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Abstract
For large, complex software systems, it is typically impossible in terms of time and cost to reliably
test the application in all possible execution states and configurations before releasing it into
production. One proposed way of addressing this problem has been to continue testing and
analysis of the application in the field, after it has been deployed. A practical limitation of many
such automated approaches is the potentially high performance overhead incurred by the necessary
instrumentation. However, it may be possible to reduce this overhead by selecting test cases and
performing analysis only in previously-unseen application states, thus reducing the number of
redundant tests and analyses that are run. Solutions for fault detection, model checking, security
testing, and fault localization in deployed software may all benefit from a technique that ignores
application states that have already been tested or explored.

In this paper, we present a solution that ensures that deployment environment tests are only
executed in states that the application has not previously encountered. In addition to discussing our
implementation, we present the results of an empirical study that demonstrates its effectiveness,
and explain how the new approach can be generalized to assist other automated testing and
analysis techniques intended for the deployment environment.
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1. INTRODUCTION
Software products released into the field typically have some number of residual defects that
either were not detected or could not have been detected during testing prior to deployment.
This may be the result of flaws in the test cases themselves, incorrect assumptions made
during the creation of test cases, or the infeasibility of testing the sheer number of possible
configurations and application states for a complex system; these defects may also be due to
application states that were not considered during lab testing, or corrupted states that could
arise due to a security violation.
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Automated testing solutions such as “perpetual testing” [17] and “residual testing” [18]
suggest continuing the testing of applications into the deployment environment, based on the
assumption that, over time, defects will reveal themselves given that multiple instances of
the same application may be run globally with different configurations, under different
patterns of usage, and in different system states. Other techniques for profiling and
analyzing deployed software (such as those surveyed by Elbaum and Hardojo [6]) are based
on a similar observation that the best way to understand how software is used is to observe it
as it runs in the field.

A limitation of any approach that conducts tests or program analysis in the deployment
environment is the potentially high performance overhead. The instrumentation required for
these approaches may need to update data structures, write to local files, send information
over the Internet, or invoke test cases that slow down normal program execution. This
overhead can be prohibitive from the users’ perspective, considering that potentially all
functions in a program might be instrumented.

In this regard the following question arises: “Can these approaches be made more efficient
by only running tests and performing analysis in application states that the program has not
seen before? ” That is, it may be possible to reduce the number of redundant tests and
analyses that are run by ignoring application states that have already been tested or explored,
assuming that the result of the test depends only on the application state. Of course,
determining whether the state has already been seen incurs its own cost, but solutions for
fault detection, model checking, security testing, and fault localization in deployed software
may all benefit from such a technique if it can be implemented efficiently.

In this paper, we describe such a technique and implement a solution for an automated
testing approach called “In Vivo Testing” [13], which conducts tests in deployed
applications. We demonstrate both theoretically and empirically that it is possible to
improve the efficiency of the approach by ensuring that test cases are only selected in states
that the application has not previously encountered. Although our implementation and
evaluation focus particularly on In Vivo Testing, we also demonstrate that the technique is
applicable to a variety of other approaches for testing and analyzing deployed software.

The rest of this paper is organized as follows. Section 2 motivates the work by providing
examples from various areas of software testing and analysis that could benefit from such a
technique. Section 3 then presents background information on In Vivo Testing, including a
theoretical analysis of how the approach can be improved by only running tests in
previously-unseen states. Section 4 describes our implementation, and Section 5 evaluates
its efficiency. Sections 6 and 7 describe future work and related work, respectively, and
Section 8 concludes.

2. MOTIVATION
The ability to quickly determine at runtime whether the current program state has previously
been encountered has practical application for many testing and dynamic analysis
approaches.

For instance, model checking techniques could benefit from knowing whether a function has
already been run in a given state. A function may be executed once in a particular state, and
then be revisited later via a different execution path, but be set for execution in the same
state as before. If it were known that the function had already been checked in that state,
then pruning could occur at that point, reducing the number of paths that later need to be
investigated. This would be particularly useful for distributed model checking frameworks
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[9], which require knowing which parts of the state space to distribute, based on which ones
have already been considered.

If the set of states in which a function had been executed were known, then checking the set
of previously-encountered states could also be used for security testing. We have previously
demonstrated [5] that tests in deployed software could be used to check for “security
invariants” [2], the violation of which indicate a vulnerability in the software. In that
approach, the invariants are test cases written by the tester or developer. However, if the set
of acceptable good states (or known bad states) were automatically pre-populated in
advance, then it would be easy to determine whether a given function execution should or
should not be allowed, given the current state; control could then be sent to a “rescue point”
[20] if a known bad state were encountered. Even if the set were not pre-populated, the
approach could be used for anomaly detection, i.e., determining whether a particular
execution occurs in a state that varies greatly from previous executions.

The application state data collected at runtime could also be sent back to the developers, as it
may be useful for the developers of the software to know which functions are being called
with what arguments, the number of times the functions are called, the frequency with which
they are called in the same state, etc. This information could then be used in regression
testing and test case selection [6]. If the sequence of function calls and their corresponding
states were also recorded, the data could then be used for fault localization: once an test fails
in the field, the developers could investigate the history of function calls in the different
application states, culminating with the failed test, and then compare it to executions that did
not fail and use techniques such as delta debugging [22] to determine where the defect may
have occurred.

Last, such a technique could be used for automatic memoization [14], in that the results (i.e.,
the output and any side effects) of functions can automatically be cached, thus speeding up
the application further. That is, if it can quickly be determined that the function has already
been called with the same set of arguments and/or in the same application state, then if the
results of the function are already known, there is no need to perform the calculation a
second time. Rather, the cached results can be returned, without having to actually execute
the function.

3. BACKGROUND
In this work, we implement a solution for detecting previouslyunseen application states and
apply it to a testing methodology called In Vivo Testing [13].

3.1 In Vivo Testing
The motivation behind the In Vivo Testing approach is the fact that many (if not all)
software products are released into deployment environments with latent defects still
residing in them, as well as the observation that these defects may reveal themselves when
the application executes in states that were unanticipated and/or untested in the development
environment. The approach can be used to detect defects hidden by assumptions of a clean
state in the tests, errors that occur in field configurations not tested before deployment, and
problems caused by unexpected user actions that put the system in an unanticipated state;
these flaws may also be due to corrupted states that could arise due to a security violation.
The approach goes beyond passive application monitoring (e.g., [15]) in that it actively tests
the application as it runs in the field.

In Vivo Testing is an automated testing approach by which a program continuously conducts
tests in the deployment environment, in the context of the running application, as opposed to
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a controlled or blank-slate environment. Crucial to the approach is the notion that the test
must not alter the state of the application from the user’s perspective. In a live system in the
deployment environment, it is clearly undesirable to have a test alter the system in such a
way that it affects the users of the system, causing them to see the results of the test code
rather than of their own actions. In the simplest case, In Vivo tests can be thought of as
program invariants or assertions that are allowed to have side effects, but the side effects are
hidden from the user.

In Vivo Testing works as follows: when an instrumented function is to be executed, a
corresponding test is then automatically executed in a separate “sandbox” that allows the test
to run without altering the state of the original application process. The application then
continues its normal operation as the test runs to completion in the sandbox, and the results
of the test are logged.

In the current implementation of the In Vivo Testing framework, called “Invite”, creating a
sandbox is achieved by forking a new process, which creates a copy-on-write version of the
memory space for the child process in which the test is run. To make the sandbox more
robust, Invite has been integrated with a virtualization layer called a “pod” (PrOcess
Domain) [16], which creates a virtual environment in which the process has its own view of
the file system and process ID space and thus does not affect any other processes or any
shared files.

Although the cost of creating a sandbox via a simple process fork to run the In Vivo tests
can be less than a millisecond per test, in practice there may be thousands or tens of
thousands (or more) tests per application run depending on the number of instrumented
functions (conceivably all of them) and the number of times they are invoked, adding a
substantial amount of time [12]. Moreover, real-world industrial applications may require
the use of the “pod” virtualization layer to ensure that the test does not affect the external
system state. Given that the time to checkpoint the application and create a “pod” can be
over a second [12], this may incur an unacceptable performance cost from the users’ point of
view.

Note that there is a possibility that many of these tests will be run in the same application
state multiple times, thus causing unnecessary overhead. If the test is deterministic and
depends only on the current state, and not on any external factors, then it follows that it may
be more efficient to avoid subsequent executions of tests in states that have already been
encountered, since it would be expected that the test result would not change.

3.2 Analysis
An approach designed to increase the efficiency of In Vivo Testing (or any approach, for
that matter) based on running tests only in previously-unseen states is heavily dependent on
the assumption that a given function will, in fact, run in the same state multiple times. In the
best case, if the function always runs in the same program state, then the In Vivo test will
only be run once (i.e., the very first time), and the performance overhead will approach the
hypothetical minimum of never running any tests, give or take a little bit of overhead from
the instrumentation. In the worst case, if the function never runs in the same state, then In
Vivo tests will run for every invocation of the function, which will incur worse performance
overhead than the “standard” In Vivo approach, since not only are test functions being run,
but there is extra overhead from determining whether the state had been seen before. It
follows, then, that there must be some percentage of previously-seen states such that the new
approach will, in fact, be more efficient.
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The theoretical analysis is rather straightforward. We define the Distinct State Percentage
(DSP) as the number of distinct states in which a function is called, divided by the total
number of times the function is called. We define the Repeat State Percentage (RSP) as 1 -
DSP. For example, if a function is called in states A, B, A, C, B, C, A, and A, then the DSP
is 3/8 (since it was called 8 times and had three distinct states) and the RSP is 1-DSP = 5/8
(since five of the times, the function was called in a state it had already seen).

We also define the following:

• ts = the time it takes to create the sandbox in which the In Vivo test will be run

• td = the time it takes to determine whether the function had already been run in the
current state

• tu = the time it takes to update the data structure storing previously-seen states

• N = the number of times the function is called

Given these definitions, we can simply calculate the overhead from “standard” In Vivo
Testing (i.e., running tests on every function invocation) as:

We can also calculate the overhead from the suggested new approach (i.e., only running
tests in previously-unseen states). The time taken when tests are run in previously-unseen
states is:

The time taken when tests are not run because the state had already been seen is simply:

The total overhead for the suggested new approach is their sum, Tunseen + Tseen.

To achieve the benefits of running tests only in states that have not previously been seen, we
seek a low DSP such that the overhead for running tests only in previously-unseen states is
less than that of running tests in every state, i.e.:

Replacing with the formulas above and solving for DSP, we get:

If we can construct a solution such that the time to do a lookup (td) or update (tu) is much
less than the time to create a sandbox (ts), we can see that the right side of the inequality
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comes close to 1. This means, then, that even for a DSP of almost 100%, i.e., even if almost
all of the states in which the function runs are distinct, then it still is better to incur the
overhead of checking the state and only run tests in states that have not previously been
encountered.

4. IMPLEMENTATION
In developing a new, more efficient implementation of the Invite testing framework, a
number of questions immediately arise:

• How do we define a “state”?

• How do we represent the state?

• How can we quickly determine whether the state has already been seen?

• In practice, is any performance gain from running tests only in previously-unseen
states outweighed by the overhead of the instrumentation required to track the
states?

The following subsections discuss our new prototype, and the implementation decisions that
were made in answering these questions.

4.1 Determining Function Dependencies
For our purposes, we define the “state” of the application at any given point during its
execution as “the values of all variables that are in scope at that point”. We acknowledge
that this definition is somewhat limiting in that it does not include the process heap or stack,
or the program counter, but we expect that these would be too complex to represent in a
format that can be represented and compared efficiently enough to meet our goals. We also
do not include external elements such as the state of other processes, the underlying virtual
machine and/or operating system, etc., for similar reasons. If any In Vivo test relies on these,
then this feature of Invite can simply be disabled for the given test, so that it executes
regardless of the external system state.

Note that a given function may not rely on all variables that are in scope at that point in the
program’s execution. Thus, in determining whether a function has already been executed in
the current program state, we only need to consider the variables on which that function
depends, i.e., that are read during the function’s execution.

To determine which variables a function uses during its execution, we developed a simple
pre-processor to parse the source code. For a given function, the pre-processor returns a list
of all the global variables (i.e., those declared outside the function definition) that the
function uses, and also determines which of the parameters the function depends on, since it
may not actually use all of them. Alternative approaches would have been to use data
dependence analysis or data flow analysis, but simply parsing the source seemed to be the
easiest solution, given that we only need to identify the global variables that are read in the
function, and do not need to enumerate all possible values or determine how the variables
came to get their respective values at that particular point. Also, although this approach does
not detect aliases (i.e., two variables that refer to the same piece of data), we are not
concerned with modifications to variables, only with listing the variables that are read
during the function’s execution.

Figure 1 shows a simple function that can be scanned using the pre-processor. On line 1, the
parameters p1, p2, and p3 are specified; at this point, they are not yet added to the
dependency list, since we do not know for certain that the function will actually use them
(though it is admittedly rare that they would not be used). On line 2, the local variable k is
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declared, but because it is assigned a constant value, there is no dependency on this line,
either. On line 3, the local variable t is declared; this statement uses the global variable a,
which we assume to be declared elsewhere. Because a is on the right side of the assignment,
i.e., its value is read, we can add a to the dependency list. In line 5, the conditional compares
p1 to p2; thus, because those values are read, they are added to the dependency list. Also on
line 5, the return value uses k and t, but we know that these are both local variables, thus
there is no extra dependency. Line 6 does not use any new variables so nothing is added this
line. Once we reach the end of the function on line 7, we know that the function f depends
on the parameters p1 and p2 (line 1), as well as the global variable a (line 3); as it turns out,
the function does not use the parameter p3.

Given this list of dependencies, we can then claim that, at the point when f is called, only the
values of p1, p2, and a will affect its outcome; if those three variables are the same for
additional executions, the output of f will not change, nor will the result of the
corresponding In Vivo test.

Now consider the code in Figure 2, in which the function f1 is the same as f from the
previous example, except that it calls the function g on line 5. To determine the
dependencies of f1, when scanning line 5, we then need to determine the dependencies of g.
We can see on line 10 that g uses the parameter p and the global variable b; those are the
only dependencies of g. When that dependency list is returned to f1, the parameter p is
replaced with the argument p3. Thus, the overall dependency list for function f1 becomes:
parameters p1 and p2, and global variable a, for the reasons described in the previous
example; global variable b, inherited from function g; and parameter p3, which was passed
as an argument to g.

Note that this approach works for other data types as well, including arrays and values
referred to by pointers.

In situations in which the pre-processor does not have access to the source code, e.g., if the
code makes a system call or uses some external library, then it is impossible to know for
certain what the dependencies are, and thus this approach cannot be used. In these cases, the
In Vivo tests will be run regardless of the current application state.

4.2 Representing States
Once we know the variables on which a function depends, we then need a way of
representing the state so that it can be compared to other states to determine whether it has
previously been encountered. We can at this point consider the state as a map of a set of
variables to their corresponding values. Comparing the sets of values can be time consuming
(at least O(n), assuming we know the ordering of the elements to compare) if done element-
wise; we require a fast way of comparing the sets, ideally with no false positives (thinking
two sets are the same, when actually they are not) or false negatives (thinking two sets are
not the same, when actually they are).

In the best case, if we assume that the elements of the sets are numerical, then we can
attempt to devise a hashing function such that every set has a distinct value. This would
allow us to effectively represent different program states with a single number.

A hashing function that meets this criteria is a Cantor pairing function [19], which assigns
one distinct natural number to a pair of natural numbers. Note that this function has one key
characteristic that is crucial in our state formalization, in that it is simple yet effective as the
implementation is simply:
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Using this mathematical tool, we can now take a set of values in the function’s dependent
state and create a single distinct value, which is critical in determining whether the state had
previously been seen. The method for achieving this is to recursively apply the Cantor
function to the values, i.e., f(a, f(b, f(c, …))). This can be done for array elements, as well.

4.3 Tracking Execution States
Given that we have a distinct representation of each execution state, with no false positives
or false negatives, we can then select an efficient data structure to determine whether the
function has already been called in the given state, by comparing it to those that it has
already seen. We started by investigating the use of a hash table, but a hash table is O(n) in
the worst case (where n is the number of elements, i.e., the number of states already seen),
and we were hoping for something that would give a better guarantee.

We also considered using a Bloom filter, which is O(1), but a Bloom filter allows for false
positives, in that we may think we have already seen a state before, even though we have
not. This is not desirable for In Vivo Testing, because it might mean that tests are not
executed even though the state has not yet been seen. We could, however, allow for false
negatives, which would have the result of running tests in previously-seen states; this is not
ideal, but at least we do not miss the opportunity to run tests in states that have not
previously been encountered.

Our investigation led us to a data structure called a Judy Array1, which has been proven to
demonstrate the properties that we need in a state-management tool. It is space efficient, in
that it is a dynamically allocated structure that will not take up space when simply declared
for later use. The Judy Array also has the property of consuming memory only when it is
populated, yet can grow to take advantage of all available memory if desired. These are
especially important features since potentially all functions in the program will need an array
to represent which states have previously been seen. A Judy Array is also speed efficient,
and is O(log256n) for lookup operations [4]. Last, it is scalable: this data structure has the
potential to use all the available memory on a machine and also claims to be able to hold
from zero to billions of elements [4].

Given the selection of a Cantor function for hashing states and a Judy Array for tracking
them, we now state the process by which the In Vivo tests of a given function run using the
more efficient Invite framework.

1. A pre-processor is used to read the source code and determine which parts of the
state (i.e., which variables) the specified function depends on.

2. Another pre-processor creates the necessary instrumentation in the source code so
that In Vivo tests become logically attached to the function that they are testing.
This generated code makes use of a function that indicates whether a test has
already been run in the current state.

3. When the function to be tested is called, the required parts of the current
application state are hashed using the Cantor function, which generates a distinct
value for that state.

1http://judy.sourceforge.net/
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4. The code then checks the function’s corresponding Judy Array to determine
whether the value already exists in the data structure. If so, then the state has
already been encountered, and no test is run. If the value does not exist in the array,
though, the state has never previously been encountered, so the value is added to
the array, and the Invite framework is instructed to run the test.

5. At this point, In Vivo Testing continues as normal.

Figure 3 shows the pseudocode for the instrumentation of a function f, which depends on
global variable g and parameters p1 and p2.

When the function f is called (line 21), a check is performed (line 22) to see whether an In
Vivo test should be run at this point. The function that performs this check (line 8) uses the
Cantor function, recursively if necessary, to generate a distinct value to represent the parts of
the state on which the function depends (line 10). If the Judy Array for that function already
contains the state (line 12), then there is no need to run the test again (line 13); otherwise,
the state is added to the Judy Array (line 15), and the framework is instructed to run the test
(line 16).

If it is determined that a test should be run, Invite then forks a new process (line 23), which
is a copy of the original, to create a sandbox in which to run the test code, ensuring that any
modification to the local process state caused by the In Vivo test will not affect the “real”
application, since the test is being executed in a separate process with separate memory.
Once the test is invoked (line 25), the application can continue its normal execution, in
which it invokes the original “wrapped” function (line 31), while the test runs in the other
process. Note that the application and the In Vivo test run in parallel in two processes; the
test does not preempt or block normal operation of the application after the fork is
performed. When the test is completed, Invite logs whether or not it passed (lines 25-26),
and the process in which the test was run is terminated (lines 27-28).

5. EVALUATION
Although the theoretical analysis provided above shows that the new In Vivo approach will
be more efficient even when the function runs in many different distinct sets, we know that
in practice the variables used in the calculations may not actually be constant, and we do not
know for certain whether the time to fork a new process is significantly higher than the time
to do a lookup and update in the Judy Array implementation.

To demonstrate that the new approach is, in fact, more efficient, we conducted a simple
experiment in which we measured the time it took to run an application with no In Vivo tests
at all (the theoretical minimum time), the time to run with the “standard” Invite framework
that always executes tests regardless of the state, and the time to run with the new Invite
framework, using varying percentages of distinct states. In this study, we used the sandboxes
created by simple process forking (rather than creating the more heavyweight virtualization
layer) to demonstrate that even a small amount of instrumentation overhead can be mitigated
by running tests only in previously-unseen states. The goal is to show that, even when the
percentage of distinct states is relatively high, the new approach is still more efficient.

The results we present here are for a C implementation of the Sieve of Eratosthenes
algorithm, which is given a single number as its parameter and returns a list of all prime
numbers less than that number. We chose this program because it only uses one function,
but takes a good deal of time to execute, so that we could get meaningful results over many
executions. The experiment was conducted on a multi-processor 2.66GHz Linux machine
with 2GB RAM.
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For inputs, we used data files consisting of 100 random numbers, so that the function would
run 100 times. We generated a number of different files with different percentages of
distinct values, ranging from 0% distinct (meaning that all values were the same) to 100%
distinct (meaning that all values were different).

Figure 4 shows the results of the experiment, using the average running time of 10
executions per data set. As expected, the running times for “always” running the In Vivo
tests (as in the standard approach) and the time for “never” running tests are more or less
constant; they are not exactly constant because of the different values used in the different
data sets. More importantly, we see that “sometimes” running In Vivo tests (based only on
previously-unseen states) usually outperforms “always” doing it, even with the additional
instrumentation, and even when the percentage of distinct states is as high as around 90%.

The results of this experiment demonstrate that our approach does, in fact, make In Vivo
Testing more efficient, assuming the percentage of distinct states in which a function is run
is less than 90%. Further analysis will be required, however, to determine how true this
assumption is in general.

6. LIMITATIONS AND FUTURE WORK
Although it is more efficient to run tests only in states that have not already been
encountered, there is a memory cost associated with tracking all the previously-seen states.
Regardless of how space efficient the solution may be, a program with many instrumented
functions and many distinct program states could have fairly large memory requirements.
Future work could assess the practical implications when it comes to additional memory
usage.

Aside from the general issue related to memory cost, the specific prototype implementation
we have presented here does have some limitations, based on the assumptions stated above.
The use of the Cantor function to create a unique hash value for each state does have a
practical upper bound in that we cannot store arbitrarily large values in a single variable in C
or Java. We observed that the Cantor function can reach the limit of the “double” datatype
depending on the values and the number of variables. A solution that scales to arbitrarily
large states may not be able to take advantage of the speed of the O(1) hashing function and
O(log256n) lookup in the Judy Array, or would need to allow for false positives and/or false
negatives.

Also, we have made some assumptions regarding the types of variables that can be tracked
as part of the state, specifically limiting to primitive datatypes (int, float, char, etc.) but not
complex objects such as Objects, structs, and such. This can conceivably be addressed by
using type-specific hashing functions, analogous to the Cantor function used for numerical
values; however, depending on the uniqueness of the hash codes, this too may introduce
false positives, meaning that the system incorrectly believes that the current state has
previously been observed. Clearly this would not be desirable, since the result would be that
tests or analyses are not performed, even though they should be.

Future work could consider using distributed In Vivo Testing [3] to devise an approach so
that tests are only run in globally-unseen states. It may also be possible to distribute the test
cases in advance [9,11], so that a particular instance of the application is not concerned with
all previously-seen states, only the ones it is responsible for.

Murphy et al. Page 10

Proc Int Workshop Autom Softw Test. Author manuscript; available in PMC 2010 December 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. RELATED WORK
As mentioned above, Elbaum and Hardojo [6] have surveyed other approaches to
automating the testing of software in the field, including the monitoring, analysis, and
profiling of deployed software, such as Gamma [15], Skoll [11], and Cooperative Bug
Isolation [10]. All of these could benefit from a solution that automatically detects
previously-encountered states. Others have investigated the use of application state to drive
test case generation, e.g. [7], but in our case we assume that the tests already exist, and that
the state is used to determine whether or not the tests should be executed.

Previous investigation of techniques for reducing the overhead of runtime monitoring and
testing has included the use of static analysis to remove unnecessary instrumentation [21], or
pre-determining when to execute uninstrumented “fast cases” instead of instrumented “slow
cases” [10]. However, neither of these approaches has the goal of eliminating test cases at
runtime based on previously-encountered states, and our techniques could be combined to
reduce performance costs even further.

Much of the work in the representation of application state at runtime has focused on
anomaly detection, i.e., determining that the application is in a state that is outside the range
of what is expected [1,8]. These works also deal with the issue of “has this state been seen
before?”, but the representation of state in those approaches is based on a finite state
machine that considers the execution path up to that point, and not the set of variable values.
However, future work could investigate how state-based anomaly detection techniques and
the approach presented here could be combined, for instance by further simplifying the
representation of expected states according to semantic equivalence.

8. CONCLUSION
Various approaches have been suggested for continuing to conduct testing and analysis of
applications as they run in the deployment environment. Many such approaches, including
fault detection, model checking, security testing, and fault localization, could be more
efficient if tests and analyses were only conducted in previously-unseen application states,
limiting the redundancy and reducing the performance overhead.

In this paper, we have presented an improvement to the implementation of the In Vivo
Testing approach, such that tests are only executed in application states that the program has
not previously encountered. We have demonstrated this improvement both theoretically and
empirically, and discussed how our solution is applicable to various areas of testing and
analysis of deployed software, indicating its potential for broad impact in the future.
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Figure 1.
Sample function. The Invite pre-processor scans the function looking for variables, to
determine the function’s dependencies.
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Figure 2.
Example of two functions, one of which inherits the set of dependencies from the other.
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Figure 3.
Pseudo-code for wrapper of instrumented function, in which In Vivo tests are only executed
in previously-unseen states
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Figure 4.
Graph indicating performance caused by different variations in the percentage of distinct
states.
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