
A Roadmap towards Sustainable Self-aware Service
Systems

Schahram Dustdar,
Christoph Dorn, Fei Li
Information Systems Institute

Vienna University of
Technology

Argentinierstr 8/184-1
1040 Vienna, Austria

lastname@infosys.tuwien.ac.at

Luciano Baresi
Dipartimento di Elettronica e

Informazione
Politecnico di Milano

Via Golgi, 40
20133 Milano, Italy

luciano.baresi@polimi.it

Giacomo Cabri
Dipartimento di Ingegneria

dell’Informazione

Reggio Emilia
Via Vignolese 905
41125 Modena, Italy

giacomo.cabri@unimore.it
Cesare Pautasso
Faculty of Informatics
University of Lugano
Via G. Buffi 13

6904 Lugano, Switzerland
c.pautasso@ieee.org

Franco Zambonelli
Dipartimento di Scienze e
Metodi dell’Ingegneria

Reggio Emilia
Via G. Amendola 2

42100 Reggio Emilia, Italy
franco.zambonelli@unimore.it

ABSTRACT
Self-awareness and self-adaptation have become primary con-
cerns in large-scale systems as they have become too com-
plex to be managed by human administrators alone, but
rather require a new blend of coordination mechanisms be-
tween people and software services.

This paper presents a roadmap to effective and efficient
system adaptation through coupling self- awareness of global-
level goals with sustainability constraints. Sustainability of
large-scale systems challenges self-adaptation approaches by
its intrinsic characters of global and long-lasting effects. We
introduce five levels of awareness: (i) event-awareness, (ii)
situation-awareness, (iii) adaptability awareness, (iv) goal-
awareness, and (v) future-awareness. Within each level we
introduce applicable principles and subsequently outline nec-
essary models, algorithms, and protocols. The approach
puts special focus on the interdependencies of human and
service elements.

Categories and Subject Descriptors
D.2 [Software Engineering]: Miscellaneous

Keywords
roadmap, service system, self-awareness, sustainability, con-
text patterns, adaptation coordination

1. INTRODUCTION
Over the past decades we have observed a trend towards

large-scale systems [47]. These systems are characterized by
decentralized control, continuous change of elements, om-
nipresence of failures, and conflicting interests. Especially
noteworthy is the increasingly blurry boundary between hu-
mans and software. Self-adaptation has become a primary
concern in those systems as they have become too complex
to be managed by human administrators alone [29]. Fail-
ures happen too often for humans to follow and react to.
Relations between entities have become too impenetrable to
extract the relevant dependencies. User requirements shift
between different contexts depending on the underlying so-
cial structure. Elements belonging to different authorities
defy any attempts to exercise any form of centralized, exter-
nal adaptation on the system.

We focus particularly on service systems where traditional
software services reside alongside Human provided Services
(HpS) [50]. The concept of Human-provided Services envi-
sions humans to publish their skills and capabilities as Web
services. Not only interactions between humans are sup-
ported by using HpSs, but also interactions with software
services, for example, human interactions in BPEL4People-
like processes. Interactions range from ad-hoc to process-
centric collaborations. HpS is an integral concept, as it
provides the foundation for modeling, measuring, engineer-
ing, and controlling a versatile mix of software and Human-
provided Services. In the scope of this paper, service system
always denotes an ensemble comprising Human-provided Ser-
vices and software-provided services (SpS).

Awareness is a fundamental prerequisite to any self-adaptation
endeavor. Extensive and comprehensive information about
the configuration of the self and the context is imperative.
The self comprises all parts of the system that are moni-
tored, evaluated, and adapted. The context describes the
system’s embedding in its environment. The convergence of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SEAMS’10, May 3–4, 2010, Cape Town, South Africa.
Copyright © 2010 ACM 978-1-60558-971-8/10/05…$10.00.

Università di Modena e

Università di Modena e

10

technical and social networks enables us to observe the prop-
erties that are fundamental to understanding the human in-
teraction structure [36] and how this structure affects the
requirements of the technical systems that are engineered
to assist such human collaboration. System self-adaptation
must consequently regard humans and their relations as in-
tegral parts of the overall system, rather than merely a form
of context.

Information technology needs to become more sustainable.
In service systems, sustainability does not only address en-
ergy consumption but any type of limited resource. Adapt-
ing the definition from the Brundtland report [9]: ”sustain-
able service systems seek to meet the current goals and re-
quirements of the whole system without compromising the
ability to meet those of the future”. To this end, awareness
has to include resource characteristics to enable sustainable
self-adaptation.

In this paper, we outline a roadmap to sustainable self-
aware service systems. We define a conceptual framework
that specifies levels of awareness. These levels describe the
scope of information available for self-adaptation. We fur-
ther outline the interdependency of principles, models, al-
gorithms, and mechanisms we see suitable and necessary to
achieve each level of awareness. Ultimately, each level of
awareness permits ever more sophisticated and ever more
sustainable self-adaptation.

The following subsection (Sec. 1.1) provides a motivat-
ing scenario. We outline the major challenges of awareness
and self-adaptation in the subsection thereafter. Section. 2)
introduces the building blocks of our roadmap. Section 3
discusses the state of the art in self-adaptive systems and
explains how our roadmap extends and improves existing
research efforts. Finally, Section 4 concludes this position
paper.

1.1 Scenario
Assume a service system comprising Human-provided Ser-

vices and Software-provided Services (SpS) in the domain of
software development. Individual people offer their exper-
tise as requirements engineer, tester, documenter, end user
trainer, GUI designer, distributed systems architect, cus-
tomer key contact, lead developer, team leader. Software-
provided Services provide development-centric functionality
such as source code storage, communication channels, or
document versioning alongside recommend capabilities to
support HpS in collaboration, coordination, and communi-
cation. The various aspects in this scenario are displayed in
Figure 1.

In this example domain we encounter the following sus-
tainability concerns (Figure 1 e): the amount of work time
by all current team members is almost stable for every week.
Slight deviations above and below are tolerable. Similar, the
cost for the current team and potentially adding/removing
team members is given for the various project phases. The
float time throughout the project phases is likewise modeled
as a resource that depletes depending on project delays and
is (optionally) refilled at intermediate project phases.

Alice is a software integrator for a large software project
where most staff is integrated via Human provided Services.
In the first round of integration, a particular component (by
Bob) is not delivered on the scheduled date (Figure 1 a).
Alice cannot identify the reason behind the pending compo-
nent without being aware of the overall situation and cannot

take mitigating actions without knowing the adaptability of
her environment, the high-level goals, and long-term sus-
tainability constraints. It is, for example, difficult to assess
whether Bob is overloaded and simply delays the submis-
sion of the component, or whether there was a coordination
problem with respect to responsibilities, or whether there
occurred a communication problem about when and where
to provide the requested component (Figure 1 b).

Consequently, Alice cannot safely choose amongst various
adaptation actions (Figure 1 c). Is it best to ask for the re-
quired input, assign another member with the implementa-
tion task, select the input from an already deployed backup
worker, escalate the situation to her supervisor, or contact
Bob’s supervisor? Thus, to take the appropriate actions in-
cludes evaluating if the high-level goals (Figure 1 d) are in
danger, and whether sustainability constraints (Figure 1 e)
have significant impact on available adaptation actions.

����� ��	

��
���
�

� �

�

�

����������������� ��	������������

�

�����

�����������������

��	

��	������������

��� ��������

�
��
��
��
��

�����

�������
����
���

�������
����������
�

��
����
�

���
����	���
��
 !���!��"

#

#

�

��

�

�

Figure 1: Sustainable Self-adaptation Scenario: let-
ters a to e highlight the five main aspects of aware-
ness. Dashed lines indicate relations between differ-
ent aspects.

1.2 Challenges
Self-adaptation in service systems faces the following ma-

jor challenges:

1. Limited awareness on resource utilization and
long-term effects Most adaptive systems remain un-
aware of both the implicit effect of adaptation actions
on available resources and the long-term maintainabil-
ity (i.e., sustainability) of the adaptation actions car-
ried out. Sustainable resource consumption becomes
a two-fold issue. On the one hand, a system needs
to remain within sustainable resource boundaries un-
der changing environmental and internal conditions.
On the other hand, adaptation actions that maintain
the short-term functional and non-functional proper-
ties of a system have to consider the long term impact

11

on resource utilization. Such sustainable behavior re-
quires more than extensive knowledge of the current
system configuration. Individual services need to be-
come aware of the future effect of their (collective) be-
havior.

In our scenario, a service giving recommendations to
Alice’s supervisor needs to be aware of the high-level
effects on the project resources for each suggested ac-
tion (Figure 1 c, d, e).

2. Lack of understanding the interdependencies
between social and technical entities Most cur-
rent self-adaptation approaches put little attention on
the actual context of the client interacting with the
system. With the convergence of social and technical
networks [36], dynamic and complex interactions be-
tween both humans and services affect what system
behavior is considered desirable. Focusing only on in-
dividual clients (or even client types) and ignoring the
client’s interdependencies with other system partici-
pants will not yield successful adaptation results. Self-
awareness in autonomic computing requires a greater
view on relevant entities and their relations. The so-
cial structure yields great influence on required service
capabilities and on the possible adaptation that can
be performed on services. Groups that exhibit great
trust amongst members, for example, want to collab-
orate more freely and unstructured than groups that
follow a rigid organizational structure.

In our example, any adaptation plan to mitigate the
missing component has to consider the organizational
structure of Alice, Bob, and their respective supervi-
sors (Figure 1 b, c).

3. Limited, local information view in a heteroge-
neous, large-scale environment In large-scale ser-
vice systems, each entity maintains only connections
to a neighboring subset of all entities due to scale. It
observes changes merely in its vicinity. Emerging phe-
nomena that arise from the complete set of interactions
cannot always be observed by all individuals. Thus, an
entity applies mostly limited, local information when
deciding what actions to execute next.

In the scenario, Alice’s awareness is limited her super-
visor and Bob. She observes only changes concerning
common work activities. Without any additional sup-
port, she hardly can perceive the global effect of her
adaptation actions (Figure 1 a, b, c).

4. Dynamic, decentralized evolution of requirements,
interests, and topology Service systems grow from
entities belonging to multiple organizations. There ex-
ists no central authority that controls growth and evo-
lution of the system. It emerges from the common
goals its participants share. Changes occur as peo-
ple shift their interests, as people leave and new ones
join in. Technical entities cause changes to equal ex-
tent: new services arise, existing services evolve, and
some services disappear. These dynamic changes re-
quire constant adaptation to keep the service system
working.

In the example, Bob and Alice belong to different orga-
nizations, with divergent interests, yet they collaborate

based on a common goal. Reaching this goal, however,
is subject to different constraints and thus contrasting
adaptation actions potentially arise. Bob’s delay of
his component might be the outcome of an adaptation
plan within his organization (Figure 1 a, b, d).

5. No central authority As service systems lack cen-
tral control for adaptation, individual entities need to
become aware of the best element to drive adaptation,
delegate adaptation control to that element, and moni-
tor progress of the actual distributed execution actions.
In doing so, these adaptation actions can proceed in a
self-organizing fashion.

In the scenario, no central authority determines who
has to carry out mitigation actions when a component
is not delivered on time. Instead, Alice jointly eval-
uates the situation with her supervisor to determine,
that the supervisor is the most suited entity to trigger
and control the adaptation actions in the particular
situation (Figure 1 b, c).

2. A ROADMAP TO SUSTAINABLE SELF-
AWARENESS

2.1 Scientific approach overview
Self-aware systems are evolving towards improving capa-

bility of understanding situation. We propose five concep-
tual level of awareness in Table 1 to characterize the scope of
acquiring information and the sophistication of capability to
analyze this information. These two factors prescribe the ex-
tent and depth a system can adapt to, and subsequently how
sustainable the respective adaptation effects are. The basic
level is Event-awareness, followed by Situation-awareness,
Adaptability-awareness, and Goal-awareness, ultimately reach-
ing Future-awareness.

The approach to awareness is illustrated in Figure 2. For
each level, there are four dimensions to categorize the re-
search focus, namely the essential principles, as well as the
respective models, algorithms, and protocols. These di-
mensions and corresponding key research problems are elab-
orated in the following subsections, highlighted by bold key
words.

2.2 Event-awareness
The fundamental principle of the event-awareness level

is self-description of entities and propagation of events
among different entities. This preliminary level of awareness
lays the foundation to achieve higher levels by processing
the basic elements of shared information. From modeling
point of view, this level at first requires a context and self
model that is applicable on multiple levels of abstractions to
support the use of the same model independent of system
hierarchies.

Dynamic context and self modeling techniques must
not establish a static, a-priori defined boundary between
self and context. The boundary has to emerge dynamically
during run-time depending on the scope of the entity ac-
cessing context and self data. For an individual service the
neighboring entities are considered context, while the self
model describes the service’s internal properties. Within
a composition, however, some of these neighboring services
potentially become part of the self.

12

Level Definition 1 2 3 4 5
Event System collects simple events which trigger directly basic Event-Condition-

Action rules. The system has no explicit knowledge of the resources needed
or whether the adaptation has a long-lasting (positive) effect.
In the scenario, the HpS representing Alice is aware of the missing input,
Bob’s role, Alice’s current location, and their current communication means.

++ + +

Situation Ability to perceive the status of an entity by aggregating relevant events.
The system understands the implication of individual events in a greater
context.
In the scenario, the HpS is aware of the overall task the input is required
for, the roles of all involved persons (supervisors, monitors, etc.) and the
fact that the expected output will not be ready for some time.

++ ++ + +

Adaptability Awareness of the possible adaptation capability of the observed entity in
its environment. At this level, cooperative adaptation can be conducted
spontaneously based on the knowledge of adaptability.
In the scenario, the HpS becomes aware of the possibilities to control the
involved entities (e.g., Bob is an external member and can only be contacted
but not forced to deliver output, Alice’s supervisor has more adaptation
control and greater decision freedom).

++ + ++

Goal Awareness of the goals of individual entities as well as of the goal of entity
groups. In service systems, a goal not only includes the desired function-
ality of a service (composition), but also its non-functional properties and
resource constraints imposed by the environment. In the presence of con-
flicting goals, this level of awareness also includes the potential trade-offs
between individual and group goals.
In the scenario, the HpS is aware that for the task at hand the relevant high-
level resource constraints are money (e.g., salary of employees and penalties
for delays) and time (i.e., deadlines of the overall project).

++ + ++ +

Future Awareness of a resource’s life-cycle describing long-term utilization by the
system and resource provisioning by the environment. This requires in-
formation on the probably future system state based on scheduled future
events and analysis of part system events. Ultimately, this level describes
systems that are able to select appropriate short-lived adaptation actions
that respect long-term resource constraints and goals.
In the scenario, the HpS for Alice’s manager is aware that there is still
some time for the delivery of the component; and that the following week
there members are available that have the required skills to engineer the
component. Thus, sustainability constraints on work time and costs are
satisfied.

++ + + +

Table 1: Levels of Awareness and their (strong ++, medium +, or slight) relation to challenges 1 to 5.

Data filtering and dissemination are provided by this
level as infrastructural service to higher-levels. The desirable
approach should be independent to the semantics of dissem-
inated data, so that various information from basic events to
goal and resource models can be treated in the same man-
ner. A lightweight data plane exploiting self-organized algo-
rithms and mechanisms to data storage and querying will fit
this vision. In contrast to Knowledge Networks [7] specific
focus needs to be on the management of both models and
data.

The presence of Human-provided Services has a signifi-
cant impact on the event-awareness models, algorithms, and
mechanisms. The core concern is the modeling and tracing
of the relevant relations and compositions of software and
human elements.

2.3 Situation-awareness
The situation-awareness level combines principles and tech-

niques to establish and reason on higher-level and global-
level situations. The context and self model is advanced

to specify high-level, even global properties of the complete
service system, that includes complex relationships between
human and service entities. Activity theory lays the fun-
damental principle of this level.

Fuzzy models and granular information are prereq-
uisites to describe the probability of having detected a par-
ticular high-level situation. Such situations are not neces-
sarily static but potentially consist of recurring (lower-level)
situations that form a pattern. Meta-models will be pre-
sented for controlling information granularity and informa-
tion fuzziness. Entities require, furthermore, information
relevance coordination protocols to detect and charac-
terize higher-level situations.

The most important outcome at this level is abstraction
of information in order to provide input to higher-level rea-
soning and efficient information sharing. The techniques
to express levels of detail and fuzzy future situation for
the context and self model are keys at this level. Based
on the model, relevance-based information retrieval mech-
anisms will allow entities to selectively access context and

13

self information. The level also provides the model to de-
scribe usage patterns of recurring aspects in context, self,
and resource information.

Aggregating simple events to form meaningful situations
is especially hard for HpS due to their virtually limitless
range of activities. A promising approach is focusing on a
relevant activity subset within certain contexts.

2.4 Adaptability-awareness
The adaptability-awareness level will support entities to

detect the adaptability of other entities as well as open its
own interface of adaptation, so that entities will be able to
select the best cooperative partners for a certain adapta-
tion target. Service composition theory and control
theory will guide the technologies to fulfill the goal of this
level.

The available adaptation capabilities are self-described
by explicit models. Suitable adaptation capabilities (inter-
faces) for all the elements will be identified. Some services
may not be self-aware and able to self-adapt, and thus in
general we must consider different degrees of openness and
controllability.

The coordination models will be defined among the en-
tities identified above that work at the different levels of
abstractions in service systems. These coordination capabil-
ities must be distributed and decentralized to support situ-
ations of multiple, independent compositions that compete
for the same resources. Simultaneously, coordination must
provide robust and reliable solutions. Algorithms to ver-
ify entity compositions will support the desirable adap-
tive behavior. Coordination and control protocols de-
scribe suitable mechanisms that fit the entities’ willingness
and ability to adapt.

Modeling suitable adaptation capabilities for HpSs is not
straight forward as humans continuously learn. HpS will ex-
hibit different adaptation possibilities in different contexts.
Adaptation control is especially hard to establish between
HpS elements. The context at hand determines whether an
HpS can be simple replaced or whether this adaptation ac-
tion requires careful handling by another human.

2.5 Goal-awareness
The goal-awareness level introduces goals which express

the overall objective and purpose of the service system. Reg-
ular entity actions and adaptation actions are linked to (pos-
sibly conflicting) goals and resource utilization.

A suitable goal model needs to allow linking high-level
goals to low-level constraints and adaptation actions. Par-
tial goal satisfaction is an integral aspect since non-functional
goals such as reliability or performance are not necessarily
achievable in an absolute sense. The goal model needs sup-
port objective functions which can then be minimized or
maximized during runtime.

In a decentralized environment, services need to monitor
each other to build up probabilistic models of goal satis-
faction. Basic monitoring enables to detect conflicting
goals and resource constraints. Probabilistic models help
to predict when goals or resource constraints are in danger
of being violated.

Runtime goal checking determines continuously which goals
are satisfiable given the available resources and sustainabil-
ity thresholds. To this end, trade-off analysis evaluates
what effect achieving one goal has on related goals. Partic-

ularly, when conflicts arise, reasoning techniques determine
whether these can be resolved, respectively which trade-offs
are available.

Ultimately, service entities need mechanisms to modify
models at runtime and generate dynamic views for efficient
update dissemination and integration.

In service systems, some distinct goals exist for HpS and
SpS, while some goals apply to both type of services. A
main challenge lies in comparing and defining trade-offs be-
tween former type of goals. Ultimately, goal-awareness can
improve cooperation as HpSs can easier perceive the impact
of their actions.

2.6 Future-awareness
Future-awareness introduces sustainability concepts. Re-

sources are no longer seen as simple, static constraints but
require modeling of their life-cycle. Detailed knowledge
of a resource’s status allows us to narrow down the pos-
sible future actions, and monitoring activities provides the
underlying data to enable prediction of the future resource
volume.

Probabilistic reasoning identifies probable state tran-
sitions by evaluating past system behavior. Correlation of
resource life-cycles with activity patterns detected at the
situation-awareness level highlight the actions and condi-
tions that lead to resource drainage and replenishment.

Again, in a decentralized system, these models need to
be shared and updated. The dependency of resource, goal,
context and self models, however, results in complexity that
cannot be addressed by traditional dissemination mech-
anisms alone. Adaptive identification of information signif-
icance and service interest — e.g., by self-adapting informa-
tion diffusion to the specific patterns of querying activities
— becomes a key aspect.

Intrinsic to the human nature, predictions of HpS will
never be as accurate as those of regular software-provided
services. As humans and software become increasingly en-
tangled some sort of prediction of human behavior is essen-
tial for effective self-adaptation in service systems.

2.7 SOA for sustainable self-awareness
Ultimately, all models, algorithms, and protocols need

grounding in a service-oriented architecture and platform.
The architecture has to flexibly integrates the concerns of
all five levels.

Orthogonal to the models and mechanisms at each level,
the architecture provides different levels of abstractions. Prob-
lems must not be addressed at application or infrastruc-
ture level in isolation, but have to observe the concerns at
the level of infrastructure, applications, and single services
to achieve a holistic platform. Multiple platform instances
must be able to cooperate properly and must also exchange
sufficient data to keep the different views aligned and move
sensed data and adaptation directives among the different
entities.

A key characteristic is the complete decentralization, that
is, the absence of any centralized controller, and the ability
to adapt the granularity with which the different parts of
the system work with respect to the problem of interest, the
actual context, and also the urgency of producing results
and corrective actions.

14

$�
����
���������

�����
���������

�"��
�	���
��
���������

��
��
����
���������

%���
�
���������

%�
�
��
������������
���

��
���
�� !����

����&������'����
(����)�
�������
��	�
���

��������*�)����
����
 !����

*��
���� !����

����� !����

���
����	���
�

����)���
*��
�+
�,������

-�"��

���������
����"�
$�''�������
�����
*��
�+
�,�����

���������������
����
-�"��

�"��
�
����*���	���
���

�����-�"��

���
����	���
��*���
����
�

�������������&������
-�"��

*��
�+
�$��
�����

��
���
����

����
��
��
���

�"��
�
����*�)����
���

�"��
�
����.�������
���

�����-�"���
�����)���
���

*������
���
��
������"�
 ��"�&������������

���	�	����
���
���������

*��
�+
�,������%���
�
�����)���
���

(����)�
��������������
*���"���
���

�"��
�
����*���"���
���

�"��
�
����*��
���

���������-�"���
�����)���
���

���������� -�"��� ������
!)� ���
����� �/�

���!�
��
���

���
���)

Figure 2: Roadmap towards sustainable self-aware service systems.

2.8 Maturity stages
We are able to build increasingly sustainable service sys-

tems as we incrementally materialize the levels from the road
map. We can define five stages of maturity of sustainability
corresponding to the levels of awareness.

• Stage 1 exhibits simple measurement (if at all) of the
resource consumption caused by an entity’s action. The
amount of consumption is either fixed for that action
or has to be explicitly measured for every invocation.

• Stage 2 allows for analysis of resource consumption
depending on the underlying context.

• Stage 3 enables entities to describe the variability of re-
source consumption through adaptation. Also, a group
can establish the entities with most efficient resource
utilization.

• Stage 4 requires systems to consider trade-offs resource
constraints have to be met in the presence of conflicting
goals.

• Stage 5 represents the most mature sustainable ser-
vice systems. Adaptation in these systems takes into
account not only goal and resource trade-offs but also
applies predictive knowledge to exploit temporal as-
pects of resource availability and adaptation action ef-
fects.

-�
���
�

������������������
%���
 $�
��������"��
�	���
���
��
���

��)����0&
�&0�
)����������
��
�����
���
�
���
���������
�����)�
���

*��
�+
&"����"��
��
������������������
��
����1

���"��
����2�����"���
�	��
������
������
�����
�������������
���'�
����
��������&
��)�
���
����	���
�

���	�������!����	���������
������
!����"��������
�������������
����
�1
��������������
��"�&����1�

�����
���3�������
�������
��
�
������
!�)��
���������
��
����������
���'�
���4���"3���

!������	���
������"5��
����
����������
���'�
���1

���
����	���
�

Figure 3: Maturity stages of sustainable, self-aware
service systems.

3. RELATED WORK

3.1 Context and Self Modeling
Current State-of-the-Art models of context and self are

limited to either side of the service system spectrum - de-
scribing either social/human properties or purely technical
configurations. Context models describe either social as-
pects such as personal preferences or focus on service-centric
aspects. Traditional models describe human-centric context
such as location, devices, presence information, time, and
action [16, 5, 24]. Some models include also user prefer-
ences specific to services such as cost, speed, QoS, and mo-

15

bility [55]. In contrast, self-models that describe a service’s
embedding in its execution environment focus primarily on
available service instances, their execution status, and ex-
pected termination of service instances [42, 41]. Activity-
centric context [20] is essential in our proposed roadmap,
but is insufficient by itself for achieving high-level aware-
ness. Various research efforts recognize the importance of
activity context for task-awareness [45], self adaptation [21,
52], or resource recommendation [46]. These approaches,
however, miss out on the potential of interaction analysis.
Relations between activities, resources, and humans are con-
figured during bootstrapping and remain unchanged there-
after. Almost no model or metric describes large-scale sys-
tem context. Modeling of service system characteristics that
emerge at a global level has not received much attention.
Analysis of social networks [44, 23, 8, 53] provides insight
into the interaction structure of humans but addresses no
technical components.

3.2 Goal Modeling
Current approaches to goal modeling typically focus on

particular types of goals [38] and work only on a single level
of abstraction [3]. To support adaptation in autonomic ser-
vice systems, goals at different levels of abstraction must be
connected so that they can be derived from each other, and
must ultimately relate to system metrics and control actions
that can influence these metrics. Goal Modeling is a well-
researched aspect of requirements engineering. The most
advanced approaches that also support reasoning and refine-
ment are KAOS [40], developed at the University of Louvain,
and TROPOS [3], developed at the University of Toronto.
In the goal-oriented requirements engineering approach of
Donzelli [19], high-level goals are refined successively to ar-
rive at goals that can be assigned as responsibilities to spe-
cific architectural units of the system to be designed (mod-
ules or agents or even people). Goals are refined into AND-
subgoals or OR-subgoals. OR-subgoals represent alternative
architectural decisions for satisfying the higher-level goals.
In requirements engineering, the alternatives may be used in
architectural trade-off analysis to arrive at the most appro-
priate architecture. Both methodologies, KAOS and TRO-
POS, can express goals and refinements and support prob-
abilistic reasoning for goal satisfaction. As most of the rel-
evant related work in this areas developed during the late
90s, the focus often was on agent-based systems instead of
services [19]. These methodologies provide comprehensive
frameworks for reasoning about requirements. The ATAM
(architectural trade-off analysis model) provides a system-
atic way of quantifying trade-off analysis among different
architectures [34]. Goal models may be used as input to the
analysis of the suitability of architectures.

3.3 Resource Modeling and Reasoning
From service provider point of view, many aspects of ser-

vice management is to address resource provision [17]. Due
to the complexity of real-world service systems, autonomic
approaches dominate this area [49]. However, in most cases,
the capabilities of resources are not explicitly modeled, but
rather are implicitly embedded in the frameworks. One ex-
ception is the PLASTIC (Providing Lightweight and Adapt-
able Service Technology for pervasive Information and Com-
munication) [6] platform, which has a resource model built
into the conceptual model they use to model mobile service

oriented applications.
Reasoning over goal and resource models has two com-

plementary objectives: (1) to determine the best means to
achieve goals or find a near-optimal solution for partial goal
fulfilment in terms of resource allocation and usage [14, 40],
and (2) to map high-level goals to low-level metrics and
adaptation actions [11]. There is a large body of work on
rule-based systems. Rules implicitly contain the mapping
between high-level goals (the intention of the rule creator)
and the low-level metric (the rule trigger) and the adaption
action (the action of the rule). Goal oriented approaches
typically use goals as constraints to evaluated the validity
of the current system state and attempt to find actions that
move the overall system closer to a desired state.

3.4 Large-scale Data Dissemination
Since the management of information has become a com-

pelling need for large-scale systems, a variety of approaches
for managing data and achieving high degree of knowledge
awareness and self-adaptability has been proposed. In the
Knowledge Plane [12], the idea is to couple the service layer
with a heavyweight control plane where tools for the analy-
sis of the knowledge are embedded together with actuating
agents that exploit this knowledge. With regard to data
storage, several research works [27, 33, 10] get inspiration
from tuple space data model to represent contextual infor-
mation in the form of tuples. Recent research focusing on
sensor networks suggests exploiting a tuple-based approach
to flexibly access information on sensor networks [13, 32].
Such approaches are of interest in that they consider the
possibility of dynamically injecting code into the sensors
for aggregating and elaborating the data within the sensor
network itself, and eventually enabling services to directly
access aggregated data according to their own needs. An-
other important issue relates to the linking and diffusion
of data across networks of nodes. The data plane will em-
bed self-organized algorithms to disseminate information in
a lightweight way. Field-based Coordination [43] relies on
distributed tuples injected into a network and then prop-
agated to form field-like distributed data structures to be
sensed by application components. Other approaches [15,
31, 32] are based on gossip-based algorithms to diffuse in-
formation in large-scale networks.

3.5 Autonomic Systems
Computing systems have reached a level of complexity

where the human effort required to keep them operational
is getting out of hand. Autonomic systems [28] aim to solve
this problem and propose to embed the capabilities of the
autonomic nervous system in computer applications with the
aim of easing their maintenance, improving their robustness,
and tackling their complexity. One of the first proposals
was by IBM with a generic architecture [2] of an autonomic
system with a manager and some managed resources. The
manager communicates with the resources through a sen-
sor/actuator mechanism and the decision is elaborated by
means of the so-called MAPE cycle in which the manager
monitors the sensors, analyzes collected data, plans correc-
tive actions, if needed, and executes them through the ac-
tuators [35, 30].

Whereas autonomic computing focuses primarily on lo-
cal, centralized components, the related domain of auto-
nomic communications addresses self-adaptation aspects of

16

distributed systems. Research in autonomic communica-
tions, however, focuses mainly on management of commu-
nication networks that remain under a single authority [18,
51].

Huebscher and McCann [29] propose an interesting sur-
vey of autonomic systems. The term, along with the idea
of self-adaptive system, which are used as synonyms here,
have been used for a variety of different systems [1]. For ex-
ample, Garlan [22] proposes a solution at architectural-level,
where the actual architecture of the system can evolve au-
tonomously, and a more recent work by Kramer and Magee [37]
exploits the analogies between robotic and self-managed sys-
tems. Autonomia [25] uses a two-layer approach, where the
first contains the execution environment and the other man-
ages the resources, AutoMate [48], which has a multi-layered
architecture optimized for scalable environments such as de-
centralized middleware and peer-to-peer applications, and
the CASCADAS approach [26], based on the concept of ACE
(Autonomic Computing Element), whose characteristics, be-
haviour, and interactions can change at runtime based on
sensed data. While the approaches above work at applica-
tion level, we also have other solutions that aim to extend
the middleware with autonomic capabilities, e.g., publish
and subscribe approaches based on distributed dispatchers,
whose reconfiguration is aimed to minimize cost metrics like
network traffic [4], or peer-to-peer networks based on un-
structured overlays where the goal is to search/share partic-
ular information efficiently [54].

4. CONCLUSIONS
We presented a roadmap that outlines the various con-

tributions required to achieve sustainable, self-aware ser-
vice systems. We put explicit focus on awareness in ser-
vice systems that comprise human-provided services and
software-provided systems. Capturing the various mixtures
of humans and services is a fundamental aspect to self-
adaptation. Without this knowledge, self-adaptation can
never react to nor anticipate the hidden dependencies in the
underlying human interaction structure.

Sustainability is the second distinctive feature of our roadmap
besides the concept of human-provided services. Modeling
the dependencies between resources, goals, and actions in-
creases self-adaptation effectiveness and efficiency as the ex-
pected result can be predicted more precisely.

We acknowledge the importance of concerns such as se-
curity and privacy but deliberately did not address them in
this paper for sake of clarity.

5. REFERENCES
[1] Autonomic computing. www.autonomiccomputing.org.

[2] Autonomic computing toolkit home page.
www.ibm.com/developerworks/autonomic/overview.html.

[3] R. J. Anthony. Policy-based autonomic computing
with integral support for self-stabilisation.
International Journal of Autonomic Computing,
1(1):1–33, 2009.

[4] R. Baldoni, R. Beraldi, L. Querzoni, and A. Virgillito.
Efficient publish/subscribe through a self-organizing
broker overlay and its application to siena. Comput.
J., 50(4):444–459, 2007.

[5] R. Belotti, C. Decurtins, M. Grossniklaus, M. C.
Norrie, and A. Palinginis. Modelling context for

information environments. In Ubiquitous Mobile
Information and Collaboration Systems: Second
CAiSE Workshop, UMICS 2004, pages 43–56, June
2004.

[6] A. Bertolino, W. Emmerich, P. Inverardi, V. Issarny,
F. Liotopoulos, and P. Plaza. PLASTIC: Providing
lightweight & adaptable service technology for
pervasive information & communication. In 23rd
IEEE/ACM International Conference on Automated
Software Engineering-Workshops, 2008. ASE
Workshops 2008, pages 65–70, 2008.

[7] N. Bicocchi, G. Castelli, M. Mamei, A. Rosi,
F. Zambonelli, M. Baumgarten, and M. Mulvenna.
Knowledge networks for pervasive services. In
Proceedings of the 2009 international conference on
Pervasive services, pages 103–112. ACM, 2009.

[8] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks. In
MSR ’06: Proceedings of the 2006 international
workshop on Mining software repositories, pages
137–143, New York, NY, USA, 2006. ACM Press.

[9] G. Brundland et al. Our common future/world
commission on environment and development.
Technical report, Oxford University Press, 1987.

[10] G. Castelli, M. Mamei, and F. Zambonelli.
Engineering contextual knowledge for autonomic
pervasive services. Inf. Softw. Technol., 50(1-2):36–50,
2008.

[11] Y. Chen, S. Iyer, X. Liu, D. Milojicic, and A. Sahai.
Sla decomposition: Translating service level objectives
to system level thresholds. In ICAC âĂŸ07:
Proceedings of the fourth international conference on
autonomic computing. IEEE Computer Society,
Washington, DC, 2007.

[12] D. D. Clark, C. Partridge, C. J. Ramming, and J. T.
Wroclawski. A knowledge plane for the internet. In
SIGCOMM ’03: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols
for computer communications, pages 3–10, New York,
NY, USA, 2003. ACM Press.

[13] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco.
Programming wireless sensor networks with the
teenylimemiddleware. In Middleware, pages 429–449,
2007.

[14] A. Dan, C. Dumitrescu, and M. Ripeanu. Connecting
client objectives with resource capabilities: an
essential component for grid service managent
infrastructures. In Proceedings of the 2nd international
conference on Service oriented computing, pages
57–64. ACM New York, NY, USA, 2004.

[15] A. Datta, S. Quarteroni, and K. Aberer. Autonomous
gossiping: A self-organizing epidemic algorithm for
selective information dissemination in wireless mobile
ad-hoc networks. In Proceedings of the International
Conference on Semantics of a Networked, Lecture
Notes in Computer Science, pages 126–143. Springer,
2004.

[16] de Freitas and da Graca. Toward a
domain-independent semantic model for context-aware
computing. pages 10 pp.+, 2005.

[17] Q. Deng, X. Lu, L. Chen, and M. Li. A Resource
Model for Large-Scale Non-Hierarchy Grid System.

17

Lecture Notes in Computer Science, pages 669–676,
2004.

[18] S. Dobson, S. Denazis, A. Fernández, D. Gäıti,
E. Gelenbe, F. Massacci, P. Nixon, F. Saffre,
N. Schmidt, and F. Zambonelli. A survey of
autonomic communications. ACM Trans. Auton.
Adapt. Syst., 1(2):223–259, 2006.

[19] P. Donzelli. A goal-driven and agent-based
requirements engineering framework. Requir. Eng.,
9(1):16–39, 2004.

[20] S. Dustdar. ”Caramba Process-Aware Collaboration
System Supporting Ad hoc and Collaborative
Processes in Virtual Teams”. Distributed Parallel
Databases, 15(1):45–66, 2004.

[21] D. Garlan, V. Poladian, B. R. Schmerl, and J. P.
Sousa. Task-based self-adaptation. In WOSS, pages
54–57, 2004.

[22] D. Garlan and B. R. Schmerl. Model-based adaptation
for self-healing systems. In D. Garlan, J. Kramer, and
A. L. Wolf, editors, WOSS, pages 27–32. ACM, 2002.

[23] V. Gómez, A. Kaltenbrunner, and V. López.
Statistical analysis of the social network and discussion
threads in slashdot. In WWW ’08: Proceeding of the
17th international conference on World Wide Web,
pages 645–654, New York, NY, USA, 2008. ACM.

[24] T. Gu, H. K. Pung, and D. Q. Zhang. A
service-oriented middleware for building context-aware
services. J. Netw. Comput. Appl., 28(1):1–18, 2005.

[25] X. Hariri, L. Xue, H. Chen, M. Zhang, S. Pavuluri,
and S. Rao. Autonomia: an autonomic computing
environment. In IEEE International Performance,
Computing, and Communications Conference, pages
61–68, 2003.

[26] E. Hoefig, B. Wuest, B. Benko, A. Mannella,
M. Mamei, , and E. D. Nitto. On concepts for
autonomic communication elements. In International
Workshop on Modelling Autonomic Communications,
2006.

[27] J. I. Hong. The context fabric: an infrastructure for
context-aware computing. CHI ’02 extended abstracts
on Human factors in computing systems, pages
554–555, 2002.

[28] P. Horn. Autonomic computing: Ibm’s perspective on
the state of information technology. Technical report,
IBM, 2001.

[29] M. C. Huebscher and J. A. McCann. A survey of
autonomic computing - degrees, models, and
applications. ACM Comput. Surv., 40(3), 2008.

[30] IBM. An architectural blueprint for autonomic
computing, 2005.

[31] M. Jelasity and O. Babaoglu. T-man: Gossip-based
overlay topology management. pages 1–15. 2006.

[32] M. Jelasity, A. Montresor, and O. Babaoglu.
Gossip-based aggregation in large dynamic networks.
ACM Trans. Comput. Syst., 23(3):219–252, 2005.

[33] C. Julien and G.-C. Roman. Egospaces: facilitating
rapid development of context-aware mobile
applications. Software Engineering, IEEE
Transactions on, 32(5):281–298, 2006.

[34] R. Kazman, M. Barbacci, M. Klein, S. J. Carrière, and
S. G. Woods. Experience with performing architecture

tradeoff analysis. In ICSE ’99: Proceedings of the 21st
international conference on Software engineering,
pages 54–63, New York, NY, USA, 1999. ACM.

[35] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[36] J. Kleinberg. The convergence of social and
technological networks. Commun. ACM, 51(11):66–72,
2008.

[37] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In L. C. Briand and A. L.
Wolf, editors, FOSE, pages 259–268, 2007.

[38] A. v. Lamsweerde. Building formal requirements
models for reliable software. In Ada Europe ’01:
Proceedings of the 6th Ade-Europe International
Conference Leuven on Reliable Software Technologies,
pages 1–20, London, UK, 2001. Springer-Verlag.

[39] E. Letier and A. van Lamsweerde. Reasoning about
partial goal satisfaction for requirements and design
engineering. In SIGSOFT ’04/FSE-12: Proceedings of
the 12th ACM SIGSOFT twelfth international
symposium on Foundations of software engineering,
pages 53–62, New York, NY, USA, 2004. ACM.

[40] E. Letier and A. Van Lamsweerde. Reasoning about
partial goal satisfaction for requirements and design
engineering. In Proceedings of the 12th ACM
SIGSOFT twelfth international symposium on
Foundations of software engineering, pages 53–62.
ACM New York, NY, USA, 2004.

[41] Z. Maamar, D. Benslimane, P. Thiran, C. Ghedira,
S. Dustdar, and S. Sattanathan. Towards a
context-based multi-type policy approach for web
services composition. Data Knowl. Eng.,
62(2):327–351, 2007.

[42] Z. Maamar, S. Kouadri, and H. Yahyaoui. A web
services composition approach based on software
agents and context. In SAC ’04: Proceedings of the
2004 ACM symposium on Applied computing, pages
1619–1623, New York, NY, USA, 2004. ACM Press.

[43] M. Mamei and F. Zambonelli. Programming pervasive
and mobile computing applications: The tota
approach. ACM Trans. Softw. Eng. Methodol.,
18(4):1–56, 2009.

[44] J. J. McAuley, L. da Fontoura Costa, and T. S.
Caetano. Rich-club phenomenon across complex
network hierarchies. Applied Physics Letters,
91(8):084103, 2007.

[45] P. Moody, D. Gruen, M. J. Muller, J. Tang, and T. P.
Moran. Business Activity Patterns: A New Model for
Collaborative Business Applications, 2006.

[46] K. Ning, R. Gong, S. Decker, Y. Chen, and
D. O’sullivan. A context-aware resource
recommendation system for business collaboration.
Int. Conf. on E-Commerce Technology and the 4th
IEEE Int. Conf. on Enterprise Computing (CEC/EEE
2007)., pages 457–460, 23-26 July 2007.

[47] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough,
R. Linger, T. Longstaff, R. Kazman, M. Klein,
D. Schmidt, K. Sullivan, and K. Wallnau.
Ultra-Large-Scale Systems - The Software Challenge
of the Future. Technical report, Software Engineering
Institute, Carnegie Mellon, June 2006.

[48] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt,

18

G. Zhang, and S. Hariri. Automate: Enabling
autonomic applications on the grid. Cluster
Computing, 9(2):161–174, 2006.

[49] C. Pautasso, T. Heinis, and G. Alonso. Autonomic
resource provisioning for software business processes.
Information and Software Technology, 49(1):65–80,
2007.

[50] D. Schall, H.-L. Truong, and S. Dustdar. Unifying
human and software services in web-scale
collaborations. IEEE Internet Computing,
12(3):62–68, May/June 2008.

[51] S. Schmid, M. Sifalakis, and D. Hutchison. Towards
autonomic networks. In Autonomic Networking, pages
1–11, 2006.

[52] J. P. Sousa, V. Poladian, D. Garlan, and B. R.
Schmerl. Capitalizing on awareness of user tasks for
guiding self-adaptation. In CAiSE Workshops (2),
pages 83–96, 2005.

[53] S. Valverde and R. V. Solé. Self-organization and
hierarchy in open source social networks. Technical
report, DELIS – Dynamically Evolving, Large-Scale
Information Systems, 2006.

[54] S. Voulgaris, D. Gavidia, and M. van Steen. Cyclon:
Inexpensive membership management for unstructured
p2p overlays. J. Network Syst. Manage., 13(2), 2005.

[55] Y. Yang, F. Mahon, M. H. Williams, and T. Pfeifer.
Context-aware dynamic personalised service
re-composition in a pervasive service environment. In
UIC, pages 724–735, 2006.

19

