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ABSTRACT

We present an unbiased method for measuring the relative
quality of different solutions to a programming problem.
Our method is based on identifying possible bugs from pro-
gram behaviour through black-box testing. The main mo-
tivation for such a method is its use in experimental evalu-
ation of software development methods. We report on the
use of our method in a small-scale such experiment, which
was aimed at evaluating the effectiveness of property-based
testing vs. unit testing in software development.
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General Terms

Measurement

1. INTRODUCTION

Property-based testing is an approach to testing software
against a formal specification, consisting of universally quan-
tified properties which supply both test data generators and
test oracles. QuickCheck is a property-based testing tool
first developed for Haskell [6], and which forms the basis for
a commercial tool developed by Quviq [1]. As a simple ex-
ample, using QuickCheck, a programmer could specify that
list reversal is its own inverse like this,

prop_reverse (xs :: [Integer]) =
reverse (reverse xs) == xs

which defines a property called prop_reverse which is uni-
versally quantified over all lists of integers xs. Given such
a property, QuickCheck generates random values for xs as
test data, and uses the body of the property as an oracle
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to decide whether each test has passed. When a test fails,
QuickCheck shrinks the failing test case, searching system-
atically for a minimal failing example, in a way similar to
delta~-debugging [17]. The resulting minimal failing case usu-
ally makes diagnosing a fault easy. For example, if the pro-
grammer erroneously wrote

prop_reverse (xs ::
reverse xs == Xs

[Integer]) =

then QuickCheck would report the minimal counterexample
[0,1], since at least two different elements are needed to
violate the property, and the two smallest different integers
are 0 and 1.

The idea of testing code against general properties, rather
than specific test cases, is an appealing one which also under-
lies Tillmann and Schulte’s parameterized unit tests [15] and
the Pex tool [14] (although the test case generation works
differently). We believe firmly that it brings a multitude of
benefits to the developer, improving quality and speeding
development by revealing problems faster and earlier. Yet
claims such as this are easy to make, but hard to prove.
And it is not obvious that property-based testing must be
superior to traditional test automation. Among the possible
disadvantages of QuickCheck testing are:

e it is often necessary to write test data generators for
problem-specific data structures—code which is not
needed at all in traditional testing.

e the developer must formulate a formal specification,
which is conceptually more difficult than just predict-
ing the correct output in specific examples.

e randomly generated test cases might potentially be less
effective at revealing errors than carefully chosen ones.

Thus an empirical comparison of property-based testing
against other methods is warranted.

Our overall goal is to evaluate property-based testing as
a development tool, by comparing programs developed by
students using QuickCheck for testing, against programs de-
veloped for the same problem using HUnit [8]—a unit test-
ing framework for Haskell similar to the popular JUnit tool
for Java programmers [9]. We have not reached this goal
yet—we have carried out a small-scale experiment, but we



need more participants to draw statistically significant con-
clusions. However, we have identified an important problem
to solve along the way: how should we rank student solu-
tions against each other, without introducing experimental
bias?

Our intention is to rank solutions by testing them: those
that pass the most tests will be ranked the highest. But
the choice of test suite is critical. It is tempting to use
QuickCheck to test student solutions against our own prop-
erties, using the proportion of tests passed as a measure of
quality—Dbut this would risk experimental bias in two differ-
ent ways:

e By using one of the tools in the comparison to grade
solutions, we might unfairly bias the experiment to
favour that tool,

e The ranking of solutions could depend critically on the
distribution of random tests, which is rather arbitrary.

Unfortunately, a manually constructed set of test cases could
also introduce experimental bias. If we were to include many
similar tests of a particular kind, for example, then handling
that kind of test successfully would carry more weight in our
assessment of solutions than handling other kinds of test.
Our goal in this paper, thus, is to develop a way of rank-
ing student solutions by testing that leaves no room for the
experimenter’s bias to affect the result. We will do so by gen-
erating a set of test cases from the submissions themselves,
based on a simple “bug model” presented in section 3, such
that each test case tests for one bug. We then rank solutions
by the number of bugs they contain. QuickCheck is used to
help find this set of test cases, but in such a way that the
distribution of random tests is of almost no importance.

Contribution The main contribution of this paper is the
ranking method we developed. As evidence that the ranking
is reasonable, we also present the results of our small-scale
experiment, in which solutions to three different problems
are compared in this way.

The remainder of the paper is structured as follows. In
the next section we briefly describe the experiment we car-
ried out. In section 3 we explain and motivate our ranking
method. Section 4 analyses the results obtained. In section
5 we discuss related work, and we conclude in section 6.

2. THE EXPERIMENT

We designed an experiment to test the hypothesis that
“Property-based testing is more effective than unit testing,
as a tool during software development”, using QuickCheck
as the property-based testing tool, and HUnit as the unit
testing tool. We used a replicated project study[3], where
in a controlled experiment a group of student participants
individually solved three different programming tasks. We
planned the experiment in accordance to best practice for
such experiments; trying not to exclude participants, as-
signing the participants randomly to tools, using a variety
of programming tasks, and trying our best not to influence
the outcome unnecessarily. We are only evaluating the final
product, thus we are not interested in process aspects in this
study.

In the rest of this section we describe in more detail how
we planned and executed the experiment, we also motivate
the choice of programming assignments given to the partic-
ipants.

2.1 Experiment overview

We planned an experiment to be conducted during one
day. Since we expected participants to be unfamiliar with
at least one of the tools in the comparison, we devoted the
morning to a training session in which the tools were intro-
duced to the participants. The main issue in the design of
the experiment was the programming task (or tasks) to be
given to the participants. Using several different tasks would
yield more data points, while using one single (bigger) task
would give us data points of higher quality. We decided
to give three separate tasks to the participants, mostly be-
cause by doing this, and selecting three different types of
problems, we could reduce the risk of choosing a task par-
ticularly suited to one tool or the other. All tasks were
rather small, and require only 20-50 lines of Haskell code to
implement correctly.

To maximize the number of data points we decided to as-
sign the tasks to individuals instead of forming groups. Re-
peating the experiments as a pair-programming assignment
would also be interesting.

2.2 Programming assignments

We constructed three programming assignments. We tried
to choose problems from three separate categories; one data-
structure implementation problem, one search/algorithmic
problem, and one slightly tedious string manipulation task.

Problem 1: E-mail anonymizer In this task the partic-
ipants were asked to write a sanitizing function anonymize
which blanks out E-mail addresses in a string. For example,

anonymize "pelle@foretag.se" ==
"p____@f .S_"

anonymize "Hi johnny.cash@music.org!" ==
"Hi j .C @m .o__!I"

The function should identify all e-mail addresses in the in-
put, change them, but leave all other text untouched. This
is a simple problem, but with a lot of tedious cases.

Problem 2: Interval sets In this task the participants
were asked to implement a compact representation of sets
of integers based on lists of intervals, represented by the
type IntervalSet = [(Int,Int)], where for example the
set {1, 2, 3, 7, 8, 9, 10} would be represented by the
list [(1,3),(7,10)]. The participants were instructed to
implement a family 7of functions for this data type (empty,
member, insert, delete, merge). There are many special
cases to consider—for example, inserting an element be-
tween two intervals may cause them to merge into one.

Problem 3: Cryptarithm In this task the students were
asked to write a program that solves puzzles like this one:

SEND
MORE

The task is to assign a mapping from letters to (unique)
digits, such that the calculation makes sense. (In the ex-
ampleM =1, 0=0, S=9,R=8, E=5, N=6, Y =
2, D = 7). Solving the puzzle is complicated by the fact
that there might be more than one solution and that there
are problems for which there is no solution. This is a search
problem, which requires an algorithm with some level of so-
phistication to be computationally feasible.



2.3 The participants

Since the university (Chalmers University of Technology,
Gothenburg, Sweden) teaches Haskell, this was the language
we used in the experiment. We tried to recruit students
with (at least) a fair understanding of functional program-
ming. This we did because we believed that too inexperi-
enced programmers would not be able to benefit from either
QuickCheck or HUnit. The participants were recruited by
advertising on campus, email-messages sent to students from
the previous Haskell-course and announcements in different
ongoing courses. Unfortunately the only available date col-
lided with exams at the university, which lowered the num-
ber of potential participants. In the end we got only 13
participants. This is too few to draw statistically significant
conclusions, but on the other hand it is a rather manageable
number of submissions to analyze in a greater detail. Most
of the participants were at a level where they had passed (of-
ten with honor) a 10-week programming course in Haskell.

2.4 Assigning the participants into groups

We assigned the participants randomly (by lot) into two
groups, one group using QuickCheck and one group using
HUnit.

2.5 Training the participants

The experiment started with a training session for the par-
ticipants. The training was divided into two parts, one joint
session, and one session for the specific tool. In the first
session, we explained the purpose and the underlying hy-
pothesis for the experiment. We also clearly explained that
we were interested in software quality rather than develop-
ment time. The participants were encouraged to use all of
the allocated time to produce the best software possible.

In the second session the groups were introduced to their
respective testing tools, by a lecture and practical session.
Both sessions lasted around 60 minutes.

2.6 Programming environment

Finally, with everything set up, the participants were given
the three different tasks with a time limit of 50 minutes for
each of the tasks. The participants were each given a com-
puter equipped with GHC (the Haskell compiler) [13], both
the testing tools, and documentation. The computers were
connected to the Internet, but since the participants were
aware of the purpose of the study and encouraged not to
use other tools than the assigned testing tool it is our belief
this did not affect the outcome of the experiment.!

2.7 Data collection and reduction

From the experiments we collected the implementations
as well as the testing code written by each participant.

Manual grading of implementations FEach of the three
tasks were graded by an experienced Haskell programmer.
We graded each implementation on a scale 0-10, just as we
would have graded an exam-question. Since the tasks were
reasonably small, and the number of participants manage-
able, this was feasible. To prevent any possible bias, the
grader was not allowed to see the testing code and thus he

"Why not simply disconnect the computers from the Inter-
net? Because we used an on-line submission system, as well
as documentation and software from network file systems.

could not know whether each student was using QuickCheck
or HUnit.

Automatic ranking The implementations of each prob-
lem were subjected to an analysis that we present in section
3.

We had several students submit uncompileable code.? In
those cases, we made the code compile by for example re-
moving any ill-formed program fragments. This was because
such a program might be partly-working, and deserve a rea-
sonable score; we thought it would be unfair if it got a score
of zero simply because it (say) had a syntax error.

Grading of test suites We also graded participants’ test-
ing code. Each submission was graded by hand by judg-
ing the completeness of the test suite—and penalised for
missing cases (for HUnit) or incomplete specifications (for
QuickCheck). As we did not instruct the students to use
TDD, there was no penalty for not testing a function if that
function was not implemented.

Cross-comparison of tests We naturally wanted to au-
tomatically grade students’ test code too—not least, because
a human grader may be biased towards QuickCheck or HU-
nit tests. Our approach was simply to take each student’s
test suite, and run it against all of the submissions we had;
for every submission the test suite found a bug in, it scored
one point.

We applied this method successfully to the interval sets
problem. However, for the anonymizer and cryptarithm
problems, many students performed white box testing, test-
ing functions that were internal to their implementation;
therefore we were not able to transfer test suites from one
implementation to another, and we had to abandon the idea
for these problems.

3. EVALUATION METHOD

We assume we have a number of student answers to eval-
uate, Ay...A,, and a perfect solution Ag, each answer be-
ing a program mapping a test case to output. We assume
that we have a test oracle which can determine whether or
not the output produced by an answer is correct, for any
possible test case. Such an oracle can be expressed as a
QuickCheck property—if the correct output is unique, then
it is enough to compare with Ag’s output, otherwise some-
thing more complex is required. Raising an exception, or
falling into a loop?, is never correct behaviour. We can thus
determine, for an arbitrary test case, which of the student
answers pass the test.

We recall that the purpose of our automatic evaluation
method is to find a set of test cases that is as unbiased as
possible. In particular, we want to avoid counting multiple
test cases that are equivalent, in the sense that they trigger
the same bug.

Thus, we aim to “count the bugs” in each answer, using
black-box testing alone. How, then, should we define a “bug”?
We cannot refer to errors at specific places in the source
code, since we use black-box testing only—we must define

2Since we asked students to submit their code at a fixed
time, some students submitted in the middle of making
changes.

3detecting a looping program is approximated by an appro-
priately chosen timeout



a “bug” in terms of the program behaviour. We take the
following as our bug model:

e A bug causes a program to fail for a set of test cases.
Given a bug b, we write the set of test cases that it
causes to fail as BugTests(b). (Note that it is possible
that the same bug b occurs in several different pro-
grams.)

e A program p will contain a set of bugs, Bugs(p). The
set of test cases that p fails for will be

U
b € Bugs(p) BugTests(b)

FailingTests(p) =
It is quite possible, of course, that two different errors in
the source code might manifest themselves in the same way,
causing the same set of tests to fail. We will treat these
as the same bug, quite simply because there is no way to
distinguish them using black-box testing.

It is also possible that two different bugs in combination
might “cancel each other out” in some test cases, leading a
program containing both bugs to behave correctly, despite
their presence. We cannot take this possibility into account,
once again because black-box testing cannot distinguish cor-
rect output produced “by accident” from correct output pro-
duced correctly. We believe the phenomenon, though famil-
iar to developers, is rare enough not to influence our results
strongly.

Our approach is to analyze the failures of the student an-
swers, and use them to infer the existence of possible bugs
Bugs, and their failure sets. Then we shall rank each answer
program A; by the number of these bugs that the answer
appears to contain:

rank(A;) = |{b € Bugs | BugTests(b) C FuailingTests(A;)}|

In general, there are many ways of explaining program
failures via a set of bugs. The most trivial is to take each
answer’s failure set FailingTests(A;) to represent a different
possible bug; then the rank of each answer would be the
number of other (different) answers that fail on a strictly
smaller set of inputs. However, we reject this idea as too
crude, because it gives no insight into the nature of the bugs
present. We shall aim instead to find a more refined set
of possible bugs, in which each bug explains a small set of
“similar” failures.

Now, let us define the failures of a test case to be the set
of answers that it provokes to fail:

AnswersFailing(t) = {A; | t € FailingTests(A;)}

We insist that if two test cases t; and t2 provoke the same
answers to fail, then they are equivalent with respect to the
bugs we infer:

AnswersFailing(t1) = AnswersFailing(t2) =
Vb € Bugs. t1 € BugTests(b) < ta € BugTests(b)

We will not distinguish such a pair of test cases, because
there is no evidence from the answers that could justify doing
so. Thus we can partition the space of test cases into subsets
that behave equivalently with respect to our answers. By
identifying bugs with these partitions (except, if it exists, the
partition which causes no answers to fail), then we obtain a
maximal set of bugs that can explain the failures we observe.
No other set of bugs can be more refined than this without
distinguishing inputs that should not be distinguished.

However, we regard this partition as a little too refined.
Consider two answers A; and As, and three partitions B,
Bi and Bs, such that

Vt € B. AnswersFailing(t) = {A1, A2}
Vt € By. AnswersFailing(t) = {A1}
Vt € By. AnswersFailing(t) = {A2}

Clearly, one possibility is that there are three separate bugs
represented here, and that

Bugs(Al) = {B, B1}
Bugs(Az) = {B, B2}

But another possibility is that there are only two different
bugs represented, B = B U B; and B} = B U B, and
that each A; just has one bug, B;. In this case, test cases
in B can provoke either bug. Since test cases which can
provoke several different bugs are quite familiar, then we re-
gard the latter possibility as more plausible than the former.
We choose therefore to ignore any partitions whose failing
answers are the union of those of a set of other partitions;
we call these partitions redundant, and we consider it likely
that the test cases they contain simply provoke several bugs
at once. In terms of our bug model, we combine such par-
titions with those representing the individual bugs whose
union explains their failures. Note, however, that if a third
answer As only fails for inputs in B, then we consider this
evidence that B does indeed represent an independent bug
(since {A1, Az, A3} is not the union of {A4;} and {A42}), and
that answers A; and Az therefore contain two bugs each.

Now, to rank our answers we construct a test suite con-
taining one test case from each of the remaining partitions,
count the tests that each answer fails, and assign ranks ac-
cordingly.

In practice, we find the partitions by running a very large
number of random tests. We maintain a set of test cases
Suite, each in a different partition. For each newly gen-
erated test case t, we test all of the answers to compute
AnswersFailing(t). We then test whether the testcase is re-
dundant in the sense described above:

Redundant(t, Suite)=

AnswersFailing(t) =
| t' € Suite,
U{ AnswersFailing(t') | AnswersFailing(t') C
| AnswersFailing(t)

Whenever ¢t is not redundant, i.e. when Redundani(t, Suite)
evaluates to False, then we apply QuickCheck’s shrinking
to find a minimal t,,;, that is not redundant with respect
to Suite—which is always possible, since if we cannot find
any smaller test case which is irredundant, then we can just
take ¢ itself. Then we add t,,;, to Suile, and remove any
t" € Suite such that Redundant(t',(Suite — t') U {t,,in})-
(Shrinking at this point probably helps us to find test cases
that provoke a single bug rather than several—‘probably”
since a smaller test case is likely to provoke fewer bugs than
a larger one, but of course there is no guarantee of this).

We continue this process until a large number of random
tests fail to add any test cases to Suite. At this point, we
assume that we have found one test case for each irredun-
dant input partition, and we can use our test suite to rank
answers.

Note that this method takes no account of the sizes of
the partitions involved—we count a bug as a bug, whether



it causes a failure for only one input value, or for infinitely
many. Of course, the severity of bugs in practice may vary
dramatically depending on precisely which inputs they cause
failures for—but taking this into account would make our re-
sults dependent on value judgements about the importance
of different kinds of input, and these value judgements would
inevitably introduce experimental bias.

In the following section, we will see how this method per-
forms in practice.

4. ANALYSIS

We adopted the statistical null hypothesis to be that there
is no difference in quality between programs developed using
QuickCheck and programs developed using HUnit. The aim
of our analysis will be to establish whether the samples we
got are different in a way which cannot be explained by
coincidence.

We collected solutions to all three tasks programmed by
13 students, 7 of which were assigned to the group using
QuickCheck and the remaining 6 to one using HUnit. In
this section we will refer to the answers (solutions to tasks)
as Al to A13. Since the submissions have been anonymized,
numbering of answers have also been altered and answers Al
to different problems correspond to submissions of different
participants. For each task there is also a special answer A0
which is the model answer which we use as the testing oracle.
For the anonymizer, we also added the identity function for
comparison as Al4, and for the interval sets problem we
added a completely undefined solution as A14.

4.1 Automatic Ranking of Solutions

We ranked all solutions according to the method outlined
in section 3. The ranking method produced a test-suite for
each of the three tasks and assigned the number of failing
tests to each answer of every task. The final score that we
used for evaluation of answers was the number of successful
runs on tests from the test-suite. The generated test suites
are shown in Figure 1. Every test in the test suite causes
some answer to fail; for example delete 0 [] is the sim-
plest test that causes answers that did not implement the
delete function to fail. These test cases have been shrunk
by QuickCheck, which is why the only letter to appear in
the anonymizer test cases is ’a’, and why the strings are so
short?.

Figures 2 to 4 visualize the test results. Each node rep-
resents a set of answers which pass precisely the same tests.
An arrow from one node to another means that the answers
at the target of the arrow pass a subset of the tests that
the answers at the source of the arrow pass. Arrows are
labelled with a test case that distinguishes the source and
target, and the number of other such test cases in brackets.
For instance, we can read from Figure 2 that A2 fails three
more tests than A7, and that it fails on the input string "@”
whereas A7 succeeds on it. Thus these figures visualize a
“correctness partial order” on the submitted answers.

The top node of each graph represents the entirely correct
solutions, including the model answer AQ. The bottom node
represents incomplete solutions, in which the main functions

4Because Haskell encourages the use of dynamic data-
structures, then none of the solutions could encounter a
buffer overflow or other error caused by fixed size arrays.
As a result, there is no need for tests with very long strings.

Anon IntSet Crypt
" member 0 [] b+b=c
"\n" member 0 [(-2,2)] a+a=a
"e" member 2 [(1,1)] at+b=ab
"a" member 0 [(-3,-3),(0,4)] aa+ta=bac
"ge" insert 0 []

".e" insert -1 [(1,1)]

"eQ" insert 0 [(-2,0)]

", ee" insert 1 [(-2,0)]

"Q_a" insert 2 [(0,0)]

"@a=" delete 0 []

& delete 0 [(0,0)]

"a@a" delete 0 [(0,1)]

"#0&Q" merge []1 []

" aQ#" merge [1 [(-1,0)]

"a@_a" merge [(0,0)] [(0,0)]

"aaa" | merge [(-1,0),(2,3)] [(-1,0)]

Figure 1: Generated test suites.

v (+9)

Al, A10, A6

Figure 2: Relative correctness of anonymizer an-
swers.

A0, A13, A5

b+b=c \atb=ab (+ 1)

Al, All, A12, A2, A3, A4, A7, A8

Figure 4: Relative correctness of cryptarithm an-
swers.



member 2 [(1,1)] (+ 1)

member 0 [] (+ 6)

merge [(0,0)] [(0,0

insert 1[(-2,0)] (+ 1)

insert -1 [(1,1)] (+ 6)

member 0 [(-3,-3),(0,4)] (+ 7)

member 0 [(-2,2)] (+ 4)

ember 0 [(-3,-3),(0,4)] (+ 2)

member 0[] (+ 3)

member 0 [] (+ 8)

Figure 3: Relative correctness of interval set answers.

Answer | Anon | IntSet | Crypto
A0 16 16 4
Al 0* 4* 0*
A2 9* 11* 0
A3 6 * 0*
A4 9* 12* 0*
A5 10 7 4%
A6 0 9 2%
AT 12* 4 0*
A8 16* 5% 0
A9 7 16 2
Al0 0 15% 3
All 14 9 0*
Al12 10* 13 0
A13 13* 14%* 4

Figure 5: Results of automatic grading.

were not defined—and which therefore fail all tests. In-
terestingly, our analysis distinguishes all other answers—no
two partially correct submissions were equivalent. Moreover,
there is a non-trivial partial ordering of answers in each case:
some answers really are strictly better than others. We con-
clude that our analysis is able to classify partially correct
answers in an interesting way. (We also conclude that the
cryptarithm problem was too hard to solve in the time avail-
able, since more than half of the submissions failed every
test).

The final score assigned to each answer is shown in figure
5. In order to assign better answers a higher score, we show
the number of tests passed by each answer, rather than the
number of test failures—i.e. bugs. A0 is the model answer
in each case, and answers coming from the group assigned
to using QuickCheck are marked with stars(*).

The following table shows a statistical analysis of scores
from the automatic ranking. To determine whether there is
a statistical difference between samples coming from the two
groups we applied Welch’s t-test (which tests whether two
collections of data have the same mean) and got the values

visible in the P-value row (which we shall explain below).

Anon | IntSet | Crypto

All - Avg (Sdev) | 8.15 (5.38) | 9.69 (4.15) | 1.15 (1.63)
QC - Avg (Sdev) | 9.86 (5.01) | 9.71 (4.39) | 0.86 (1.57)
HU - Avg (Sdev) | 6.17 (5.53) | 9.67 (4.27) | 1.50 (1.76)
P-value 0.2390 0.9846 0.5065

For the anonymizer example, we can see that solutions
developed using QuickCheck scored higher than those de-
veloped using HUnit, for interval sets the scores were about
the same, and for the cryptarithm example, then solutions
developed using QuickCheck fared worse. The P-value is
the probability of seeing the observed (or lower) difference
in scores by sheer chance, if there is no difference in the ex-
pected score using HUnit and QuickCheck (the null hypoth-
esis). For the anonymizer problem then the null hypothesis
can be rejected with a confidence of 76%—which is encour-
aging, but falls short of statistical significance (which would
require a confidence of 95% or higher).

4.2 Stability of the automatic bug measure

Because our bug analysis does perform a random search
in the space of test cases to construct its test suite, it is pos-
sible that we select a different set of tests, and thus assign
a different rank to the same program in different runs. To
investigate this, we ran the bug analysis ten times on the
solutions to each of the three problems. We found that the
partial ordering on solutions that we inferred did not change,
but the size of test suite did vary slightly. This could lead
to the same answer failing a different number of tests in
different runs, and thus to a different rank being assigned
to it. The table below shows the results for each problem.
Firstly, the number of consecutive tests we ran without refin-
ing the test suite before concluding it was stable. Secondly,
the sizes of the test suites we obtained for each problem.
Once a test suite was obtained, we assigned a rank to each
answer, namely the number of tests it failed. These ranks
did differ between runs, but no answer was assigned ranks
different by more than one in different runs. The last rows



show the average and maximum standard deviations of the
ranks assigned to each answer.

| Anon | IntSet | Crypto

Number of tests 10000 | 10000 1000
Sizes of test suite 15,16 | 15,16 4
Avg std dev of ranks | 0.08 0.06 0
Max std dev of ranks | 0.14 0.14 0

We conclude that the rank assignment is not much affected
by random choices made as we construct the test suite.

4.3 Manual Grading of Solutions

In the table below we present that average scores (and
their standard deviations) from the manual grading for the
three problems. These numbers are not conclusive from
a statistical point of view. Thus, for the manual grad-
ing we can not reject the null hypothesis. Nevertheless,
there is a tendency corresponding to the results of the au-
tomatic grading in section 4.1. For example, in the E-Mail
anonymizer problem the solutions that use QuickCheck are
graded higher than the solutions that use HUnit.

Anon | IntSet Crypto
All- Avg (Sdev) | 4.07 (2.78) | 4.46 (2.87) | 2.15 (2.91)
QC - Avg (Sdev) | 4.86 (2.67) | 4.43 (2.88) | 1.86 (3.23)
HU - Avg (Sdev) | 3.17 (2.86) | 4.50 (3.13) | 2.50 (2.74)

To further justify our method for automatic ranking of
the solutions, we would like to see a correlation between the
automatic scores and the manual scores. However, we can
not expect them to be exactly the same since the automatic
grading is in a sense less forgiving. (The automatic grad-
ing measure how well the program actually works, while the
manual grading measure “how far from a correct program”
the solution is.) If we look in more detail on the scores to
the E-Mail anonymizer problem, presented in the table be-
low, we can see that although the scores are not identical,
they tend to rank the solutions in a very similar way. The
most striking difference is for solution A7, which is ranked
4th by the automatic ranking and 10th by the manual rank-
ing. This is caused by the nature of the problem. The
tdentity function (the function simply returning the input,
A14) is actually a rather good approximation of the solution
functionality-wise. A7 is close to the identity function—it
does almost nothing, getting a decent score from the auto-
matic grading, but failing to impress a human marker.

Answer | Auto | Manual | Auto rank | Manual rank
Al 0 3 11 8
A2 9 3 7 8
A3 6 2 10 10
A4 9 5 7 4
A5 10 4 5 5
A6 0 0 11 13
AT 12 2 4 10
A8 16 9 1 1
A9 7 4 9 5
A10 0 1 11 12
All 14 8 2 2
Al12 10 4 5 5
Al13 13 8 3 2

4.4 Assessment of Students’ Testing

As described in section 2.7, we checked the quality of each
student’s test code both manually and automatically (by
counting how many submissions each test suite could detect
a bug in). Figure 6 shows the results.

Student number
QuickCheck |1 (2 (3|4 |5 | 6| 7
Manual grading [ 0| 0| 0] 3|9 9112
Automatic grading | 0 | 0| 0| 0| 8| 10| 11

Student number
9110 |11 |12 | 13
12 6 3 6 9
5 5 6 7 8

HUnit
Manual grading
Automatic grading

S w| ®

Figure 6: Manual vs automatic grading of test suite
quality.

The manual scores may be biased since all the authors
are QuickCheck afficionados, so we would like to use them
only as a “sanity check” to make sure that the automatic
scores are reasonable. We can see that, broadly speaking,
the manual and automatic scores agree.

The biggest discrepancy is that student 9 got full marks
according to our manual grading but only 5/11 according
to the automatic grading. The main reason is that his test
suite was less comprehensive than we thought: it included
several interesting edge cases, such as an insert that “fills
the gap” between two intervals and causes them to become
one larger interval, but left out some simple cases, such as
insert 2 (insert O empty). In this case, the automatic
grader produced the fairer mark.

So, the automatically-produced scores look reasonable and
we pay no more attention to the manual scores. Looking at
the results, we see that four students from the QuickCheck
group were not able to detect any bugs at all. (Three of them
submitted no test code at all®, and one of them just tested
one special case of the member function.) This compares to
just one student from the HUnit group who was unable to
find any bugs.

However, of the students who submitted a useful test
suite, the worst QuickCheck test suite got the same score
as the best HUnit test suite! All of the HUnit test suites, as
it happens, were missing some edge case or other.®

So, of the students who were using QuickCheck, half failed
to submit any useful test-suite at all, and the other half’s
test suites were the best ones submitted. There may be
several explanations for this: perhaps QuickCheck proper-
ties are harder to write but more effective than unit tests;
or perhaps QuickCheck is only effective in the hands of a
strong programmer; or perhaps QuickCheck properties are
“all-or-nothing”, so that a property will either be ineffective
or catch a wide range of bugs; or perhaps it was just a co-
incidence. This is something we will aim to find out in our
next experiment.

50f course, this does not imply that these students did not
test their code at all—just that they did not automate their
tests. Haskell provides a read-eval-print loop which makes
interactive testing quite easy.

SFunctions on interval sets have a surprising number of edge
cases; with QuickCheck, there is no need to enumerate them.



S. RELATED WORK

Much work has been devoted to finding representative
test-suites that would be able to uncover all bugs even when
exhaustive testing is not possible. When it is possible to di-
vide the test space into partitions and assert that any fault
in the program will cause one partition to fail completely
it is enough select only a single test case from each parti-
tion to provoke all bugs. The approach was pioneered by
Goodenough and Gerhart[?] who looked both at specifica-
tions and the control structure of tested programs and came
up with test suites that would exercise all possible combi-
nations of execution conditions. Weyuker and Ostrand|?]
attempted to obtain good test-suites by looking at execu-
tion paths that they expect to appear in an implementation
based on the specification. These methods use other infor-
mation to construct test partitions, whereas our approach is
to find the partitions by finding faults in random testing.

Lately, test-driven development has gained in popularity,
and in a controlled experiment from 2005 [7] Erdogmus et.
al. compare its effectiveness with a traditional test-after
approach. The result was that the group using TDD wrote
more test cases, and tended to be more productive. These
results are inspiring, and the aim with our experiment was
to show that property-based testing (using QuickCheck) is
a good way of conducting tests in a development process.

In the design of the experiments we were guided by several
texts on empirical research in software engineering, amongst
which [3, 16, 11] were the most helpful.

6. CONCLUSIONS

We have designed an experiment to compare property-
based testing and conventional unit testing, and as part of
the design we have developed an unbiased way to assess the
“bugginess” of submitted solutions. We have carried out the
experiment on a small-scale, and verified that our assessment
method can make fine distinctions between buggy solutions,
and generates useful results. Our experiment was too small
to yield a conclusive answer to the question it was designed
to test. In one case, the interval sets, we observed that all the
QuickCheck test suites (when they were written) were more
effective at detecting errors than any of the HUnit test suites.
Our automated analysis suggests, but does not prove, that in
one of our examples, the code developed using QuickCheck
was less buggy than code developed using HUnit. Finally,
we observed that QuickCheck users are less likely to write
test code than HUnit users—even in a study of automated
testing—suggesting perhaps that HUnit is easier to use.

The main weakness of our experiment (apart from the
small number of subjects) is that students did not have
enough time to complete their answers to their own satis-
faction. We saw this especially in the cryptarithm example,
where more than half the students submitted solutions that
passed no tests at all. In particular, students did not have
time to complete a test suite to their own satisfaction. We
imposed a hard deadline on students so that development
time would not be a variable. In retrospect this was prob-
ably a mistake: next time we will allow students to submit
when they feel ready, and measure development time as well.

In conclusion, our results are encouraging and suggest
that a larger experiment could demonstrate interesting dif-
ferences in power between the two approaches to testing. We
look forward to holding such an experiment in the future.
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