variables of node
11: if lvars = φ then
12: if ivars = φ then
13: jtree.add(inode.shortcutPotential(nrs))
14: else
15: jtree.add(inference(nrs ∪ ivars))
16: else
17: ~λ′ = getSubExp(~λ, lvars)

18: ~V ′ = nrs ∪ ivars ∪ (lvars− vars(~λ′))
19: if node is a leaf then
20: jtree.add(node.junctionTree.process lineage(~λ′, ~V ′))
21: else
22: jtree.add(process lineage(node,~λ′, ~V ′))

23: return jtree.process lineage(~λ, ~V )

Suppose we need to compute the probability of lineage
formula λ = ((d∨e)∧ (n∨o))∨ (b∧c) (shown in Figure 5(i))
over the INDSEP data structure shown in Figure 2(iv). In
the first step, we determine the random variables contained
in λ, in our case this is {b, c, d, e, n, o}. For each variable
here, we search for the child index node to which it belongs
(pick arbitrarily if a variable belongs to multiple child nodes)
(Steps 1-3). We then collect the variables present in each of
the child nodes (Steps 8-9). In our example, the child node
I1 contains the set of random variables {b, c, d, e} and I2
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Figure 5: (i) illustrates the computation of subexpressions (ii)
shows an intermediate junction tree generated in the root node
while processing ((d ∨ e) ∧ (n ∨ o)) ∨ (b ∧ c)

contains the set {n, o}. We now construct a Steiner tree
over the childTree of the node (Section 2.5), joining all the
child nodes which contain query variables (Step 4). In our
example, we construct the Steiner tree connecting I1 and I3,
over the childTree of the root (Figure 2(vi)). Now, we need
to determine the recursive calls to be made over the nodes in
the Steiner tree, i.e., the ExpressionSet (~λ′ ∪ V ′) that needs
to be posed to continue the recursion.

Determining Recursive Calls: We scan the set of ran-
dom variables allotted to a child node and check if we can
group the variables present in the child to form subformulas
of the input lineage. These are added to λ′ (getSubExp, Step
17). The remaining variables, which could not be grouped
are collected in V ′. In our example, in child I1, the random
variables b,c,d,e can be grouped into {d ∨ e, b ∧ c} (Figure

5(i)) and is therefore added to ~λ′, and there are no more
variables, hence V ′ is empty. Note that we still need to cap-
ture the correlations among the variables b∧ c, d∨e and the
rest of the variables in the query. Hence, we add the list of
variables in the relevant separators of the child node to V ′

to capture all correlations (Step 15, 18). In our example, we
add random variable c to V ′ since it is the separator of I1
(Figure 2(vi)). Hence, the complete ExpressionSet for child
I1 is given by {b ∧ c, d ∨ e, c}.

Recursion: Now, we proceed with recursive calls on the
child nodes using the ExpressionSet assigned to them. In
the special case when the ExpressionSet contains only sep-
arator variables, we can obtain the probability distribution
directly from the shortcut potential (Step 13). In our exam-
ple, since I2 does not contain any query variables, the only
variables added to its ExpressionSet are its separator vari-
ables (Figure 2(vi)), given by {c, j}. This can be answered
directly using the shortcut potential of I2. To bottom out
the recursion at the leaf nodes of the index, we use the algo-
rithm of Section 3 to process the issued ExpressionSet over
the junction trees contained in the leaf nodes (Step 20). Al-
though the algorithms in Section 3 were designed for a single
lineage formula, we can adapt them to process Expression-
Sets easily, by ensuring that we do not eliminate the random
variables that belong to other terms in the set.

Assembling Child Results: After obtaining the results
from the child nodes, they are assembled as a junction tree
- we call this the intermediate junction tree (IJT). We now
evaluate the remaining portion of the lineage over the IJT
and return the result to the parent node. In our example,
the child node I1 returns p(b ∧ c, d ∨ e, c), I2 returns p(c, j),
I3 returns p(j, n ∨ o), which is assembled as the junction
tree shown in Figure 5(ii). Note that the cliques in the IJT
contain newly created boolean variables d∨e, n∨o and b∧c.



We now compute the probability of ((d∨e)∧(n∨o))∨(b∧c)
over this junction tree using the algorithms of Section 3.

4.2 Shortcomings
Although the above algorithm works correctly, it has a

few shortcomings which we describe here.

Feasibility: The complexity of the above algorithm is not
entirely evident from the algorithm itself and is highly de-
pendent on the nature of the underlying junction tree, and
the structure of the lineage formula. If the random vari-
ables in the junction tree are independent, the algorithm
runs quickly even for large lineage formulas. If the variables
are correlated, then the complexity depends on the place-
ment of the variables of the lineage in the junction tree i.e.,
if the lineage formula can be decomposed over the junction
tree such that the subexpressions are present locally, the al-
gorithm is efficient. In the worst case, when the variables
are spread out arbitrarily, the algorithm can take time ex-
ponential in the size of the formula. This high variance in
the processing time is troubling and must be mitigated.

Redundant Variables: Since our underlying data model
is a forest of junction trees, there are a number of indepen-
dence relationships that are present among the random vari-
ables. However, Algorithm 1 is currently unaware of these
independence relationships and might perform unnecessary
computation. We illustrate this with an example. Consider
the index shown in Figure 2(iv). Suppose we are interested
in computing the probability of a ∧ o. The efficient way to
process this lineage is to compute p(a) and p(o) separately
since they are independent, and use them to determine the
probability of a∧o. However, Algorithm 1 proceeds by mak-
ing the following recursive calls on the child nodes I1: {a, c},
I2: {c, j} and I3: {j, o}, which is significantly more compu-
tation since we have to maintain joint probability distribu-
tions p(a, c), p(c, j) and p(j, o). The reason behind this is
that the knowledge of the disconnection is “hidden” in the
leaf of the INDSEP and can only be discovered when the
recursion reaches the leaf. Clearly, this computation is re-
dundant since a and o are actually independent.

Multiple Lineage formulas: Many output tuples of a con-
junctive query share common subexpressions in their lin-
eage. Instead of computing the probability of the same ex-
pressions repeatedly, we can exploit this commonality by
reusing the previously computed results. This could bring
down computation time by a large fraction. We note here
that such sharing is possible not only when the lineages share
terms, it is quite useful even otherwise when the Steiner
trees corresponding to the lineages share large paths. For
instance, consider the lineages c∧n and b∧m. In this case,
the lineage c∧ n recursively generates ExpressionSets {c, j}
on I2 and {j, n} on I3. Similarly, the lineage b∧m generates
ExpressionSets {b, c} on I1, {c, j} on I2 and {j, n} on I3.
The ExpressionSet {c, j} is common to both lineages and it
needs to be computed only once.

To effectively handle all the three issues discussed above,
we introduce a lineage planning phase to our algorithm,
which we describe in the next Section.

5. LINEAGE PLANNING & EVALUATION
We develop a two-pass approach to lineage processing - in

the first step, we work through the index and formulate a

select VIN from Ads, loc, 
rep where ads.seller = 

loc.seller = rep.seller and 
reputed = good and 

address = 12345

Relational 
Engine

x1∧y1 ∨ x2∧y2 
x1∧y3 ∨ x3∧y3 

Lineage Fomulae

Lineage 
Planner

Lineage 
Processor

Q1: [!], {dore}

Q2: [!], {bandc, n}

Q3: [!], {o}

Q: [(dore " (n#e)) # bandc]

Q1: [!], {dore}

Q2: [!], {bandc,c}
Q2: [!], {c, j}

Q2: [!], {j, n}

Q3: [!], {o}

Q1: [d#e], ! Q2: [b"c],{c} Q2: [!], {j,n} Q3: [!], {o}

Root

I1 I2 I3

P1 P2 P5 P6

Lineage Plan

Probabilistic Database

INDSEPINDSEP

Figure 6: System Overview: Input conjunctive query is first exe-
cuted by the relational engine which computes lineages of output
tuples. Lineage Planner then computes an optimal plan for pro-
cessing these lineages, which is executed by the Lineage Processor.

plan for the lineage and in the next step, we execute the for-
mulated lineage plan. We illustrate the complete sequence
of query processing operations in Figure 6. As shown in the
figure, a conjunctive query is first executed by a relational
query processor and lineages of the output tuples are com-
puted (Section 6). Following this, the lineage planning and
the lineage processing phases occur; we describe these here.

5.1 Lineage Planning
In this phase, we determine the lineage plan, i.e., the set of

recursive calls to be made in each index node in the INDSEP
data structure. In addition, we optimize the lineage plan
by (a) identifying common subexpressions across a batch
of lineages and sharing such computation. (b) identifying
redundancies (c) estimating the lwidth induced by lineage
formula at the intermediate nodes in INDSEP.

Naive Plan: We first describe how to compute a naive lin-
eage plan. Note that we are given a batch of lineages as input
to the system. Just as in Algorithm 1, we determine the Ex-
pressionSet corresponding to each child node. However, in
this case, we have a list of ExpressionSets corresponding to
each index node. We denote this list by the notation Enode.
The expression set corresponding to the ith lineage is given
by Enode

i . The lineage plan is a hierarchical data structure
(corresponding to INDSEP) that essentially stores the Enode

list against each node. Now we discuss how to optimize the
naive lineage plan.

Batch/Multiple Lineage Processing: The INDSEP data
structure naturally allows the sharing of computation be-
tween lineage formulas that share subformulas. This results
not only in reduced number of disk accesses but also cpu pro-
cessing time. Here, we look for duplicate ExpressionSets in
each node in the lineage plan and remove them. After com-
puting the naive lineage plan, each node N in the lineage
plan stores the list EN as described above. Now, we modify
this list by removing the duplicate entries of ExpressionSets.
This ensures that we will only execute distinct Expression-
Sets. However, we need to maintain additional bookkeeping
information corresponding to the duplication to execute the
plan correctly. Specifically, we need a mapping from the list
EP to the list EN (P is the parent of N). This mapping
helps the lineage processor to correctly identify the parent
recursive calls generating the ExpressionSets.

However, even more aggressive sharing can be performed.
Suppose that processing lineage λ1 generates ExpressionSet
{j,m, n} on child I3 and processing λ2 generates Expres-
sionSet {m,n} on child I3. The above technique would treat
the two ExpressionSets separately since they are different.



However, a more useful technique here is to first compute
p(j,m, n) by evaluating ExpressionSet {j,m, n} and then us-
ing this result to compute p(m,n) (by eliminating j) which
is the result of evaluating ExpressionSet {m,n}. We plan to
consider such aggressive sharing in our future work.

Redundancy Detection: For simplicity, we discuss the
case of removing redundancies for a single lineage λ (The
discussion extends to batch of lineages as well). We take care
of detecting redundancies at the root level of the index itself.
Given a lineage formula λ as input, we split it into multiple
ExpressionSets, where each ExpressionSet corresponds to a
connected component, just as we described in Section 3.3.
We modify INDSEP to additionally store the knowledge of
the components in the junction tree. For each random vari-
able, INDSEP stores the id of the component to which it
belongs in a hash table. The hash table is constructed while
building the index and we use a Union-Find data structure
[5] to maintain this data structure up-to-date in response to
updates (inserting new tuple involves adding a new random
variable). By splitting the input lineage in this manner, we
guarantee that none of the nodes in the lineage plan contain
an ExpressionSet with two independent variables. Hence,
we never compute a joint pdf between a pair of independent
variables. After splitting the lineage as described above, we
use the previously described multiple lineage planning algo-
rithm to determine the lineage plan. In addition, we mark
the root so as to combine the results of each of the lineages
to produce the final result.

Lwidth Estimation: After modifying the lineage plan as
discussed above, we evaluate the feasibility of executing each
step of the plan. The feasibility is determined by estimating
the lwidth value at each node in INDSEP, since we pro-
cess ExpressionSets at each node. At the leaf nodes of the
tree, which correspond to the disk partitions, we process
ExpressionSets on the junction tree corresponding to the
disk partition (Step 20 in Algorithm 1). At each internal
node of INDSEP, after building the IJT, we process Expres-
sionSets on it (Step 23 in Algorithm 1). To estimate the
lwidth values, we use the eager+order heuristic described in
Section 3. In addition, we also compute the optimal pivot
locations. Note that we need not know the actual pdfs,
but only the sets of variables over which they are defined.
Hence, the time for estimating lwidths and pivots is quite
small, compared to the lineage processing times. When the
junction tree is disconnected, we estimate lwidth and deter-
mine the pivot for each partition separately along with the
lwidth involved in combining the results from the different
partitions together. We enforce an lwidth threshold on the
computation in order to bound the lineage processing time.
If the lwidth estimate at a given node exceeds the threshold,
then we mark the relevant node in the lineage plan to indi-
cate that we need to perform approximations (Section 5.3).
Our method ensures that we use approximations only for
the portions of the lineage formula that have large lwidths
and not for the complete formula as a whole. As we show
in our experiments, this significantly improves the quality of
our approximations.

5.2 Lineage Plan and Execution
Lineage Plan: As specified earlier, the lineage plan data
structure specifies the list of ExpressionSets to be executed
at each index node in INDSEP. The lineage plan is a tree

Q1: {d∨e}
Q2: {b∧c, n}

Q3: {o}
Q: (d∨e ∧ (n∨o)) ∨ b∧c

Q1: {d∨e}
Q2: {b∧c,c}

Q2: {c, j} Q2: {j, n}
Q3: {o}

Q1: {d∨e} Q2: {b∧c,c} Q2: {j,n} Q3: {o}

Root

I1 I2 I3

P1 P2 P5 P6

Figure 7: Lineage Plan for lineage λ = (d ∨ e)(n ∨ o) ∨ (b ∧ c)

based data structure, where each node in the tree corre-
sponds to one of the index nodes in INDSEP. Each lineage
plan node N (with parent P ) in the lineage plan contains
the following which were computed in the previous section:

• (C1) Id of the index node to which it corresponds

• (C2) List of ExpressionSets: EN ={EN
1 , E

N
2 , . . . }

• (C3) Optimal pivot(s), lwidth(s) - do we approximate ?

• (C4) Can we get results from shortcut potentials ?

• (C5) Pointers to children, Hashtable (EP → EN )

• (C6) Whether to combine multiple lineage results ? (e.g.,
due to disconnections)

An example of a simple lineage plan, for the lineage λ =
(d ∨ e)(n ∨ o) ∨ (b ∧ c) is shown in Figure 7. Notice that
we have indicated the INDSEP node to which each plan
node corresponds. Owing to disconnections, λ is initially
split into three ExpressionSets {d ∨ e}, {b ∧ c, n} and {o}.
Hence, the root has 3 ExpressionSets, and an additional
ExpressionSet while tells the lineage processor to combine
the results together. Q1 introduces recursive calls {d ∨ e}
over I1 as shown in the figure. Also Q2 introduces recursive
calls {b∧ c, c}, on I1, {c, j} on I2 and {j, n} on I3 as shown.
Note that the ExpressionSet corresponding to I2 is marked,
since it can be directly obtained from the shortcut potential
of I2. Q3 introduces recursion over I3 as shown in the figure.

Executing the Plan: We execute the lineage plan via re-
cursion over the lineage plan structure. We explain the key
recursive step here. Given a lineage plan P on an index node
I, we recursively assign children of P to the respective child
nodes of I. We collect the results of the executions of each of
the child nodes and construct the IJTs (Section 4) using the
hashtable mappings. Now, we execute the ExpressionSets
contained in I over the IJTs using the optimal pivot loca-
tions, and return the result to I ′s parent. We have 2 special
cases to take care of: (1) when the lineage plan is marked,
we directly obtain the result from the shortcut potential (2)
Whenever the lwidth exceeds the threshold, we perform ap-
proximations while processing lineage (Section 5.3). When-
ever the index node corresponds to a leaf, we execute the
ExpressionSets on the junction trees corresponding to the
leaf and return the results to the parent node.

5.3 Approximation Technique
In this section, we describe how we deal with lineage for-

mulas that induce large lwidths on the underlying junction
tree. Currently, we use a simple Monte Carlo technique
which is based on Gibbs sampling [11]. The accuracy of the
estimates can be improved by using more samples. In our
ongoing work we are developing new techniques based on



modifying lineage formula to allow efficient processing, sim-
ilar to the approximate lineage computation of Re et al. [25].

The central idea behind this technique is to use samples of
the probability distributions and pass them around as mes-
sages, instead of the complete pdfs. We modify the Eager
and the Eager+Order message passing algorithms of Sec-
tion 3 in order to support sampling techniques.

The algorithm we present is a recursive algorithm on the
junction tree. We illustrate it with a simple example. Sup-
pose that we want to compute the probability of (a∧k)∨h in
the Junction tree of Figure 2(iii). We construct the Steiner
tree corresponding to a, k and h as before and also select
a pivot node. Suppose we select clique (ac) as pivot. In
the first step, the clique (ac) constructs N samples from
the pdf p(a, c) and sends it to clique (cfg). The clique (cfg)
now computes p(g, f |c), (dividing p(g, f, c) by p(c)) and uses
the samples (ci) from (ac) to generate samples (gi, fi) from
p(g, f |c). Now clique (cfg) recursively sends samples gi to
clique (gjk) and samples fi to clique (fh). These cliques, re-
turn samples corresponding to k and h respectively to clique
(cfg). Now (cfg) combines these samples and returns them
(ci, hi, ki) to clique (ac), which now evaluates the probability
of (a ∧ k) ∨ h.

6. IMPLEMENTATION DETAILS
Our implementation is part of an ongoing effort to build

a scalable, general-purpose probabilistic database system
called PrDB that allows manipulating correlations and un-
certainty flexibly. The lineage processing component is im-
plemented in Java using JDK 1.5. We use a MySQL database
to store the data and the correlations. In addition to the
indexing and query processing components, our system con-
tains an input parser for users to declaratively insert data
and the correlations in the database. The parser allows users
to define correlations as factor objects and also insert them
against corresponding tuples in the database. For instance,
the statement: define factor mutex (0 0 0.4, 0 1 0.3, 1 0
0.3, 1 1 0) defines a mutual exclusion factor with the given
probabilities. We can then insert this factor on tuples x1 and
x2 (Section 1) using the statement insert factor mutex
in CarAds on x1.E, x2.E. In fact, we can also perform the
above statement on multiple tuples by including a <where>

predicate: insert factor (1 0.8, 0 0.2) in CarAds on E
where VIN = 2B1.

We use a simple query rewrite to track the lineages of the
result tuples of a conjunctive query by exploiting the con-

cat and the group_concat constructs of SQL. Given an SPJ
query such as, SELECT <S> FROM <F> WHERE <W>. We rewrite
this query as:

SELECT <S>, GROUP_CONCAT (SEPARATOR ‘+’) AS E

FROM


SELECT <S>, CONCAT(t1.E,‘*’,t2.E,‘*’,.. AS E

FROM <F> WHERE <W>

ff
GROUP BY <S>

Here, ti’s are the tables that are contained in the FROM clause
of the input query. We also assume that each of the input
tables has an attribute named “E” that represents the ran-
dom variable corresponding to its tuple uncertainty. The
boolean expression output by the above rewriting is not in
a read-once format. Hence, we use the co-graph recogni-
tion algorithm of Golumbic et al [12] to rewrite a boolean
formula as a read-once function. This algorithm is known
to be complete, i.e., if the boolean formula has a read-once
form, then it will find one such representation.

7. EXPERIMENTAL EVALUATION
The main objectives of our experimental analysis are to

show the benefits of (1) our heuristics for processing lineage
formulas over junction trees, (2) our lineage planning algo-
rithms to improve lineage processing times, (3) our approx-
imation algorithms to generate accurate results. We begin
with a discussion of the experimental setup.

Dataset: We generated a synthetic dataset with 3 rela-
tions R1, R2, R3, each of size 100,000 tuples that corre-
spond to the Car Ads application (Section 1). All tuples
are uncertain. In addition, each tuple in the relation was
correlated with a random number (between 2-10) of other
tuples in the database. The correlations are randomly gen-
erated factors that correspond to the conditional probability
distributions. After populating the database, we build the
junction forest (set of junction trees) and use the algorithms
from [18] to construct the INDSEP data structure. To gen-
erate databases with varying amounts of correlations, we
vary the sizes of the connected partitions in the junction
tree. We generate 3 different datasets, each with different
partitioning sizes. Database D1 has single node partitions,
i.e., it is a tuple independent database. D2 has partitions
of size 100, i.e., it is lightly correlated. D3 is a moderately
correlated database with partitions of size 1000. In addition,
we generate a Markov sequence denoted by M [17], which is
a single junction tree.

Query Workload: We used the query Q from the intro-
duction as part of our experiments. We carefully vary the
data in the join columns in order to create lineages of dif-
ferent sizes. We also generate artificial lineages of the form
A1∧A2∧A3, where each Ai is a disjunction of input random
variables, to illustrate the results.

Our most important experimental findings are as follows:

Suitability of INDSEP for Lineage queries: In this ex-
periment, we evaluate the benefits of INDSEP for process-
ing lineage queries. As noted before, INDSEP is extremely
useful for inference and aggregation queries. We run the
lineages of various sizes on the Markov sequence database
M alternatively, using: (a) INDSEP (b) directly on the un-
derlying junction tree. We measured the wall-clock times
for processing the lineage formulas for both cases. The bar
graph containing these results is shown in Figure 8(a). The
results are plotted as a function of the size of the formula.
We observe exponential decrease in the lineage processing
time. Note that the y-axis is in log scale, so the benefits of
INDSEP are more substantial than apparent.

Performance of the heuristics: We now evaluate the per-
formance of our heuristics Eager and Eager+Order for eval-
uating boolean formulas over a junction tree as opposed to
the Naive approach. We used both the heuristics alterna-
tively to bottom out the recursion (Section 4). We used both
D1 and D2 for this experiment. We compare the time taken
to evaluate a lineage formula for both the heuristics and
the naive approach as a function of the size of the formula.
We used lineages of different sizes varying from [10,150] for
the experiment. The time taken for lineage processing is
plotted in Figures 8(b) & (c). Note that the y-axis is in
log-scale. As shown in the figures, the Naive and the Ea-
ger approaches perform very poorly as compared to our Ea-
ger+Order heuristic. Even for small lineages below 30, the
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amount of processing time is very large, since very large in-
termediate pdfs are created by the heuristic. In contrast,
even for large lineage formula, the heuristic Eager+Order
performs very efficiently as shown in the figure (taking less
than 0.4 seconds for lineage of size 30 and about 7 seconds
for lineage of size 100).

Study of Lineage Processing Performance: Now, we il-
lustrate the performance of our lineage processing algorithm
as a function of the size of lineage. For each of the databases
D1, D2 and D3, we evaluate the time taken for exact lineage
processing (we set the lwidth threshold to be ∞) for differ-
ent lineage sizes. The times are plotted in Figure 8(c). As
shown in the figure, the lineage processing time increases as
the database becomes more correlated owing to the larger
intermediate pdfs generated during lineage processing. As
we can see from the figure, once the lwidths generated ex-
ceed 20, (the intermediate pdfs = 8MB) the algorithm is
largely unusable. The exponential blow-up due to the large
intermediate pdfs is evident from the figure. In addition,
the figure also shows the time taken by a special purpose
technique such as Mystiq [8] and Sen et al. [28] to process
lineages on the dataset D1. Our algorithm is quadratic in
the size of the formula, while special purpose techniques are
linear. Not surprisingly, our system performs poorly for tu-
ple independent probabilistic databases.

Lineage Planning (Batch Lineages): With this experi-
ment, we show the benefits of processing multiple lineages
together using our batch processing algorithm (Section 5.1).
We use correlated database D2 for our experiments and
we measure the time taken to process a workload using
the batch lineage processing algorithm and for comparison,
we process each lineage in the workload individually. We
compare the performance for random chosen small lineages
(< 20) and large lineages (> 50). The results are plotted
in Figure 8(e). As shown in the figure, the time taken by
the batch lineage processing algorithm is less than the time
taken for processing each lineage separately. Notice that
even for randomly generated lineages without any explicit
sharing, we obtain a significant reduction in the lineage pro-

cessing time. As the workload sizes get very large > 1000,
we gradually lose the benefits of the batch lineage process-
ing. This is because of the overheads that arise in removing
duplicates. Next, we evaluate the performance of the batch
lineage processing algorithm as a function of the amount
of sharing that is present between the lineages. We create
workloads with a sharing coefficient ranging from 0.0 (no
overlapping variables) to 0.6 (60% repetitions of variables)
and evaluate them on datasets D1 and D2. We plot the ratio
of the time taken for batch lineage processing to the time
taken for processing each lineage separately (Smaller ratios
are better). As shown in Figure 8(f), for both D1 and D2,
the lineage processing time reduces as the sharing coefficient
increases. Also, we find that the batch lineage processing is
more beneficial for correlated datasets than for completely
independent datasets.In fact, it induces an overhead for D1

at low sharing due to the blowup of the workload size at
the start of the algorithm. We also found that the batch
processing algorithms is quite beneficial for sharing across
inference queries.

Approximate Lineage Processing: Now, we evaluate the
accuracy of our approximate lineage processing algorithms.
We used the Markov sequence dataset M . We first com-
pute the error in the output probability as a function of
the number of samples used in our Monte Carlo algorithm.
We compute the exact probabilities by setting the lwidth
threshold to ∞. Since we were using the fully connected
junction tree, we had to limit the size of the formula to less
than 20. We used three workloads depending on the size
of formula - (5-10), (10-15) and (15-20). The results are
shown in Figure 8(h). As shown in the figure, for each of
the three workloads, we observe that the accuracy rate im-
proves with the number of samples. In fact, when we use
more than 500 samples, we only notice a difference in the
second decimal position. With 2000 samples, we notice an
error in the third decimal position. Next, we illustrate the
benefit of using INDSEP for our approximation. We first
run the approximation algorithm directly on the underlying
junction tree and then using INDSEP(1000 samples). We



used three kinds of lineage formula, short range, medium
range and long range lineages - which have varying spans on
the underlying junction tree. Span of a lineage is the size of
the Steiner tree induced by the lineage formula. As shown
in Figure 8(i), the amount of error using INDSEP is smaller
than the error without it. This is due to 2 reasons: First,
this is because of selectively approximating only portions of
the formula that lead to large lwidth. Second, due to the
shortcut potentials in INDSEP, the size of the effective junc-
tion tree is small. Also, the difference in the errors is more
pronounced for long range lineages. This is because the er-
rors continuously add up sequentially for large span lineages
when we process the lineage without INDSEP.

8. CONCLUSIONS
In recent years, there has been a significant increase in

the amount of large scale correlated probabilistic data be-
ing generated by two sources: Increasing use of machine
learning and data mining techniques to understand data on
the web, and the expanding use of low cost sensing devices
and other measurement infrastructure. Thereby, efficiently
processing queries over such data is becoming a significant
research task. In this paper, we develop techniques for evalu-
ating conjunctive queries over lightly correlated probabilistic
databases. While the general problem is #P-complete, we
develop algorithms to characterize the complexity of evalu-
ating a query. For queries with low complexity, we develop
techniques based on message passing algorithms over the
junction forest corresponding to the probabilistic database.
We develop Gibbs sampling based algorithms for evaluat-
ing queries that have very large complexity. Further, we
scale our algorithms to very large scale probabilistic data
using the previously proposed INDSEP index data struc-
ture. Our experimental results demonstrate the benefits of
our approaches for conjunctive query evaluation over corre-
lated probabilistic databases.
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