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Abstract

We study the design of truthful mechanisms that do not use payments for the generalized
assignment problem (GAP) and its variants. An instance of the GAP consists of a bipartite
graph with jobs on one side and machines on the other. Machines have capacities and edges have
values and sizes; the goal is to construct a welfare maximizing feasible assignment. In our model
of private valuations, motivated by impossibility results, the value and sizes on all job-machine
pairs are public information; however, whether an edge exists or not in the bipartite graph is a
job’s private information. That is, the selfish agents in our model are the jobs, and their private
information is their edge set. We want to design mechanisms that are truthful without money
(henceforth strategyproof ), and produce assignments whose welfare is a good approximation to
the optimal omniscient welfare.

We study several variants of the GAP starting with matching. For the unweighted version, we
give an optimal strategyproof mechanism. For maximum weight bipartite matching, we show
that no strategyproof mechanism, deterministic or randomized, can be optimal, and present
a 2-approximate strategyproof mechanism along with a matching lowerbound. Next we study
knapsack-like problems, which, unlike matching, are NP-hard. For these problems, we develop a
general LP-based technique that extends the ideas of Lavi and Swamy [14] to reduce designing a
truthful approximate mechanism without money to designing such a mechanism for the fractional
version of the problem. We design strategyproof approximate mechanisms for the fractional
relaxations of multiple knapsack, size-invariant GAP, and value-invariant GAP, and use this
technique to obtain, respectively, 2, 4 and 4-approximate strategyproof mechanisms for these
problems. We then design an O(log n)-approximate strategyproof mechanism for the GAP by
reducing, with logarithmic loss in the approximation, to our solution for the value-invariant
GAP. Our technique may be of independent interest for designing truthful mechanisms without
money for other LP-based problems.
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1 Introduction

The design of truthful mechanisms, where selfish utility maximizing agents have no incentive to
lie about their true preferences, has been studied in innumerable settings. The vast majority
of these mechanisms, however, assume the existence of money— a carefully designed payment
scheme incentivizes agents to report their preferences truthfully. However, there are settings where
monetary transfers are not feasible, either because of ethical or legal issues [16], or because of
practical issues with enforcing and collecting payments [17]. This observation has led to a growing
literature on designing mechanisms that incentivize agents to report their true preferences without
using payments: for convenience, we refer to such mechanisms as strategyproof.

In this paper, we focus on the design of strategyproof mechanisms for assignment problems. An
instance of an assignment problem consists of a bipartite graph with items, or jobs, on one side, and
bins, or machines, on the other; associated with each bin is a capacity, and with each edge a value
and a size. A feasible assignment is a (partial) mapping from items to bins, where no bin’s capacity
is exceeded by the sizes of the items assigned to it. The goal is to compute a feasible assignment
that maximizes welfare: the sum of the values of the jobs for machines they are assigned to.

The most general version of this problem, where both the size and value of a job can differ for
different machines, is referred to as the generalized assignment problem (GAP). A number of well-
known algorithmic assignment problems are special cases of the GAP. For instance, the problem
with just one bin is the knapsack problem, and the problem with unit-sized items and bins is
the maximum weight bipartite matching problem. Assignment problems are ubiquitous, and have
been extensively studied due to their vast applicability, both from an algorithmic and mechanism
design perspective. However, studying these problems in a setting without money, as we do, adds
additional difficulties, since properties like monotonicity and weak monotonicity (see [15, 3, 13, 16])
no longer suffice for truthfulness. Moreover, the popular VCG mechanism, as well as the maximal
in range paradigm, require payments for truthfulness.

There are a number of settings where part of the input to an assignment problem is held by
selfish agents, and the problem must be solved without the use of money. Unfortunately, as we
discuss in § 2.3, not much can be done if jobs hold their real-number values for the various machines
private; this is consistent with many impossibility results from social choice theory. In this paper,
we therefore focus on a restricted, yet natural, setting that admits interesting results— for each
pair (i, j), it is public knowledge that the value of job i for machine j is either vij or 0, but job i
holds private which of those is the case for each j. This models situations where the private data
encodes a compatibility relation between jobs and machines; the public vij values arise in situations
where the value derived from an assignment materializes over a public channel (for instance via a
verifiable financial transaction). As a result, a job cannot hide its true value for any machine it
anticipates being assigned to, although it can misreport a non-zero value as 0, a lie that will not be
discovered since the job will not be allocated to this machine. We will see that, if the mechanism is
not chosen carefully, such strategic manipulations can be beneficial to a selfish agent even in very
simple instances of the GAP. We also note that this is a multi-parameter problem, where each job
holds one bit of private information for each of the bins.

There are several natural settings that correspond to our model of private values. Suppose,
for instance, a group of people are to split up a collection of tasks. Each task requires different
skills, and how well each person can perform a task is public knowledge. Each task also has
different time and location constraints, and whether or not the constraint is feasible for a person
is only known privately to her. This problem is an instance of weighted bipartite matching; while
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finding an optimal solution is computationally easy, we are interested in algorithms that also ensure
strategyproofness. In another example, consider a resource allocation problem, such as scheduling
jobs on a collection of non-identical machines. The value of running a job on a machine, as well as
the time it takes, is public knowledge. However, each job requires specific hardware and software
that is available on only some of the machines. Moreover, only the owner of the job knows which
machines are compatible with the job. Here, the algorithm used to assign jobs to machines must
ensure that the jobs do not have an incentive to lie about which machines are compatible.

As in [17], we are interested in strategyproof mechanisms that achieve a good approximation to
the welfare of the optimal omniscient solution. The need for approximations arises for two reasons
in our work: first, the GAP is NP-hard, as are several of its special cases; i.e., approximation is
necessitated by computational intractability. The second reason is much more interesting— unlike
in settings with payments, solving the allocation problem optimally does not necessarily lead to a
truthful mechanism, and we need to sacrifice approximation in order to obtain truthfulness. We will
see both factors playing a role as we seek strategyproof mechanisms that are good approximations
to the various special cases of GAP. For example, we will see that no strategy proof mechanism
for maximum-weight matching can be optimal, and we must sacrifice an approximation factor of 2
for truthfulness. In contrast, a (non-polynomial time) algorithm that returns an optimal solution
to the multiple knapsack problem while breaking ties consistently is strategyproof; however, since
we are interested in polynomial-time strategyproof algorithms, we must resort to an approximately
optimal mechanism that is both truthful and polynomial-time implementable.

Why would an agent benefit from lying in assignment problems when there are no payments?
Consider, for instance, the weighted bipartite matching problem (§3.2). Consider the following
instance: job a1 has edges with weights 1+ǫ and 1 to machines b1 and b2, and job a2 has an edge to
b1 with weight 1. An algorithm that simply chooses the maximum weight matching according to the
reports incentivizes job a1 to simply claim that the second edge does not exist: in the first case, the
assignment chosen is (a1, b2), (a2, b1), whereas in the second case, the assignment chosen is (a1, b1),
which suits a1 better, with value 1 + ǫ. This example makes it clear that that the optimal (and
obvious) algorithms are not necessarily truthful— not surprisingly, a carefully designed algorithm
is essential to ensure that no agent has an incentive to lie, exactly as in mechanism design with
money.

1.1 Our Results

We study the design of approximation mechanisms that are truthful without money for several
variants of the GAP. We begin in § 3 with matching, which can be solved optimally in polyno-
mial time from a purely computational perspective. We show that for the maximum matching
problem, where all edge values are equal, simply returning the optimal solution while breaking
ties consistently leads to a strategyproof mechanism. However, when a job’s value depends on the
machine, as in weighted bipartite matching, no deterministic strategyproof mechanism can achieve
an approximation better than 2; we provide such a mechanism.

Next, we examine knapsack-like variants of the GAP. Instead of specially tailored combinatorial
algorithms for each variant, we extend the techniques in [14] to reduce designing a truthful mech-
anism without money to designing such a mechanism for the fractional version of the problem: if
the strategyproof mechanism for the fractional version yields an α approximation to the optimal
fractional solution, and the corresponding LP has integrality gap β, we derive a strategyproof ran-
domized mechanism for the original problem with approximation ratio α ·β. This technique applies
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to a large class of packing problems, and may of independent interest.
The GAP has integrality gap 2, so a fractional strategyproof mechanism with approximation

ratio α yields a 2α strategyproof (in expectation) mechanism for each of the knapsack-like variants
of the GAP that we study. In § 4.2, we show, using network flows, that solving the fractional version
of the multiple knapsack problem (MKP) optimally, while breaking ties consistently independent
of the reported edges, gives an optimal strategyproof (fractional) mechanism. For size-invariant
GAP (SIGAP), there is no optimal truthful (fractional) mechanism without money— in §4.3, we
design a strategyproof, 2-approximate greedy algorithm for fractional SIGAP. Using our extension
of [14] gives, respectively, 2 and 4-approximate strategyproof mechanisms for MKP and SIGAP. In
§4.4, we sketch the construction of a 4-approximate strategyproof mechanism for value-invariant
GAP (VIGAP), as well as a O(log n)-approximate strategyproof mechanism for the GAP.

We point out that without the polynomial time restriction, there exist optimal strategyproof
mechanisms for all variants of GAP where a node has the same value for each of its neighbors.
That is, for maximum matching, MKP and VIGAP, simply solving the problem optimally, while
breaking ties consistently independent of the private values (edges), leads to a truthful-without-
money mechanism. For these problems, it is only computational intractability which causes us to
lose an approximation factor. This is in contrast to the variants where a node has different values
for different edges such as maximum weight matching and its generalizations. There, as we show
in Theorem 3.3, strategyproofness and optimality cannot be achieved simultaneously.

1.2 Related Work

Assignment problems have been studied extensively in the algorithms literature. Shmoys and
Tardos [18] presented a 2-approximation for a minimization version of the GAP, and Chekuri and
Khanna [10] observed that a 2-approximation to the maximization version – the version considered
in this paper – is implicit in [18]. Moreover, it was shown in [10] that the multiple knapsack problem
– a special case of the GAP – admits a PTAS1, yet most generalizations of MKP – including the
GAP– are APX hard. Fleischer et al [12] obtained a e

e−1 approximation for the GAP, and showed
that this is optimal for a slight generalization of the GAP. However, Feige and Vondrak [11] then
showed that the GAP admits a constant approximation slightly better than e

e−1 , and this is the
best currently known.

A number of results for the mechanism design version of assignment problems are known,
although these are all in settings with money. In all of these results, the items hold their values
private, and the rest of the instance is public. A 2-approximate truthful-in-expectation mechanism
follows immediately from the framework of Lavi and Swamy [14]. Moreover, Briest et al [7] devised a
truthful FPTAS for the knapsack problem, as well as a truthful PTAS for VIGAP when the number
of bins is fixed. Recently, Azar and Gamzu [5] obtained a truthful 11-approximate mechanism for a
variant of MKP, and Chekuri and Gamzu obtained a 2 + ǫ approximation for a variant of VIGAP.
We note that all the above mechanisms use money, and moreover the mechanisms in [7, 5, 9]
consider an incomparable setting to ours: our model is multi-parameter whereas theirs is single-
parameter, but we consider a binary private value for each item and bin as opposed to an arbitrary
real number.

1However, we note that this PTAS is not applicable to the generalization of MKP that we consider, where
assignments are constrained by a bipartite graph over items and bins. It follows from [10, Theorem 3.2] that this is
APX-hard.
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Mechanisms without money have a rich history in the social choice literature; for a survey, see
[16]. Interest in approximate mechanisms without money has been sparked by the recent work
of Procaccia and Tennenholtz [17], which introduces the idea of using approximation to enable
truthfulness in settings where solving optimally does not admit truthfulness without money. Ap-
proximate mechanisms without money have been developed for facility location [17, 1], and selecting
influential nodes in a social graph [2]. In very recent work, Ashlagi et al. [4] study strategyproof
mechanisms for matching motivated by kidney exchange. While we also study (bipartite) matching
as a special case of the GAP, their model is very different from ours: each agent owns a set of
vertices in a graph, and reports the existence of vertices to maximize the number of her vertices
matched by the mechanism, plus the number that she can match amongst her hidden vertices and
the vertices unmatched by the mechanism. Also related is the work of [8], which studies a very gen-
eral combinatorial assignment problem without money, and designs a mechanism which sacrifices
efficiency, as well as weakens the notion of incentive compatibility, to achieve fairness.

2 Model

We describe the optimization version of the Generalized Assignment Problem (GAP), as well as
its various special cases that we consider, in §2.1. We then review truthfulness in §2.2, and discuss
the limitations of truthfulness without money for the GAP in §2.3. These limitations motivate our
model of private valuations, which we then introduce in §2.4.

2.1 The Generalized Assignment Problem

In the GAP, there are n jobs andmmachines. We denote the set of jobs by [n] = {1, . . . , n}, and the
set of machines by [m] = {1, . . . ,m}. Machine j has capacity cj ∈ R

+. For each job i and machine j,
we associate a value vij ∈ R

+ and a size sij ∈ R
+. An assignment is a function x : [n] → [m]

⋃
{∗}

partially mapping jobs to machines, where ∗ indicates that a job is left unassigned. We use x(i)
to denote the machine (or ∗) that job i is assigned to. Moreover, the binary variable xij indicates
whether x(i) = j. A feasible assignment may allocate to machine j a set of jobs of total size at
most cj . The GAP can be written as an integer program with decision variables {xij}ij ; the LP
relaxation obtained by relaxing the constraint xij ∈ {0, 1} is given below.

maximize
∑

i,j vijxij
subject to

∑m
j=1 xij ≤ 1, for i = 1, . . . , n.∑n
i=1 sijxij ≤ cj , for j = 1, . . . ,m.

0 ≤ xij ≤ 1

(GAP LP)

The above LP is known to have an integrality gap of 2, and the rounding can be done in
polynomial time [18, 10].

As detailed in §2.4, we consider a setting where the private data is a bipartite graph specifying
job-machine compatibility. That is, the private data are not the values vij or the sizes sij, but
rather the existence of the edge (i, j). Note that this does not change the GAP from an algorithmic
point of view, since one can encode the compatibility relation in the values {vij}ij. We define
GAP[E] for a bipartite graph E ⊆ [n] × [m] as the problem of computing the welfare-maximizing
assignment using only edges in E. The LP relaxation of GAP[E] is given below.
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GAP ≡ GAP[E]

SIGAP ≡ SIGAP[E] VIGAP ≡ VIGAP[E]

MKP[E]

MKP

MWBM ≡ MWBM[E]

MBM[E]

Figure 1: Relationships between Assignment Problems
Arrow indicates the second problem is a special case of the first.
The ≡ symbol indicates computationally equivalent problems.

maximize
∑

i,j vijxij
subject to

∑m
j=1 xij ≤ 1, for i = 1, . . . , n.∑n
i=1 sijxij ≤ cj, for j = 1, . . . ,m.

0 ≤ xij ≤ 1
xij = 0, for (i, j) /∈ E.

(GAP[E] LP)

We distinguish several variants of the GAP and their respective bipartite-graph versions. The
Size-Invariant Generalized Assignment Problem (henceforth SIGAP) is the problem where the size
of a job i does not depend on the machine – we denote this size by si. Similarly, the Value-
Invariant Generalized Assignment Problem (henceforth VIGAP) is the problem where the value
of a job i does not depend on the machine – we denote the value by vi. The Multiple Knapsack
Problem (henceforth MKP) is the problem where neither size nor value depend on the machine.
The knapsack problem (henceforth KP) is MKP with m = 1.

In addition to knapsack-type problems like those dicussed above, the GAP also generalizes bipar-
tite matching problems. The maximum weight bipartite matching problem (henceforth MWBM) is
the problem where all capacities and sizes are 1. The maximum bipartite matching problem (hence-
forth MBM) is the special case of MWBM where all values are 1. The latter is only interesting
when constrained by a graph; that is, when we consider MBM[E] for some E ⊆ [n]× [m].

When discussing a special case of GAP, say MKP, we refer to the bipartite-graph constrained
version as MKP[E]. Moreover, we refer to (GAP LP) and (GAP[E] LP) as (MKP LP) and (MKP[E]
LP), respectively. We also use similar notation for other special cases of the GAP.

Figure 1 illustrates the ordering of the various assignment problems by generality. We summarize
the known algorithmic results, both upper and lower bounds, in Table 1.
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Problem Upper Lower Integrality

Bound Bound Gap

GAP/ GAP[E] e
e−1 − δ APX-hard 2

SIGAP/ SIGAP[E] e
e−1 − δ APX-hard 2

VIGAP/ VIGAP[E] e
e−1 − δ APX-hard 2

MKP[E] e
e−1 − δ APX-hard 2

MKP PTAS Strongly NP-hard 2

MWBM/ MWBM[E] 1 1 1

MBM[E] 1 1 1

Table 1: Computational Upper and Lower Bounds
δ is a small, positive, fixed real number.

The integrality gap is given for the standard LP relaxation.

2.2 Truthfulness

We consider the setting where jobs are selfish agents, and their private types encode information
about their value for being assigned on different machines. Other information, such as n,m, {sij}ij
and {cj}

m
j=1 is considered public2.

We assume that player i has a type vi = {vij}
m
j=1, specifying his value for the different machines.

We assume the possible types of player i are restricted to some public set Vi ⊆ R
m, and use V to

denote V1 × . . .Vn. For example, when working in the multiple knapsack problem, we require that
for each job i there is a real number vi such that vij = vi for all j. Moreover, as we will see in §2.3,
no interesting results without money are possible if possible values are unbounded. Therefore, our
positive results will assume a restricted, discrete set of possible types described in §2.4.

A mechanism without money for the GAP is simply an algorithm that takes in all the problem
data, public and private, and outputs an assignment of the jobs to the machines. We allow our
mechanisms to be randomized. We use A(I, v) to denote the output of mechanism A on public
data I and private data v ∈ V. Each mechanism A and instance of the public data I induces a
social choice rule : a function A(I, ∗) mapping private valuations to assignments.

We now state truthfulness without money generally.

Definition 2.1. Fix a mechanism without money A, let x denote the assignment A(I, v), and let
x′ denote the assignment A(I, v−i

⋃
v′i) when player i changes his report to v′i. Mechanism A is

truthful if and only if the following always holds for for each I, v ∈ V, i, and v′i ∈ Vi.

m∑

j=1

vijxij ≥
m∑

j=1

vijx
′
ij. (1)

2It is conceivable that the job sizes sij are private information as well. However, if jobs can lie about their sizes,
we need to define the utility to a job when it is fractionally assigned— a job can either derive fractional utility from
a fractional assignment, or zero utility if it is not fully assigned to a machine. Both models are reasonable; for the
first, a nontrivial proof shows that no reasonable approximation can be obtained by any randomized strategyproof
mechanism. For the second model , where jobs derive no utility from partial assignments, it turns out that jobs have
no incentive to lie about their sizes in any of the algorithms we design.
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Similarly, a randomized mechanism A is truthful in expectation without money if and only if

E[

m∑

j=1

vijxij] ≥ E[

m∑

j=1

vijx
′
ij]. (2)

In other words, a mechanism A is truthful if a job never benefits from misreporting its private
data. A randomized mechanism A is truthful in expectation if no (risk-neutral) job has an incentive
to misreport its private data.

2.3 Limits of Truthfulness without Money

Here, we will justify considering a discrete valuation model by observing that, assuming general
valuations, no interesting results are possible. Indeed, we assume a restricted setting: the knapsack
problem, with a knapsack of capacity 1, and jobs of size 1. If Vi = R

+ for each i, then it is easy
to see that this is equivalent to the classical problem of a single item auction [19]. It is well known
that no non-trivial guarantees are possible for a single-item auction if the mechanism is required
to be truthful-in-expectation without using money. In fact, it is easy to see that no mechanism
can outperform the trivial one which allocates the item (in our case, the entire capacity of the
knapsack) uniformly at random, achieving an approximation ratio of n.

2.4 The Private Graph Valuation Model

Given that no nontrivial upperbounds are possible when players can arbitrarily misrepresent their
values, we consider a restricted model of the valuations: one of a discrete nature as is characteristic
of many problems for which truthfulness without money is possible. We assume job i has a value
of δijvij for being assigned to machine j, where vij is public and δij ∈ {0, 1} is private. In other
words, jobs may not lie about their potential value vij (that is, vij are publicly known or verifiable),
yet they may lie about which machines they are compatible with. This compatibility relation is
encoded via a bipartite graph on the jobs and machines. Each job’s private data is the set of its
outgoing edges, i.e. the machines with which it is compatible. As we discuss in §1, this situation
arises in many natural settings.

An instance of the GAP on a private bipartite graph is a pair (I,E), where I is a tuple
({vij}ij , {sij}ij , {cj}j) of public information, and E ⊆ [n] × [m] is private information solicited
from the jobs. E is a set of edges summarizing the compatibility of jobs and machines, where job
i’s private data is the set Ei ⊆ E of edges in E incident on i. A job i receives value vij from being
assigned to machine j only if (i, j) ∈ E, else it receives value 0. Our goal is to maximize welfare
via a mechanism that, without using money, incentivizes i to report her set Ei of edges truthfully.

We can now restate truthfulness as it applies to our model. We use A(I,E) to denote the
assignment computed by mechanism A on instance (I,E). Moreover, for an edge set E we use
Ei ⊆ E to denote the set of edges with one endpoint at job i, and use E−i to denote E \Ei.

Definition 2.2. For a mechanism without money A, let x denote allocation A(I,E), and let x′

denote allocation A(I,E−i
⋃

E′
i). A is truthful if and only if the following holds for each I, E, i,

and E′
i. ∑

j:(i,j)∈Ei

vijxij ≥
∑

j:(i,j)∈Ei

vijx
′
ij (3)
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Similarly, a randomized mechanism A is truthful in expectation if and only if

E[
∑

j:(i,j)∈Ei

vijxij ] ≥ E[
∑

j:(i,j)∈Ei

vijx
′
ij] (4)

Note that the summation on both sides of the inequality is over the set of true edges Ei: that
is, A is truthful [in expectation] if when a job misreports its incident edges, its [expected] utility
from the new assignment x′ does not increase on its true edges Ei.

3 Combinatorial Mechanisms for Matching

We will show that optimally solving the maximum matching problem, with some careful tiebreak-
ing, yields a strategyproof polynomial-time mechanism. For maximum weight matching, we show
matching upper and lower bounds of 2 for truthful mechanisms without money, and a constant
lowerbound for truthful-in-expectation mechanisms.

3.1 Warmup: Maximum Bipartite Matching

We consider the Maximum Bipartite Matching problem, constrained by a private bipartite graph E.
We observe that simply finding the maximum matching, using consistent tiebreaking, immediately
gives a strategyproof mechanism.

Proposition 3.1. Fix a total order ≺ on matchings in the complete bipartite graph. For a set of
edges E, let M(E) denote the set of matchings on edge set E. Let A be the mechanism that, on
input (I,E), finds the ≺-minimal matching in the set argmaxx∈M(E)

∑
ij xij. Then A is truthful.

Proof. Assume for a contradiction that A is not truthful. Then, there exists I and E = (E−i, Ei)
and E′

i violating (3). Let x = A(I,E) and x′ = A(I,E′), where E′ = E−i
⋃
E′

i. Job i is not
matched by an edge in Ei in x, yet is matched by an edge in Ei in x′. Since A only uses reported
edges, i is not matched at all in x, yet is matched by an edge e ∈ Ei

⋂
E′

i in x′. This implies that
both x and x′ are in M(E)

⋂
M(E′). Observe that

∑
ij xij =

∑
ij x

′
ij , otherwise either x is not

optimal in M(E), or x′ is not optimal in M(E′), contradicting the definition of A. Therefore, both
x and x′ are optimal in both M(E) and M(E′). Recalling that algorithm A breaks ties consistently,
this yields a contradiction, as needed.

Therefore, it suffices to define ≺ so that the ≺-minimal maximum-matching on E can be com-
puted in polynomial time. This gives the following proposition.

Proposition 3.2. There is a polynomial-time, without-money mechanism for maximum bipartite
matching that is optimal, and truthful in the private graph model.

Proof. We represent each matching as a binary vector (x11, x12, . . . , x21, x22, . . . , xnm) in {0, 1}nm,
and let ≺ be the lexicographic order on these vectors. Then we proceed to find the ≺-minimal
maximum matching as follows. We compute the size OPT of the maximum matching (this can
be done in polynomial time). We then process edges in the order they appear in the vector
representation, while maintaining a working set of edges X initialized to E. When processing an
edge e, we check if removing e decreases the size of the maximum matching in X by solving the
problem on edges X \ e. If so we keep e in X, else we discard e by setting X = X \ e. When
finished, X is a maximum matching; it is easy to see that X is ≺-minimal among all maximum
matchings.
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Figure 2: Maximum Weight Matching Lowerbound
Circles represent jobs, and squares represent machines.

3.2 Maximum Weight Bipartite Matching

Next, we consider the MWBM problem, constrained by a private bipartite graph E. Unlike MBM,
we show constant lower bounds on the approximation ratio of truthful and truthful in expectation
mechanisms.

Theorem 3.3. No deterministic truthful mechanism without money for MWBM has approximation
ratio better than 2. Moreover, no truthful-in-expectation randomized mechanism gives better than
a 2

2
√
2−1

≈ 1.0938 approximation.

Proof. First, consider a deterministic mechanism A. Assume for a contradiction that A attains an
approximation α < 2. Consider Figure 2(a), where γ > 1. Both jobs 1 and 2 prefer machine a to
machine b. If we let γ be sufficiently close to 1, A cannot leave either job unassigned. Without
loss of generality, we assume job 1 is assigned to a and job 2 is assigned to b. Now consider job 2
changing his bid as in Figure 2(b). A cannot assign job 2 at all under these new bids, as that would
violate truthfulness. Therefore, when given the bids in Figure 2(b), the welfare of the solution is
at most γ, whereas the optimal is γ+1. Letting γ be sufficiently close to 1 gives the contradiction.

Now, we consider an arbitrary truthful-in-expectation mechanism A on Figure 2(a). At least
one of the jobs must be assigned to the preferred machine a with probability no more than 1/2;
without loss of generality this is job 2. Job 2 derives value at most (γ + 1)/2. Now, consider job
2 changing his bid as in Figure 2(b). By truthfulness, now A can assign job 2 with probability at
most p = (γ + 1)/2γ. Therefore, the welfare of the assignment returned on the bids of Figure 2(b)
is at most γ + 1 − (1 − p) · 1 = γ + p. However, the optimum is still γ + 1, so the approximation
ratio is at least

γ + 1

γ + p
=

γ + 1

γ + (γ + 1)/2γ

Using elementary calculus, we can choose γ to maximize this expression and complete the proof.

Therefore, we cannot hope for better than a constant factor approximation (specifically a PTAS,
randomized or deterministic, is not possible). We will show a factor 2 deterministic truthful mech-
anism, matching Theorem 3.3.

Consider the greedy Algorithm 1. Notice that step (1) does not depend on the reported edges
E.

9



Algorithm 1 Mechanism for MWBM on Private Bipartite Graph

1: Order pairs (i, j) ∈ [n]× [m] in decreasing order of vij , breaking ties arbitrarily.
2: Let X = ∅.
3: for all e ∈ E in the order defined above do

4: if X
⋃

{e} is a matching then

5: Let X = X
⋃
{e}

6: end if

7: end for

8: return X

Theorem 3.4. Algorithm 1 is a polynomial-time, 2 approximate, no-money truthful mechanism
for maximum weight bipartite matching in the private graph model.

Proof. The approximation ratio immediately follows from a standard charging argument against
the optimal solution.

For truthfulness, consider a job i misrepresenting his true edges Ei as E′
i. Let E′ = E−i

⋃
E′

i.
Let X be the matching returned by the algorithm on reports E, and let X ′ be the matching returned
on reports E′. If X = X ′, then i does not improve his value. Assume X 6= X ′, and let e′ ∈ E′

be the first edge in X ′ \X according to the order of step (1). Since the algorithm processes edges
in the bid-independent order of step (1), it is easy to see that e′ ∈ E′ \ E = E′

i \ Ei. Thus, i is
matched to e′ 6= Ei, an edge from which he derives no value, when he reports E′

i. This completes
the proof.

4 LP-Based Mechanisms for Knapsack type Problems

The bipartite matching problems studied in the previous section can be solved in polynomial time;
there, the need for approximation is a result purely of the requirement of strategyproofness. We now
investigate knapsack-like variants of the GAP — unlike matching, these problems are NP-hard (in
fact, they are APX-hard). The mechanisms we design have the following common structure: first,
we design a truthful mechanism without money for the fractional LP relaxation of the problem.
Then, as in [14], we use a randomized procedure to obtain a feasible integral assignment from the
fractional solution— this composition leads to a truthful-in-expectation mechanism without money.
We introduce this technique for designing truthful mechanisms without money in §4.1, and then
use it to design mechanisms without money for knapsack type assignment problems in §4.2-§2.1.
Some of our analyses will use notions from network flow theory, which we recap in Appendix B.

4.1 A Reduction to Fractional Truthfulness

The construction of Lavi and Swamy allows us to reduce constructing a truthful-in-expectation
mechanism (with money) for the integral problem to constructing a truthful mechanism for a
fractional version of the problem. We redevelop their construction, in a form convenient for our
purposes, in Appendix A. While the truthful mechanism they construct for the fractional welfare
maximization problem (defined in Appendix A) simply solves the problem optimally and uses VCG
payments, we observe that this need not be the case. Indeed, this is crucial for our purposes; for
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some of the assignment problems we are interested in, the optimal algorithm for the fractional prob-
lem requires non-zero payments for truthfulness. Instead, we sacrifice optimality in the fractional
solution to get a truthful fractional mechanism with zero payments. Then we use the fractional
mechanism to get a scaled down truthful-in-expectation mechanism – also with zero payments –
for the combinatorial problem as in Theorem A.5.

By examining the proof of Theorem A.5, we notice that the assumption that the fractional
mechanism solves the LP exactly is not used. In fact, an arbitrary truthful mechanism Mfrac

for the fractional problem can be converted to a truthful-in-expectation mechanism Mexp for the
combinatorial problem. If Mfrac is a β-approximation algorithm for the fractional problem, then
Mexp is an α · β approximation algorithm for the combinatorial problem, where α is the integrality
gap of the LP relaxation. Moreover, by examing the proof of Theorem A.5, we notice that the
payment scheme pexp of mechanism Mexp is simply a scaled down copy of the payment scheme
pfrac of Mfrac. In particular, if Mfrac is a truthful mechanism without money for the fractional
problem, then Mexp is a truthful-in-expectation mechanism without money for the combinatorial
problem. We sum up these observations in the following Lemma.

Lemma 4.1. Assume the fractional welfare maximization problem over polytope P and valuation
class V (as defined in Appendix A) admits a β-approximate mechanism that is truthful without
money. Moreover, assume P satisfies the conditions of Lemma A.4 with integrality gap α. Then
there exists an efficient truthful-in-expectation α · β-approximate mechanism for the welfare maxi-
mization problem over P and V that does not use money.

In other words, we reduce the problem of designing a truthful-in-expectation mechanism without
money to that of designing such a mechanism for its fractional relaxation. This will prove partic-
ularly useful, since arguing about truthfulness of a continuous fractional assignment algorithm is
more tractable than designing a combinatorial algorithm directly. Moreover, since the integrality
gap of (GAP LP) is 2, an α-approximate mechanism for a fractional assignment problem gives a
2α-approximate mechanism for the integral problem. (Recall that the algorithm of [18, 10] shows
an integrality gap of 2 for GAP as needed for Lemma A.4.)

Corollary 4.2. Consider any special case of the GAP. If the fractional version of the problem ad-
mits a β-approximate mechanism that is truthful without money, then there exists a 2β-approximate
truthful-in-expectation mechanism for the combinatorial problem without money.

A note is in order on the LP relaxations of the GAP and various cases used in this reduction.
Observe that the LP’s for the variants of the GAP on a bipartite graph do not fit the framework
of [14]. This is because the valuation – i.e. the edges – are encoded explicitly in the polytope and
not in the objective. However, this is not a problem for us, since the equivalent GAP LP does
fit the framework. Therefore, after getting a fractional solution to, say, MKP[E], we can simply
re-interpret it as a fractional solution to (GAP LP) and perform the reduction of Lavi and Swamy.

4.2 The Multiple Knapsack Problem

We consider the multiple knapsack problem on a private bipartite graph E. First, we make the
simple observation that, if we ignore computational constraints, there exists a truthful optimal
mechanism for the multiple knapsack problem in the private graph model. As in maximum (un-
weighted) bipartite matching, simply returning an optimal solution, breaking ties consistently, leads
to a strategyproof mechanism.

11



Proposition 4.3. Consider the without-money mechanism that, on reports E ⊆ [n] × [m], finds
the optimal integral solution to MKP[E] LP, breaking ties consistently via an arbitrary total order
� on the set of assignments ([m]

⋃
{∗})[n]. This mechanism is truthful in the private graph model.

Proof. Fix a player i with true edges Ei, and fix the reported edges E−i of the other players. Let x
be the assignment on reports E = (Ei, E−i), and let x′ be the assignment on reports E′ = (E′

i, E−i).
Assume for a contradiction that truthfulness is violated, in particular that x(i) = ∗, yet x′(i) = j
for some machine j where (i, j) ∈ Ei.

Recall that x is the optimal feasible solution for MKP[E], and x′ is the optimal feasible solution
for MKP[E′]. Since i is unassigned in x, we know that x is feasible for MKP[E′] as well. Moreover,
since x′ assigns i using an edge in E, we know x′ is feasible for MKP[E]. We conclude that each
of x and x′ is feasible and optimal for MKP[E] and MKP[E′]. This contradicts the consistent
tie-breaking of the mechanism.

The above implies that, unlike maximum weight matching and its various generalizations, MKP
is not fundamentally incompatible with truthfulness without money – at least when ignoring compu-
tational constraints. Nevertheless, MKP on a bipartite graph is APX-hard. Therefore, we consider
the problem of finding a truthful constant-factor approximation. Though a simple greedy algorithm
gives a deterministic, truthful 2 + ǫ approximation, we will instead illustrate our techniques from
Section 4.1 – which will also come in handy for other generalizations of the GAP – by designing a
randomized, 2-approximate, truthful-in-expectation mechanism for MKP in our model.

By the discussion in §4.1, it suffices to devise a truthful fractional algorithm in the sense of
Equation (6) of Appendix A. In this section, we show that solving (MKP[E] LP) optimally,
with careful tiebreaking, yields such an algorithm. By Corollary 4.2, this yields a 2-approximate
truthful-in-expectation mechanism for MKP in the private graph model.

Algorithm 2 Fractional Mechanism for MKP on Private Bipartite Graph

Input: Public instance of MKP, and reported edges E.
Output: A feasible optimal solution x for MKP[E] LP
1: Fix an arbitrary order on the edges of the complete bipartite graph [n] × [m]. Let ≺ be the

lexicographic order on [R][n]×[m] corresponding to the order on edges.
2: Find the optimal solution x to MKP[E] LP, breaking ties according to ≺.
3: return x

Consider Algorithm 2 for the fractional multiple knapsack problem on a bipartite graph. First
of all, it is easy to see that Algorithm 2 can be implemented in polynomial time by solving a
sequence of linear programs in step (2). In order to show truthfulness, we will use a flow-based
interpretation of Algorithm 2. For reported edges E, we define graph G[E], seen in Figure 3, as
follows. There is a node for each job, and a node for each machine. We connect job i to machine
j if (i, j) ∈ E, with weight w(i,j) = 0 and capacity c(i,j) = ∞. Next, we include a source node s,
and create an edge (s, i) for each job i with weight w(s,i) = vi/si and capacity c(s,i) = si. We then
create a sink t and create an edge (j, t) for each machine j, with weight w(j,t) = 0 and capacity
c(j,t) = cj . Finally, we connect the sink to the source via an edge (t, s) with w(t,s) = 0 and capacity
c(t,s) = ∞.

Observe that fractional assignments [0, 1][n]×[m] are in one to one correspondence with feasible
circulations in the complete bipartite graph G[[n] × [m]]. Moreover, feasible solutions of MKP[E]
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Figure 3: Flow Interpretation of the Multiple Knapsack Problem
Edges are labeled with (weight,capacity) pairs.

LP are in one-to-one correspondence with feasible circulations in G[E]. In particular, assignment
x feasible for MKP[E] LP maps to the unique feasible circulation fx on G[E] satisfying fx((i, j)) =
xijsi for each job i and machine j. Notice, also, that the value (i.e. the welfare) of assignment x
is the same as the weight of the circulation fx. Moreover, we define a total order on circulations
in G[[n] × [m]] that corresponds to the lexicographic order ≺ defined on [R][n]×[m]. We abuse
notation and use ≺ to refer to both total orders, and let fx ≺ fy if and only if x ≺ y. Notice that
≺ also orders feasible circulations lexicographically. Therefore, we can interpret Algorithm 2 as
finding the ≺-minimal maximum-weight feasible circulation in G[E], and then converting it to the
corresponding assignment.

Next, we show that Algorithm 2 is a truthful fractional mechanism, that is, a player i cannot
benefit by misrepresenting his edges Ei as some E′

i. For this, if the algorithm returns assignment
x when reported edges are E, and assignment x′ when reported edges are E′ = E−i

⋃
E′

i, then we
must have x(Ei) ≥ x′(Ei) (note that this is because vij = vi in MKP). Equivalently, we need to
show

∑
e∈Ei

fx(e) ≥
∑

e∈Ei
fx′(e), where we use the convention f(e) = 0 when f is a flow on G[E]

and e /∈ E (and the same for G[E′]).
We will show that any increase in job i’s utility after lying implies that one of fx or fx′ is

suboptimal, yielding a contradiction. We will use notions from network flow, developed in Appendix
B. We begin with the following lemma.

Lemma 4.4. Let circulation ∆ be the difference between fx′ and fx; i.e. ∆ = fx′ − fx. If∑
e∈Ei

fx′(e) >
∑

e∈Ei
fx(e) then ∆ can be conformally decomposed into {C,∆− C} where: (1)

C is a flow cycle, and (2) C sends positive flow on both (s, i) and some e ∈ Ei
⋂

E′
i.

Proof. Let
{
C1, . . . , Ck

}
be the conformal decomposition of ∆ into cycles as in theorem B.6. It

suffices to show that some Cj satisfies conditions (1) and (2).
Since x′ sends more flow on edges in Ei than x, some Cj enters i through an edge e′ /∈ Ei,
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and exits through an edge e ∈ Ei. By conformality and the fact that x′ sends no flow on Ei \ E
′
i,

we know that e ∈ Ei
⋂

E′
i. Moreover, by conformality and the fact that x sends no flow on edges

in E′
i \ Ei, it is easy to see that e′ /∈ E′

i \ E. Therefore, the only remaining possibility is that
e′ = (s, i).

This yields truthfulness of the algorithm.

Lemma 4.5. Algorithm 2 is a truthful fractional mechanism

Proof. Fix an instance (I,E), and assume for a contradiction that a player i with true edges Ei

benefits by reporting E′
i instead. Let x and x′ be the assignments computed by the algorithm on

reports E and E′ = E−i
⋃

E′
i. By assumption,

∑
e∈Ei

fx′(e) >
∑

e∈Ei
fx(e). Let ∆ and C be as

in Lemma 4.4. Observe that C does not send flow on any edges in the symmetric difference of Ei

and E′
i. Therefore, by Lemma B.7 fx + C is a feasible circulation in G[E], and moreoever fx′ − C

is a feasible circulation in G[E′]. If the weight w(C) of circulation C is non-zero, then one of fx or
fx′ is non-optimal. Therefore, w(C) = 0. Now notice that, by definition of ≺, either fx + C ≺ fx
or fx′ − C ≺ fx′ . Therefore, one of fx or fx′ is not a ≺-minimal optimal solution, yielding the
contradiction.

Combining with Corollary 4.2, we get the following theorem.

Theorem 4.6. There is a polynomial-time, 2-approximate, without-money mechanism for the mul-
tiple knapsack problem that is truthful-in-expectation in the private graph model.

4.3 Size-Invariant GAP

We consider the size-invariant generalized assignment problem on a private bipartite graph E.
Since SIGAP generalizes MWBM, by Theorem 3.3 no deterministic truthful approximation can
achieve better than a factor 2 approximation, and moreover no truthful in expectation PTAS is
possible. In this section, we devise a 4-approximate without-money mechanism for SIGAP that
is truthful-in-expectation in the private graph model. Even though solving SIGAP[E] LP is not
fractionally truthful (again, by Theorem 3.3), we show that a simple greedy algorithm is fractionally
truthful and yields a 2-approximate solution the LP. Combining this with Corollary 4.2, we get a
4-approximate, without-money mechanism for SIGAP that is truthful in expectation in the private
graph model. Consider the following algorithm.

Algorithm 3 Fractional Mechanism for SIGAP on Private Bipartite Graph

Input: Public instance of SIGAP, and solicited private edges E.
Output: A feasible solution x for SIGAP[E] LP
1: Order [n]×[m] in decreasing order of value density de, where d(i,j) =

vij
si
, breaking ties arbitrarily.

2: for all (i, j) ∈ E, in the order defined above do

3: Fractionally assign as much of job i on machine j, until the job is exhausted or the machine
is full.

4: end for

5: return the resulting assignment x.

First, we bound the approximation factor of Algorithm 3.
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Lemma 4.7. Algorithm 3 returns a 2-approximate solution to SIGAP[E] LP.

Proof. This can be shown by a charging argument, best formalized by constructing a feasible
solution to a dual of SIGAP[E] LP of value at most twice the value attained by the algorithm. This
dual is shown below, and has decision variables u ∈ R

n and z ∈ R
m:

minimize
∑n

i=1 ui +
∑m

j=1 cjzj
subject to ui + sizj ≥ vij , for (i, j) ∈ E.

ui ≥ 0, for i = 1, . . . , n.
zj ≥ 0, for j = 1, . . . ,m.

(SIGAP[E] LPD)

First, we make a simple observation about the algorithm that will be useful in the proof.

Observation 4.8. For a job i, edges incident on i are examined in decreasing order of vij (since
size si is independent of the machine). For a machine j, edges incident on j are examined in
decreasing order of vij/si.

We now construct the dual solution u, z in parallel with the execution of the algorithm as
follows. Begin with u = 0 and z = 0. Consider the iteration of Algorithm 3 corresponding to
edge e = (i, j). If job i is exhausted on this iteration, set ui = vij . If the capacity on machine j
is exhausted on this iteration, set zj = vij/si. Notice that, in both cases, this satisfies the dual
constraint corresponding to edge (i, j). If no assignment is made on this iteration – i.e. either i
or j was exhausted in a previous iteration – then we do not update the dual variables. Indeed,
there is no need to do so for feasibility: By Observation 4.8, if i is already exhausted then already
ui ≥ vij , and if j is already exhausted then already zj ≥ vij/si, and either suffices to satisfy the
dual constraint for edge e.

It remains to bound the value of the dual solution as compared to the primal solution. First,
we write twice the value of the primal in a convenient form:

2
∑

i,j

vijxij =
∑

i

∑

j

vijxij +
∑

j

∑

i

vij
si

(sixij)

Observe that, by Observation 4.8, ui lower bounds the value of any edge on which any part of
job i is assigned, and zj lower-bounds the density of any job assigned to machine j. Moreover, ui
is non-zero only if i is fully assigned, and zj is non-zero only if j is full. Therefore, we get

∑

i

∑

j

vijxij +
∑

j

∑

i

vij
si

(sixij) ≥
∑

i

ui
∑

j

xij +
∑

j

zj
∑

i

(sixij)

=
∑

i

ui +
∑

j

zjcj

The final term is precisely the value of the dual. Invoking weak LP duality completes the
proof.

It remains to show that Algorithm 3 is fractionally truthful. We begin with an observation.

Observation 4.9. Let e1, . . . , enm be the ordering [n] × [m] in decreasing order of density vij/si.
Let ≺ denote the lexicographic ordering on R

[n]×[m]. Algorithm 3 returns the ≺-maximal feasible
solution of SIGAP[E] LP.
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Figure 4: Flow Interpretation of the Size-invariant Generalized Assignment Problem
Edges are labeled with (weight,capacity) pairs.

As in section 4.2, we use a network flow interpretation. We define graph G[E] for E ⊆ [n]× [m].
This construction is similar to that of §4.2, and the graph is shown in Figure 4. As in §4.2, feasible
assignments for SIGAP[E] LP are in one-to-one correspondence with feasible circulations in G[E].
We can similarly define an order ≺ on flows in G[[n] × [m]] by setting fx ≺ fy when x ≺ y.
Therefore, we can interpret Algorithm 3 as finding the ≺-maximal feasible circulation in G[E].
Next, we establish a decomposition lemma similar to, yet more involved than, Lemma 4.4.

Lemma 4.10. Let x be the output assignment of Algorithm 3 with declarations E, and let x′ be
the output assignment with declarations E′ = E−i

⋃
E′

i. Let circulation ∆ be the difference between
fx′ and fx; i.e. ∆ = fx′ − fx. If

∑
e∈Ei

wefx′(e) >
∑

e∈Ei
wefx(e) then ∆ can be conformally

decomposed into {C,∆ − C} where:

1. C is a flow cycle

2. C ≺ 0. In other words, adding C to any other circulation worsens the lexicographic order.

3. C enters i through some e ∈ Ei \E
′
i, with C(e) < 0.

4. C exits i through some e′ ∈ Ei
⋂

E′
i, with C(e′) > 0.

5. we′ > we.

Proof. Consider the conformal decomposition of ∆ into cycles C1, . . . , Ck. It suffices to show that
some Cj satisfies the conditions above. By assumption, there is a cycle C in the decomposition with∑

e∈Ei
weC(e) > 0. By conformality, cycle C must exit i through an edge e′ ∈ Ei

⋂
E′

i. Moreover
C cannot enter through an edge in both graphs G[E] and G[E′]: if it did, then both fx + C and
fx′ − C are feasible in G[E] and G[E′] respectively, and thus one of them is not lexigographically
maximal, contradicting observation 4.9. Therefore, by conformality, C must remove flow from an

16



edge e ∈ Ei \E
′
i, and add flow to e′ ∈ Ei

⋂
E′

i, with we′ > we. Thus, C satisfies conditions 1, 3, 4,
and 5.

It remains to establish condition 2. Observe that fx+C is a feasible circulation on G[E]. Since
fx is a lexicographically maximal feasible circulation on G[E], we deduce C ≺ 0.

We are now ready to show truthfulness.

Lemma 4.11. Algorithm 3 is a truthful fractional mechanism for SIGAP.

Proof. Assume, for a contradiction, that a player i benefits by reporting E′
i instead of his true edges

Ei. Let x and x′ be the assignments computed by the algorithm on reports E and E′ = E−i
⋃

E′
i.

By assumption,
∑

e∈Ei
wefx′(e) >

∑
e∈Ei

wefx(e). Let ∆ and C be as in Lemma 4.10.
Recall that C ≺ 0. Thus, if fx′ − C were feasible in G[E′] we would be done, as we would

contradict Observation 4.9. However, this is not the case, as fx′ − C sends positive flow on edge
e ∈ Ei \E′

i. We remedy this by simply zeroing out the flow on edge e = (i, j), as follows: Let D be
the flow cycle through s, i, j, t such that fx′ −C−D sends no flow on e. It is clear that fx′ −C−D
is a feasible circulation on G[E′]. We claim that still fx′ −C −D ≻ fx′ . To see this, notice that by
condition 5 of Lemma 4.10, edge e is not the greatest weight edge with non-zero flow in −C. Thus,
since −C ≻ 0, it is easy to see that also −C −D ≻ 0. Therefore fx′ −C −D ≻ fx′ , as needed.

Combining with Corollary 4.2, we get the theorem.

Theorem 4.12. There is a polynomial-time, 4 approximate, without-money mechanism for the
size-invariant generalized assignment problem that is truthful-in-expectation in the private graph
model.

4.4 VIGAP and GAP

In this section, we overview the results that we obtain for VIGAP and GAP, utilizing the techniques
developed in §4.1-4.3. However, since these differ from our results so far only technically, we defer
details to the full version of the paper.

Consider the VIGAP. We observe that Proposition 4.3 holds essentially unchanged; that is,
solving VIGAP optimally gives a truthful mechanism in our model. Next, we observe that greedy
Algorithm 3, when adapted to the fractional VIGAP (namely, density d(i,j) is now defined as
vi/sij), still provides a 2-approximation by essentially the same analysis. A more involved inductive
argument is needed to show that this fractional algorithm is truthful; We defer this technical, yet
simple, proof to the full version of the paper. We get the following theorem.

Theorem 4.13. There is a polynomial-time, 4 approximate, without-money mechanism for the
value-invariant generalized assignment problem that is truthful-in-expectation in the private graph
model.

We now turn to the GAP. First, we make an assumption – to be removed later – that the maxi-
mum value vmax of an edge in E is publicly known up-front. Under this assumption, we reduce de-
signing a truthful mechanism for GAP to the truthful mechanism for VIGAP with a loss of O(log n)
in the approximation ratio. In particular, we randomly pick v ∈ {vmax,

vmax

2 , vmax

4 , . . . , vmax

O(n2))
}, and

define a new value v̂ij for each item i and bin j as follows: If vij ≥ v then v̂ij = v, else v̂ij = 0
(equivalently, we discard edge (i, j)). This gives an instance of VIGAP that we can solve using the
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mechanism of Theorem 4.13. It is easy to verify that, in expectation, this reduction results in a loss
of at most O(log n) in the approximation ratio. However, to ensure truthfulness we need to guar-
antee that edge (i, j) actually results in value exactly v̂ij if chosen; we do so by positing up-front
that, whenever job i is assigned to machine j by the subroutine that solves VIGAP, we cancel i’s
assignment with probability 1 − v̂ij/vij . It is now easy to see that, under our original assumption
that vmax is known up-front, this mechanism is truthful-in-expectation and has an approximation
ratio of O(log n).

We now remove the assumption that vmax is public knowledge by appropriately incentivizing
the job with the maximum value edge. In particular, after receiving the reported edges E, we
flip a fair coin. If the coin turns up heads, we assign the job with the maximum value edge on
that edge (i.e., to his favorite machine, with value vmax), and leave all other jobs unassigned. If
the coin turns up tails, we discard the job with the maximum value edge, and proceed with the
algorithm described above using this value of vmax. It is easy to see that this is still an O(log n)
approximation algorithm. Moreover, the job with the maximum value edge can do no better than
report his true edges, and no job has incentive to falsely claim a maximum value edge. This gives
the following theorem.

Theorem 4.14. There is a polynomial-time, O(log n) approximate, without-money mechanism for
the generalized assignment problem that is truthful-in-expectation in the private graph model.

We leave open the question of whether there exists a constant factor truthful [in expectation]
mechanism without money for the GAP in our model.
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A The Construction of Lavi and Swamy

First, we recall some basic concepts from combinatorial optimization, and state the key lemma in
the construction of Lavi and Swamy.

Definition A.1. Let P ⊆ R
d be a polytope. We define the Integer hull of P , which we denote by

I(P ), as the convex hull of all integer points in P . Equivalently,

I(P ) = hull(P
⋂

Z
d)

Definition A.2. Let P be a polytope. The integrality gap of P is defined as:

max
c∈Rd

max{cTx : x ∈ P}

max{cTx : x ∈ I(P )}

Note that the integrality gap of a polytope does not depend on any particular set of objectives
c. In fact, even in problems where the only objectives of interest are of a certain class – say
submodular valuations as used in combinatorial auctions, or objectives c in the nonnegative orthant
– the construction of Lavi and Swamy can only perform as well as the integrality gap of the polytope
as a whole, as defined above.

Definition A.3. We say an algorithm shows an integrality gap of α for a polytope P ⊆ R
d if it

takes as input an arbitrary vector c ∈ R
d, and outputs a point z ∈ P

⋂
Z
d with the guarantee that:

cz ≥
1

α
max{cx : x ∈ P}

The construction of Lavi and Swamy concerns packing polytopes. A polytope P ⊆ R
d is a

packing polytope if it is contained in the positive orthant – i.e. P ⊆ R+d –, and moreover it is
downwards closed : if y ∈ P and x ∈ R+d is such that x � y (component-wise) then x ∈ P .

Now, we come to the key lemma. We consider a packing polytope P , and use P/α to denote
the scaled down copy of P – i.e. P/α = {y/α : y ∈ P}. Using an algorithm showing the integrality
gap of α for P , we can explicitly construct for every x ∈ P/α a distribution over integer points of
P that evaluates to x in expectation.

Lemma A.4 ([14]). Let P be a packing polytope of integrality gap at most α. Then, for every
x ∈ P/α there exists a distribution Dx over P

⋂
Z
d such that Ey∼Dxy = x. Moreover, if there exists

a polynomial-time algorithm B that shows an integrality gap of α for P , then, for any x ∈ P/α we
can compute Dx in polynomial time.

Armed with the above lemma, Lavi and Swamy reduce designing a truthful-in-expectation
mechanism (with money) to designing a truthful fractional mechanism (also with money), to be
defined later.

We illustrate the technique of Lavi and Swamy by considering welfare maximization problems
in a very general form. Let P ⊆ R+d be a packing polytope representing the set of feasible
solutions. Moreover, assume that there are n players [n], and the valuation function vi : R

d → R

of player i is required to lie in some valid set of linear valuations Vi ⊆ R
R
d
. We denote V =

V1×V2 . . .×Vn. The combinatorial welfare maximization problem (henceforth CWMP) over P and
V is the problem of finding an integer point in P maximizing the sum of values of the players. This
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gives the following LP relaxation, which we refer to as the fractional welfare maximization problem
(henceforth FWMP):

maximize
∑

i vi(x)
subject to x ∈ P

We define a truthful-in-expectation mechanism for the combinatorial welfare maximization prob-
lem as a pair M = (f, p) where f : V → P

⋂
Z
d is a randomized allocation rule, and p : V → R

n is
a randomized payment scheme. As usual, we say M is truthful in expectation if the following holds
for each ~v ∈ V and vi ∈ Vi

E[vi(f(v))− (p(v))i] ≥ E[vi(f(v−i, v
′
i))− (p(v, v′i))i]. (5)

Moreover, we define a fractional mechanism as a pair M = (f, p) where f : V → P is a fractional
allocation rule, and p : V → R

n is a payment scheme. We say M is a truthful fractional mechanism
if the following holds for each ~v ∈ V and vi ∈ Vi

vi(f(v)) − (p(v))i ≥ vi(f(v−i, v
′
i))− (p(v, v′i))i. (6)

It is easy to see that we can use the VCG mechanism to obtain a truthful fractional mechanism
Mfrac for the fractional welfare maximization problem. Moreover, when optimizing objectives in V
over P can be done efficiently, Mfrac is a polynomial time mechanism. Lavi and Swamy observed
that, given an efficient approximation algorithm that shows the integrality gap of P in the sense
defined above, one can obtain a polynomial-time, truthful-in-expectation mechanism Mexp that
looks simply like a scaled down version of Mfrac. This follows from lemma A.4. We state the main
theorem of Lavi and Swamy and sketch its proof below.

Theorem A.5 ([14]). Assume the fractional welfare maximization problem can be solved efficiently
for any valuations in V. Moreover, assume P satisfies the conditions of Lemma A.4 with integrality
gap α and algorithm B showing the integrality gap. Then there exists an efficient truthful-in-
expectation α-approximate mechanism for the welfare maximization problem over P and V.

Proof Sketch. Consider the efficient, truthful fractional mechanism Mfrac = (ffrac, pfrac) con-

structed using VCG. We will define Mexp = (fexp, pexp) as follows. We let pexp(v) = p(v)
α , and

let fexp(v) be drawn from the distribution Dffrac(v)/α, as defined in Lemma A.4. The random func-
tion fexp can be evaluated efficiently using B, as in the lemma. Now, using linearity of expectations,
the linearity of the valuation functions, and Lemma A.4, it is easy to show truthfulness of Mexp by
showing that the expected valuation less the payment of a player matches that of Mfrac up to a
scaling factor of α.

E[vi(fexp(v
′))− (pexp(v

′))i] = vi(E[fexp(v
′)])− (pexp(v

′))i

= vi(
1

α
· ffrac(v

′))−
1

α
· (pfrac(v

′))i

=
1

α
· [vi(ffrac(v

′))− (pfrac(v
′))i]

Applying this equivalence to both sides of inequality (6) yields truthfulness of Mexp.
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It is worth noting that a simple modification to p allows us to guarantee individual rationality,
while preserving truthfulness-in-expectation. However, this will not be relevant for our purposes,
as all our mechanisms will utilize no payments.

B Network Flow Preliminaries

Here we recall some notions from network flow theory, and define simple concepts that we will need
in analysis of our algorithms for MKP and SIGAP.

We recall that a weighted-capacitated directed graph is a directed graph G = (V,E), with a
weight we ∈ R

+ and capacity ce ∈ R
+ on an edge e. We define a flow simply as follows.

Definition B.1. A flow is a vector f ∈ R
E(G).

We distinguish circulations on G as follows.

Definition B.2. A flow f ∈ R
E(G) is a circulation if it conserves flow on each vertex. In particular,

for each v ∈ V with incoming edges Γ−(v) and outgoing edges Γ+(v), we have:

∑

e∈Γ−(v)

f(e) =
∑

e∈Γ+(v)

f(e)

We define the weight of circulation f as follows: w(f) =
∑

e∈E(G) wef(e). Note that we allow a
circulation to send negative flow on an edge, as well as overflow the capacity of an edge. A feasible
circulation is better behaved.

Definition B.3. A vector f ∈ R
E(G) is a feasible circulation if it is a circulation, and moreover it

satisfies nonnegativity and capacity constraints. In particular, for each edge e we have:

0 ≤ f(e) ≤ ce

We distinguish the simplest circulations, or flow cycles, and recall that every circulation can be
decomposed into cycles that are oriented consistently.

Definition B.4 (Flow Cycle). A circulation C on G is a flow cycle if there exists a simple undi-
rected cycle H such that C sends non-zero flow only on edges of H.

Definition B.5 (Conformal Decomposition). Fix a circulation f . We say a set of circulations{
g1, . . . , gk

}
is a conformal decomposition of f if the following hold

1. (Decomposition) f =
∑k

i=1 g
i

2. (Conformal) For each e ∈ E(G), f(e) · gi(e) ≥ 0.

Note that every gi in the conformal decomposition must send flow in the same direction as f
on each edge.

Theorem B.6 ([6]). Every circulation f can be conformally decomposed into flow cycles.

Conformal decomposition immediately yields a useful property of feasible circulations.

Lemma B.7. Let f and f ′ be feasible circulations on G. Let C1, . . . , Ck be a conformal decompo-
sition into cycles of f ′ − f . Then, for every L ⊆ {1, . . . , k} the circulation f +

∑
i∈LCi is feasible.

Equivalently, for every L ⊆ {1, . . . , k} the circulation f ′ −
∑

i∈LCi is feasible.

In other words, the cycles of the conformal decomposition of f ′ − f may be added to f (or
subtracted from f ′) in any order, maintaining feasibility along the way.
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