
The Regularity Principle of Self-Management

Naftaly Minsky
Department of Computer Science, Rutgers University

Piscataway, NJ 08854 USA
email: minsky@cs.rutgers.edu

website: http://www.cs.rutgers.edu/ minsky

Abstract

The principle of regularity proposed here for self man-
agement of systems, states that for a large system to be
manageable it must possess suitable regularities. In other
words, this principle identifies the ability to establish reg-
ularities in a system, as a necessary condition for its self-
manageability. But this principle does not call for any uni-
versal regularity, but for regularities that fit the system to be
managed, and the management mechanism to be used.
This paper also proposes a mechanism for establishing

a wide range of regularities, even over heterogeneous dis-
tributed systems—which would otherwise lack them. This
provides a critical key for the self management of heteroge-
neous distributed systems, which is particularly important
because such systems do not lend themselves to external
management.

1 Introduction

Several approaches to the self management and self or-
ganization1 have been proposed during the past ten years
or so. But despite some successes in applying these ap-
proaches to certain types of systems, the broad promise of
self management still eludes us. This state of affairs is par-
ticularly unfortunate for open2 systems, which must rely on
self management, as it does not lend itself to an external
one.
By “open system” I mean an heterogeneous, and loosely

coupled, distributed system, whose component parts may
be written in different languages, may run on different plat-
forms, and may be designed, constructed, and even main-
tained under different administration domains. Such sys-
tems are open in the sense that the internal structure of their

1I take here the terms “management” and “organization” as approxi-
mately synonymous, and will mostly use the former term in this paper.

2The term “open system,” as used here, has nothing to do with the
concept of open source.

component parts is not restricted, and because these compo-
nents may change dynamically, or leave the system, while
new components may be added to it at any time. The in-
creasingly popular concept of service oriented architecture
(SOA) represents an outstanding example of such open sys-
tems; and many types of multi-agent systems (MASs) are
open as well.
It is my thesis that the limited success to date of self

management is due in part to the lack of appreciation of
the existence of a necessary condition for self management,
which is not commonly satisfied—particularly not by open
systems.
The purpose of this paper is to introduce this necessary

condition3 and to describe means for satisfying it. But it
should be emphasized that this is only a necessary condi-
tion, and is by no means sufficient for self-management.
Yet, realizing this condition is important enough for it to
be viewed as one of the principles of self management—it
is called here the regularity principle.

1.1 The Regularity Principle of Self-
Management

I will elicit this principle from two example, one from
real life and the other from software systems, starting with
the former. I will then formulate the principle itself, and
discuss some of its immediate implications.

Managing the Economy of a Country: The economy
of a free country is, by definition, a self managed system.
And there are two well known approaches to such manage-
ment, often called planned economy and lesse fair, respec-
tively. Planned economy is a top-down approach, where
the government, attempting to achieve some global goals,
decides how to distribute funds, who should produce what,

3An essentially identical necessary condition has been identified in [5]
for the more limited goal of self-healing; this, then, is a broadening of the
scope of this condition.

1



etc. Lesse fair is a bottom-up approach, where every indi-
vidual, attempting to achieve his own goals, decides what
to produce, and how to use his funds, etc. These two ap-
proaches give rise to very different management techniques.
But they have this in common. To be effective, all these
techniques require a degree of predictability about the sys-
tem in question. In particular none of the strategies em-
ployed by the various decision makers—the government on
one hand, and every actor in the system on the other—would
be effective if money, which underlies all economic sys-
tems, is being forged too often. In other words, the approxi-
mate non-forgeability of money is a necessary condition for
the management of any monetary based economy.
The “non-forgeability” of money is an example of a reg-

ularity, by which I mean conformity of a given system to a
given rule4. And the management of an economy relies on
many kinds of regularities in the economy being managed,
like those emanating from human nature—-hunger, greed,
etc.
Of course, the above mentioned regularities are only

approximate—money is occasionally being forged illegally.
And in this paper we shall allow for regularities to be ap-
proximate, without providing any definition of the nature of
approximation—which can only be provided in the context
of a specific application.
Note, incidentally, planned economy and lesse fair—

the dichotomy of approaches to the self management of
economies—is analogous to the dichotomy of self man-
agement of software5. Namely, (a) the top-down self-
adaptive technique, and (b) the bottom-up self-organizing
techniques. And like in the case of economy, both of these
approaches, which are sufficiently different to be practiced
by different communities of researchers, must rely on regu-
larities to be effective. The need for regularities in software
systems is illustrated below.

The Case of Two-Phase Locking (TPL) Protocol: As an
example of a regularity that can support the management of
distributed software systems, consider a distributed set of
servers that provide resources (such as files) to an heteroge-
neous and distributed set of clients. For a client to consult
a resource, or to update it, it needs to lock it first; and it
can maintain locks for several resources at a time. It is well
known [11] that such activity can result in deadlocks, but
that it would be serializable and deadlock free if the fol-
lowing kind of two-phase locking (TPL) protocol is strictly
observed by all clients:

• The process of resource use by each client must be di-
vided into two phases: a growing phase of locking, and

4This is one of the dictionary meanings of the term “regularity”—see
the American Heritage dictionary, for example.

5This dichotomy has been pointed out in the invitation to this work-
shop.

a shrinking phase of updating resources and releasing
locks. In other words, new locks cannot be acquired
after the first release of a lock, or after a resource has
been updated.

• If a lock requested by a client c is not granted within a
specified time period, then c would cancel this request,
and release all locks it already holds.

So, the TPL protocol must be a regularity, defined over all
clients, in order for their use of shared resources to be safe.
This example, and the previous one, suggest the following
principle:

Principle 1 (regularity) For a large system to be manage-
able it must possess suitable regularities.

This principle has several implications: (1) A system that
possess no regularities is unmanageable—in other words,
this principle constitute a necessary condition for self man-
agement. (2) Manageability requires suitable regularities—
suitable to the type of system to be managed, and to the
management technique to be employed. In other words, this
principle does not call for any universal regularity, but for
regularities that fit the system to be managed, and the man-
agement mechanism to be used. And (3) to be effective, the
management of a given system may require several differ-
ent regularities to rely on, as we have seen in the case of an
economy.

1.2 The Plan of this Paper

This fairly self evident principle has two methodologi-
cal implications: (a) when designing a distributed system
one needs to choose the type of regularities which would be
suitable for its management; and (b) one needs to be able to
establish the chosen regularities over the system at hand.
The choice of regularities suitable for the management

of a given system is highly dependent on the nature of that
system, and on the technique employed for its management.
This choice is not discussed in this paper. The rest of this
paper addresses the question of how regularities can be es-
tablished. We distinguished between two cases. The first,
considered in Section 2, is of regularities that can be es-
tablished without enforcement. And the second, discussed
in Section 3, is the more common case, where regularities
needs to be enforced to be reliable; we also describe in this
section a general technique for carrying out such enforce-
ment for a wide range of regularities. In Section 4 we de-
scribe a simple case study, related to the non-forgeability of
money, and we conclude in Section 5.

2



2 Unenforced Regularities of Distributed
Systems

The inherent difficulty establishing regularities stems
from their intrinsic globality. Unlike an algorithm or a data
structure that can be built into a single component (or few
components), a regularity is a rule that must be observed
everywhere in its domain, and thus cannot be localized, at
least not scalabely. But there are two important kinds of
regularities that lends themselves to implementation, with-
out having to resort to enforcement—they are established
either via cryptography, or by voluntary compliance. While
both of these techniques can be effective, their ranges of
applicability is limited, as we shall see below.
Cryptography is based on the difficulty of solving certain

computational problems [9]. Such difficulty is, of course,
universal, and can thus be the basis of regularities, such
as the inability to forge digital signatures. Consequently,
cryptography provides critical foundation for many secu-
rity measures, and is the foundation for the enforcement of
regularities, as we shall see in the following section. But
the direct ability of cryptography to establish regularities is
limited. For example, the TPL regularity discussed above
cannot be established by cryptography alone.
The second, and more common, method for establish-

ing regularities in distributed systems is simply voluntary
compliance. Typically, a rule, or a policy, P is declared as
a standard. And then every component subject to this pol-
icy is either constructed carefully according to it, or uses
a widely available tool, which is built to satisfy the policy
at hand. It is via such voluntary compliance that important
regularities such as the use of HTML for writing web pages,
and the use of IP for communication, have been established
all over the Internet.
But the effectiveness of voluntary compliance as a means

for establishing regularities is limited, for several reasons.
First, for voluntary compliance by the members of a group
G of actors, with a given policy P , to be reliable, the fol-
lowing two conditions need to be satisfied:

1. Individualmembers ofG have a vested interest in com-
pliance with P .

2. The failure of any member ofG to comply with P can-
not cause seriously harm to other members of G.

Indeed, if condition (1) is not satisfied then there is little
chance for P to be observed voluntarily by everybody inG,
even if it is declared as a standard—as Andrew Tanenbaum
observed [10, page 254] “the nice thing about standards is
that there are so many of them to choose from.” And if
condition (2) is not satisfied than one has to worry about
someone not observing P , perhaps inadvertently, and thus
causing harm to others.

Another limitation of voluntary compliance is that its
deployment is laborious, unreliable and difficult to verify.
Moreover, once a regularity is established in this manner, it
can be hard to modify, particularly if it involves a large num-
ber of actors (i.e., software components). Voluntary compli-
ance, therefore, is best suited to very stable regularities that
satisfy conditions (1) and (2) above.

Certain important regularities, such as the above men-
tioned cases of HTML and IP, do satisfy all these condi-
tions. And there is an active game theoretic research on
regularities that satisfy condition (1) (and perhaps also (2))
above—see [8] in particular. But other, and perhaps most,
regularities relevant to self-management do not satisfy one
or all of the above conditions. This is certainly the case for
the two examples of regularities mentioned above.

In particular, the two-phase locking (TPL) protocol does
not satisfy our conditions, because in contradiction to con-
dition (1) above, a client may profit by holding a lock for a
resource longer than allowed by this protocol; and in con-
tradiction to condition (2) this may harm other clients, by
causing deadlocks and/or compromising the integrity of re-
sources due to unserializable interactions. Therefore, if the
group of potential clients is heterogeneous, one cannot rely
on their voluntary compliance with this protocol because
any one of themmight violate it inadvertently, causing harm
to others. Similarly, the rule of non-forgeability of money,
so critical for the management of economies, cannot be
trusted on the basis voluntarily compliance alone.

Nevertheless, there is an over reliance on regularities es-
tablished by voluntary compliance, both in industry and in
the research community. A case in point is an early and in-
fluential paper about the architecture of autonomic systems
[12], which proposed that such systems should be com-
posed of “autonomic components” that are to be designed
in conformance with the policies of the system they are part
of.

This is reasonable for relatively closed and homoge-
neous system, such as network management (subject to
SNMP standard), because the vendors of hosts, routers,
and firewalls—the main managed components at a network
layer—can usually be trusted to implement the required
policies, making such devises into autonomic components.
But it is hard to trust the components of an open systems to
be “autonomic.”

It, thus, stands to reason that a rule that does not satisfy
the three conditions above needs to be enforced, if it is to
be relied on as a regularity of an open system. A mecha-
nism for carrying out such enforcement is discussed in the
following section.

3



3 Enforcing Regularities Over Open Dis-
tributed Systems

To establish a regularity by enforcing a given rule (or
law) over a given system it requires the existence of a central
authority that is able to govern that system. In the case of a
single language system this role is played by the very struc-
ture of that language, and by its compiler. And in in the case
of a monolithic systems, developed under a single admin-
istrative domain, regularities can be established—although
not very reliably—by the system manager who instructs all
programmers to obey certain programming principles. But
no such authorities is available over the codes of the com-
ponents of an open distributed system.
I maintain, however, that many types of regularities that

may be useful to self management can be established by
governing the interaction between the components of a dis-
tributed system. This can be accomplished by a middleware
that can impose constraints on the flow of message between
system components. We call such a middleware a gover-
nance mechanism, or a GM, for short. And I claim that to
be effective for self management, such a mechanism needs
to satisfy the following set of properties.

Property 1 (expressive power) A GM needs to be
stateful—i.e., sensitive to the history of interaction between
system components; and proactive—i.e., it should be able
to apply motive force to the system, just ensuring liveness.

In particular, both stateful and proactive capabilities are re-
quired to establish the above mentioned TPL regularity.

Property 2 (decentralization) Laws established by an
GM needs to be enforced in a decentralized manner.

This property is required because centralized regulation
tends to be unscalable, particularly under stateful regulation
(as argued in [7]), and because central control tends to dis-
tort the inherently concurrent, and independent, interactions
between the distributed components.

Property 3 (generality) An GM should not be biased to-
wards any particular kind of laws, and should be able to
support a wide range of them.

Generality was already required by the age-old principle of
separation of policy from mechanism [13], formulated some
thirty years ago. And this property is becoming increas-
ingly important, because complex systems tend to involve
a multitude of diverse policies, regarding different system
parts and different types of system activities. Using dozens
of incompatible mechanisms to implement such disparate
policies would be very hard, and would make the resulting
system quite unmanageable. Moreover, the need for differ-
ent policies to interoperate and to be composed with each
other (see below) makes this property critical.

Property 4 (interoperability & composability) An GM
should provide means for different laws to interoperate,
and for laws to be incrementally composed, in particular,
into conformance hierarchies.

Note that although this property is very important, its mo-
tivation and precise meaning—discussed in [1]–are beyond
the scope of this paper.
These properties are not easy to satisfy, and they are

largely not satisfied by the various conventional access con-
trol (AC) mechanisms—the currently dominant means for
the governance of distributed systems. But all these prop-
erties are satisfied by a governance mechanism called law
governed interaction (LGI), developed at Rutgers, and re-
leased for public use. Although LGI, and various appli-
cations of it, have been published in various journals and
conferences, we include below a brief overview of it for
completeness.

3.1 The Law-Governed Interaction (LGI)
Middleware—an Overview

Broadly speaking, LGI is a governance middleware that
enables an open and heterogeneous group of distributed ac-
tors to engage in a mode of interaction governed by an
explicitly specified and strictly enforced policy, called the
law of this group. By “actor” we mean an arbitrary pro-
cess, whose structure and behavior is left unspecified; and
an actor engaged in an LGI-regulated interaction, under a
law L, is called an L-agent. LGI thus turns a set of dis-
parate actors, which may not know or trust each other, into
a community of agents that can rely on each other to comply
with the given law L—this is called an L-community. This
is done via a distributed collection of trustworthy generic
components called private controllers, one perL-agent, that
mediate all interaction between these agents, subject to the
specified law L (as illustrated in Figure 1). All told, LGI
goes well beyond conventional access control, in its ability
to cope with the increasing size, openness, and heterogene-
ity of open systems. It is, in particular, inherently decentral-
ized, and thus scalable even for a wide range of stateful poli-
cies. And it is very general. A prototype of LGI has been
recently released and is being used in academia, and even
in some industry. This section provides only a very brief
overview of LGI, hopefully sufficient for understanding the
gist of this proposal. For more information, the reader is
referred to the LGI tutorial and manual [6], and to a host of
published papers.

Agents and their Private Controllers: An L-agent x is
a pair x = 〈Ax, TL

x 〉, where Ax is an actor, and TL
x is its

private controller, which mediates the interactions of Ax

with other LGI-agents, subject to lawL. Each controllerTL
x

maintains the control state (or, “cState”) of agent x, which

4



is some function of the history of interaction of x with other
community members. The nature of this function, and its
effect on the ability of x to communicate, is largely defined
by the law L. The concept of law is defined in the following
section. The role of the controllers is illustrated in Figure 1,
which shows the passage of a message from an actor Ax

to Ay , as it is mediated by a pair of controllers, first by
TL

x , and then by TL
y —both operating, in this case, under

the same law, although interoperability between different
laws is supported by LGI as well. One of the significant
aspects of such mediation is that under LGI every message
exchange involves dual control: on the sides of both the
sender of a message, and of its receiver.

The Concept of Law Under LGI: An LGI law (or, sim-
ply, a law) is defined in terms of three elements: (a) a set E
of regulated events; (b) a set O of control operations; and
(c) the control-state (CSx) associated with each agent x.
More specifically, E is the set of events—such as the send-
ing and arrival of a message—that may occur at any agent,
and whose disposition is subject to the law. O is the set of
operations that can be mandated by a law, to be carried out
at a given agent, upon the occurrence of regulated events at
it. In a sense, these operations constitute the repertoire of
the law—i.e., it is the set of operations that the law is able
to mandate. This set includes operations like forwarding a
message, and updating the state of a given agent. Finally,
the control-state, or simply the state, of an LGI agent is the
state maintained by the controller of this agent agent, which
is distinct from the internal state of the actor of that agent.
This state, which is initially empty, can change dynamically
in response to the various events that occur at it, subject to
the law under which this agent operates.

Now, The role of a law under LGI is to decide what
should be done in response to the occurrence of a regulated
event at an agent operating under this law. This decision,
which is called the ruling of the law, consists of a sequence
of zero or more control operations from the set O. More
formally, a law is defined as follows.

Definition 1 Given a set E of all regulated events, a set O
of all control operations, and a set S of all possible control-
states, a law L is a function: L : E × S → O∗

In other words, a law maps every possible (event, state)
pair into a sequence of zero or more control operations,
which constitute the ruling of the law.
Note that this definition does not specify a language for

writing laws. This for several reasons: First, because de-
spite the pragmatic importance of choosing an appropriate
law-language, this choice has no impact on the semantics
of the model itself, as long as the chosen language is suffi-
ciently powerful to specify all possible functions of the form

I

S

I
L

I
L

I
L

I
L

I
L

I
L

II

Sx Sy
TyTx

AyAx

S

S

S

S

age
nt x

agent y

Figure 1. Interaction via LGI: Actors are de-
picted by circles, interacting across the In-
ternet (lightly shaded cloud) via their private
controllers (boxes) operating under law L.
Agents are depicted by dashed ovals that en-
close (actor, controller) pairs. Thin arrows
represent messages, and thick arrows repre-
sent modification of state.

of Definition 1. Second, by not specifying a law-language
we provide the freedom to employ different law-languages
for different applications domains, possibly under the same
mechanism. Indeed, the implemented Moses mechanism
employs two different law-languages, one based on the
logic-programming language Prolog, and the other based
on Java.

The Local Nature of LGI Laws, and their Global Sway:
One important characteristic of LGI laws is that they are
inherently local. Without going into technical details, local-
ity means that an LGI law can be complied with, by each
member of the community subject to it, without having any
direct information of the coincidental state of other mem-
bers. This locality is a critical aspect of LGI for two major
reasons: First, because locality is necessary for decentral-
ization of law enforcement, and thus for scalability even for
stateful policies. And second, because locality facilitates in-
teroperability between different laws, and enables the con-
struction of law-hierarchies, as has been shown in [1].
Remarkably, although locality constitutes a strict con-

straint on the structure of LGI laws, it does not reduce their
expressive power, as has been proved in [6]. In particular,
despite its structural locality, an LGI law can have global

5



effect over the entire L-community—mostly because all
members of that community are subject to the same law—
and can, thus, be used to establish mandatory, community
wide, constraints.

On the Basis for Trust Between Members of a Commu-
nity: For anL-agent x to trust its interlocutor y to observe
lawL, it is sufficient for x to have the assurance that the fol-
lowing three conditions are satisfied: (a) the exchange be-
tween x and y is mediated by correctly implemented private
controllers Tx and Ty, respectively; (b) both controllers op-
erate under law L; and (c) the L-messages exchanged be-
tween x and y are transmitted securely over the Internet.
The manner and degree to which these conditions are satis-
fied by the present implementation of LGI are discussed in
[6].

The Organization of Laws into Conformance Hierar-
chies: LGI enables its laws to be organized into what we
call conformance hierarchies. Each such hierarchy, or tree,
of laws t(L0), is rooted in some law L0. Each law in t(L0)
is said to be (transitively) subordinate to its parent, and
(transitively) superior to its descendants. And, given a pair
of laws N andM in t(L0), we write N≺M if N is sub-
ordinate toM. Semantically, the most important aspect of
this hierarchy is that if N≺M then N conforms to M, in
the sense that law N satisfies all the stipulations of its su-
perior lawM.
This concept of conformance hierarchy is related to, but

much more general than, the concept of meta policy intro-
duced by some policy mechanisms (see [2, 4], for exam-
ple.). In particular, the conformance relation under LGI is
enforced by its very construction. That is, the very defi-
nition of a law N as subordinate to M, prevents N from
violating the restriction imposed byM on its subordinates.
The manner this is done has been defined in [1], and it is too
complex to describe here.

A Controller Service (CoS): The set of controllers avail-
able to a given system—or to a collection of systems,for
that matter—is created by what we call a controller ser-
vice (CoS) that maintain and operate a distributed and trust-
worthy collection of generic LGI-controllers, which can
be adopted for operation under any valid law. This set of
controllers constitute distributed trusted computer base, or
DTCB, of LGI, which replaces the traditional concept of
TCB. (It should also be pointed out that there is a work un-
derway to further enhance the security of the controller, in
particular, via TPM technology.)

Other Features of LGI, and its Performance: We will
list here some of the notable features of LGI, which we were
not able to discuss in this short overview, and will provide
references to them for the interested reader. These features
are: (1) the concept of enforced obligation, that provides

LGI with important proactive capabilities; (2) the treatment
of exceptions, which provides LGI with fault tolerance ca-
pabilities; (3) the treatment of certificate, which is obvi-
ously necessary for the regulation of distributed computing;
and (4) interoperability between different laws, even if they
do not belong to the same hierarchy. All this, and the per-
formance of LGI, is discussed in the LGI Manual [6].

4 A Short Case Study

We introduce here a simplified computing analog of the
non-forgeability of money, one of the underlying regular-
ities that support the self management of real economies.
We first introduce a system to be governed, and describe in-
formally a set of rules that are to govern the interaction be-
tween the components of this system. Then we introduce an
actual LGI law (written in the Prolog-based law-language of
LGI) that establishes these rules as a regularity of the sys-
tem at hand. We also explain this law in some details, and
discuss some of its subtle properties.
Consider a distributed community C of agents that pro-

vide services to each other (some of these agents might be
servers, and others their clients; alternatively, they might
serve each other, in a peer-to-per manner). And suppose
that there is a need to regulate the number of service re-
quests that any given member of C can send to others; and
to provide for reliable accounting of the number of requests
that a given member gets from others. This can be accom-
plished via the following rules of engagement, to be called
“budgeted consumption” (or BC) policy:

1. Every member of C can be assigned a service budget
by a distinguished agent called the regulator.

2. Only one with positive budget is allowed to send a re-
quest, and such a request would decrement the budget
of the sender by one, and increment by one the visit-
count of the receiver.

3. Every agent can report to the regulator the value of its
current visit-count, which would be reset to zero when
this report is made.

This policy is implemented by law BC displayed in Fig-
ure 2. Under this law the term budget(B) in the CS of
an agent represents the current budget B of this agent; and
the term visits(V) in the CS of an agent represents the
number V of request received by it, since its last report to
the regulator. Also, service requests are represented, under
this law, by messages of the form request(R), where R
is the request itself, whose structure is left unspecified by
the law; the message addToBudget(D) is what the regu-
lator sends to an arbitrary agent to add D units to its budget;
and visitReport(V) is the message used to send the

6



regulator a report about the number of visit. The regulator
itself is specified by the alias clause of this law, and is given
the alias “regulator.”
RuleR1 of this law which deals with the adopted event,

which in this case initializes the CS of every BC-agent
with the terms budget(0) and visits(0), represent-
ing zero budget and zero visits, respectively. Note that as
we have seen before, this rule ignores any parameter which
may have been supplied by the actor.
By Rules R2 and Rule R3 the distinguished regu-

lator can add any value D to the budget of any agent
y in this community, simply by sending it the message
addToBudget(D). By Rule R2 this message would be
forwarded to its destination; and when this message arrives
at y it would, by RuleR3, cause the budget-term in the CS
of y to be incremented by D.
RulesR4 andR5 deals with the exchange of service re-

quests. By RuleR4 a sent request would be forwarded to its
destination only if the sender has a positive budget, causing
this budget to be decremented by 1. By RuleR5, the arrival
of a request message at its destination Y causes the visits
term of Y to be incremented by 1, and the request itself to
be delivered to the actor of Y.
Note that it is this pair of rules defines the semantics of

the term budget(B) in the CS of an agent as providing a
limit B on the number of requests that this agent can send;
and the semantics of the term visits(V) in the CS of an
agent, as the count of the number of requests that arrived at
it.
By Rules R6 and R7 every agent x in this

community can send to the regulator the message
visitsReport(V), where V is the current number of
visits recorded in term visits in the CS of x—thus, one
cannot cheat on the number of visit it had. Also, the sending
of this report would reset the number of visit in x to zero.
(Note that this law does not specify what should the director
do with this report.)

5 conclusion

The principle of regularity proposed here for self man-
agement of systems, states that for a large system to be
manageable it must possess suitable regularities. In other
words, this principle identifies the ability to establish reg-
ularities in a system, as a necessary condition for its self-
manageability. But this principle does not call for any uni-
versal regularity, but for regularities that fit the system to be
managed, and the management mechanism to be used.
This paper also proposes a mechanism for establishing

a wide range of regularities, even over open (i.e., highly
heterogeneous and distributed) systems—which would oth-
erwise lack them. This provides a critical key for the self
management of open systems, which is particularly impor-

Preamble:
law(bc,language(prolog)).
alias(regulator, ’regulator@ramses.rutgers.edu’).

R1. adopted(Any) :- do(add(budget(0))),
do(add(visits(0))).

The adopted event is the very first event in the life of
every newly created LGI-agent. Here it is used to initialize
the CS of every agent with the terms budget(0), and
visits(0).

R2. sent(#regulator,addToBudget(D),Y)
:- do(forward).

An addToBudget(D) message sent by the regulator is
forwarded to its destination without further ado.

R3. arrived(#regulator,addToBudget(D),
Y)

:- do(incr(budget,D)), do(deliver).

When a message addToBudget(D), sent by
regulator, arrives at Y, the budget of Y would
be incremented by D; and the message itself is delivered to
the actor of Y to inform it of the change.

R4. sent(X,request(R),Y)
:- budget(B)@CS, B > 0,

do(decr(budget,1)), do(forward).

A request(R) message, with any parameter R, is for-
warded only if the sender has a positive balance in its bud-
get, decreasing this balance by one.

R5. arrived(X,request(R),Y)
:- do(incr(visits,1)), do(deliver).

A request message arriving at the destination Y causes
the visits term of Y to be incremented by 1, and causes
the request itself to be delivered to the actor of Y.

R6. sent(X,visitsReport(V),#regulator)
:- visits(V)@CS,

do(decr(visits,V)), do(forward).

A visitsReport(V) message to the regulator is for-
warded only if V is the current visits count of the sender,
and this count is then reset to zero.

R7. arrived(X,visitsReport(V),
#regulator) :- do(deliver).

When a visitsReport(V) message arrives at the reg-
ulator it is delivered to its actor without farther ado.

R8. disconnected :- do(quit).

R9. sent(X,M,Y) :- do(deliver(Self,
failedSending(M,Y),Self)).

This rule catches all sent events that failed all other rules of
this law, informing the sender that the sending has failed.
Without this rule, such a sent event would be treated as no-
op, without giving the sender any feedback.

Figure 2. The Budgeted Consumption Law BC
7



tant because such systems do not lend themselves to exter-
nal management.
Although this paper does not propose any specific self

management mechanism, it suggests a regularity-based
methodology for devising such mechanism. Another ad-
vantage of the proposed principle is that it would discourage
people for attempting to devise a self management mecha-
nism for an open system which lack appropriate regulari-
ties. Such a futile endeavor is the WSDM (Web Services
Distributed Management) standard [3] for the management
of the open SOA-based systems, which attempt a form of
self management for system that, almost by definition, pos-
sess no real regularities.

References

[1] X. Ao and N. H. Minsky. Flexible regulation of dis-
tributed coalitions. In LNCS 2808: Proc. European
Symp. on Research in Computer Security (ESORICS),
Oct. 2003.

[2] A. Belokosztolszki and K. Moody. Meta-policies for
distributed role-based access control systems. In Proc.
of the IEEE 3rd International Workshop on Policies
for Distributed Systems and Networks, Monterey, Cal-
ifornia, pages 106–115, June 2002.

[3] OASIS Technical Committee. Web Services Dis-
tributedManagement (WSDM) v1.1, OASIS standard,
August 2006.

[4] N. Damianou, N. Dulay, E. Lupu, andM. Sloman. The
ponder policy specification language. In Morris Slo-
man, editor, Proc. of Policy Worshop, 2001, Bristol
UK, January 2001.

[5] N. H. Minsky. On conditions for self-healing in
distributed software systems. In In the Proceedings
of the International Autonomic Computing Work-
shop Seattle Washington, June 2003. (available at
http://www.cs.rutgers.edu/˜minsky/pubs.html).

[6] Naftaly H. Minsky. Law Governed Interac-
tion (LGI): A Distributed Coordination and Con-
trol Mechanism (An Introduction, and a Refer-
ence Manual), February 2006. (available at
http://www.moses.rutgers.edu/).

[7] Naftaly H. Minsky and V. Ungureanu. Law-governed
interaction: a coordination and control mechanism
for heterogeneous distributed systems. TOSEM, ACM
Transactions on Software Engineering and Methodol-
ogy, 9(3):273–305, July 2000.

[8] J.S. Rosenschein and G. Zlotkin. Rules of Encounter.
MIT Press, 1994.

[9] B. Schneier. Applied Cryptography. John Wiley and
Sons, 1996.

[10] A. Tanenbaum. Computer Networks. Prentice Hall,
1988.

[11] A. Tanenbaum. Distributed Operating Systems. Pren-
tice Hall, 1995.

[12] S. R. White, J.E. Hanson, I. Whalley, D.M. Chess,
and J.O. Kephart. An architectural approach to auto-
nomic computing. In Proceedings of the International
Conference on Autonomic Computing (ICAC04), May
2004.

[13] W. Wulf, E. Cohen, W. Corwin, A. Jones, C. Levin,
C. Pierson, and F. Pollack. Hydra: The kernel of
a multiprocessor operating system. CACM, 17:337–
345, 1974.

8


	Introduction
	The Regularity Principle of Self-Management
	The Plan of this Paper

	Unenforced Regularities of Distributed Systems
	Enforcing Regularities Over Open Distributed Systems
	The Law-Governed Interaction (LGI) Middleware---an Overview

	A Short Case Study
	conclusion

