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Abstract

For simple versions of the Cass-Diamond growth model where the fun-
damental welfare theorems of economics fail, we prove the set of minimal
state space recursive equilibrium (RE) is large, with multiple RE existing in
multiple subclasses of functions. This situation remains the true even when
uniqueness results are known, for both OLG and in�nity-lived agent ver-
sions of the model. This implies the set of Generalized Markov equilibrium
(GME) is also large. We also provide explicit iterative procedures from
computing particular RE in each subclass, with some procedures globally
stable from a topological persective for particular RE when their domains
are restricted. All iterative methods are order stable relative to perturba-
tions of deep parameters. Finally, we construct an simple economy where
existing correspondence-based methods for computing GME fails, and pro-
pose a new method that computes the set of GME as minimal state space
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RE using �xed points of the expanded set of state variables. Our results
point to the complicated nature of the RE approximation problem even in
simple macro models.

1. Introduction

Since the seminal work of Kydland and Prescott [28], a great deal of focus in
macroeconomics and industrial organization as been on the quantitative assess-
ment of dynamic equilibrium models and dynamic games. For example, in macro-
economics the calibration of recursive equilibrium (RE) provides a prototype for
this approach. In a calibration method, after de�ning (and hopefully proving the
existence) of a RE, one �rst partitions the set of deep parameters of the economies
into 2 distinct subsets, the �rst will be used to �t a particular equilibrium of the
model to the data, while the second subset that will be perturbed in numerical
experiments that are of interest in the calibration.1 More precisely, in the best
case of calibration, after �tting some approximate RE solution to the actual RE
to macroeconomic data using the subset of calibration parameters, one simulates
changes in the remaining subset of parameters to study provide a quantitative
comparison of the simulated equilibrium dynamics under two di¤erent parametric
con�gurations. In this sense, in a very precise way, calibration can be thought
of as a numerical approach to equilibrium comparative statics/dynamics. Similar
sorts of statements can be made about econometric procedures (e.g., GMM or
simulated moments procedures) that are used to estimate deep parameters of the
economy under study.
Given such approaches to characterizing RE of such models, one obvious ques-

tion that arises naturally, yet is rarely addressed, for such numerical approaches
to economics concerns the stability of the set of approximate vs. actual RE under
perturbation. More precisely, what do calibration (or estimation) results mean in
the presence of in the presence of multiple equilibrium?2 For example, say one
perturbs the counterfactual parameter comparable to the old RE at the initial set

1By "deep parameters", we mean parameters that characterize variations in the primitive
data governing taste, technology, policy, information, etc. The �rst subset of parameters will be
referred to in this paper as calibration parameters, while the second subset will be referred to
as the counterfactual parameters.

2As RE are functions, multiple equilibrium here comes in two forms: (i) multiplicities of RE
within a given space of functions, and (ii) multiplicities across sets of functions. In this paper,
we shall consider both types of multiplicities.



of parameters? How about comparing the approximate RE under the new coun-
terfactual parameters? Additionally, what if RE can exist within multiple distinct
subclasses for functions? How can we develop numerical approaches to comput-
ing RE that allow researcher to know which subclass of RE are actually being
approximated? These are but a few of the questions on can ask of numerical ap-
proaches to RE in the presence of multiplicities. It bears mentioning, calibration
and estimation methods are being applied to very complicated dynamic general
equilibrium models, including models with (i) random measures as state variables,
(ii) heterogeneous agents, (iii) models where the welfare theorems fail (hence, no
Negishi method is known to work), etc.
In this paper, we �rst show how the set of RE can be in very simple models.

To show the robust nature of the problem, we display the problems with multi-
plicities within and across subclasses of function spaces for both OLG models, as
well as models with in�nitely-lived agents. To keep things simple, we just use a
very simple version of the Solow-Cass growth model of production in all cases.
For the case of simple OLG models, we just work with very simple model with 2
period-lived, identical cohorts and capital, and consider both the case of classi-
cal and nonclassical production.3 For the in�nitely-lived agent case, to make the
model nonoptimal, we just add a simple production externality as in Romer [50].4

In these two simple settings, we are able to show some very important di¢ cul-
ties associated with the rigorous characterization of RE numerically. The problems
hold for both function-based and correspondence-based continuation methods, all
of which carryover to more complicated nonempty dynamic economies that are
typical in the existing literature in macroeconomics. For the OLG cases, we �rst
consider OLG models with concave production functions in private returns for
�rms (e.g., often Cobb-Douglas) and power utility. For the case where production
processes do not satisfy "capital income monotonicity", we prove existence of RE
in four distinct subclasses of the space of bounded functions, none of which in-
clude continuous functions. Then, under the stronger condition of capital income
monotonicity, we �rst prove (i) uniqueness of continuous RE, and show (ii) this
uniqueness result holds relative to the space of bounded increasing functions. We

3For nonclassical production, we just consider Romer [50], where there is a di¤erence between
private returns to production for each �rm, and the social return to production. There is nothing
special about this form of "externality" as many other speci�cations could be used for our
arguments.

4We will also show how our results for this speci�cation can be developed for the income tax
problem considered in Coleman [10][11][12], Greenwood and Hu¤man [23], Morand and Re¤ett
[40], and Mirman, Morand, and Re¤ett [35].



then show the uniqueness result fails relative to the space of bounded functions. In
all cases, we give explicit successive approximation methods for computing least
and greatest RE in all subclasses of functions. The constructive nature of our
arguments are critical (as it allows us to show explicitly how iterative methods
can arrive at very di¤erent limits based upon the initial versions they chooses.
We then tur our focus on the case of state-contingent taxes and in�nitely-lived

agents. The �rst case we study the progressive tax case studied �rst in Coleman
[10].5 For these economies, focusing �rst on the well-known Euler equation method
�rst proposed in Coleman [10], we �rst extend the uniqueness result obtained in
Coleman [10][12] to much larger class of functions, namely, particular spaces of
bounded functions. We then show using two di¤erent �xed point procedures (i)
the existence of continuous recursive equilibrium using a related Euler equation
method to Colemans where his uniqueness argument fails, and (ii) develope a
very simple policy iteration method, whose domain is exactly the set of functions
Coleman studies, but for which Coleman�s uniqueness approach cannot be used
to rule out multiple solutions in this same domain of functions.
Finally, we then consider the question of continuous RE in models often

thought not to admit them (e.g., the example presented in Santos ([54], sec-
tion 3.2)). As the Santo�s example has been a central motivation for adopt-
ing correspondence-based approaches to characterizing recursive equilibrium (e.g.,
Miao and Santos [34], Feng et. al. [21], and Peralta-Alva and Santos [47]), recon-
sidering the question of continuous RE in this class of economies is particularly
important. Using a new simple variation of Coleman�s policy iteration procedure,
we construct multiple subclasses of RE ranging from locally Lipschitz isotone con-
tinuous recursive equilibrium (for investment) to bounded (not isotone) RE. In do-
ing this, we also show the Miao-Santos procedure equilibrium correspondence fails
to verify RE. Finally, we propose a new correspondence-based approach, based
upon "interval iterations" of interval operators valued in function spaces, that
integrate the function-based policy-iteration approach of Coleman [10], with the
correspondence-based continuation method advocated in Kubler and Schmedders
[26] and Miao and Santos [34]. For this interval mapping, we prove the existence
of continuous recursive equilibrium for our class of economies, and prove a simple
method for computing it approximately. We then develop a formal partial order-
ing method for making comparative dynamics comparisons of our new interval

5Our results also apply to the papers of Greenwood and Hu¤man [23], Coleman [11][12],
Datta, Mirman, and Re¤ett [14], Morand and Re¤ett [40], and Mirman, Morand, and Re¤ett
[35].



iteration method versus the existing class of correspondence-based continuation
methods.
We can be a bit more formal in describing the problem. Say one writes down

a class of economies E(t) parameterized by a vector of "deep" parameters t =
(t1; t2) 2 T , where T is some ordered linear topological space (e.g., Rn), with t1
a subset of parameters that will be taken as given for the calibration step (e.g.,
parameter values are taken from micro or macro data, others summarize policy,
etc), and t2 will be the set of parameters used to calibrate the model to the actual
data. Assume for each t 2 T the existence of a nonempty set of RE in some space
of functions, say RE(X) where X is a minimal state space for each t (i.e., there
exists RE selections  (x; t) 2 	(x; t) � RE(X), where 	(x; t) is a nonempty
correspondence valued in RE(X) for each t 2 T ).6 Then, for the calibration step
of the modeling, one �rst collects some relevant data (say fYtg = Y ); imposes a
loss function L( ̂;Y ) on the class of approximations 	̂(x;�; t2) (where � is just
a vector of parameters for the approximation scheme), and uses L to de�ne some
goodness of �t measure that compares the �t of the models equilibrium dynamics
fytg = y to the observed data Y , chooses the best parameter vector, say t�2(Y ) =
t�2 that is the best approximation under the loss function. Then, the resulting
approximate solution  ̂

�
1 is now used as an approximation to the actual RE  (x; t

�)
2 	(x; t�):7 Finally, calibrated equilibrium comparative statics (or counterfactuals
for the actual model) are then generated from perturbing the initial parameters
t1; recomputing the RE to arrive at a new approximate solution  ̂

�
2(x; t

0
1; t

�
2) 2

	̂(x; t01; t
�
2) where t

�
2 is now taken as �xed, and  ̂2 is an approximation solutions

to an actual RE selection  2(x; t
0
1; t

�
2) 2 	(x; t01; t�2): One then just compares the

models new dynamic properties at new parameter t
0
1 to the old one t1:

The question of continuity (i.e., stability) of this numerical equilibrium com-
parative statics method then immediately arises. For simplicity of notation, let
t� = (t1; t

�
2) and t

0
� = (t

0
1; t

�
2): Then, a few immediate questions that come to mind

are the following:

6Notice, this existence assumption is a very strong.
7Notice, here we assume here in this discussion that a unique approximate solution under

this loss function exists (i.e., the best approximation problem generated by the loss function is
strictly convex). Also, recall to design an accurate approximation scheme rigorously, one must
know the structural properties of the objects that will be approximated (i.e., the structural
properties of RE(X)): You cannot approximate an arbitrary function to an reasonable standard
of accuracy. Therefore, knowing where one has existence is critical here to knowing how construct
an appropriate approximation scheme where error bounds can constructed. Lets also assume all
these problem can be resolved (a nontrivial task).



(a) Is the approximation scheme (	̂(x; t); L) stable under perturbation: i.e.,
does there exist some topology such that the numerical approximation scheme
has desirable continuity properties and satis�es  ̂

�
1(x; t) =  ̂

�
2(x; t) =  ̂

�
(x; t) for

all t in any neighborhood of t� that includes t
0
�?

(b) Are actual RE 	(x; t) stable under perturbation in t: i.e., 9 a RE selection
 �(x; t) in any neighbor t� that includes t

0
� where  

�(x; t) has desirable continuity
properties; and
(c) Is the approximation  ̂

�
(x; t) accurate relative the actual selection  �(x; t)

at t� and t
0
� (e.g., can one conduct error analysis for the approximation  ̂

�
(x; t)

under L in 	̂ relative to the actual RE selection  �(x; t) 2 	(x; t)?
In an important sense, answering question (b) is critical if one is to have a

hope at resolving (a)-(c). That is, if one cannot produce conditions under which
particular RE has desirable continuity/stability properties at least under local
perturbations in t, achieving numerical stability and accuracy in the sense of
(a)-(c) seems hopeless. Further, keep in mind that our problems, RE will not
in general be su¢ ciently smooth to attempt applications of classically implicit
function theorems.8

In this paper, we propose a di¤erent method to attack the stability question
in (b) using order topologies (and in particular, we develop order continuous
computational methods for least and greastest RE in each subclass of functions
where we verify RE exist). In particular, using "lower" and "upper" solutions,
we are able to develop simple parameterized iterative procedures that are order
stable under ordered perturbations of t (and even in some cases, have extremal RE
being continuous in an appropriate order topology). Then, given we are working
in function spaces (and hence know the exact property of the unknown function at
hand), resolving (a) and (c) becomes a fairly standard problem in approximation
theory.
We should mention, this innovation is important for nonoptimal problems,

verifying properties (a)-(c) is a daunting task. In the early work on quantitative
macro using numerical methods to compute RE, resolving (a)-(c) was quite sim-
ple. That is, numerical implementations for computing RE could be where based
upon the results in Prescott and Mehra [45]), where the economies studied were
homogeneous agent Pareto optimal economies, so the second welfare theorem held.
This situation is particularly convenient, as RE allocations and prices could be

8Further, nonsmooth implicit function theorems will be di¢ cult to apply also because of the
in�nite dimensional nature of the RE �xed point problem, along with the fact that RE in many
cases need not be even be continuous functions, let alone locally Lipschitz continuous.



constructed by solving a single functional equation, namely a Bellman equation
describing a pure resource allocation problem faced by a social planner on only
aggregate states. Then, appealing to arguments of Bewley [7] or Prescott and
Lucas [44], the social planner�s optimal solutions could be supported as recursive
competitive equilibrium (RCE) with the implied sequential equilibrium price sys-
tem existing in a suitable in�nite dimensional space. Further, well-known tools
are available for solving the Bellman equations (both from an theoretical and nu-
merical perspective), the resulting methodological approach was very powerful. In
particular, under standard strict concavity conditions on preferences, and convex-
ity conditions for technologies, the RE computed from planner�s solutions were
unique, the the planner�s optimal solutions  �p(x; t) to each t (and associated
value function v�p(x; t)) where continuous in t.9 Then, using standard methods
for approximating solutions to dynamic programs (and appealing to duality and
the second welfare theorem), the planners solutions can be decentralized under
suitable support prices as a competitive (and recursive) equilibrium. 10

Unfortunately, things have changed a great deal over the last three decades.
In most recent work, the setting for the analysis are dynamic economies where
the second welfare theorem fails (i.e., so-called "nonoptimal" economies"). For
such economies, for even the simplest of cases (e.g., a homogeneous agent econ-
omy with one sector production, a state contingent tax and lump-sum transfers),
the social planning procedures of Prescott and Mehra [45] are known generally
to fail. As numerous interesting problems in dynamic general equilibrium take
place in such nonoptimal settings (e.g., models of optimal taxation, monetary
economies, heterogeneous agent models with incomplete markets, among others),
and researchers want to compute and quantitatively assess elements of the set of
RE 	(x; t) in meaningful sense consist when conditions (a)-(c), the �rst question
one must ask is what does the set of RE 	(x; t) look like in even simple dynamic

9To establish the continuity of RE in t, on can simply appeal the Bonsall-Nadler theorem
(e.g, Nadler [41] Theorems 1 and 2 and Duemmel [18], Main Theorem, p294 ) for parameterized
contractions, notiing as the modulus for the contraction is constant, the value function is con-
tinuous in t (so v�p(x; t) is continuous in t);and by strict concavity and Berge�s theorem,  

�
p(x; t)

were continuous in t.
10From a theoretical perspective when entertaining questions concerning equilibrium com-

parative statics, pricing, and/or existence of stationary Markov equilibrium; from a numerical
perspective because of the availability of value and policy iteration techniques for obtaining ac-
curate approximation solutions. For motivation from a theoretical perpective, see Prescott and
Mehra [45]; for motivation from a numerical perspective, see the survey of Rust [53].



economies? As even for simple models, one is forces to solve a systems of functional
equations (e.g., often both parameterize dynamic programs and Euler equations
simultaneously), the question of computing RE can become quite complex.
We should �nally mention, various methods have been proposed in the current

literature to resolve some (or all) these technical issues in the context of various
economies. One important class of such methods are known as "monotone con-
tinuation methods".11 To date, two types of monotone continuation approaches
have been proposed: (i) continuation methods de�ned in spaces of correspon-
dences (i.e., so-called correspondence-based method �rst proposed in Kydland and
Prescott [27], but extended in numerous papers including Kubler and Schmedders
[26], or Miao and Santos [34]), among others), or (ii) continuation methods de�ned
in spaces of functions (i.e., so-called function-based continuation method, or so-
called monotone-map methods �rst proposed in Coleman [10][12], Greenwood and
Hu¤man [23], Datta, Mirman, and Re¤ett [14] or Mirman, Morand, and Re¤ett
[35]).
The paper proceeds as follows: in the next section, we study RE in simple

two-period OLG versions of the Solow-Cass growth models. In section three, we
use function-based continuation methods to study the structure of recursive equi-
librium in situation of progressive taxation as in Coleman [10]. Section four then
considers the same methods, but for the regressive tax case as in Santos [54]. Sec-
tion �ve reconsiders both models, but only with correspondence-based methods.
Here, in addition to applying the Miao-Santo�s procedure, we also construct a
new correspondence-based procedure for constructing recursive equilibrium. Sec-
tion six, then, makes concluding remarks. In the appendix, will include the proofs,
a detailed appendix with all the mathematical terminology used in the paper, and
statements of key �xed point theorems used in the proofs.

11By a "continuation method", we mean a operator theoretic approach to solving functional
equations that constructs a mapping T : X ! X where X is a collection of functions or
correspondences, where an element x 2 X is used to parameterized the future structure of
equilibrium of the economy, then one computes the implied decision rules, from when T (x) can
be computed. The approach does bear, in an abstract sense, a resemblence to a continuation
method in numerical analysis, but the details are still somewhat di¤erent.
A classic continuation method, in our terminology, is stationary dynamic programming. Here,

one parameterized the continuation structure of the optimization problem on a state space is
s 2 S with V (s) 2 V(S), with V(S) is a complete metric space of function on S). Then, one
construct TV in V(S) in the Bellman equation that implied by V (s): A (unique) �xed point
is then constructed to solve the functional equation. Correspondence-based extensions of these
methods are also available.



2. The Economies

To keep the issues raised in this paper clear, we focus our attention on recur-
sive equilibrium in simple subclasses of the Solow-Cass-Diamond growth models.
Time is discrete and indexed by t 2 T = f0; 1; 2; :::g. We work with production
processes are concave in both private and social returns (but in some cases ex-
hibit social increasing returns as in Romer [50]). To avoid measurability issues,
there no uncertainty. We consider both OLG models and models where a stand-in
household lives in�nitely-many periods.
For our OLG models, we assume the economy has a large number of identical

agents are born each period who live for two periods. In their �rst period of life,
they are endowed with a unit of time which they supply inelastically to the �rm
to earn a wage which they consume and/or save. In their second period of life,
agents consume their savings. For the simpliest case, we assume preferences are
represented time separable utility function and completely standard (e.g., power
utility). For the case of in�nitely-lived agent models, we then just extend the
life spans of the typical agent to be in�nite, so there the economiy consists of a
continuum of in�nitely-lived and identical household/�rm agents.
As for preferences, we assume time separable preferences with constant dis-

counting. Utility in any period is derived from consumption and given by a strictly
concave and smooth function u(c) that is bounded below (or u(c) = ln c), with
discounting summarized by � 2 (0; 1). For the OLG models, consumption for a
household born in any period when "young" is denoted by c1; and consumption
when old is denoted by c2. Therefore, in this case, the consumption set in any
period is simply X � R+ (or X � R++ if period utility is given by u(c) = ln c).
For the in�nitely-lived agent case, we simply extend the lifetime of the household.
Then, household�s lifetime preferences are de�ned over sequences indexed by dates
and histories c = (ct) and are given by:12

U(c) =

TX
t=0

�iu(ct) (1)

where � is the discount rate, where for the OLG case, we just take in (1) that
T = 2; while for in�nitely-lived agent models, we assume T =1:
We �rst discuss some

12Although the original work of Coleman [10] did not cover the unbounded homogeneous
returns case, Morand and Re¤ett [40] show all his results can be extended to this case.



Assumption 1. The utility function u : X ! R+ is either u(c) = ln c or u(c)
satis�es:13

I. once continuously di¤erentiable;
II. strictly increasing in each of its arguments and jointly concave;
III. limc!0+ u(c) = +1
Households are endowed with a unit of time which is supplied inelastically

to competitive �rms, and enters any given period with an individual level of
the capital k 2 K, facing an economy in aggregate state K 2 R+ (where K
is the per-capita capital stock). Following that tradition of work on monotone
map methods for RE in nonoptimal economies (e.g., Greenwood and Hu¤man
[23]. Coleman [12], and Mirman, Morand, and Re¤ett [35]), we consider reduced-
form production functions that admit a speci�cation denoted F (k; n;K;N):14 We
assume F is constant returns to scale and concave in private inputs (k; n) for
each level of aggregate inputs (K;N). As �rms are identical, and endowed with
standard constant returns to scale technology, pro�ts are zero in equilibrium. As
�rms are also pro�t maximizing, anticipating equilibrium where n� = N� = 1;
and k = K; if production F is su¢ ciently smooth, we have

r = F1(k; 1; k; 1)

w = F2(k; 1; k; 1)

We now state our assumptions on F as follows:

Assumption 2: The production function F (k; n;K;N) : X � [0; 1] � X �
[0; 1]! R+ is:
I. twice continuously di¤erentiable jointly all its arguments;
II. strictly increasing and strictly concave in all its arguments, and supermod-

ular in its �rst two arguments;
IIIa. such that r(k; z) = F1(k; 1; k; 1) is antitone in k, and limk!0 r(k) = +1;
IIIb. such that w(k; z) = F2(k; 1; k; 1) is isotone in k; and limk!0+ w(k) = 0;
IV. such that there exists a maximal sustainable capital stock kmax (i.e.,

8k � kmax such that F (k; 1; k; 1) � kmax, and with F (0; 1; 0; 1) = 0.

These assumptions are completely standard. It is well known that Assumption
2 IV implies that the set of feasible capital stocks can be restricted to be in the

13For example, one can just assume u(c) is power utility as is typical in applied work.
14A number of well-known economies �t this reduced-form speci�cation. See Greenwood and

Hu¤man [23], for example, for a detailed discussion.



compact interval X = [0; kmax] as long as we place the initial capital stocks in X.
This condition, along with (IIIa and IIIb) also place restrictions on the amount
of nonconvexity we can allow.
The following two additional assumptions will help establish sharper proper-

ties of the RE, the latter being su¢ cient to exclude economies in which 0 may
be the only RE (and will lead to the construction of minimal RE by successive
approximations).15

Assumption 3 F is such that limk!0+ r(k)k = 0

Finally, when we consider uniqueness of RE for OLG models, we will use the
following capital monotonicity assumption:

Assumption 4: F is such that (a) r(k)k is increasing in k, and (b) r(k) is
decreasing in k:

Assumptions 3 and 4 are satis�ed for example in the standard Cobb-Douglas
production case, as well as the economies in Romer [50]). Assumption 4 is not
satis�ed for general concave production in private inputs (with no externalities).
Further, in the case of production externalities as in Romer [50] we could have
F (k; 1; K; 1) = k�K� for � < 0; � 2 (0; 1); and j�j > �, which also violates
Assumption 4:16 There are no shocks.
In some cases, to relate our result to the existing literatyre, we create a simple

class of equilibrium distortions for the in�nitely-lived agent models that involve
government taxes all sources of income using a state-contingent marginal tax rate
of �(K) 2 [0; 1), with rebates of these tax revenues returned lump sum in the
amount J = �m to households. In this paper, we only consider only two cases of
taxation under perfect commitment: (i) �(K) increasing in K (e.g., "progressive"
taxation"), and (ii) �(K) is decreasing in K (e.g., "regressive" taxation).17

Assumption 5: (i) (Progressive taxation) � : R+ ! [0; 1); is locally Lipschitz,
and monotone increasing (i.e., isotone); (ii) (Regressive taxation): � : R+ !
15The isotonicity assumption is standard; the continuity assumption may be weakened to

upper semicontinuity.
16This latter case can be thought of a negative production externalities (e.g., one way of

introducing a social cost to capital accumulation like in models of environmental degradation).
17The term "progressive" and "regressive" is a bit casual. We can easily rewrite the state

variable for this economy to be after-tax income, and then make the tax literally an progres-
sive/regressive income tax. Here, we are using K to proxy for the level of income.



[0; 1); is locally Lipschitz, and monotone increasing (i.e., isotone); (iii) (Lump
sum transfers) J : R+ ! R+ is locally lipschitz continuous.

The class of equilibrium distortions consistent with Assumption 5 have are
common in the literature. The local Lipschitz structure for taxes and transfers is
a very mild assumption, and have been used in many papers (e.g., Santos [54]).

3. RE in OLG Models

This section addresses the set of RE in OLG versions of our model. We begin by
de�ning the numerous classes of functions where we shall both prove existence of
(minimal state space) RE, and provide monotone iterative methods for computing
particular elements of the set.18 All our spaces of functions will be subsets of
the space of bounded functions on compact set X. For any bounded function
mb : X ! R+, de�ne the set Bmb

(X) = fh : X ! R+, 0 � h � mbg (we shall
refer to this set as the set of "bounded functions"). If the upper bound mI is
isotone (i.e., non-decreasing in its arguments), the set HmI

(X) = fh : X ! R+,
0 � h � mIg . If in addition, m is continuous in k (in the usual topology on
R), de�ne the set Hu

m = fh : X ! R+, 0 � h � m, h upper semicontinuous in
k 2 Xg (resp., H l

m = fh : X ! R+; 0 � h � m; h lower semicontinuous in k 2 X
g). We have the following proposition

Lemma 1. The posets (Bnb ;�); (HmI
;�) (Hu

m;�) and (H l
m;�) are complete lat-

tices.

Proof. That (Bmb
;�) and (HmI

;�) are complete lattices is obvious. LetB � Hu
m,

denote g^(k) = infh2B h(k). Clearly 0 � g^ � w, g is isotone, and gZ(k) is usc
(i.e., see Aliprantis and Border [5], Lemma 2.41). Thus g^ is an greatest lower
bound of B. Since m is the top element of Hu

m, it is a complete lattice (e.g.,
Davey and Priestley [16], Theorem 2.31). Dually, for A � H l

m; de�ne g_(k) =
suph2A h(k). Clearly 0 � g_ � w, g is isotone, and g_(k) is lsc. Again, as the
bottom element is continuous (i.e., ^H l

m = 0); H
l
m is a complete lattice.

18The order theoretic terminology we use in the paper is not standard in the literature. Useful
references for such terminology include [16][56][58].



3.1. Computing RE in Each Subclass

We now discuss how to compute RE in distinct subclasses of functions (i.e., RE
with distinct structural properties). We �rst formulate the household�s problem.
Given a competitive wage w = mb in the labor to the market, in a candidate
RE h 2 Bw; a typical young agent of any generation must decide what amount
y to save for next period consumption when they retire. To make this decision,
the agent uses h to compute the expected continuation return on her capital
investment, as well as future competitive wages and returns on capital use the �rms
pro�t maximization problem with w(k; z) = F2(k; 1; k; 1) and r(k) = F1(k; 1; k; 1).
Let X� = Xn0; and select k 2 X� and h 2 Bw. Then, a young agent solves:

max
x2[0;w(s)]

u(w(k)� x) + u(r(h(s))x) (2)

Let x�(k; h(k)) be the optimal solution to this household problem in 2. Let
RE(X) � KX ; where the exponential space KX={h : h : X! Kg given the
topology of pointwise convergence and the pointwise partial order. Then any RE
can be characterized as follows:

De�nition 2. A Recursive Equilibrium (RE) is any function h�(k) 2 RE(X) and
a policy function x�(k;h�(k)) such that (i) for all k 2 X�; h�(k) > 0; we have

x� = x�(k;h�(k)) = h�(k) (3)

with h�(s) = 0, else, and (ii)

�u0(w(k)� x�) + u0(r(h�(k))x�)r(h�(k)) = 0 (4)

Notice, in our de�nition, we restrict our attention to the case of RE that have
memory only on the current states of the economy. We consider existence of RE
in our four subclasses of RE(X) (namely, B(X); H(X); Hu(X); and H l(X)):To
construct such RE in each of these subclasses, we introduce the nonlinear operator
A de�ned implicitly in the HH equilibrium Euler equation follows

De�nition 3. Given any h 2 B (resp, H; Hu; H l); de�ne the operator A as
follows: If h(k) > 0; then, A(h(k)) is the unique solution for x to:

Z(y; k; h) = �u0(w(k)� x) + u0(r(h(k))x)r(x) = 0 (5)

and A(h)(k) = 0 whenever h(k) = 0:19

19It is easy to verify the existence of a unique solution under Assumption 1.



By inspecting the de�nition of our operator, as A(h)(k) corresponds with
x�(k;h) for each (k; h); we then have a function h� is a RE if and only if it is
a non-zero �xed point of the operator A, and the issues of existence, characteri-
zation, and construction of extremal RE simply follow from the study of the set
of nontrivial �xed points of Ah.
We now prove existence of RE existence in each of these subclasses, and provide

explicit iterative procedures that convergence within in each subclass (but not in
the other subclasses). To do this, we prove three lemmas �rst. In our �rst lemma,
we show how Ah transforms on four spaces, and is isotone.

Lemma 4. Under Assumptions 1, 2, (a) A is an isotone self map on (Hu
w;�) and

(H l
w). Further, (b) 9 upper solutions mb (resp, mI) such that Ah is an isotone

self map on (Bmb
;�) and (HmI

;�).

Proof. (a) Consider h 2 Hu, h > 0. As h is usc and isotone in k, Z(y; k; h)
is right continuous at every k 2 X; increasing in k and strictly decreasing in x
under A1 and A2, the unique solution to 5 is A(h)(k), which is usc and isotone
in k: Hence, A(h)(k) 2 Hu

w for such h: Noting the de�nition of Ah elsewhere, we
have A(h)(k) 2 Hu

w:
To see Ah is isotone on Hu

w; as Z is also increasing in h, each k, we have Ah
isotone on Hu

w whenever h > 0: Noting the de�nition of Ah elsewhere, Ah isotone
on Hu. As similar argument shows Ah 2 H l

w and is isotone.
(b) First, we use Ah 2 Hu

w to construct both mb and mI : Consider 0 < k� <
k�� < kmax: De�ne the following two functions

mb(k) = 0 for k = 0 (6)

= w(k) for 0 < k < k�

= A(w)(k) for k� � k � k��

= A2(w)(k) else

and

mI(k) = 0 for k = 0 (7)

= A2(w)(k) for 0 < k < k�

= A(w)(k) for k� � k � k��

= w(k) else



By construction, mb (resp, mI) is a bounded function, not semicontinuous or
increasing (resp, a bounded increasing but not semicontinuous) function. Further,
mb (resp, mI) are upper solutions in the space Bmb

(X) (resp, HmI
(X)) as they are

clearly not �xed points of Ah in either space (and all the �xed points, if nonempty,
my be lower in order than mb (resp, mI): Finally, they are each not ordered with
the iteration A(w):
Now, consider h 2 Bmb

(resp, h 2 HmI
) with h > 0: As Z is bounded in

k (resp, Z is bounded and increasing in k), and Z is strictly decreasing in x,
when h > 0, A(h)(k) 2 Bmb

(resp, A(h)(k) 2 HmI
: Noting the de�nition of Ah

elsewhere, A(h)(k) 2 Bmb
(resp, A(h)(k) 2 HmI

: Further, as Z is increasing in h
(resp, increasing in h), Ah is isotone on Bmb

(resp., isotone on HmI
): Noting the

de�nition of A(h)(k) elsewhere, Ah is isotone on Bmb
(resp, HmI

).
We now de�ne two distinct, yet related, notions of order continuity that we

shall use in the paper to check conditions under which we can compute RE by
successive approximation. Both notions of continuity refer to the interval topology.

De�nition 5. A function F : (P;�)! (P;�) is sup (resp, inf) order continuous
if for any countable chain C � P such that _C and ^C both exist,

_fF (C)g = F (_C) (resp, ^ fF (C)g = F (^C)):

The function F is order continuous if it is sup/inf order continuous. The function
F is sup (resp, inf) order continuous along an F generated chain from x0 2 P if
for all n

_F n(x0) = F (_xn) (resp, ^ F n(x0) = F (^xn)
where the sequence fxjgnj is generated recursively as

xj+1 = F (xj); x0 2 P given

We now show under pointwise partial orders, our operator Ah is order contin-
uous along A- generated chains in all of its relevant domains (e.g., W;H;Hu; and
H l).

Lemma 6. (i) Under Assumptions 1 and 2, (a) the set of �xed points of A in
(Bmb

;�) (resp, HmI
;�), (Hu

w;�) and (H l
w;�) is a non-empty complete lattice,

(b) A is order continuous along F generated chains in (Bmb
;�) (resp, HmI

;�). It
is inf-order continuous along chains in (Hu

w;�), and sup-order continuous along
chains in (H l

w;�)



Proof. (a) The complete lattice structure of these sets of �xed points follows
from Tarski�s �xed point theorem, noting each subclass (Bmb

;�) (resp, HmI
;�),

(Hu
w;�) and (H l

w;�) is a complete lattice by Lemma 1, and Ah is an isotone self
map by Lemma 4.
(b) Next, we prove order continuity along increasing F chains by showing that

for any increasing sequence fgng in (Bmb
;�) or in (HmI

;�), we have

sup(fAgn(s)g) = A(supfgn(s)g):

For such a sequence and for all s 2 S, the sequence of real numbers fgn(k)g is
increasing and bounded above (by w(k)); thus limn!1 gn(k) = supfgn(k)g: For
the same reason limn!1Agn(k) = supfAgn(k)g: By de�nition, for all n 2 N, and
all k 2 X�:

�u0(w(k)� Agn(k)) + u
0(r(gn(k))Agn(k))r(Agn(k)) = 0

The function u0 is continuous (Assumption 1), and r is continuous (Assumption
2), hence taking limits when n goes to in�nity, we have:

�u0(w(k)� supfAgn(k)g)� u0(r(supfgn(s)g) supfAgn(k)g)r(supfAgn(k)) = 0

which implies that A(supfgn(k)g) = supfAgn(k)g. A symmetric argument can
easily be made for any decreasing sequence fgng in (Bmb

;�) or in (HmI
;�). This

establishes (b) for (Bmb
;�) or in (HmI

;�). A similar argument can be used
for (Hu

w;�) and (H l
w;�) to show A is inf (resp, sup) order continuous noting

the lower envelope (resp, upper envelope) of a collection of upper semicontinu-
ous (resp, lower semicontinuous) functions is upper semicontinuous (resp, lower
semicontinuous).
Our �nal lemma is particularly important for verifying the existence of non-

trivial minimal RE. As is clear from the de�nition of Ah, in all cases of subsets
of W , h� = 0 is a trivial �xed point. Therefore, the next lemma �nd a minimal
element of H l that maps up. Note that we construct this lower bound h0 to be
lsc so that the iterations fAnh0g will be an increasing sequence of lsc functions,
which therefore converges in order to the lsc function _fAnh0g.

Lemma 7. Under assumptions 1, 2, and 3, (a) there exists a function h0 2 (H l
w;�

) such that (i) 8k 2 X�, Ah0(k) > h0(k) > 0; and (ii) 8h 2 (0; h0] ; Ah > h on
X�.



Proof. See McGovern, Morand, and Re¤ett [33], Appendix A, noting there are
no shocks in our economies, and under Assumptions A1, preferences are additively
separable.

We are now prepared to prove our �rst theorem on the existence of RE in the
class of bounded functions and isotone bounded function, as well as characterize
the structure of the set of RE. In the Theorem, h0 is the function constructed in
Lemma 7. What will be critical in the next few theorems is to notice the key role
played in the arguments by the upper and lower solutions relative to �xed point
sets of our operator Ah when it maps in di¤erent domains. That is, �rst notice
in this theorem below, we study existence of RE in subcomplete order intervals
spaces Bw and Hw (where w is taken to be the upper solution that tops the
space, and the lower element of the order interval is given by h0 in Lemma 7. 20

Therefore, what this theorem veri�es is two facts: (i) how to very the existence of
a complete lattice of of nontrivial RE, as well as compute least and greatest RE
for our OLG economies under A1-A3 relative to the space of bounded functions
Bw\[h0; w] (resp, bounded isotone functions Hw\[h0; w] ) with upper solution w,
as well as (ii) showing that both least and greatest RE in this case actually belong
to spaces of functions with stronger structural properties than either Bw \ [h0; w]
(resp, Hw \ [h0; w] ). In particular, per (ii) the greatest RE is in Hu

w \ [h0; w],
while the least RE be in either H l

w \ [h0; w] or Hu
w \ [h0; w] ). As a matter of

notation, the �xed point set Ah in the space Bw (for example) will be denoted by
	BwA :

Theorem 8. Under Assumptions 1, 2, and 3: (a) there exist a nonempty com-
plete lattice of nontrivial RE in Bw \ [h0; w] (resp, Hw \ [h0; w]), (b) the least RE
hmin = ^	Bw\[h0;w]A = ^ 	Hw\[h0;w]A in (Bw \ [h0; w];�) (resp, in (Hw \ [h0; w];�))
is an isotone lsc (i.e., hmin 2 H l

w \[h0; w]; while the greatest RE is (Bw;�) (in
(Hw;�)) is hmax = _	BwA = _	HwA is an isotone usc function (i.e., the greatest
RE in Hu

w). Further, we can modify our iterations in (b) to compute a least usc
isotone RE in Hu

w \ [h0; w]: Finally (d) all these extremal RE can be constructed
by successive approximations.
20This observation is important, as what we are showing in this theorem is that if one works

in the space of functions Bw (resp, Hw), where the upper solution that de�ne the space is w
(which is a continuous isotone function), the greatest �xed point will always be in Hu

w (i.e., a
space of functions with stronger structural properties that Bw (resp, Hw): This means if we
want to compute RE in a larger subclass than Hu

w; we must to change the upper solution to the
function mb (resp, mI) that is de�ned in the proof of Lemma 4, where mb (resp, mI) are only
bounded (resp., only bounded and increasing), but always discontinuous.



Proof. (a) From Lemma 7, Ah transforms the complete lattice of bounded func-
tions [h0; w] � Bw (resp, [h0; w] � Hw): By Lemma 4, Ah is isotone. The result
then follows from Tarski�s theorem. (e.g., Tarski [55], Theorem 1).
(b): We �rst compute by successive approximation the least RE in H l

w: By
lemma 7, when restricted to the order interval H l

w \ [h0; w] (which is a complete
lattice itself), we have 0 < h0 = Ah0: As Ah is order continuous (e.g., Lemma
6), by the Tarski-Kantorvich Theorem (i.e., Dugundji and Granas [19], Theorem
4.2), we hve _fAnh0g = hmin = ^	H

U
w

A when k > 0 where 	H
U
w

A denotes the �xed
points of Ah in H l

w \ [h0; w]: That is, we have

hmin(k) = _fAnh0g(k) = lim
n!1

Anh0(k) = supfAnh0(kg = ^	H
U
w

A :

where hmin is lsc as it is the upper envelope of a family of elements of lsc functions,
and hence in H l

w. It is therefore the minimal bounded isotone and lsc RE in
H l
w\[h0; w]. It is also the minimal RE inHw\[h0; w] as h0 2 Hw: It is a nontrivial

RE as hmin(k) > 0 when k > 0; so it satis�es the RE functional equation in 3.
Similarly, we can compute the maximal RE in (Bw \ [h0; w];�) as the inf

(pointwise limit) of a decreasing sequence beginning at w. That is, is:

hmax(k) = ^fAnwg(k) = lim
n!1

Anw(k) = inffAnw(k)g;

which implies that hmax 2 Hu since it is the lower envelope of a family of elements
of (Hu

w \ [h0; w];�):
(c) We next compute the least RE in Hu

w: Following the same argument as in
Theorem 8, it is only a matter of correcting hmin above at most at a countable
number of points to obtain the minimal bounded isotone and usc RE. Speci�cally,
the minimal RE in (Hu

w;�) is the function gmin : X ! X de�ned as:

gmin(k) = inf
k0>k

fsupfAnh0(k0)gg

= inf
k0>k

f_fAnh0g(k0)g 8 k 2 [0; kmax)

and gmin(kmax) = _fAnh0g(kmax). Indeed, by construction gmin 2 Hu
w, gmin(k)

and hmin = _fAnh0g(k) di¤er at most at the discontinuity points of _fAnh0g(k),
and gmin(:; z) is the smallest usc function greater than _fAnh0g(k). In addition,
since _fAnh0g is lsc, for any k 2 X, gmin(k) = limk0!k+ _fAnh0g(k0): For any
k 2 [0; kmax), and for all k0 > k, by de�nition of hmin(k0)=q(k0)

�u0(w(k0)� q(k0)) + u0(r(q(k0))q(k0))r(q(k0)



Both functions u0(c) continuous (assumption 1) and r is continuous (assumption
2), taking limits when k0 ! k+ on both sides of the previous equality implies that:

�u0(w(k)� gmin(k)) + u
0(r(gmin(k))gmin(k))r(gmin(k)) = 0

which proves that, Agmin(k) = gmin(k). The set of RE in (Hu
w;�) is then simply

the set of �xed points of A that are bounded, isotone, and usc.
(d) this is obvious by the constructions in parts (b) and (c).
We now prove a second existence theorem concerning the existence and com-

putation of non-trivial least and greatest RE within the subclasses Bmb
and HmI

:
That is, in this theorem, we want to consider the existence of RE that are bounded,
but not isotone (i.e., in subintervals of Bw but not in Hw), or bounded and iso-
tone, but not not semicontinuous (i.e., in subintervals of Hw; but in neither Hu

w

and H l
w) :We can use the results of the previous Theorem to obtain least RE with

these properties. To obtain greatest RE that are not in Hu
w; we must change the

upper solutions w to a new function (i.e., either mb or mI de�ned in equation 6
and 7, respectively).

Theorem 9. Under Assumptions 1-3, there exists a complete lattice of RE in
Bmb

\ [hb0;mb] � Bw (resp, HmI
\ [hI0;mI ] � Hw) where hb0 and h

I
0 are nontrivial

lower solutions in Bw and Hw, respectively. Further, the least and greatest RE in
each subclass can be computed by successive approximations.

Finally, note that it is also easy to modify the usc function hmax at most at
a countable number of points to construct the maximal bounded isotone and lsc
RE. So by construction, least and greatest semicontinuous RE are not the same
in general even in spaces where the lower (resp, upper solutions) are the same.

3.2. On Uniqueness of RE

Under the additional assumption of capital income monotonicity, we can sharpen
our results. Speci�cally, we prove three things. First, we show in our context the
existence of a unique Lipschitz continuous isotone h�. A related result has been
shown previously in Wang [57], Morand and Re¤ett [37] and McGovern, Morand,
and Re¤ett [33]. Second, we prove this uniqueness result remains valid related
to Hw; that is the space of bounded isotone functions. Finally, we prove this
uniquness result fails in the space Bw (bounded functions).



Theorem 10. Under Assumption 1-4, (i) there exists a unique bounded isotone
RE h� in H. Further, the corresponding (Markovian) equilibrium consumption
policy, w�h� is also isotone, which implies that both h� and w�h� are Lipschitz
continuous. Further, this uniqueness result relative to the space Bmb

Proof. Under capital income monotonicity, for all k 2 X� the following equation
in y:

�u0(w(k)� x) + u0(r(x)x)r(x) =

has a unique solution. Notice, if h�(k) is RE in Hw (which exists by Theorem 8,
for example) . Let k1 � k2 > 0: As h�(k) is increasing, under assumption A4,

�u0(w(k2)� h�(k2)) + u
0(r(h�(k1))h

�(k1))r(h
�(k1)) � 0

Therefore, it must be the case that h�(k1) is such that w(k1)� h�(k1) is increas-
ing in k. But as h�(k) is also increasing in k, and w(k) is locally lipschitz of
modulus w0(k) near each k, h�(k) is an element of an equicontinuous collection
with pointwise bound w0(k): As L = supk2X jw0(k)j < 1; this implies h�(k) is
Lipschitz of modulus L on (0; kmax]: By a standard Lipschitz extension argument,
as w(0) = 0 = h�(0); h�(0) is a Lipschitz extension of h�(k) for k > 0, and we can
wlog have h�(k) Lipschitz of modulus L on all of [0; kmax] = X: So this proves the
�rst part of the theorem.
Finally, following Wang [57], for each k 2 X�, for h� increasing, we have both

w(k) � h�(k) and h�(k) increasing in k. Further, as w(k) is strictly increasing
in k, u(c) strictly concave, this implies both are strictly increasing in k for h�

increasing. Also, as the set of �xed points in any spaces of increasing functions
is a complete lattice, for any �xed point h� that is increasing; 9 another �xed
point h�� such that h�� = t(k)h�(k) � h� for 0 < t(k) � 1 for all k 2 X � with
0 < t(k) < 1 for at least 1 k 2 X�: If these �xed points aAll these facts together
imply that as Z de�ned below

Z(h�; k; h�) = �u0(w(k)� h�(k)) + u0(r(h�(k))h�(k))r(h�(k))

is strictly falling in h 2 Hw at each �xed k, h� when h�� < h� at any k 2 X�;there
cannot be two solutions to this functional equation at each k. That is, h�(k) is
a unique lipschitz RE, and that is true for any other candidate RE h 2 Hw with
h 6= h�: So this proves the second part of the theorem.
Finally, we stress two important facts: (i) capital income isotonicity is not

necessary for uniqueness of RE (as shown by the following example shows), and



(ii) the uniqueness of RE even under capital income monotonicity only holds
relative to spaces of isotone RE (i.e., this uniqueness result is not robust to RE
many subsets of Bw):
We �rst show that capital income is not necessary for uniqueness by example.

Example 11. Consider the utility function:

ln(ct) + ln(ct+1);

in which case the maximization problem of an agent is:

max
x2[0;w(s)]

�
ln(w(s)� x) +

Z
Z

ln(r(h(s))x)

�
;

and the associated �rst order condition is

(w(s)� x) = x;

so that the unique continuous RE is the function h�(k) = :5w(k). Notice, under
log utility, h disappears from the �rst order condition, so solving for the unique
continuous RE in this special case is very simple.

We remark, that in this example, this points the our need to also rule out log
utility (to obtain multiple RE across various spaces of functions). In the log utility
case, one can obtain closed-form solutions to the functional equations, which great
simpli�es the existence of RE problem,
Now, we conclude with a corollary to Theorem 9, which explicitly computes

an RE in Bw where Theorem 10 fails

Corollary 12. In the space (Bmb
;�); the successive approximations infnAn(mb)!

hbmax

Proof. Follows from Theorem 9
We note that in the above corollary we cannot prove hbmax is increasing in k,

(an, hence, our uniqueness result fails). That is, if we choose k1 � k2; as hbmax(k)
is not increasing in k, r(hbmax(k))h

b
max(k) is not necessarily increasing. Hence,

(w�hbmax)(k) is not increasing in k, and uniqueness argument in Theorem 10 fails
(as at a �xed point x�(k;hbmax(k)) = hbmax(k); there can be multiple roots of the
equation Z(x�(k; hbmax(k); k; h

b
max(k)) = 0:



3.3. Stable Iterations and Computable Equilibrium Comparative Stat-
ics

We�nally consider ordered perturbations of the primitive data of our OLG economies,
and show how our monotone methods can be used to study the question of ex-
istence of tractible computable selections. To do this, we �rst impose a slight
modi�cation of assumption 1:

Assumption 10 : u(c) satis�es A1 plus (i) u(c) is such that u0(r � x)r is
increasing in r; and (ii) u(c1) + �u(c1); for � > 0:

Assumption 10 would be met, for example, for models with power utility. With
this in mind, we now introduce partial orders on the primitive data of the economy.
Let F be the space of production functions satisfying Assumption A2. De�ne the
gradient order on F as follows: for f1 2 F; and f2 2 F(K), with f1(0; 1; 0; 1) =
f2(0; 1; 0; 1); we say f1 �F f2 if for all K > 0; f1(k; 1; K; 1) � f2(k; 1; K; 1) is
increasing in k. Notice, this is actually introduces a partial order on F(K) for
each K > 0: We then have the following computable equilibrium comparative
statics result:

Theorem 13. Let Ah(k; f; �) be the operator on B� = Bmb
\[hb^;mb](resp,

H� = HmI
\ [hb^;mb]; H

u� = Hu
w \ [hb^; w]; H l� = H l

w \ [hb^; w]): Let 	B
�

A (f; �)
(resp, 	H

�
A (f; �);	

Hu�
A (f; �);	H

l�
A (f; �)) be the set of RE in B� (resp, H�; Hu�;

H l�). Then, under A1�-A3, 	B
�

A (f; �) (resp, 	
H�
A (f; �);	

Hu�
A (f; �);	H

l�
A (f; �))

are each nonempty complete lattices, with least and greatest RE in each class
increasing selection. . Further, the iterations from least and greatest elements of
each space B� (resp, H�; Hu�; H l�) converge in order to these increasing selections.

Proof. That 	B�A (f; �) (resp, 	
H�
A (f; �);	

Hu�
A (f; �);	H

l�
A (f; �)) be the set of RE

in B� (resp, H�; Hu�; H l�) are nonempty complete lattices for each (f; �) follows
from Tarski�s theorem. Using the de�nition of Ah(k; f; �) in Z(x; k; h); one can
easily verify Ah(k; f; �) is increasing in both (f; �) (where the partial order on F
is the gradient order). The fact that that least and greatest elements of 	B

�
A (f; �)

(resp, 	H
�

A (f; �);	
Hu�
A (f; �);	H

l�
A (f; �)) are increasing selections follows, there-

fore, from Veinott�s �xed point comparative statics theorem. The computability
result follows from the order continuity of Ah(k; f; �) and the Tarski-Kantorovich
theorem.



4. Economies with In�nitely-Lived Agents and Progressive
Taxes

We now consider in�nite horizon economies with progressive taxes (i.e., exactly
the economy studied in Coleman [10][12]. It is a special case of the economies
studied in Mirman, Morand, and Re¤ett [35]. For these economies, we begin by
constructing a recursive representation of a typical household�s decision problem
that we shall repeatedly appeal to throughout the paper. We again seek recursive
equilibrium on a minimal state space. In this case, a household enters the period
with individual capital stock k facing prices in the econmy generated by an ag-
gregate capital stock K, with all future capital stocks calculate using a �xed law
of motion on that aggregate capital stock

K 0 = h(K)

with initial states (k0; K0) 2 X= K�K � R2
+ given. Let this beginning period

state variable, therefore, be denoted by s = (k;K) 2 X: Let B(X) denote the
space of bounded functions endowed with (i) the topology of uniform convergence,
and (ii) the pointwise partial order, and Bf (X) be a subset of B(X) that consist
of all the socially feasible aggregate laws of motion; i.e.,

Bf (X) = fh(s)j0 � h(x) � r(K)k + w(K)g � B(X)

Notice, for an equilibrium trajectory, we shall ahve k = K; so r(x)x+w(x) = f(x);
so sD = (k; k) 2 D = fs 2 Xjs = (k; k); k 2 Kg: Notice, D is an diagonal
subspace of X: Endow Bf (X) with its relative topology and relative partial order.
The collection Bf(X) is a complete sublattice in B(X).
For simplicity, we assume household�s own the �rms, and rent the factors of

production to those �rms in competitive markets. Using the de�nitions of r and
w, and appealing to zero pro�ts under constant returns to scale in Assumption 2,
the household income process can be written equivalently as either y1 or y2 in the
following expression:

y1(k;K) = (1� �(K))ff(K) + (k �K)r(K)g+ J(K) (8)

= (1� �(K))fr(K)k + w(K)g+ J(K)

= y2(k;K) (9)

where yi : K�K++!R+ for i = 1; 2:21 For simplicity, lets write the budget



correspondence just using y1 = y, so household�s budget correspondence can be
written as:

	(k;K) = fc; k0jc+ k0 � y(k;K); c � 0; k0 � 0g (10)

In equilibrium, where k = K; as the government�s budget constraint is imposed,
we require �f = �(rK+w) = J . Therefore, the household�s income processes can
be written, respectively, as

y(k; k) = f(k)

= y2(k; k) = rk + w

Under Assumptions 1, 2, and 5, as f , r, w; � and J are each at least locally
Lipschitz, so the household�s feasible correspondence 	i(k;K) is locally Lipschitz
continuous on K�K when K > 0.22

Let K� = Kn0, and X�=K�K�: To construct a recursive representation of
the household�s decision problem; for a household entering a period in state s =
(k;K) 2 X� in a candidate recursive equilibrium h 2 Bf (X); when h > 0; we can
construct a unique value function V � : K�K��Bf (X) that satis�es the following
parameterized Bellman�s equation:

V �(k;K;h) = sup
x2	(k;K)

fu(y(k;K)� x) + �V �(x; h(K)g (11)

where the household�s feasible correspondence is simply 	(k;K) = [0; y(k;K)]:
Under Assumptions 1, 2 and 5, appealing to a standard argument in the literature,

it can be shown that the unique real-valued solution to this Bellman equation is
a function V �(k;K; h) in the set W = f V : K � K��Bf ! R, v (i) isotone
in k, each (K;h), (ii) strictly concave (hence, continuous) in k for each (K;h)}.
Further, additionally, by the Mirman-Zilcha lemma, V �(k;K;h) also (iii) has a
envelope theorem in V �

1 (k;K;h) = u0(yix�)r(1� �), where (iv) the optimal policy
x� = x�(k;K;h) is single valued and continuous in its �rst argument. Allowing
for unbounded returns above in our setting is not a problem. (See Morand and
Re¤ett [40] for power utility, or Morand, Re¤ett and Wang [42], more generally).

21It will become clear in a moment why keeping track of the two di¤erent equivalent expressions
for household�s income process is useful. As a convention, unless we mention y2; we will use
y = y1 as the HH income process.
22See Rockafellar [52] for a discussion of Lipschitizian properties of correspondences.



23 Notice, if in addition, h(K) is continuous, x�(k;K;h) is also continuous in
K. Therefore, in any recursive equilibrium h� 2 Bf ; when k = K; h� must
be such that conditions (i)-(iv) hold for equilibrium value function V �(k; k;h�)
and unique optimal solution x�(k;K;h�): De�ning the mapping yx� = y � x�; we
can construct a necessary and su¢ cient �rst order characterization of the unique
optimal solution x� = x�(k;K; h) as:

u0(yx�)� �u0(yx�)(x
�; h(K)) r(h(K))(1� �(h(K)) = 0 (12)

With these properties of V �(k; k;h�) and x�(k;K;h) now clear, we now ready
de�ne an recursive equilibrium for our economies as follows:24

De�nition 14. A recursive equilibrium is any function h�(k; k) 2 Bf (X); such
that (i) positivity: h�(k; k) > 0 and (f � h�)(k; k) > 0 when k 2 K�; (ii) RE
functional equation: h�(k; k) = x�(k; k;h�(k; k)); and h�(k; k) = 0, else, and (iii)
Necessary Structural Properties for HH optimization in RE: when k > 0; given a
law of motion h�(k;K) 2 Bf , when k = K, (a) Strict concavity, individual states:
there is a dynamic program V �(k; k; h�(k; k)) that solves (11), strictly concave in
its �rst argument, that satis�es the Bellman equation (11) with associated unique
optimal solution x�(k; k;h�(k; k)); (b) Envelope theorem holds: V �(k; k; h�(k; k))
has an envelope theorem V �

1 (k; k;h
�) = u0(yx�)r(K)(1��(K)) at x�(k; k;h�(k; k));

and (c) Euler equation is satisi�ed: x�(k; k;h�(k; k)) can be characterized by the
necessary and su¢ cient Euler equation ( 12 ).

We need to make a remark at this point. In this de�nition above, we empha-
size the requirements that any recursive equilibrium must satisfy. In particular,

23That is, the key step to dealing with the unbounded below case is to �rst solve the Euler
equation abstractly, and then use well-known methods for solving dynamic programming prob-
lems with unbounded returns in a candidate to show there exists, and has a unique value function
evaluated at a (positive) equilibrium solution that satis�es a necessary and su¢ cient Euler equa-
tion. This can be done by a modi�cation of the local contraction arguments in Martins-Da-Rocha
and Vailakis [31] in our deterministic model. See Re¤ett [48] for a discussion.
24The requirement of interiority of consumption implied in our de�nition is a natural require-

ment for a recursive equilibrium. For example, it is needed to show that the candidate recursive
equilibrium decision rule a�(k; k; h�(k; k)) = h�(k; k) induces sequential equilibrium with a price
system in an appropriate dual space to the (in�nite) commodity space. Although this is not the
focus of this paper, proofs for our economies can be built from the recent results presented in
Morand, Re¤ett and Wang [42] for this economy.



h�(k) is a RE i¤ conditions (i), (ii), and (iii.a-iii.c) hold. The key conditions
that will be a problem to check for correspondence based recursive methods (e.g.,
Phelan and Stacchetti [46], Kubler and Schmedders [26]. Miao and Santos [34]
and Feng, et. al. [21]) will becontinuity requirements that any RE must satisfy
along the diagonal of a function x�(k;K; h�(k; k)) = h�(k; k) in its �rst argument.
More on this in the next section for the regressive tax case. It also bears men-
tioning that for any correspondence-based continuations method that does not
work in function spaces (i.e., all of the methods in the existing literature), the
requirement of continuity in the individual state variables along the diagonal is
demanding. For example, it implies that for G�(k; k) the equilibrium correspon-
dence generated by the "APS" type operator, one must guarantee the existence of
a selection, say g�(k; k) 2 G�(k; k), that is continuous in its �rst argument (hence,
guaranteeing the resulting Generalized Markov equilibrium decision rule for in-
vestment k0 = x�(k; k; g�(k; k)) 2 X�(k; k; g�(k; k)) is a continuous selection in its
�rst argument). This condition is very di¢ cult to check even in very simple one
dimensional problems as we shall argue in Section 5 of the paper, as the typical
equilibrium correspondence G�(k; k) is simply a nonempty upper semicontinuous
correspondence in its arguments. More in this in the next section.
We �rst consider function-based continuation methods for our economies under

Assumptions 1, 2, and 3(i) and 3(iii) (that is, nonoptimal Cass growth with a state-
contingent progressive tax, and lump-sum transfers.) For these economies, we
prove two new results. First, we extend the uniqueness result obtained in Coleman
[12] for his policy-iteration procedure to a much larger class of domains (namely,
a class of bounded functions with bounded consumption functions, not necessarily
even monotone). We then construct a second new �xed point procedure that is
not policy iteration, but admits a complete lattice of (locally Lipschitz) continuous
�xed points, where at least its least �xed point (for equilibrium investment) is a
recursive equilibrium. This recursive equilibrium cannot be guaranteed to be in
Coleman�s �xed point set obtained using policy iteration.

4.1. Some Useful Complete Lattices

Any discussion of solution methods for functional equations begins with a discus-
sion function spaces that serve as domains for �xed points of operators used to
solve the equations. At this stage, we de�ne a number of function spaces that we
use in the paper. We begin with subsets of the bounded socially feasible decision
rules Bf (X). For the moment, let s = (s1; s2) 2 X for the moment, where s1 = k;



and s2 = K:25 To guarantee our solutions are recursive equilibrium satisfy condi-
tions (iii.a)-(iii.c) along their diagonal (where s1 = s2), it is important keep track
of individual vs. aggregate states separately. Therefore, partition the components
of the state space x 2 X as x = (s1; s2) 2 X1�X2 = X � R2

+, where s1 can
be viewed as a individuals holds of capital, while s2 is the aggregate state of the
economy�s per capita capital stock, X1 = X2 = K: Consider a subset of Bf (X)
consisting of a set of upper semicontinuous, monotone functions on X:

UCS(X)= fh(x) 2 Bf j h(x) monotone increasing (isotone)

and upper semicontinuous in xg

For an element h 2 USC(X), if we interpret a typical element h(x) as an can-
didate equilibrium investment decision rule, notice the implied equilibrium con-
sumption c�(x) = y(x) � h�(x) is lower semicontinuous in x (and not necessarily
isotone).
An important subset of USC(X) occurs when consumption decisions rules

c = y � h are also isotone on X, namely, the space:

C(X) = fh(x) 2 USC(X)jh(x) continuous, s.t.
y(x)� h(x) is isotone in xg

The space C(X) is the domain for policy iteration methods studied in Coleman
[10][12] (as well as many subsequent related papers on policy iteration methods
based upon equilibrium versions of the household�s Euler equations). Therefore,
for h 2 C; as both h(x) and c(x) = y(x) � h(x) are isotone in x, h(x) and its
implied consumption c(x) are necessarily continuous (as with both c(x) and h(x)
are increasing, hence, locally Lipschitzian with modulus y0(x) = f 0(x) near x 2 X;
x > 0). Give the subcollections USC(X) and C(X) their relative topologies and
partial orders to the space Bf (X).26

25We introduce this new notation just to make clear we are dealing with individual states
x1 = k vs. aggregate states x2 = K separately in each argument. We will really be interested
in the case where k = K; so xD 2 D which is the diagonal of X; but the structural properties
of our spaces that we de�ne will be often asymmetric with respect to the components of x:
26In our subsequent discussion, when the context for X is obvious, we shall refer to these

spaces spaces Bf ; USC, and C, respectively, where the domains of the functions de�ning each
space is understood.



In our �rst lemma, mention the order completeness properties of subsets of
Bf under pointwise partial orders:

Lemma 15. Bf is a complete lattice; (ii) USC is subcomplete in Bf ; (iii) C is
subcomplete USC(X):

Proof. To see the completeness claims, let B � Bf : As the pointwise inf and sup
of B satis�es the pointwise bounds, i.e., 0� infxB � m; and 0� supxB � m; we
have ^B 2 Bf and _B 2 Bf : Hence, Bf is a complete lattice.
Further, as monotonicity in x (resp, equicontinuity at x) are preserved also

under pointwise sup and inf operations in X, if B � C, ^B 2 C and _B 2 C:
Hence, C is a complete lattice.
Finally, if B �USC, then the pointwise inf of any arbitrary B is upper semi-

continuous (e.g., Aliprantis and Border [5], lemma 2.41)). As _USC=y(x) is
continuous, by the characterization of a complete lattice in Davey and Priestley
([16], Theorem 2.31), USC is complete lattice.
Finally, noting obvious sublattice and subchain inclusions, the subcomplete-

ness and subchain completeness claims in the lemma follow.

We next consider subsets of Bf (X) where the restrictions on h 2 Bf (X)
are stated in terms of their implied properties on the inverse of marginal utility of
consumption. To do this, we �rst construct an analog to space of bounded feasible
decision rules Bf (X) in terms of inverse marginal utilities. We can let the inverse
marginal utility implied for any element h 2 Bf (X) be denoted by:

mh(x) =
1

u0(y(x)� h(x))
; for h 2 Bf (X), u0(y � h) > 0

= 0; else

Under Assumption 1, the function mh(x) is well-de�ned: Recalling Assumptions
1, 2, and 3(i) and 3(iii), it is known that for our economies, there exists a maxi-
mal sustainable capital stock, say ku > 0: Therefore, we can de�ne the maximal
sustainable inverse marginal utility of consumption as mu

0 =
1

u0(y(ku;ku)) : Noticing
mu(0; 0) = 0;de�ne the set of socially feasible inverse marginal utilities is given as
follows:

Mf (X) = fmj0 � m � mu(k; k)g



Notice, as promised, the spaceMf (X) is simply a restatement of the space Bf (X)
in the previous section. That is, we have h 2 Bf i¤m = 1

u0(h) 2M
f :

One important subset of Mf (X) occurs when continuous m 2Mf (X), and is
an element of the following subcollection:

MA(X)= fh(x) 2 Bf (X)jh(x) continuous, 0 � mh � mu
0 ; s. t.

0 � jmh(x
0)�mh(x)j �

1

u00(y(ku; ku))
g

For an investment function h(x) to be consistent with the inverse marginal utility
level m(x) 2 MA(X); we only require the equilibrium decision rules to have an
implied consumption function that has an implied variation of its inverse mar-
ginal utility an element of a collection of functions that each exhibit (uniform)
equicontinuity near each x bounded above by m0

f : Therefore, for h 2MA, as u(c)
is C2; c(x) = y�h is also locally Lipschitz continuous in x. Therefore, as y is also
locally Lipschitz under A2 and A5, h(x) is locally Lipschitz (as Lipschitz structure
is closed under scaler multiplication and addition).
Finally, consider the following subset of Mf (X) that also prove useful in our

subsequent arguments:

M(X)= fm 2Mf (X)jm s.t.
R� (k)

m(k; k)
strictly decreasing k for k > 0g (13)

The subsetM(X) �Mf (X) is closely related to the domain of functions studied
on Coleman [12] for his uniqueness argument (the di¤erence being that form(x) 2
M(X), we do not required m(x) to be continuous).
EndowMf (X) with the pointwise partial order, and give the subsetsMd and

M each their relative partial orders and topologies. First, note, that M is not
order closed; hence, is not a suitable domain for existence arguments via order
theoretic �xed point methods (e.g�Tarski�s theorem or its variants). M(X) will
prove very useful for uniqueness arguments. In the Lemma 16, we discuss the
order completeness properties of the remaining function spacesMf andMA:

Lemma 16. (i)Mf (X) is a complete lattice; (ii)MA(X) is chain complete.



Proof. Proof: That Mf (X) is a complete lattice follows directly from Bf (X) a
complete lattice (noting, the one-to-one lattice morphism de�ned in (??) between
elements of Mf (X) and Bf (X):
Further, as MA is equicontinuous and pointwise compact, it is a compact

subset of the space of continuous functions on X in the topology of uniform
convergence. Hence, in the pointwise partial order, by a theorem in Amann (e.g.,
Amann ([4], Theorem 10),MA(X) is chain complete.

In the subsequent discussion, when the context is clear, for all function spaces,
we will delete the reference to the state-space X (e.g., C(X) is denoted as C).
We are now ready to discuss function-based approaches to equilibrium in our
economies with a progressive tax.

4.2. A New Uniqueness Result

The �rst function-based method we consider is the policy iteration method pro-
posed in Coleman [10] [12]).27 Coleman�s procedure can be de�ned as follows: for
h 2 C; rewrite the equilibrium version of the household�s Euler equation in (12)
as the mapping ZA : K�X�C! R:

ZA(x; k; k; h) = u0(x)� �u0(yh(yx))R� (yx) (14)

where, the function R� (K) = r(K) � (1 � �(K)) denotes the distorted return
on capital, and, yh = y � h: 28 Then, a nonlinear operator A(h)(k; k) can be
constructed implicitly using ZA as follows:

A(h)(k; k) = x� s.t. ZA(x�(k; k; h); k; k; h) = 0; k > 0; h > 0, 8k
= 0 else.

It is important to remember the operator equation A(h)(k; k) = h is only an
abstract operator equation (with solutions that are not necessarily recursive equi-
librium). Therefore, to make its �xed points of A(h) recursive equilibrium, further
argument is typically required.

27We shall referred to this procedure as the "Coleman�s procedure". See also Bizer and Judd
[9]. This procedure has been studied in a number of other papers. See Mirman, Morand, and
Re¤ett ([35], Section 4) for a detailed set of references.
28We should note, we consider the mapping ZA (and all similar mappings in the paper) to

be a real-valued function. We are careful to only use ZA to de�ne our operators when it is
real-valued. This makes the need for the extended reals unnecessary.



The properties of iterative methods based upon the Coleman procedure have
been studied extensively in the literature. For the sake of completeness, we sum-
marize what is known about the solutions to the operator equation A(h) = h in
C:29

Proposition 17. (Coleman [10][12] and Mirman, Morand, and Re¤ett [35]). Let
	CA be the set of �xed points associated with A(h)(k; k): Then, under Assumptions
1-3(i) and 3(iii), 	CA = f0; h�(k; k)g � C, with h�(k; k) = _	A > 0 when k > 0:
Further, the iterations limnA

n(f) = supnA
n(f) ! h� (where the convergence is

both in topology and order, respectively). Finally, h�(k; k) is C1 when k > 0.

We now extend the uniqueness result for the policy iteration methods in Propo-
sition 17 to a more general setting. Following Coleman [12], we construct a second
operator whose �xed points can be shown to be isomorphic to those of A(h)(x)
using the domainM(X). To do this, de�ne the function H(m) implicitly by:

u0(H(m)) =
1

m
for m > 0, 0 elsewhere.

The function H(m) = c(m) is the consumption level required to obtain the inverse
marginal utility level of 1

m
whenm > 0: Under Assumption 1, as u0(c) is strictly de-

creasing, for eachm > 0, the mappingH is well-de�ned, bounded, strictly increas-
ing, and it has the following important boundary properties: (i) limm!0H(m) = 0,
and (ii) limm!f H(m) = f = mu:

Using the function H, for each m 2 M; next consider the mapping ẐA
:K�K�K�M based, again, upon an on equation (12) as follows:

ẐA(x; k; k;m) = �
1

x
+ �

R� (y �H(x))

m(y(k; k)�H(x); y �H(x))

De�ne a new nonlinear operator bAm(k; k) implicitly in ẐA(x; k; k;m) as follows:bAm(k; k) = fx�(k; k; ~m) j bZA(x; k; k;m) = 0 for ~m > 0, 0 elsewhereg:
29Although the focus here is on economies with bounded state spaces, Morand and Re¤ett

[40] extend Coleman [10][12] to the case of unbounded state spaces, and power utility. Further
generalizations are also available. See Morand, Re¤ett and Wang [42]



In Lemma 18, we show the operator bAm(k; k) is well-de�ned, transforms the
space M into itself, and has strong geometric properties when restricted to the
domain M.

Lemma 18. Under Assumptions 1, 2, 3(i) and 3(iii), bAm(k; k) is well-de�ned in
M(X), with Â(m)(k; k) 2 M, and H( bAm)(k; k) 2 C(X): Finally, bAm(k; k) 2
M(X); bAm(k; k) isotone, pseudo concave, and k0-monotone.
Proof. Proof: As ẐA is (i) strictly increasing in x; each (k; k;m); m > 0; bAm(k; k)
is well-de�ned. For k1 � k2 > 0; the second term in ẐA falls. Therefore, for such
(m; k); have Â(m)(k1; k1) � Â(m)(k2; k2): Noting the de�nition of bAm(k; k); under
Assumption 2 and 3(i), Â(m)(k; k) is isotone in (k; k): Therefore, Â(m)(k; k) 2M:
To see Â(m)(k; k) is such that H(Â(m))(k; k) 2 C; simply note that as

Â(m)(k; k) is increasing in k; when k1 � k2 > 0; m > 0; then as the �rst term of
ẐA must fall, Â(m)(k; k) must be such that the second term of ẐA falls; hence,
as m 2M; Â(m)(k; k) is such that y(k; k)�H(Â(m))(k; k) is increasing in k: As
H(Â(m))(k; k) is also increasing in k; Â(m)(k; k) is such that H(Â(m))(k; k) 2 C:
Let m0 � m;m > 0 and k > 0: As ẐA is strictly decreasing in m, for such

(m; k), Â(m0)(k; k) � Â(m)(k; k): Again, noting the de�nition of bAm(k; k) else-
where, we have Â(m)(k; k) isotone onM.
Finally, that Â(m)(k; k) is pseudo-concave and k0�monotone follows from

Coleman ([12], Lemma 3 and 4, respectively).

We now are ready to prove the following important result in this section. That
is, we extend of the main uniqueness theorem in Coleman [12] to a much larger
set of functions:30

Theorem 19. Let h� be the unique positive �xed point in Proposition 17. Then,
under Assumptions 1, 2, 3(i) and 3(iii), the set of �xed points of bAm(k; k) is 	M

Â

={0, m�g � M(X); with m� > 0 when k > 0. The iterations infn bAn(mu)!m�

where the convergence is in order and topology, where H(m�)(k; k) = h� 2 C(X):
30Also, it is important to note that Coleman [10] and others have studied economies with

stochastic Markov shocks de�ned in a discrete shock space. Therefore, obviously, our new
uniqueness result extends with a trivial modi�cation to such economies.



Proof. First, consider m 2 M(X); m > 0, k > 0: Under Assumptions 1,
2, and 3(i), as cZA is strictly in x, x 2 K 2 R. Therefore, cZA (x; k; k;m) is
upper-semicontinuous from the left, and lower semicontinuous from the right
in x. By Assumptions 1 and 2, we have additionally limx!0 cZA = +1 and
limx!f bZA = �1: Hence, at all such points (k;m); by Guillerme�s coincidence the-
orem (Guillerme [24], Theorem 3), there exists a root bAm(k; k) = x�(k; k; ~m) such
that cZA (x�; k; k;m) = 0. Further, as cZA is strictly increasing in x, bAm(k; k) =
x�(k; k; ~m) is unique. Noting bAm(k; k) = 0 else, bAm(k; k) is well-de�ned in
M(X).
Next, note that the minimal �xed point of Â(m)(k; k) is by de�nition 0: To

establish the only other �xed point of cAm(k; k) is m�(k; k) with m� > 0 when
k > 0; using the de�nition of m, we have:

H(m0(k; k)) =
1

u0(c0(k; k))
:

By the de�nition of the operator Â(m)(k; k) in equation (??), we have

1bAm0(k; k)
= �

(
R� (y

1(k; k)�H( bAm0(k; k))

m0(y1(k; k)�H( bAm0(k; k))

)
or, equivalently (from the de�nition of c0):

1bAm0(K; z)
= �fR� (y(k; k)�H( bAm0(k; k)))

� u0(c0(f(k; k)�H( bAm0(k; k))g:

Therefore, by construction, Ac0 satis�es:

u0((Ac0)(k; k) = �fR� (y1(k; k)� Ac0(k; k))

�u0(c0(y(k; k)� Ac0(k; k))g:

By the uniqueness of bAm0; it must be that 1= bAm0 = u0(Ac0) (or, equivalently,
H( bAm0) = Ac0)). By induction, for all n = 1; 2; :::; Anc0 = H( bAnm0). Hence, a
�xed point of cAm(k; k) corresponds with a �xed point of A(h)(k; k):
Next, we prove a �xed point ofA(h)(k; k) corresponds to �xed point of bAm(k; k):

To see this, consider an x such that Ax = x, and de�ne z = 1=u0(x) (or, equiva-
lently H(z) = x). By de�nition, x satis�es:



u0(x(k; k)) = �fR� (y(k; k)� x(k; k))

� u0(x(y(k; k)� x(k; k)g for all (k; k):

Substituting the de�nition of y into this expression, we have:

1

y
= �

R� (y(k; k)�H(z(k; k))

z(y(k; k)�H(z(k; k))
;

hence, z(k; k) is a �xed point of bA. Therefore, h�(k; k) 2 	A , m� 2 	Â:
As bAm(k; k) is pseudo-concave and k0-monotone, it has at most two �xed

points, one non-zero (e.g., Coleman ( [12], Theorem 5). Therefore, the �xed
point set of Â(m)(k; k) is 	M

Â
=f0;m�g; with m� = 1

u0(c�(k;k))) for c�(k; k) > 0

when k > 0: Hence, H(m�(k; k)) = c�(k; k) 2 C:
Finally, to show uniform convergence of the iterations infn bAn(mu) = limn

bAn(mu)
! m�; �rst note that for any m 2 M; as A(m)(k; k) is increasing in k; we have
the following inequality when k1 � k2 > 0:

� 1

Â(m)(k1; k1)
+

�
R� (y(k2; k2 �H(Â(m)(k2; k2)))

m(y(k2; k2)�H(Â(m)(k2; k2)); y(k2; k2 �H(Â(m)(k2; k2)))

� 0

Hence, Â(m)(k; k) is such that y(k; k) �H(Â(m)(k; k) is increasing in k: Hence,
Â(m)(k; k) implies H(Â(m)) 2 C as f� H(Â(m)) increasing in k: Hence, each el-
ement of a {Ân(mu)(k; k) equicontinuous set such thatH(Â(m)) and f�H(Â(m))
has maximal variation f 0(k) at each k > 0: Therefore, by Dini�s theorem, for each
k > 0; as the limiting functionm� is continuous, and limn

bAn(mu)!m� uniformly
when k > 0: Noting the de�nition of Â(m) when k = 0, this convergence is uni-
form on X. Finally, convergence in order is implied by the fact that pointwise
and uniform convergence coincide in C, and {Ân(mu)(k; k)g forms a subchain
in C with sup and inf operations for {Ân(mu)(k; k)g equal to pointwise/uniform
limits.

Theorem 19 extends the uniqueness result in Coleman [12] In particular, ele-
mentsm 2M(X) do not require monotonicity of either investment, nor continuity



of either consumption or investment. All that is required is that consumption be
monotone (jointly) in (k; k) continuous in its �rst argument, bound in its second
argument.

4.3. A New Method and More Continuous RE

Our uniqueness result in Theorem 19 pertains to the standard operator that has
been studied in the literature.31 We now show compute RE in the exact same space
C (where our new uniqueness result in Theorem 19 holds), but using a completely
di¤erent procedure. What will be interesting is this method will not allow use to
check the geometric conditions needed in Theorem 19, hence we will not be able
to rule out additional RE. The new method is a simple value iteration procedure,
that produces a decreasing operator that is continuous in the space C. As C is a
nonempty, compact, and convex set, existence of some RE will be guaranteed by
Schauder�s theorem. Further, its �xed point set will be an antichain. 32

The method works directly with the household�s dynamic program. We modify
the household problem from before as follows: for a household entering a period
in state s = (k;K) 2 X� in a candidate recursive equilibrium h 2 C(X); when
h > 0; construct the unique value function V � : K�K��C(X) that satis�es the
following parameterized Bellman�s equation:

V �(k;K;h) = sup
x2	(k;K)

fu(y(k;K)� x) + �V �(x; h(K))g (15)

where the household�s feasible correspondence is again simply	(k;K) = [0; y(k;K)]:
Again, using yx� = y� x�; we can construct a necessary and su¢ cient �rst order
characterization of the unique optimal solution x� = x�(k;K; h) is:

u0(yx�)� �u0(yx�)(x
�; h(K)) r(h(K))(1� �(h(K)) = 0 (16)

Now, de�ne a new operator

A�(h)(k) = x�(k; k;h) for k > 0; h 2 C; h > 0
= y else.

That is, de�ne an operator this exactly the HH�s best response map to the aggre-
gate law of motion h 2 C when h and k are not zero (and zero, else). We now
have the following Lemma:
31For example, in addition to Coleman [10][11][12], also this operator is used in Greenwood

and Hu¤man [23], Datta, Mirman, and Re¤ett [14], Morand and Re¤ett [40], among others.
32 i.e., not two �xed points will be ordered.



Lemma 20. A�(h)(k) is continuous and antitone on C(X):

Proof. To be completed. Basically, apply Bonsall-Nadler theorem to house-
hold�s dynamic program to get pointwise continuity of policies in h(k): Then, use
equicontinuity of C(X) to get uniform convergence on X� = (0; �k]: Noting de�-
nition of A(h)(k) elsewhere, by equicontinuity, prove A(h)(k) is continuous at 0.

Let 	CA� be the �xed point set of A
�(h)(k): We now verify the existence of a

RE using A�(h)(k)

Theorem 21. The set of �xed points for A�(h)(k) is nonempty, compact, an-
tichain (hence, chain complete). Further, each �xed point of A�(h)(k) is a RE in
C(X)

Proof. As C is a nonempty, compact, and convex set, and A�(h)(k) is continuous
by Lemma 20, the fact that 	CA� is nonempty and compact follow from Schauder�s
theorem. That 	CA� forms an antichain follows the fact that A

�(h) is decreasing
in a complete lattice C (e.g., Dacic [13]), and that 	CA� is chain complete follows
from Amann ([4], Theorem 10).
Now, whenever h = 0; A�(h)(k) is y; and as hn ! y; r(hn) ! r(h); so

A�(h)(k) > 0 (hence, there are no trivial �xed points of A�(h)(k)): Therefore,
all the elements of 	CA� are actually RE.

We conclude with a remark about the �xed points of A�(h) and our uniqueness
result in Theorem 19. Using the Euler equation, we have

Z(A�(h); k; h) = u0(yA�(h))� �u0(yA�(h))(A
�; h(K)) r(h(K))(1� �(h(K)) = 0

Therefore without further restrictions on F , we cannot checking the standard
pseudo-concavity condition; that is, we do not have A�(th)(k) > tA�(h) for all
t > 0; h > 0: Additional, it can be veri�ed we do not su¢ cient convexity conditions
to apply related arguments for unique decreasing operators.



4.4. More Continuous RE

Now we propose a second �xed point procedure that veri�es even more continuous
RE that lie outside the realm of our uniqueness result. This new result is not
inconsistent with Theorem 19, as we prove relative existence outside the domain of
bounded functions where the uniqueness argument of Theorem 19 holds (namely,
M). As our new operator does not have the requisite concavity and monotonicity
properties needed to guarantee the existence of unique �xed points in its domain,
we cannot expect RE to be unique. What is interesting is this new procedure
also will allow us to build additional RE that are discontinuous (essentially just
bounded) in K, for each k:
The new procedure is a "two-step" monotone map method. To de�ne the

method, �x a pair of functions h 2 USC and ĥ = ĥ(K) 2 Bf ; and consider the
mapping ZB(x; k; k; h; ĥ) :

ZB(x; k; k; h; ĥ) = �u0(y2(k; k)� x) (17)

+ �u0(r(h(k; k))x+ w(x)� ĥ(ĥ; ĥ)) �R� (x)

where, in the de�nition of ZB; we have used the fact that that y2(k; k) = r(k)k+
w(k) = f(k): For �xed ĥ 2Bf ; de�ne a "�rst-step" nonlinear operatorB1(h)(k; k; ĥ)
in the spaceUSC discussed in Section 3 in Lemma 15 implicitly in the household�s
equilibrium Euler equation as follows:

B1(h)(k; k; ĥ) = f if @ an x st r(h(K))x+ w(x)� ĥ(ĥ(K); ĥ(K)) > 0;

when k > 0; h(k) > 0; ĥ 2 Bf

= x�j for ZB(x�; k; k; h; ĥ) = 0; else, when k > 0; h(k) > 0; ĥ 2 Bf

= 0 , elsewhere.

The following lemma characterizes the properties of the "�rst step" operator
B1(h)(k; k; ĥ) = B1(h; ĥ) :

Lemma 22. For ĥ = ĥ(K) 2 Bf ; for each h 2 USC; B1(h; ĥ) 2 USC: Further,
B1(h; ĥ) jointly increasing on in (h; ĥ(K)) 2 USC�Bf ; for each (k; k) 2 X =
K�K:



Proof : Under Assumptions 1 and 2, ZB is strictly decreasing in x 2 K � R
with ZB ! 1 for x ! 0 and ZB ! �1 as x ! m2: Noting the de�ni-
tion of B1(h; ĥ) elsewhere, we conclude B1(h; ĥ) is well-de�ned. Further, noting
that ZB is upper-semicontinuous and increasing in (k; k) (hence, right continuous
in k), and ZB is continuous in x; the root x�(k; k; h; ĥ) is right continuous and
monotone (hence, upper semicontinuous) in k Finally, for each (k; k); k > 0; we
have ZB(x; k; k; h1; ĥ1 )� ZB(x; k; k; h2; ĥ2 ) when (h1; ĥ1) � (h2; ĥ2): Therefore,
B1(h1; ĥ1) � B1(h2; ĥ2) for such k: Noting the de�nition of B1(h; ĥ); elsewhere,
B1(h; ĥ) is jointly increasing in (h; ĥ) on USC�Bf for each (k; k):�

Let 	USCB1 (ĥ) � USC be the �xed point correspondence for the operator
B1(h; ĥ) at ĥ 2 Bf . We now prove an important lemma concerning the �xed
point set of the "�rst-step" of our modi�ed policy iteration procedure33:

Lemma 23. The �xed point set 	USCB1 : Bf ! 2USCn? is a nonempty com-
plete lattice-valued correspondence, with 	USCB1 (ĥ) ascending in Veinott strong set
order on Bf . Further, for each �xed point h� 2 	B1(ĥ); h� 2 C(X): Addition-
ally, for �xed ĥ 2 Bf ; the iterations limnB

1n(0; ĥ) ! infnB
1n(0; ĥ) = h�(ĥ) =

^	USCB1 (ĥ) 2 C, such that h�(ĥ) > 0 and f(k)� h�(ĥ) > 0 when k > 0; where the
convergence is uniform. Finally, the selection B2

^(ĥ) = ^	USCB1 (ĥ) is an increasing
selection of 	USCB1 (ĥ):

Proof. Proof: As B1(h; ĥ) 2 USC(X); isotone in h, each (k; k; ĥ); and USC(X)
as complete lattice, by Tarski�s theorem, 	USCB1 (ĥ) is a nonempty complete lattice.
Further, that the �xed point correspondence 	USCB1 (ĥ) is ascending in Veinott�s
strong set order follows from a theorem in Veinott ([58], Theorem 14, Chapter
4).34

33We should be very clear: Coleman [10][12] and Mirman, Morand, and Re¤ett [35] are explicit
when noting precisely how to interpret their uniqueness results; what is new, here, is (i) a new
method for computing recursive equilibrium outside the side of function for which they claim
uniqueness, (ii) an argument that uniqueness results, at best, only can be claimed relative to
operators, not sets of recursive equilibrium.
34See also Topkis ([56], Theorem 2.5.2).



Let h�(ĥ) 2 	USCB1 (ĥ): By the de�nition of B1(h; ĥ), when k > 0;

h�(ĥ) = B1(h�; ĥ) =

inffx�(k; k; h�; ĥ); f)

where ZB(x�(k; k; h; ĥ); k; k; h; ĥ) = 0 . Therefore, when k1 � k2 > 0; using the
notation h�k(ĥ) = h�(k; k; ĥ), and x�k(ĥ) = x�(k; k; h�; ĥ); the following:

u0(y2(k; k)� x�k(ĥ))�
�u0(r(h�k1(ĥ)h

�
k1
(ĥ) + w(h�k1(ĥ))� ĥ(ĥ; ĥ) �R� (h�k1(ĥ)) �

u0(y2(k; k)� h�k2(ĥ))�
�u0(f(h�k2(ĥ))� ĥ(ĥ; ĥ) �R� (h�k2(ĥ)

= 0

as r(h�)h� + w(h�) = f(h�) by the de�nition of income process y2, and h�k(ĥ) is
increasing in k:
Therefore, if B1(h�(ĥ); ĥ) = x�k(ĥ), we have B

1(h�(ĥ); ĥ) such that u0(y2(k; k)�
h�k(ĥ)) is decreasing in k. Therefore, y

2(k; k) � h�k(ĥ) must be increasing in k:
Hence, B1(h�(ĥ); ĥ) 2 C: Further, if k > 0; then B1(h�(ĥ); ĥ)=f , hence we
trivially have y2 � B1(h�(ĥ); ĥ) increasing in k: Therefore, when k > 0; for
h� 2USC(X)) B1(h�(ĥ); ĥ) 2 C(X): Elsewhere, B1(h�(ĥ); ĥ) = 0 2 C: There-
fore, for all k 2 K; h�k(ĥ) 2 USC) h�k(ĥ) = B1(h�(ĥ); ĥ) 2 C(X). Finally, as
the subset C(X) is compact in USC(X));we have any �xed point h�k(ĥ) 2 C.
To conclude the proof, as for each ĥ = ĥ (K;K); the iterations limnB

1n(0; ĥ)!
h�k(ĥ) = ^	USCB1 (ĥ) form a monotone sequence of continuous function with the
limit h� continuous, hence, by Dini�s theorem, the convergence is uniform.

We next construct a new operator from the �xed point correspondence of our
"�rst-step" operator based upon the selection h�k(ĥ(K;K)) when k = K as follows

B2(h)(k; k) = h�k(ĥ(k)); h 2MA; h < f; k > 0

= f; h = f; k > 0

= 0; else



In Theorem 24, we now show the existence of additional recursive equilibrium
inMA(X). Further, we show that when B2(h)(k; k) is restricted toC, B2(h)(k; k)
has a (unique) positive �xed point in C (hence, by Theorem 19, Coleman�s policy
iteration procedure is robust to alternative �xed point procedures.
Let 	M

A

B2 be the set of �xed points of B2(h)(x): Further, de�ne the set of
functions:

Bf�(X) = fhj for �xed ĥ(k) 2 Bf ; h�k(ĥ(k)) 2MAg
Notice the elements of h�k(ĥ(k)) 2 B�(K) are not continuous on K; as ĥ 2 Bf : It
can easily be veri�ed that B�(X) is chain complete. We have the following:

Theorem 24. The operator B2 : MA ! MA is isotone on MA: Therefore, its
�xed points 	M

A

B2 form a chain complete set, with ^	MA

B2 2 MA a continuous
recursive equilibrium, with ^	MA

B2 =2 C: Further, when the operator B2(h)(k; k)
is restricted to C, 	MA

B2 = f0; h�g � C: Finally, for ĥ 2 Bf ; B2 : B� ! B� and
is isotone, so the set of �xed points 	B

�

B2 is chain complete, and ^	B
�

B2 a bounded
RE.

Proof. Proof: Let h 2MA; with h < f; k > 0: Let k1 � k2 > 0: As h 2MA; and
B2 is increasing in k; we have

j�u0(f(B2(k1; k1)� h(h(k1; k1); h(k1; k1)) �R� (B2(k1; k1)�
�u0(f(B2(k2; k2)� h(h(k2; k2); h(k2; k2)) �R� (B2(k2; k2)j � 0

Hence, B2(k; k) must be such that

ju0(y2(k1; k1)�B2(k1; k1))� u0(y2(k2; k2)�B2(k2; k2))j

Using the de�nition of the inverse marginal utility in (4.2), using cm = y1 � B2;
de�ning mB3 to be the implied inverse marginal utility at cm; this implies

jmB2(k1; k1)�mB2(k2; k2)j �
1

u00(mu)

Noting the de�nition of B2 elsewhere, B2(k; k) 2MA:



To see B2(h) is isotone, note that when h0 � h; the second term of ZB rises
(noting that the least �xed of B1(h; ĥ); B2

_(ĥ) , rises by Veinott�s �xed point
comparatives statics result, e.g., Topkis ([56], Theorem 2.5.2). Therefore, noting
the de�nition of B2(h) elsewhere, B2(h) is isotone inMA:
AsMA is chain complete, by Markowsky�s �xed point theorem ([30], Theorem

9), the �xed point set for B2; 	M
A

B2 ; is chain complete.
To complete the proof of the �rst part of the Theorem, appealing to the Inada

conditions in Assumptions 1 and 2, the greatest �xed point has ^	MA

B2 > 0 when
m > 0; and k > 0. By the local Lipschitz continuity ^	MA

B2 near each k, the
implied �xed points for consumption and investment at ^	MA

B2 near each k are
Locally Lipschitz continuous. Under Assumptions 1, 2, 3(i), all the primitive data
that de�nes ZB is locally Lipschitz continuous. Further as m 2MA, m is locally
Lipschitz. As it is known in our setting, local Lipschitz structure is closed under
composition,35 we have ZB2 locally Lipschitz in k at _	M

A

B2 : As under Assumption
1, for any element of Clarke partial @mZ , the element does not vanish (as, for
example, the Clarke gradient of the �rst term does not vanish), by Clarke�s implicit
function theorem, as ^	MA

B3 = B3(h�) = B2
^(h

�; h�)(k; k) = h�k(ĥ) is just the root
of ZB2 ; when ^	M

A

B2 > 0; k > 0; ^	MA

B2 )(k; k) is locally Lipschitz near any such k:
Noting the de�nition of ^	MA

B2 elsewhere, ^	MA

B2 (k; k) is continuous.
Finally, the continuity of equilibrium decision rules guarantee we evaluated

the pair of conditions( 11) and (12) in the de�nition of a recursive equilibrium,
and verify they are satis�ed with x�(k; k;^	B2) being the optimal solution at
V �(k; k;^	MA

B2 ).
To see that when h 2 C; ^	MA

B2 = h� 2 C; notice �rst that for such h; B2(h)
in ZB2 in

u0(y2(k1; k1)�B2(k1; k1))

��u0(f(B3(h)� h(h(k1; k1); h(k1; k1)) �R� (B2(k1; k1)

is now increasing in (k; k) such that f � B2 is increasing in (k; k):Therefore,
B2 2 C; additionally. Therefore, noting that in Lemma 15, C is a complete
lattice, as B2 is isotone, the �xed point set 	B3 � C: Therefore, ^	M

A

B2 2 C. It
can easily be veri�ed that appealing to obvious modi�cations of the arguments in
Theorem 19, the �xed points of B2(h) for h 2 C can be related one-to-one with

35If f : I1 ! I2; and g : I2 ! R; f and g Lipschitz any I1 and I2 compact in (0; ku], then
g � f is Lipschitz on I1.



the �xed points of Â(m)(k; k) de�ned in theorem inM: Hence, 	M
A

B2 = f0; h�g as
in Proposition 17
To complete the proof, simply note that B2(h) on B� self map follows from

the fact that for each ĥ, h�k(ĥ) 2 MA: Isotonicity follows from the �xed point
comparative statics result in Theorem 23. Therefore, as B� is chain complete, by
Markowsky�s theorem, 	B

�

B2 is chain complete. Further, it can easily be veri�ed
B2(h) is order continuous on B�; and 9 a lower bound hb 2 Bf , hb =2 C su¢ ciently
close to 0, such that hb � B2(hb): Therefore, the the Tarski-Kantorovich theorem,
the iterations supnB

2;n(hb)(k; k) ! ^	B�B2 : As B2(h) corresponds with the root
of �rst order condition for the HH in equilibrium, given the Inada condition, we
must have ^	B�B2(k; k) > 0 when k > 0; so ^	B

�

B2 is bounded RE, continuous only
in its �rst argument.

5. Economies with In�nitely-Lived Agents and Regressive

Taxes

We �nally consider the existence of recursive equilibrium in the example studied in
Santos [54] for case of regressive income taxes. For this case, we will again develop
a two-step modi�cation of Coleman�s policy iteration procedure to establish the
existence of both an very narrow set of RE (i.e., (locally Lipschitz) continuous
isotone recursive equilibrium), and an very large set for RE (i.e., bounded RE,
locally Lipschitz continuous in k, for eachK = k): So in the latter case, the RE has
essentially no structural properties in K along the path k = K:The of this section
is to make a very simple point about RE in nonoptimal economies: in an RE, there
are basically no restrictions places on solutions to RE functional equation in "big
K": This is because of the "k-K" structure of the RE functional equation. This
allows us to (in e¤ect) solve the RE functional equation "on sections" of the state
space X, with the �rst step verifying the required properties for an RE properties
of an RE in "little k" (holding "big K" constant), and in the second step, just
making sure the solution is consistent with making the Euler equation hold given
for the RE function for all "big K". This latter step (as we shall see) places very
little restrictions on the solutions.



5.1. Two Step Monotone Map Methods

To see how this two step procedure works, lets �rst compute locally Lipschitz con-
tinuous RE.36 To do this, consider the following modi�cation of Coleman�s proce-
dure: for h 2 C(X); and ĥ(K;K) 2 C(X); de�ne the mapping ZAS(x; k; k; h; ĥ)
as follows

ZAS(x; k; k; h; h) = u0(y1(k; k)� x)� �u0(y1h)(x; x))r(x)(1� �(ĥ(K;K)))`

where, under Assumption 3(ii), the income tax �(K) is now assumed to be de-
creasing and Lipschitzian in its argument. Fixing both h and ĥ, we can de�ne
a nonlinear operator AS(h)(k; k; ĥ) = AS(h; ĥ) implicitly in ZAS(x; k; k; ĥ(K)) at
ĥ = ĥ(K;K) as follows:

AS(h; ĥ) = x� s.t. ZAS(x
�(k; k; h; ĥ(K)); k; k; h; ĥ) = 0;

h > 0, k > 0; all K

= 0 else.

For �xed (h; ĥ) 2 C�C; we �rst prove some basic properties of the operator
AS(h; ĥ) :

Lemma 25. For (h; ĥ) 2 C�C; at ĥ = ĥ(K;K); AS(h; ĥ) 2 C. Further, when

k > 0; k = K; As(h)(k; k; ĥ(k; k)) is locally Lipschitz:

36Note, Santos [54] claims nonexistence of continuous RE in the class of models we study
presently. We show this is not not the case. Actually, what Santo�s veri�es (correctly) is there
are not continuous RE on a state space of k (i.e., a one dimensional state space). We verify
continuous RE exist on x = (k; k), which is not the same (so in principle, our claim does not
contradict the claim in Santos).
But a few remarks. First, in addition to continuity of RE, we are able to verify isotone RE

for investment in this example. That contradicts the numerical claims from the computations
reported in Feng, et. al. [21] that at some unstable steady state for this example, there is a
spiral sink. Also, it should be noted that the Grobman-Hartman theorem does not apply in
this problem (as RE dynamics are not necessarily smooth, only locally Lipschitz). Hence, some
other method has to be used to verify the stability claims in Santos [54] . See Re¤ett [48] for
discussion.



Proof. Proof: For k = 0; and (h; ĥ) 2 C�C;the operator is well-de�ne. Fix
ĥ(K) 2 C, k > 0: For such points, the fact that the operator AS(h)(k; k; ĥ(K))
is well-de�ned, isotone, and continuous in the uniform topology in h follows from
Coleman ([10], Proposition 4). Further, if K� = (0; ku]; under Assumptions 1,
2, 3(ii)-(iii), noting local Lipschitz continuity is pointwise closed under compo-
sition in this context, for (h; ĥ) 2 C�C; the mapping ZA(x; k; k; h; ĥ) is (x; k)
jointly locally Lipschitz on K� �K�. Further, under Assumptions 1 and 2, not-
ing y1(k; k) = f(k), as each partial Clarke gradient for ZA in x does not vanish,
i.e., the Clarke generalized gradient @xZA is of full rank, by Clarke�s Implicit
Function Theorem, x�(k; k; h; ĥ(k; k)); k; k; h; ĥ(k; k)) = AS(h)(k; k; ĥ(k)) is lo-
cally Lipschitz near each k > 0.37

We now study the monotonicity of the operator AS(h)(k; k; ĥ(k)) . In partic-
ular, we prove the mapping AS(h)(k; k; ĥ(K)) is jointly isotone on C�C :

Lemma 26. AS(h)(k; k; ĥ(k)) increasing jointly in (h; ĥ).

Proof. Proof: When h > 0; k > 0; as ZAS(x; k; k; h; ĥ) is strictly increasing
in x; and decreasing jointly in (h; ĥ) 2 C�C; AS(h)(k; k; ĥ) is jointly isotone
for such (h; ĥ); when k > 0: Noting the de�nition of AS(h)(k; k; ĥ(K)) elsewhere,
AS(h)(k; k; ĥ(K)) is jointly isotone on C�C:

Let 	CAS (ĥ)(k; k) be the set of �xed points of A
S(h)(k; k; ĥ(K)) at ĥ(K) 2

C(X) when k = K: We have the following result:

Lemma 27. 	CAS (ĥ)(k; k) is a nonempty complete lattice for each ĥ 2 C(X).
Furthermore, BS(ĥ) = ^ĥ	CAS(ĥ)(k; k) is an increasing selection.
37By a theorem in Matou�kova (e.g, [32], Theorem 2.4), as AS(h)(k; k; ĥ(k; k)) is Lipschitz

on each closed I � (0; ku]; there exists a Lipschitz extension of AS onto [0; ku] with the same
Lipschitz module. As we really only need this property in equilibrium, we defer this issue to the
existence of equilibrium result in Theorem 25 below.



Proof. As AS(h)(k; k; ĥ(K)) is isotone in h on C, each 2 C; the �xed point
correspondence 	CAS (ĥ)(k; k) is a nonempty complete lattice follows by Tarski�s
theorem ([55], Theorem 1). By Veinott�s �xed point comparative statics result in
the appendix (e.g., Veinott [58], Theorem 14, Chapter 4), 	CAS (ĥ)(k; k) is strong
set order isotone jointly in the parameter ĥ(k; k) with all isotone selections forming
a complete lattice. That ^ĥ	CAS (ĥ)(k; k) is an increasing selection follows from
the fact that as 	CAS (ĥ)(k; k) is also complete lattice-valued that is ascending in
Veinott�s strong set order, hence, ^ĥ	CAS (ĥ)(k; k) is well-de�ned an is the least
increasing selection for investment.

Let 	CBS be the �xed point set of the operator B
S : C! C de�ne in Lemma

27:We now prove the main theorem of this section, namely, that our modi�cation of
Coleman�s policy iteration algorithm converges to a greatest continuous recursive
equilibrium:

Theorem 28. Under Assumptions 1, 2, and 3(ii)-(iii), there exists complete lat-
tice	CBS of �xed points ofB

S(h) inC(X): Furthermore, the iterations limnB
Sn(0)!

h� = ^	CBS : Finally, h� a recursive equilibrium that is continuous, locally Lipschitz
when k > 0, and convergence of limn ^BSn(f)! h�is uniform on X.

Proof. Proof: As BS(h) is isotone in C, C a complete lattice, the set 	BS is
a nonempty complete lattice by Tarski�s theorem. Further, by the isotonicity of
B(h); the iterations from the maximal element of C, namely ^C =0 is the minimal
investment (or, maximal consumption associated with a 1 period economy): Then,
limnB

Sn(0)gn ! h� = ^	BS .
As the limiting �xed point AS(h�(k; k); k; k; h�(k; k)) is de�ned implicitly in

ZAS , when k > 0; from Lemma 25, the �xed point h�(k; k) =AS(h�(k; k); k; k; h�(k; k))
is locally Lipschitz when k > 0.
Finally, for k 2 [0; ku]; let d1(k) = 0; and d2(k) = f: Notice, d1 � h� � d2

for all k 2 (0; ku]: Hence, this holds for all closed subsets I � (0; ku]: Under
Assumption 2, both d1 and d2 are pointwise bounded, such that 9c > 0; such that
for all k1; k2; d1�d2 � cjk1�k2j for all (k1; k2) 2 [0; ku]� [0; ku]: Therefore, by a
theorem in Matou�kova ([32], Theorem 2.2), h�(k; k) is a continuous extension onto
[0; kU ], with h�(k; k) at k = 0. Further, as {BSn(0)gn is an increasing sequence of
continuous functions converging pointwise to a continuous function h� = ^	BS .



Hence, by Dini theorem, this convergence is uniform (also, see Amann [3], Theorem
6.1).

A few remarks. First, in the above result, there is no claim of uniqueness of
locally Lipschitz RE. Actually, a simple inspection of the RE functional equation
parameterized with our two step method reveals there is very little geometric
structure for the second step (i.e., the �rst step does generate unique RE for
each ĥ; but because of the implicit nature of the second step operator in the RE
functional equation, aside from monotonicity, very little else can be established.
Second, the result does indeed verify the existence of continuous RE in the

Santos example. Also, it is easily veri�ed that the RE investment decision rule is
isotone in (k; k):
Finally, it important to note that Santos ( [54], Section 3.2) never establishes

the existence recursive equilibrium in his example; rather, he only considers the
nonexistence of continuous recursive equilibrium on a state space of K. As we
shall show in the next section, discontinuous solutions to the equilibrium Euler
equation of the household�s can be constructed. They are not RE. Further, It
bears mentioning that in Santo�s proof, to character the local properties of a
continuous RE near a particular unstable steady state, it appears he calculates
eigenvalues needed for this characterization applying the Grobmann-Hartmann
theorem. Indeed, it is precisely this application that obtains the necessary con-
tradiction with the continuity of RE on an open manifold near this "spiral sink".
It is important to remember that the Grobmann-Hartman theorem in his context
would assume the local RE decision rule is a smooth dynamical systems mapping
in C1�manifold.

5.2. Existing Correspondence-based GME Methods

We �nally consider a correspondence-based Generalized Markov equilibriummeth-
ods for constructing recursive equilibrium in enlarged state spaces. Our main focus
in this section will be on economies with a state contingent regressive taxes (as
this case has been studied extensively using correspondence-based continuation
methods in the work of Santos [54], Miao and Santos [34] and Feng, et. al. [21]).
In the Miao-Santos correspondence-based continuation method, instead of para-
meterizing the continuation structure of the economy in the previous section with
functions, we use correspondences, say G(x) 2 G(X), where G(X) is a complete
lattice of correspondences under the set inclusion partial order. We will de�ne a
mapping in G essentially as follows: (i) given an element G(x)2 G, we can solve



the �rst order conditions for all solutions to the household�s Euler equation that
are consistent with this implied continuation structure for the economy; then,
(ii) we use these solutions to de�ne mapping, say T (G)(x) 2 G(X); that returns
the updated values of these continuation variables today: We then compute �xed
points of this "set to set" mapping.
It will turn out that for the regressive tax case, the critical complication for the

correspondence-based approach is the fact that under Assumptions 1 and 3(ii),
the function

�(x; k) =
u0(y1(k; k)� x)

(1� �)(x)

does not exhibit any particular pattern of monotone comparative statics in the
pair (x; k): Hence, for each (k; k); the set of solutions to a modi�ed version of
our equation ZAS in equation (5.1) continuing to an element g 2 G(k0; k0) will
be correspondence T (G)(x) that is simply nonempty, upper semicontinuous corre-
spondence and preserves compactness. Unfortunately, such a correspondence will
not admit continuous selection in its �rst argument, in general, and, hence gener-
alized Markovian decision rules, say k0 = x�(k; k; g�(k; k)); cannot be guaranteed
to be optimal solutions to a strictly concave dynamic programming problem for
the household in its individual state k in equation (11). This will be core issue
with generating situation where the Miao-Santos procedure fails guarantee the
existence recursive equilibrium selections without additional arguments.

5.2.1. The Miao-Santos Procedure

To de�ne the Miao-Santos operator T (G)(x); consider for a subset D � R; the
collection of subsets D0 = 2D, where D is compact. It is known that the pair
(D0;�) is a continuous lattice (hence, a complete lattice) under the set inclusion
partial order. Endow (D0;�) with the Hausdor¤metric. Under this metric, D0 is
also a complete metric space. De�ne the following set of correspondencesG � D0;
de�ned as follows:

G= G(X) = fG(x)jG : X! D0; G(x) � Gu(x) = D 8 x = (k; k) 2 X;
G(x) a nonempty, compact-valued, and upper-semicontinuous in xg

When de�ning G, we require a top element, say Gu. When applying the Miao-
Santos procedure to our economies with Inada conditions, this element can often
be challenging to construct without prior knowledge of the actual recursive equi-
librium. For the moment, we shall assume that for our economy with a regressive



tax, such a greatest element Gu = D can be speci�ed for all (k; k) such that k > 0.
38.
Consider an operator T (G)(k; k) � G mapping in spaces of correspondences

de�ned implicitly in the temporary equilibrium version of the household�s Euler
equation (12) as follows:39

T (G)(k; k) = fg0j9x� st u
0(y1 � x�)

(1� �)(x�)
� �g; g 2 G(k0; k0) 2 G (18)

k0 = x�; g0 = u0(y1 � x�)f 0(k); x�(k; k; g) 2 X�(k; k; g); y1 = y1(k; k)g

where x� = x�(k; k; g) 2 X�(k; k; g) is an implied selection for investment decision
in equilibrium de�ned on the expanded state space that includes the "shadow
value" of household capital holdings in equilibrium, namely g. That is, when g 2
G(k0; k0) is an equilibrium envelope in a recursive equilibrium tomorrow, today�s
decision rules for investment in equilibrium will be selections from X�(k; k; g).
Therefore, a continuation g will induce an auxiliary state variable in the decision
rules for equilibrium policies k0 = x�(k; k; g). This is precisely the "generalized
Markov equilibrium" structure that is studied in the literature (e.g., see addition-
ally for example Phelan and Stacchetti [46] and Kubler and Schmedders [26]).
As shall be mentioned in a moment (e.g., in Proposition 29 below), it is known

that the operator T (G)(x) maps the space of correspondences G into itself, and
is isotone under the set inclusion order. Hence, T (G)(x) has a complete lattice
of �xed points by Tarski�s theorem (ordered under set inclusion). Further, under
Assumptions 1 and 3(ii) on the Lipschitz structure of u0 and � ; as the mapping
ZT de�ned as

ZT (x; k; k; g) =
u0(y1 � x)

(1� �)(x)
� �g

is jointly continuous in all its arguments, by a standard argument, T (G)(k; k) is
(pointwise) Hausdor¤ continuous. This implies T (G)(k; k) is order continuous on

38It is not clear often how to do this (for example, in our economy). In Miao and Santos [34]
and Feng et. al. [21], the avoid this question by endowing agents with an interior income point.
For even simple models like ours, no such element exists.
39The idea here is this is a typical sequential equilibrium Euler eqiuation at any date (say

date 0), where the continuation envelope in date 1 g is treated as a state variable, and "todays"
decision rule on investment now depends on an enlarged state space (k; k; g): The existence of
this envelope follows from the fact that the household�s sequential decision problem is smooth
in k0, for the sequence of aggregate capital stock fKtg from date 0.



G.40 Therefore, by the Tarski-Kantorovich theorem (e.g, Dugundji and Granas
[19], Theorem 4.2), T (G)(k; k) will have a greatest �xed point in the down-set
{GjG 2 G; G � Gu = Dg under set inclusion that is computed as

inf
n
T n(Gu)(k; k)! G�(k; k)

Finally, given "self-generation" arguments �rst discussed in Abreu, Pearce, and
Stacchetti (e.g., [1][2]), it turns out that our interest is only on this greatest �xed
point G�(x):
Given the existence of such an upper bound Gu = D 2 G; Miao and Santos

[34] and Re¤ett [48] have proven a number of results concerning iterative methods
based upon the correspondence-based operator T (G)(k; k):We state the key facts
in the next proposition proved in Miao and Santos [34]:

Proposition 29. (Miao and Santos [34]; Feng et. al. [21]). For each (k; k) 2 X;
k > 0; T (G(k; k)) 2 G is isotone on G under set inclusion. Further, if 9 Gu 2 G
such that Gu(k; k) � T (Gu)(k; k) under set inclusion, for all (k; k); then, the
iterations limn T

n(Gu)(k; k) ! infn T
n(Gu)(k; k)G�(k; k) (where the inf is with

respect to set inclusion); and G�(k; k)=G� the greatest �xed point of T (G)(k; k);
where the convergence both in the Hausdor¤.

Therefore, the question of existence of recursive equilibrium is now reduced to
guaranteeing the existence of selection g�(k; k) 2 G�(x) such that the generalized
Markov equilibrium decision rule k0 = x�(k; k; g�) 2 X�(k; k; g�) is a recursive
equilibrium per our de�nition in Section 2.
A few remarks on Proposition 29. First, and most importantly, Proposition

29 is not su¢ cient to establish the existence of a recursive equilibrium. That is,
although T (G)(k; k) maps G into itself, G� 2 G does not guarantee the existence
of selections g(k; k) 2 G�(k; k), such that the implied decision rule for investment
from date 0, (namely the sequence individual states fktg1t=0 generated recursively
as kt+1 = x�(kt; fKtg; g(kt; fKtg)) from k0 when kt = Kt satis�es the following
the necessary and su¢ cient conditions for the existence of an optimal solution to

40 See Re¤ett [48] for discussion.



the households sequential optimization problem in a sequential equilibrium from
individual state k0 > 0:

V �
0 (k0; k0; g(k0; k0)) = sup

fx̂tg1t=02	i(k0;fktg1t=0)

X
�tu(y1(k; k)� x̂t)

where 	0(k0 fKtg) is the lifetime budget constraint for the household with prices
frtg and fwtg generated by fKtg when kt = Kt, with optimal solution x̂�t (kt; fKtg)
the households sequential equilibrium solution for investment corresponding with
the Generalized Markov equilibrium x�t (k; fKtg; g(kt; fKtg) 2 X�

t (kt; Kt; g(kt; Kt))
when kt = Kt: The problem is the nonexistence of a selection g(k; k) 2 G�(k; k)
that is continuous its �rst argument (e.g., Aubin and Frankowska [6], Example, p.
358), which implies that Proposition 29 does not verify of a sequential equilibrium
with household decision rule that is generates a smooth value function in its �rst
argument.

5.3. A New Correspondence-Based Method in Function Spaces

We can now provide a very simple �x for this situation. To do this, restrict our
interval operator T̂ (IG)(x) to a smaller domain, say subintervals of the set �C �
Bf : Further, de�ne this restriction of T̂ (IG)(x) by using the mapping BS(ĥ) =
_ĥ	AS(ĥ)(k; k) de�ned Lemma 27. To see the details, let the interval powerdo-
main of C be de�ned by:

I(C) = fIC jIC = [h1; h2]; h1 2 C;h2 2 Cg [?

Modifying the de�nition of gh, replacing �Bf in the de�nition of GB; and restricting
the set of continuation envelopes to be those de�ned using the operator Bs(h)
de�ned in C; we can de�ne an "APS" method valued in function spaces. That is,
using BS(0), recompute the candidate continuation envelopes GC as follows:

geh(k; k) = gh(k; k) for h 2 �C
with

�C = fh 2 Cj Bs(0) � 0 � hu < fg
Then, de�ne GC to be the collection of continuation envelopes:

GC = fgeh(k; k)jgehu � geh � geBS(0); h 2 �Cg



We now study the operator T̂ (I)(x) de�ne in equation (??) in the smaller interval
power domain I(GC) given by

I(GC) = fIC jIC = [g1; g2]; g1 � g2; g1 2 GC ; g2 2 GCg [?

Letting ICu = _GC ; denoting the restriction T̂ (IB)(x) to I(GC) by T̂e(I)(x), we
now prove a stronger version of Proposition 29 relative to interval mapping T̂e(IC):
Further, we can give a very simple explicit operator on the set of �xed points of
T̂e(I)(x); say 	CT̂e, that computes a jointly continuous selection g

�(k; k) 2 G�(k; k),
such that g�(k; k) induces an recursive equilibrium decision rule a�g�(k; k; g

�(k; k))
that is a generalized Markov equilibrium in the sense of Miao and Santos [34].

Theorem 30. For every n; and all x 2 X; the orbits for the operators T̂e(I)(x);
T̂ (I)(x); and T (G)(x) are ordered, respectively, under reverse set inclusion from
top elements ICu ; I

B
u ; and G

u, as follows: T̂ ne (I
C
u )(x) � T̂ n(IBc )(x) � T n(Gu)(x):

Further, limn T̂e(I
C
u ) = supn T̂e(I

C
u ) ! ^	 T̂e

= [0; g�] � 	TB � G�(k; k); where
the sup is taken with respect to the reverse set inclusion order. Finally, g�(x)
corresponds to a recursive equilibrium h� = ^	BS in Theorem 28:

Proof. Proof: First, for n = 1; that we have

T̂e(I
C
u )(x) � T̂ (IBu )(x) � T (Gu)(x)

follows from ICu � IBu � Gu; and the fact that T̂ ne (I
C
u )(x), by de�nition, con-

sists of selections in C̄ from T̂ n(IBu )(x); and T̂
n(IBu )(x) consists of selections B̄

f in
T n(Gu)(x): As reverse set inclusion is a closed on the powersets D0; this compar-
ative dynamics result per iterations is preserved in the limit: i.e,

lim
n
T̂ ne (I)(x) � lim

n
T̂ n(I)(x) � lim

n
T (Gu)(x)

Finally, as by construction, T̂ ne (I
C
u )(x)=[0,

r(f�Bs(0))
m(f�Bs(0)) ]; we have g

�(k; k) =
r(f�^	

BS
)

m(f�^	
BS
)
:

6. Appendix: De�nitions and Results

To keep the paper self-contained, many de�nitions needed in the paper are now
provided.



6.1. Spaces

An arbitrary set (P;�) is partially ordered set (or Poset) if P is equipped with
an order relation �: P � P ! P that is re�exive, antisymmetric and transitive.
If every element of a poset P is comparable, then P is chain. If P is a chain
and countable, P is a countable chain. The space P op shall denote the poset P
equipped with its dual partial order �op. An upper ( respectively, lower) bound
for a set B � P is an element xu(respectively, xl) 2 P such that for any other
element x 2 B; x � xu (respectively, xl � x) for all x 2 B: If there is a point xu
(respectively, xl) such that xu is the least element in the subset of upper bounds
of B � X (respectively, the greatest element in the subset of lower bounds of
B � P ), we say xu (respectively, xl) is the supremum (respectively, in�mum) of
B: Clearly if the supremum or in�mum of a set P exists, it must be unique.
We say a set L is a lattice if for any two elements, say x and x0 in L; L

is closed under the operation of in�mum (denoted by x ^ x0); and supremum
(denoted x _ x0):The former is referred to as �the meet�of the two points, while
the latter is �the join�: A subset L1 of L is a sublattice of L if it contains the sup
and the inf (with respect to L) of any pair of points in L1: A lattice is complete
if any L1 � L, upper bound (denoted _L1) and a greatest lower bound (denoted
^L1) are both in L. If this completeness property only holds for countable subsets
Lc, the lattice is ��complete. In a poset P , if every subchain C � P is complete,
then P is referred to as a chain complete poset (or equivalent, a complete partially
ordered set or CPO). A set C is countable if it is either �nite or there is a bijection
from the natural numbers onto C: If every chain C � P is countable and complete,
then P is referred to as a countably chain complete poset. An order interval is
de�ned to be [a; b] = [a) \ (b], a � b.

6.2. Mappings in Posets

Let (P1;�P1) and (P2;�P2) be Posets. A function (or, equivalently, operator)
f : P1 ! P2 is isotone (or order-preserving) if f(x0) �P2 f(x); when x0 �P1 x; for
x; x0 2 P1. A function f(x) is antitone (or order-reversing) if f(x) �p1 f(x0) when
x0 �P1 x; for x; x0 2 P1: A function that is isotone or antitone is monotone. If P1
and P2 be Posets, X a set, g : X ! P2 a function, we say a function g(x) admits
an isotone decomposition f(p1; p2) if there exists a function f : P1�P1 ! P2 such
that f(p1; p2) is isotone on P1 � P1: If X and Y are three sets, f : X �X ! Y;
the diagonal of a function f(x; y) is a function g = f(x; x):
Finally, a sequence fhn ! hg in H is order convergent if there exists two



monotonic sequences of elements fromH, one decreasing fh#ng; and one increasing
fh"ng, such that h = inf h#n = suph"n and h"n � hn � h#n: A necessary and
su¢ cient condition for an increasing sequence hn ! h to be order convergent is
h = suphn: An operator Ah is order continuous on H if for all countable chains
C 0 = fhng, _A(C 0) = A(_C 0).
For a set X; de�ne by 2X the powersets of X, and L(X) the nonempty sub-

lattices of L, and L1 and L2 be two arbitrary sublattices. Let RX2 be an order
relation on 2X :We say a correspondence F : P �! 2X2 is ascending in the relation
RX2 from a poset (P;�) to 2X2 if F (x0)RX2F (x); when x0 � x: If this set relation
RX2 induces a partial order on the a subclass of the powersets 2

P2 ; say P (X2);
and if F (x) : P �! P (X2), we refer to F (x) is a isotone correspondence. Dually,
we can de�ne a descending and antitone correspondence.
In this paper, we shall focus primarily on a few order relations on the powersets

2X of a set X. For an arbitrary set X, the Set inclusion Partial order �SI is the
following:A �si B ifB � A: Set inclusion induces a continuous lattice structure on
2X with ^ = \; _ = [: If X = L is additionally a lattice, de�ne L(X) = fL1 � Xj
L1 a nonempty sublattice}, and let L1; L2 2 L(X): Then, de�ne Veinott�s Strong
Set Order �s on L(X) : L1 �s L2; if for any a 2 L1; b 2 L2, a ^ b 2 L2 and
a _ b 2 L1: Veinott�s strong set order will be used extensively in this paper.
Finally, let F : X ! 2Xn? be a non-empty valued correspondence for each

x 2 X: The correspondence F is said to have a �xed point if there exists an x�

such that x� 2 F (x�): If this correspondence is actually a function, say f(x);
then a �xed point x� has x� = f(x�): A correspondence F : X � T ! 2Xn? is
referred to as parameterized correspondence. For F (x; t); denote the �xed point
set at t 2 T by 	XF (t) : T ! 2X : A �xed point x� 2 	XF (t) is minimal (resp,
maximal) in X if there does not exist another �xed point, say y� 2 	XF (t), such
that y� � x� (resp, x� � y�): If a �xed point is either minimal or maximal, we say
it is extremal. If x�L(t) = ^	XF (t) exists relative to the order structure in X (resp,
x�G(t) = _	XF (t) relative to X), then x� is the least �xed point (resp, greatest �xed
point) of F relative to X:

6.3. Some Useful Fixed Point Theorems

In our constructions, we shall apply various versions of Tarski�s �xed point the-
orem. We begin with an interesting version of Tarski�s �xed point theorem due
to Veinott. Let X be a complete lattice, 2X the powersets of X; T a partially
ordered set, and F : X � T ! L(X) be a parameterized correspondence, where



L(X) � 2X is the collection of nonempty sublattices of X endowed with Veinott�s
strong set order. The set (L(X);�) is the largest partially ordered set in 2X :41
Fixing t 2 T; let 	XF (t) be the set of �xed points of F (x; t) in X: We have the
following version of Tarski�s theorem. 42

Proposition 31. Veinott [?][58]. Let X be a complete lattice, F (x; t) 2 L(X)
is nonempty, subcomplete-valued correspondence that is jointly strong set order
ascending. Then (i) 	XF (t) is a nonempty complete lattice, (ii) 	

X
F (t) is strong set

order ascending, and (iii) _	XF (t) and ^	XF (t) are isotone selections.

Tarski�s original theorem (Tarski [55], Theorem 1) occurs as a special case
of Proposition 31 where F (x; t) = f(x); and f : X ! X is a operator (i.e., a
function).
There are many useful constructive versions of Proposition 31 in the literature

for the special case that the parameterized correspondence F (x; t) is a parame-
terized operator f : X � T ! X. In the �rst case, we assume for each t 2 T;
the partial map ft(x) : X ! X is order continuous. For this case, we have the
following version of Tarski-Kantorvich-Markowsky theorem (e.g., Dugundji and
Granas [19], Theorem 4.2, and Markowsky [30], Theorem 9).

Proposition 32. Let (X;�) be a CPO, f : X�T ! X isotone, 9 a xL 2 X such
that xL � f(xL; t); and	Xf (t) : T ! 2X a �xed point correspondence for f; and for
all t 2 T;Then, (i) 	XF (t) � fx 2 XjxL � xg is nonempty CPO. Further, if (X,�)
is countably chain complete, and f(x; t) is order continuous on X; each t 2 T; the
iterations supn f

n(xL) = �(t) 2 	Xf (t); where �(t) =infx2fx2Xjx�xLg	Xf (t):

An important special case of the above corollary occurs when was add addi-
tional structure to both (X;�) and f(x; t): We state the theorem in the context
we shall apply it in the paper, namely when (X;�) is a compact order interval in
41Lc(X) is not generally a lattice (e.g., for X not distributive). If X is completely distributive

complete (i.e., X � RI; where I is any arbitrary set, RI given the product order, and X=[0,1]I

with its relative partial order), then L(X) is a complete lattice (actually, completely distributive
complete lattce, hence, a continuous lattice).
42See Topkis ([56], Theorem 2.5.2) for proof.



the space of bounded real-valued continuous functions C(Y ) de�ned on compact
Y � Rnendowed with (i) the topology of uniform convergence, and (ii) pointwise
partial order. This version of the theorem is proven in Amann ([3], Theorem 6.1).
The existence result holds in more general topological spaces, while the contin-
uous �xed point comparative statics result holds in more general ordered metric
spaces.

Proposition 33. In Corollary 32, if additional, (a) (X;�) is a compact order
interval in C(Y ), (b) f(x; t) continuous in x; each t2 T , then, (i) the iterations
supn f

n(xL; t) = limn f(xL; t) = �(t) 2 	XF (t); and �(t) =infx2fx2Xjx�xLg	XF (t):
Further, if, additionally, (c) T � C(Y ), (d) f(x; t) is jointly continuous, (e) and
relative to the set X1 = fx 2 Xjx � xLg � X; for all x0 2 X1; limn f

n(x0; t) !
�(t) 2 	Xf (t), then (ii) �(t) is continuous on T.

Proposition 33 is a particularly useful result for many of our arguments. The
Tarski-Kantorvich theorem tells us that the upper envelope (resp, dually, lower
envelope) from some least point in X (resp, any greatest point in X); order con-
verges to least (resp, greatest) �xed points in X:We can make this convergence in
topology by introducing the Scott topology (an order topology where the bases of
the order topology is form from directed sets in X): This topology is not always
easily related to approximate solution methods. On the other hand, in Proposi-
tion 33, the topology is standard in the numerical approximation literature (i.e.,
uniform approximation). So the constructive result is particularly appealing in
this context.
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